
B

The D
multi
attent
by w
they
have
first-p
world
DCA
demo
amon
sever
DCA
dicate
tion o
when

1 Intro
Interactive
level AI’s
current ga
human-lev
work alon
ture and t
limits of
from this
sign of co
on the D’
interface b
shooter ga
architectu
proach [M
competing
over the a
gent beha
for human
behaviors
 In this
the interfa
performan
spatially.
ner based
IJCAI 2005 Workshop on Reasoning, Representation, and Learning in Computer Games
Interfacing the D’Artagnan Cognitive Architecture to the
Urban Terror First-Person Shooter Game

harat Kondeti, Maheswar Nallacharu, Michael Youngblood and Lawrence Holder
University of Texas at Arlington

Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019

{kondetibharat,mailbackmahesh}@yahoo.com, {youngbld,holder}@cse.uta.edu

Abstract
’Artagnan Cognitive Architecture (DCA) is a

-agent framework that supports the study of
ion as a means to realize intelligent behavior
eighting the influence of different agents as
collectively determine the next action. We
interfaced the DCA to the Urban-Terror (UrT)
erson shooter game and defined several
s of increasing complexity in order to test the
’s ability to perform well in these worlds and
nstrate the usefulness of shifting attention
g different agents. We have implemented
al reflex agents and a path planner to help
 play the UrT game. Experimental results in-
 that a DCA-based player using a combina-
f action-determining agents can be successful
 no single agent can complete the task.

duction
 computer games have been considered human-
 “killer app” [Laird and van Lent, 2001] in that
mes have a sufficient level of realism to require
el intelligence to play well. Laird and van Lent’s
g these lines with the SOAR cognitive architec-
he Unreal Tournament game explored the current
AI to play these games [Laird, 2002]. Motivated
challenge, but with an alternative view of the de-
gnitive architectures, we have begun development
Artagnan Cognitive Architecture (DCA) and an
etween it and the Urban Terror (UrT) first-person
me. The DCA is a novel approach to cognitive

res based on a Minskian society-of-agents ap-
insky, 1988] of psychologically-inspired, possibly
, agents with a global focus-of-attention influence
gents to achieve robust, human-consistent intelli-
vior. In previous work we have presented metrics
-consistency and comparison of human and DCA
[Youngblood and Holder, 2003].
paper we describe the DCA, the UrT game, and
ce between the two. Fundamental to a player’s
ce in such environments is the ability to reason
Therefore, we have also implemented a path plan-
on the work of [Hill, 2002] that generates a topo-

logical graph from the UrT world maps and uses the graph
to find paths between the agent’s starting and goal location.
While there is a large body of work in representations and
algorithms for path planning in many domains (e.g., see
O’Neill’s [2004] work on a mesh representation for game
worlds to support path planning), our work is unique in its
ability to automatically generate a topological graph from
the UrT’s map representation, which is the means by which
different UrT world scenarios are distributed to gamers.
 To test the DCA approach, we define multiple tasks in
five different UrT maps and evaluate the performance of a
reflex-agent-based DCA while playing UrT. Our goal is to
evaluate the hypothesis that the DCA consisting of multiple
action-generating agents, controlled by a global attention
agent, can accomplish tasks too difficult for a single-agent-
based DCA. This hypothesis is similar to that confirmed in
Reynolds’ [1999] work, where he exhibited human-
consistent steering behavior using a linear combination of
numeric values from lower-level behaviors (e.g., flee dan-
ger, avoid obstacles). However, the DCA must choose
among a discrete set of actions for which we propose an
approach based on an adaptive focus of attention.

2 D’Artagnan Cognitive Architecture (DCA)
The D’Artagnan Cognitive Architecture (DCA,
http://ailab.uta.edu/dca) [Youngblood, 2000; Youngblood
and Holder, 2003] is based on the work of existing cognitive
architectures, robotics research, and human-consistent cog-
nitive models, centered on a specific task. DCA consists of
twelve components, or models of cognition (see Figure 1).
The twelve DCA models consist of the action model, action
evaluation model, attention model, decision model, effectual
model, emotion model, goal model, learning model, learning
evaluation model, memory model, perceptual model, and
reflex model. Models are implemented using one or more
agents in a multi-agent framework, e.g., several different
types of learning techniques may be underlying the learning
model, and all compete for the bandwidth to influence
DCA’s behavior. When connected, these components form
an architectural system for learning and adapting to an envi-
ronment. Figure 1 depicts one possible set of connections
between models, but in reality the models are completely
connected. The communication bandwidth across a connec-

