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Abstract 
’Artagnan Cognitive Architecture (DCA) is a 

-agent framework that supports the study of 
ion as a means to realize intelligent behavior 
eighting the influence of different agents as 
collectively determine the next action. We 
interfaced the DCA to the Urban-Terror (UrT) 
erson shooter game and defined several 
s of increasing complexity in order to test the 
’s ability to perform well in these worlds and 
nstrate the usefulness of shifting attention 
g different agents. We have implemented 
al reflex agents and a path planner to help 
 play the UrT game. Experimental results in-
 that a DCA-based player using a combina-
f action-determining agents can be successful 
 no single agent can complete the task. 

duction 
 computer games have been considered human-
 “killer app” [Laird and van Lent, 2001] in that 
mes have a sufficient level of realism to require 
el intelligence to play well. Laird and van Lent’s 
g these lines with the SOAR cognitive architec-
he Unreal Tournament game explored the current 
AI to play these games [Laird, 2002]. Motivated 
challenge, but with an alternative view of the de-
gnitive architectures, we have begun development 
Artagnan Cognitive Architecture (DCA) and an 
etween it and the Urban Terror (UrT) first-person 
me. The DCA is a novel approach to cognitive 

res based on a Minskian society-of-agents ap-
insky, 1988] of psychologically-inspired, possibly 
, agents with a global focus-of-attention influence 
gents to achieve robust, human-consistent intelli-
vior. In previous work we have presented metrics 
-consistency and comparison of human and DCA 
[Youngblood and Holder, 2003]. 
paper we describe the DCA, the UrT game, and 
ce between the two. Fundamental to a player’s 
ce in such environments is the ability to reason 
Therefore, we have also implemented a path plan-
on the work of [Hill, 2002] that generates a topo-

logical graph from the UrT world maps and uses the graph 
to find paths between the agent’s starting and goal location. 
While there is a large body of work in representations and 
algorithms for path planning in many domains (e.g., see 
O’Neill’s [2004] work on a mesh representation for game 
worlds to support path planning), our work is unique in its 
ability to automatically generate a topological graph from 
the UrT’s map representation, which is the means by which 
different UrT world scenarios are distributed to gamers. 
 To test the DCA approach, we define multiple tasks in 
five different UrT maps and evaluate the performance of a 
reflex-agent-based DCA while playing UrT. Our goal is to 
evaluate the hypothesis that the DCA consisting of multiple 
action-generating agents, controlled by a global attention 
agent, can accomplish tasks too difficult for a single-agent-
based DCA. This hypothesis is similar to that confirmed in 
Reynolds’ [1999] work, where he exhibited human-
consistent steering behavior using a linear combination of 
numeric values from lower-level behaviors (e.g., flee dan-
ger, avoid obstacles). However, the DCA must choose 
among a discrete set of actions for which we propose an 
approach based on an adaptive focus of attention. 

2 D’Artagnan Cognitive Architecture (DCA) 
The D’Artagnan Cognitive Architecture (DCA, 
http://ailab.uta.edu/dca) [Youngblood, 2000; Youngblood 
and Holder, 2003] is based on the work of existing cognitive 
architectures, robotics research, and human-consistent cog-
nitive models, centered on a specific task. DCA consists of 
twelve components, or models of cognition (see Figure 1). 
The twelve DCA models consist of the action model, action 
evaluation model, attention model, decision model, effectual 
model, emotion model, goal model, learning model, learning 
evaluation model, memory model, perceptual model, and 
reflex model. Models are implemented using one or more 
agents in a multi-agent framework, e.g., several different 
types of learning techniques may be underlying the learning 
model, and all compete for the bandwidth to influence 
DCA’s behavior. When connected, these components form 
an architectural system for learning and adapting to an envi-
ronment. Figure 1 depicts one possible set of connections 
between models, but in reality the models are completely 
connected. The communication bandwidth across a connec-
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Figure 1. The D'Artagnan Cognitive Architecture (DCA). Figure 2. Urban area map (left) used by the DCA-
UrT project and a screen shot of the game (right).

tion varies dynamically, as controlled by the attention 
model. 

When percepts are received and stored into memory, the 
appropriate models are triggered and start processing.  Some 
models will select goals and propose actions based on learn-
ing from past actions, while other models will use delibera-
tive planning to determine the next action leading toward a 
goal. The proposed actions are available at any time for the 
action model, which selects the action to take.  The selected 
action is executed by the effectors. 

Selection among the set of possible actions is affected by 
a number of factors.  The learning model not only generates 
knowledge and possible actions, but also evaluates past de-
cisions to learn the action's effectiveness for a particular 
goal. The emotion model provides a suppressor or enabler 
signal of an action based on environmental situations. 
Strong emotions can completely inhibit certain actions and 
enable others (e.g., fear will inhibit charging an opponent 
and enable retreat). The final dispatcher of influence is the 
attention model, which controls the weights of all edges and 
thus controls communication between models and the confi-
dence level of possible decisions generated by these models. 
The attention model also controls the timing of decisions, 
following the anytime paradigm, to produce the best possi-
ble decision at given time intervals. Based on the human 
ability to focus the mind on different thought mechanisms 
for different situations, the attention model can stop and 
restart other models to enforce desired behavior. 

3 Urban Terror (UrT) 
We have begun development on interfacing DCA to a visu-
ally and tactically realistic urban warfare simulator called 
Urban Terror (UrT, http://www.urbanterror.net), which is 
built on top of the cross-platform (Win32, Linux, Mac OS 
X) Quake III Arena game engine. UrT is a first-person 
shooter (FPS) game developed by Silicon Ice Development. 
At present UrT is offered as an entertainment-based game, 
and to our knowledge, has not been deployed for any other 
commercial or military use. As part of this project we have 

implemented an interface to the UrT game that allows the 
DCA (or any other system) to extract perceptual information 
from the UrT game and perform actions in UrT. UrT sup-
ports several challenging world maps (e.g., Figure 2 depicts 
an UrT urban map and a game screenshot) and game scenar-
ios (e.g., capture the flag, bomb-defuse, and free for all). We 
have also defined our own simplified games within these 
worlds that still portray realistic urban warfare scenarios. 
We have developed mechanisms for logging game informa-
tion in XML in order to extract a player’s behavior. Eventu-
ally, we plan to have human players play our worlds in or-
der to capture their play, which will serve as part of an 
evaluation metric for an agent’s consistency with human 
behavior. 

4 DCA-UrT Interface 
The DCA and UrT are interfaced via shared memory to ex-
change percepts and actions. The shared memory is used to 
read and write percepts and actions with lower communica-
tion latency and lower computational burden on the game 
engine. A visual interface called UrTInterface (see Figure 3) 
has been developed for UrT to display all the percept infor-
mation that can be obtained from the game and also acts as a 
virtual keyboard to play the game. This section describes the 
main aspects of interfacing DCA to UrT. For more interface 
details, see [Kondeti, 2005]. 

4.1 Modifications to UrbanTerror 
Since UrbanTerror (UrT) is a realistic shooter game, with 
sophisticated worlds and adversaries, and DCA is still in its 
infancy, a number of modifications had to be done to UrT 
before DCA can play it. The main concern of DCA is to 
navigate towards the goal while avoiding obstacles. So the 
opponents in the game had to be removed since their goal is 
to kill the player and end the game. This is done by deliber-
ately not allowing the game to start any opponents in the 
game, giving DCA more time to successfully navigate to the 
goal without getting killed by opponents. 
 The goal of the DCA is to get the opponent’s flag. The 
rules for “Capture the Flag” mode in UrT require the player  



Figure 3. DCA-UrT effector interface (left) and percept interface (right). 

to get to the opponent’s flag and return back to his base 
without being killed or losing the flag. Since there are no 
opponents and the task for DCA to navigate toward the goal 
is itself very difficult, the complexity of the game is mini-
mized by finishing the game once the DCA player gets the 
opponent flag, avoiding the burden of navigating back to the 
starting location with the flag. 
 The game is also modified to log information about the 
time, step, action, player health and player location, which is 
sufficient to determine if the DCA was able to finish the 
task, and if so, the time and number of actions taken to 
reach the goal. 