Learning
Evaluation

Model

Memory
Model

Perceptual
Input

(Sensors)

Learning
Model

Attention
Model

Reflex
Model

Goal
Model

Decision
Model

Action
Model

Effectors

Emotion
Model

Action
Evaluation

Model

Figure 1. The D'Artagnan Cognitive Architecture (DCA). Figure 2. Urban area map (left) used by the DCA-
UrT project and a screen shot of the game (right).

tion varies dynamically, as controlled by the attention
model.

When percepts are received and stored into memory, the
appropriate models are triggered and start processing. Some
models will select goals and propose actions based on learn-
ing from past actions, while other models will use delibera-
tive planning to determine the next action leading toward a
goal. The proposed actions are available at any time for the
action model, which selects the action to take. The selected
action is executed by the effectors.

Selection among the set of possible actions is affected by
a number of factors. The learning model not only generates
knowledge and possible actions, but also evaluates past de-
cisions to learn the action's effectiveness for a particular
goal. The emotion model provides a suppressor or enabler
signal of an action based on environmental situations.
Strong emotions can completely inhibit certain actions and
enable others (e.g., fear will inhibit charging an opponent
and enable retreat). The final dispatcher of influence is the
attention model, which controls the weights of all edges and
thus controls communication between models and the confi-
dence level of possible decisions generated by these models.
The attention model also controls the timing of decisions,
following the anytime paradigm, to produce the best possi-
ble decision at given time intervals. Based on the human
ability to focus the mind on different thought mechanisms
for different situations, the attention model can stop and
restart other models to enforce desired behavior.

3 Urban Terror (UrT)
We have begun development on interfacing DCA to a visu-
ally and tactically realistic urban warfare simulator called
Urban Terror (UrT, http://www.urbanterror.net), which is
built on top of the cross-platform (Win32, Linux, Mac OS
X) Quake III Arena game engine. UrT is a first-person
shooter (FPS) game developed by Silicon Ice Development.
At present UrT is offered as an entertainment-based game,
and to our knowledge, has not been deployed for any other
commercial or military use. As part of this project we have

implemented an interface to the UrT game that allows the
DCA (or any other system) to extract perceptual information
from the UrT game and perform actions in UrT. UrT sup-
ports several challenging world maps (e.g., Figure 2 depicts
an UrT urban map and a game screenshot) and game scenar-
ios (e.g., capture the flag, bomb-defuse, and free for all). We
have also defined our own simplified games within these
worlds that still portray realistic urban warfare scenarios.
We have developed mechanisms for logging game informa-
tion in XML in order to extract a player’s behavior. Eventu-
ally, we plan to have human players play our worlds in or-
der to capture their play, which will serve as part of an
evaluation metric for an agent’s consistency with human
behavior.

4 DCA-UrT Interface
The DCA and UrT are interfaced via shared memory to ex-
change percepts and actions. The shared memory is used to
read and write percepts and actions with lower communica-
tion latency and lower computational burden on the game
engine. A visual interface called UrTInterface (see Figure 3)
has been developed for UrT to display all the percept infor-
mation that can be obtained from the game and also acts as a
virtual keyboard to play the game. This section describes the
main aspects of interfacing DCA to UrT. For more interface
details, see [Kondeti, 2005].

4.1 Modifications to UrbanTerror
Since UrbanTerror (UrT) is a realistic shooter game, with
sophisticated worlds and adversaries, and DCA is still in its
infancy, a number of modifications had to be done to UrT
before DCA can play it. The main concern of DCA is to
navigate towards the goal while avoiding obstacles. So the
opponents in the game had to be removed since their goal is
to kill the player and end the game. This is done by deliber-
ately not allowing the game to start any opponents in the
game, giving DCA more time to successfully navigate to the
goal without getting killed by opponents.
 The goal of the DCA is to get the opponent’s flag. The
rules for “Capture the Flag” mode in UrT require the player

Figure 3. DCA-UrT effector interface (left) and percept interface (right).

to get to the opponent’s flag and return back to his base
without being killed or losing the flag. Since there are no
opponents and the task for DCA to navigate toward the goal
is itself very difficult, the complexity of the game is mini-
mized by finishing the game once the DCA player gets the
opponent flag, avoiding the burden of navigating back to the
starting location with the flag.
 The game is also modified to log information about the
time, step, action, player health and player location, which is
sufficient to determine if the DCA was able to finish the
task, and if so, the time and number of actions taken to
reach the goal.

4.2 Modifications to DCA
DCA is modified to handle the percepts obtained from UrT,
consisting of 33 different percepts related to the player, 11
different percepts about entities which include opponents if
they are present and all the different dynamic objects, and 4
different percepts about weapons. DCA can choose from 29
different actions that can be sent to the game.
 A portion of DCA was implemented to produce a reflex
agent based cognitive architecture to test the working of
DCA with UrT. This includes a perceptual agent for getting
information from the UrT environment, a basic memory
agent, an attention agent, several reflex agents, a bread-
crumb agent, a path-planning agent, an action agent and an
effector agent to send actions back to UrT. The imple-
mented portion of the DCA model for UrT is shown in Fig-
ure 4 along with the main communication links between the
agents.

Only the percept agent and effector agent are interfaced
to the local shared memory. All the information that is read
by the percept agent from shared memory is first sent to the
memory agent. The memory agent creates a data structure of
all the information and places the data in the network for the
reflex and path-planning agents to consume. All the reflex
agents (described in the next section) process this informa-
tion and send an action to the action agent. The path-
planning agent determines waypoints for the BreadCrumb
agent. The action agent receives actions from different re-

flex agents and selects an action based on a policy. Since
there are no agents to evaluate the action taken, the policy is
hard-coded into the action agent. Each link from a reflex
agent is given a weight by the attention agent, and the action
is chosen according to this weight. The action thus deter-
mined is sent to the effector agent.

4.3 Reflex Agents
There are four reflex agents implemented within the DCA-
UrT interface. Some reflex agents maintain a small amount
of state information to determine whether or not they are
stuck at the same position for a while. The Random Agent
depicted in Figure 4 represents one of two random reflex
agents: with goal information and without goal information.
For the random reflex agent with no goal location the agent
randomly chooses one of the navigation actions. For the
random reflex agent with goal location the agent always
tries to move in a straight path towards the goal. If there are
any obstacles in between, and the agent determines that it is
struck at the obstacle, then the agent randomly chooses one
of several evasive sequences of steps and sends them all
sequentially as its actions, in order to move away from the
obstacle.

The Ping Agent on the other hand knows the distance to
the nearest obstacle in its line of sight. If this distance be-
comes less than a threshold value, the Ping Agent takes one
of the sequences of random steps and continuously takes
these sequences of steps until the distance to the nearest
obstacle is greater than the threshold value.

For the BreadCrumb agent obstacle-free subgoals are
provided which when followed take the agent to the final
goal. These subgoals are chosen such that a minimum of
them are required to reach the goal. These subgoals are
visually identified and hard-coded into the agent, or gener-
ated by the path planning agent (see next section). Even
though subgoals provided for the bread crumb agent are
obstacle free, there is a possibility that the agent may get
stuck at an edge of an obstacle or there might be a small
obstacle in between subgoals. To accomplish the goals in
such scenarios the BreadCrumb agent is played along with

Percept
Agent

Memory
Agent

one of the random agents. The attention agent keeps track of
whether the DCA player is stuck and directs the action agent
to place additional weight on the actions from the random
agent to get itself free from the obstacle.

4.4 Path Planning Agent
The ability to navigate is a fundamental component of intel-
ligent behavior in real-time simulated worlds. We have de-
veloped a path planning agent for the DCA-UrT interface to
support the action-generating agents in their quest toward
the goal. Currently, the path-planning agent supplies bread
crumbs for the BreadCrumb agent to follow. The path plan-
ning system is developed in two phases. The first phase
converts the UrT game world map representation into a
topological graph (TOG) representation of the game world.
This is a complex process, since the world map representa-
tion was not designed to be used for path planning. The sec-
ond phase is the one used in the path-planning agent, i.e., it
involves searching the TOG to extract path information
from the graph structure. We provide an overview of the
process here. For more information, see [Nallacharu, 2005].
 The first phase of the path planning process consists of
the following four tasks. For reference, Figure 5 shows a
small world consisting of two floors connected by stairs
with a wall and door on the second floor. The bottom of
Figure 5 shows the final topological graph for this world.
1. Parsing the .map file. The Quake III family of games, of

which UrT is one, describes the worlds using a .map file
format. The first step is to parse this file to extract the
planes, or “brushes”, used to describe the world. For ex-
ample, the world shown in Figure 2 (known as Reyk-
javík) consists of 1814 brushes.