4.2 Modifications to DCA 
DCA is modified to handle the percepts obtained from UrT, 
consisting of 33 different percepts related to the player, 11 
different percepts about entities which include opponents if 
they are present and all the different dynamic objects, and 4 
different percepts about weapons. DCA can choose from 29 
different actions that can be sent to the game.  
 A portion of DCA was implemented to produce a reflex 
agent based cognitive architecture to test the working of 
DCA with UrT. This includes a perceptual agent for getting 
information from the UrT environment, a basic memory 
agent, an attention agent, several reflex agents, a bread-
crumb agent, a path-planning agent, an action agent and an 
effector agent to send actions back to UrT. The imple-
mented portion of the DCA model for UrT is shown in Fig-
ure 4 along with the main communication links between the 
agents. 

Only the percept agent and effector agent are interfaced 
to the local shared memory. All the information that is read 
by the percept agent from shared memory is first sent to the 
memory agent. The memory agent creates a data structure of 
all the information and places the data in the network for the 
reflex and path-planning agents to consume. All the reflex 
agents (described in the next section) process this informa-
tion and send an action to the action agent. The path-
planning agent determines waypoints for the BreadCrumb 
agent. The action agent receives actions from different re-

flex agents and selects an action based on a policy. Since 
there are no agents to evaluate the action taken, the policy is 
hard-coded into the action agent. Each link from a reflex 
agent is given a weight by the attention agent, and the action 
is chosen according to this weight. The action thus deter-
mined is sent to the effector agent. 

4.3 Reflex Agents 
There are four reflex agents implemented within the DCA-
UrT interface. Some reflex agents maintain a small amount 
of state information to determine whether or not they are 
stuck at the same position for a while. The Random Agent 
depicted in Figure 4 represents one of two random reflex 
agents: with goal information and without goal information. 
For the random reflex agent with no goal location the agent 
randomly chooses one of the navigation actions. For the 
random reflex agent with goal location the agent always 
tries to move in a straight path towards the goal. If there are 
any obstacles in between, and the agent determines that it is 
struck at the obstacle, then the agent randomly chooses one 
of several evasive sequences of steps and sends them all 
sequentially as its actions, in order to move away from the 
obstacle.  

The Ping Agent on the other hand knows the distance to 
the nearest obstacle in its line of sight. If this distance be-
comes less than a threshold value, the Ping Agent takes one 
of the sequences of random steps and continuously takes 
these sequences of steps until the distance to the nearest 
obstacle is greater than the threshold value.  

For the BreadCrumb agent obstacle-free subgoals are 
provided which when followed take the agent to the final 
goal. These subgoals are chosen such that a minimum of 
them are required to reach the goal. These subgoals are 
visually identified and hard-coded into the agent, or gener-
ated by the path planning agent (see next section). Even 
though subgoals provided for the bread crumb agent are 
obstacle free, there is a possibility that the agent may get 
stuck at an edge of an obstacle or there might be a small 
obstacle in between subgoals. To accomplish the goals in 
such scenarios the BreadCrumb agent is played along with 
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one of the random agents. The attention agent keeps track of 
whether the DCA player is stuck and directs the action agent 
to place additional weight on the actions from the random 
agent to get itself free from the obstacle. 

4.4 Path Planning Agent 
The ability to navigate is a fundamental component of intel-
ligent behavior in real-time simulated worlds. We have de-
veloped a path planning agent for the DCA-UrT interface to 
support the action-generating agents in their quest toward 
the goal. Currently, the path-planning agent supplies bread 
crumbs for the BreadCrumb agent to follow. The path plan-
ning system is developed in two phases. The first phase 
converts the UrT game world map representation into a 
topological graph (TOG) representation of the game world. 
This is a complex process, since the world map representa-
tion was not designed to be used for path planning. The sec-
ond phase is the one used in the path-planning agent, i.e., it 
involves searching the TOG to extract path information 
from the graph structure. We provide an overview of the 
process here. For more information, see [Nallacharu, 2005]. 
 The first phase of the path planning process consists of 
the following four tasks. For reference, Figure 5 shows a 
small world consisting of two floors connected by stairs 
with a wall and door on the second floor. The bottom of 
Figure 5 shows the final topological graph for this world. 
1. Parsing the .map file. The Quake III family of games, of 

which UrT is one, describes the worlds using a .map file 
format. The first step is to parse this file to extract the 
planes, or “brushes”, used to describe the world. For ex-
ample, the world shown in Figure 2 (known as Reyk-
javík) consists of 1814 brushes. 

2. Find related brushes. In this step we calculate the rela-
tionships (i.e., intersections) between brushes. 

3. Find brush reachabilities. Reachability information helps 
decide if one can traverse from a given brush to another. 
The reachability represents a directed edge connecting 
two plane surfaces in three-dimensional space. Reach-
ability information also includes a cost metric, which is 
directly proportional to the inclination and the height val-

ues of the brush planes and represents the physical diffi-
culty in traversing between the two brushes. 

4. Generate topological graph. The process of generating 
the topological graph starts at a brush and expands along 
reachability edges in a breadth first manner. 

The bottom of Figure 5 shows the TOG for the top world. 
Notice that each step of the staircase is a node in the graph 
and the bottom three steps can all be reached directly (per-
haps by jumping) from the first floor.  

Given the TOG and a starting and goal location, the path-
planning agent can generate a set of points along a path be-
tween the two locations. We first identify the nodes contain-
ing the desired locations by searching the graph using 
bounding box information. We then find the shortest path 
between the start and goal nodes based on the edge costs 
(recall that some edges cost more because they represent 
more complicated moves for the agent). 
 The next step is to determine exactly how to move based 
on the traversing edge in the TOG. Since the nodes repre-
sent concave surfaces, simply moving between midpoints of 
the common edges may not yield a successful path. So, we 
use a concave polygon triangulation method to divide up the 
nodes into convex triangles and augment the path at each 
edge transition with the result of a sub-search through the 
midpoints of each surface’s triangles. The graph at the bot-
tom of Figure 5 shows the triangulation of the node sur-
faces. 
 Finally, the points in the path are communicated to the 
BreadCrumb agent, which translates them into actions. 
These actions are sent sequentially to the action model. 

5 Experimental Results 
Two main objectives of the DCA are to show human consis-
tency in its behavior and that a collection of possibly com-
peting models can sometimes accomplish tasks not possible 
by a single model approach. We have evaluated the human-
consistency of the DCA in earlier work using the Quake II 
game [Youngblood and Holder, 2003]. In the Quake II ex-
periments we defined 100 levels of increasing complexity 
starting from a single room with the objective right in front 
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Figure 5. DCA model for UrT interface. 



of the agent to a complicated world with multiple adversar-
ies. In addition to having the DCA play these levels, we also 
collected game play data from 24 different human players. 
We found that the human players clustered into three 
groups: novice, intermediate and expert. And we found that 
the DCA player was consistent with the novice-level human 
play according to a path edit distance based metric. The 
Urban Terror game provides a much more realistic urban-
warfare scenario based on the Quake III Arena game engine. 

The experiments reported here are designed to test the 
hypothesis that multiple action-generating agents working 
simultaneously within DCA may yield better game-playing 
performance than a single agent approach. The agents util-
ized are the two random agents (with and without goal loca-
tion), the ping agent, the bread crumb agent with hand-
crafted crumb locations, and the bread crumb agent with 
crumb locations provided by the path-planning agent. 