2. Find related brushes. In this step we calculate the rela-
tionships (i.e., intersections) between brushes.

3. Find brush reachabilities. Reachability information helps
decide if one can traverse from a given brush to another.
The reachability represents a directed edge connecting
two plane surfaces in three-dimensional space. Reach-
ability information also includes a cost metric, which is
directly proportional to the inclination and the height val-

ues of the brush planes and represents the physical diffi-
culty in traversing between the two brushes.

4. Generate topological graph. The process of generating
the topological graph starts at a brush and expands along
reachability edges in a breadth first manner.

The bottom of Figure 5 shows the TOG for the top world.
Notice that each step of the staircase is a node in the graph
and the bottom three steps can all be reached directly (per-
haps by jumping) from the first floor.

Given the TOG and a starting and goal location, the path-
planning agent can generate a set of points along a path be-
tween the two locations. We first identify the nodes contain-
ing the desired locations by searching the graph using
bounding box information. We then find the shortest path
between the start and goal nodes based on the edge costs
(recall that some edges cost more because they represent
more complicated moves for the agent).
 The next step is to determine exactly how to move based
on the traversing edge in the TOG. Since the nodes repre-
sent concave surfaces, simply moving between midpoints of
the common edges may not yield a successful path. So, we
use a concave polygon triangulation method to divide up the
nodes into convex triangles and augment the path at each
edge transition with the result of a sub-search through the
midpoints of each surface’s triangles. The graph at the bot-
tom of Figure 5 shows the triangulation of the node sur-
faces.
 Finally, the points in the path are communicated to the
BreadCrumb agent, which translates them into actions.
These actions are sent sequentially to the action model.

5 Experimental Results
Two main objectives of the DCA are to show human consis-
tency in its behavior and that a collection of possibly com-
peting models can sometimes accomplish tasks not possible
by a single model approach. We have evaluated the human-
consistency of the DCA in earlier work using the Quake II
game [Youngblood and Holder, 2003]. In the Quake II ex-
periments we defined 100 levels of increasing complexity
starting from a single room with the objective right in front

Attention
Agent

Random
Agent

Ping
 Agent

BreadCrumb
Agent

 Action
Agent

Effector
Agent

Path-Planning
Agent

Figure 4. Sample map (above) and its topological
graph (below).

Figure 5. DCA model for UrT interface.

of the agent to a complicated world with multiple adversar-
ies. In addition to having the DCA play these levels, we also
collected game play data from 24 different human players.
We found that the human players clustered into three
groups: novice, intermediate and expert. And we found that
the DCA player was consistent with the novice-level human
play according to a path edit distance based metric. The
Urban Terror game provides a much more realistic urban-
warfare scenario based on the Quake III Arena game engine.

The experiments reported here are designed to test the
hypothesis that multiple action-generating agents working
simultaneously within DCA may yield better game-playing
performance than a single agent approach. The agents util-
ized are the two random agents (with and without goal loca-
tion), the ping agent, the bread crumb agent with hand-
crafted crumb locations, and the bread crumb agent with
crumb locations provided by the path-planning agent.

5.1 Test Maps and Tasks
For our experiments we are using the following five differ-
ent maps included with UrT.
1. Reykjavik. This map represents an urban warfare scenario

and consists of four large buildings with three floors each
separated by many path ways. This map is pictured in
Figure 2.

2. Rommel. This map (see top of Figure 6) represents a vil-
lage scenario where most of the buildings are destroyed.
A canal flows through the village and there are many ob-
stacles in the form of rubble.

3. Docks. This map depicts a warehouse scenario at the edge
of a shallow body of water. This map is the most complex
of all the five maps with many buildings and rooms that
are interconnected in a complex manner.

4. Riyadh. This map portrays a desert scenario and consists
of two market places far away from each other. Bezier
curves are used to construct all the curved surfaces to
give a desert effect.

5. Twinlakes. This map is built upon mountains covered
with snow. The map is completely covered with trees that
are climbable. The map also has two houses at either end
of the map with a small pond for each house. For this
map also Bezier curves were used to construct the moun-
tainous terrain.