 

5.1 Test Maps and Tasks 
For our experiments we are using the following five differ-
ent maps included with UrT. 
1. Reykjavik. This map represents an urban warfare scenario 

and consists of four large buildings with three floors each 
separated by many path ways. This map is pictured in 
Figure 2. 

2. Rommel. This map (see top of Figure 6) represents a vil-
lage scenario where most of the buildings are destroyed. 
A canal flows through the village and there are many ob-
stacles in the form of rubble. 

3. Docks. This map depicts a warehouse scenario at the edge 
of a shallow body of water. This map is the most complex 
of all the five maps with many buildings and rooms that 
are interconnected in a complex manner. 

4. Riyadh. This map portrays a desert scenario and consists 
of two market places far away from each other. Bezier 
curves are used to construct all the curved surfaces to 
give a desert effect. 

5. Twinlakes. This map is built upon mountains covered 
with snow. The map is completely covered with trees that 
are climbable. The map also has two houses at either end 
of the map with a small pond for each house. For this 
map also Bezier curves were used to construct the moun-
tainous terrain. 

Figure 6. Rommel map (top) and the task 4 scenario 
of crossing the canal bridge (bottom). 

For each of the five maps we defined five tasks consisting of 
capture-the-flag games of increasing difficulty. Table 1 de-
scribes the 25 tasks. 

5.2 Results 
We evaluated the performance of DCA with various reflex 
agents playing individually and then two or more reflex 
agents playing together. The metric information used for 
evaluation is whether the individual reflex agents or coop-
erative reflex agents were able to accomplish the given task, 
and if so, the time taken to accomplish the task and the num-
ber of actions sent to UrT to finish the task. Each version of 
the DCA was allowed to play each task three times and the 
average of the three plays is taken for evaluation purposes. 

Figure 7 shows the time take by each of the three single-
agent DCAs on the task 3 scenario for the five maps. Except 
for Rommel, the performance of the bread crumb agent is 
better than all other agents, and the performance of the ping 
Table 1. Five tasks for each of the five DCA-UrT maps (obstacles are between start and goal locations). 
 Reykjavik Rommel Docks Riyadh Twinlakes 
1 Obstacle-free 

traversal 
Obstacle-free 
traversal 

Obstacle-free traversal Obstacle-free tra-
versal 

Obstacle-free traversal; 
mountainous terrain 

2 One large obsta-
cle 

L-shaped obstacle Two adjoining obstacles 
with deadend 

One small obstacle One octagonal slip-
pery-surfaced obstacle 

3 Start enclosed by 
wall with door 

Cluster of walls Two clusters of obstacles 
far from each other 

Platform obstacle Row of four obstacles 

4 Traverse large L-
shaped alley 

Cross bridge over 
canal (see fig. 6) 

Cross narrow bridge to 
floating dock 

Traverse around 
marketplace 

Traverse thru tunnel 

5 Obstacle-free Long traversal, Climb stairs to second Descend ladder to One room to another 

staircase traversal many obstacles floor  first floor  through narrow door 



agent is better than that of the random agent with goal in-
formation. For Reykjavik the random agent with goal in-
formation could not finish the given task, so the values for 
that agent are not plotted. For Rommel the performance of 
the random agent with goal information is better than that of 
the ping agent and almost equivalent to that of the bread 
crumb agent. This is because the obstacle present is in the 
form of a slanted wall, and the random agent simply slides 
along the wall to reach the goal. 

Results for tasks 1 and 2 follow the trend of the bread 
crumb agent taking the least time, followed by the ping 
agent and then the random agent with goal information. For 
tasks 4 and 5 only the bread crumb agent was able to com-
plete the levels. Task 4 typically resulted in the random and 
ping agents getting stuck or falling in the water. Task 5 in-
volved finding a staircase or ladder, which the random and 
ping agents rarely find. 

We do not show the results with the path-planning agent, 
because they are typically longer times, because the path 
planner generates many more bread crumbs, each possibly 
requiring slight turns. For the handcrafted bread crumbs, 
only 2-4 are needed for all tasks. However, there were some 
scenarios in which the bread crumb agent became stuck; 
whereas, the path-planner agent was able to successfully 
complete the task. In these same cases where the bread 
crumb agent got stuck, we allow the attention agent to 
weight the random agents’ actions more heavily, which was 
typically enough to get the player unstuck. Once unstuck, 
the attention agent readjusted the weight back in favor of the 
bread-crumb agent in order to complete the task. While this 
policy was hard-coded, it illustrates how multiple agent ap-
proach can combine to accomplish tasks not possible by a 
single agent approach and illustrates an area in which the 
DCA can focus efforts to learn such a policy. 

6 Conclusions 
We have successfully integrated the D’Artagnan Cognitive 
Architecture (DCA) to the Urban Terror (UrT) first-person 
shooter game to support the further development of the 
DCA. The definition of increasingly difficult tasks within 

the realistic maps provided with UrT comprises a challeng-
ing evaluation testbed for the DCA and other AI methods. 
The implementation and combination of the path planner 
and reflex agents provides a simple, yet effective, agent for 
playing our simplified UrT game. 
 We plan to pursue this work along three directions. First, 
we will further develop the various components of the DCA 
based on the latest understanding from cognitive and neuro-
sciences. We will also interface and evaluate the DCA in 
other environments. Our goal is not only to produce a DCA-
based agent that performs well in complicated environ-
ments, but that also exhibits human-consistent behavior. 
Second, we will extend the testbed to include additional 
tasks of increasing complexity by combining components of 
existing tasks and introducing adversaries. Third, we will 
make the UrT interface and task set available to others as a 
testbed for evaluating AI methods and as a mechanism to 
collect human play to serve as a baseline for measuring hu-
man consistency. 

References 
[Hill, 2002] R. Hill, C. Han and M. van Lent. Applying per-

ceptually driven cognitive mapping to virtual urban envi-
ronments. Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence, pp. 886-893, 2002. 

[Kondeti, 2005] B. Kondeti. Integration of the D’Artagnan 
Cognitive Architecture with Real-Time Simulated Envi-
ronments. M.S. thesis, Department of Computer Science 
and Engineering, University of Texas at Arlington, 2005. 

[Laird, 2002] J. Laird. Research in Human-Level AI Using 
Computer Games. Communications of the ACM, 45(1): 
32-35, 2002. 

[Laird and van Lent, 2001] J. Laird and M. van Lent. Hu-
man-level AI’s Killer Application: Interactive Computer 
Games. AI Magazine, 22:15-25, 2001. 

[O’Neill, 2004] J. O’Neill. Efficient Navigation Mesh Im-
plementation. Journal of Game Development, Volume 1, 
Issue 1, 2004. 

[Nallacharu, 2005] M. Nallacharu.  Spatial Reasoning for 
Real-Time Simulated Environments. M.S. thesis, De-
partment of Computer Science and Engineering, Univer-
sity of Texas at Arlington, 2005. 

[Reynolds, 1999] C. Reynolds. Steering Behaviors for 
Autonomous Characters. Proceedings of the Game De-
velopers Conference, pp. 763-782, 1999. 

[Youngblood, 2002]. G. M. Youngblood. Agent-Based 
Simulated Cognitive Intelligence in a Real-Time First-
Person Entertainment-Based Artificial Environment. 
M.S. thesis, Department of Computer Science and Engi-
neering, University of Texas at Arlington, 2002. 

[Youngblood and Holder, 2003] G. M. Youngblood and L. 
B. Holder. Evaluating Human-Consistent Behavior in a 
Real-time First-person Entertainment-based Artificial 
Environment. Proceedings of the Sixteenth International 
FLAIRS Conference, pp. 32-36, 2003. 

 
Level 3 – Time (secs) 

800 
Random with goal 
Ping 
Bread Crumb 

700 

600

500 
400 

300 
200 

100 
0 

Docks Reykjavik Rommel Riyadh Twinlakes

Figure 7. Average time taken by three agents in the 
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