Figure 6. Rommel map (top) and the task 4 scenario
of crossing the canal bridge (bottom).

For each of the five maps we defined five tasks consisting of
capture-the-flag games of increasing difficulty. Table 1 de-
scribes the 25 tasks.

5.2 Results
We evaluated the performance of DCA with various reflex
agents playing individually and then two or more reflex
agents playing together. The metric information used for
evaluation is whether the individual reflex agents or coop-
erative reflex agents were able to accomplish the given task,
and if so, the time taken to accomplish the task and the num-
ber of actions sent to UrT to finish the task. Each version of
the DCA was allowed to play each task three times and the
average of the three plays is taken for evaluation purposes.

Figure 7 shows the time take by each of the three single-
agent DCAs on the task 3 scenario for the five maps. Except
for Rommel, the performance of the bread crumb agent is
better than all other agents, and the performance of the ping
Table 1. Five tasks for each of the five DCA-UrT maps (obstacles are between start and goal locations).
 Reykjavik Rommel Docks Riyadh Twinlakes
1 Obstacle-free

traversal
Obstacle-free
traversal

Obstacle-free traversal Obstacle-free tra-
versal

Obstacle-free traversal;
mountainous terrain

2 One large obsta-
cle

L-shaped obstacle Two adjoining obstacles
with deadend

One small obstacle One octagonal slip-
pery-surfaced obstacle

3 Start enclosed by
wall with door

Cluster of walls Two clusters of obstacles
far from each other

Platform obstacle Row of four obstacles

4 Traverse large L-
shaped alley

Cross bridge over
canal (see fig. 6)

Cross narrow bridge to
floating dock

Traverse around
marketplace

Traverse thru tunnel

5 Obstacle-free Long traversal, Climb stairs to second Descend ladder to One room to another

staircase traversal many obstacles floor first floor through narrow door

agent is better than that of the random agent with goal in-
formation. For Reykjavik the random agent with goal in-
formation could not finish the given task, so the values for
that agent are not plotted. For Rommel the performance of
the random agent with goal information is better than that of
the ping agent and almost equivalent to that of the bread
crumb agent. This is because the obstacle present is in the
form of a slanted wall, and the random agent simply slides
along the wall to reach the goal.

Results for tasks 1 and 2 follow the trend of the bread
crumb agent taking the least time, followed by the ping
agent and then the random agent with goal information. For
tasks 4 and 5 only the bread crumb agent was able to com-
plete the levels. Task 4 typically resulted in the random and
ping agents getting stuck or falling in the water. Task 5 in-
volved finding a staircase or ladder, which the random and
ping agents rarely find.

We do not show the results with the path-planning agent,
because they are typically longer times, because the path
planner generates many more bread crumbs, each possibly
requiring slight turns. For the handcrafted bread crumbs,
only 2-4 are needed for all tasks. However, there were some
scenarios in which the bread crumb agent became stuck;
whereas, the path-planner agent was able to successfully
complete the task. In these same cases where the bread
crumb agent got stuck, we allow the attention agent to
weight the random agents’ actions more heavily, which was
typically enough to get the player unstuck. Once unstuck,
the attention agent readjusted the weight back in favor of the
bread-crumb agent in order to complete the task. While this
policy was hard-coded, it illustrates how multiple agent ap-
proach can combine to accomplish tasks not possible by a
single agent approach and illustrates an area in which the
DCA can focus efforts to learn such a policy.

6 Conclusions
We have successfully integrated the D’Artagnan Cognitive
Architecture (DCA) to the Urban Terror (UrT) first-person
shooter game to support the further development of the
DCA. The definition of increasingly difficult tasks within

the realistic maps provided with UrT comprises a challeng-
ing evaluation testbed for the DCA and other AI methods.
The implementation and combination of the path planner
and reflex agents provides a simple, yet effective, agent for
playing our simplified UrT game.
 We plan to pursue this work along three directions. First,
we will further develop the various components of the DCA
based on the latest understanding from cognitive and neuro-
sciences. We will also interface and evaluate the DCA in
other environments. Our goal is not only to produce a DCA-
based agent that performs well in complicated environ-
ments, but that also exhibits human-consistent behavior.
Second, we will extend the testbed to include additional
tasks of increasing complexity by combining components of
existing tasks and introducing adversaries. Third, we will
make the UrT interface and task set available to others as a
testbed for evaluating AI methods and as a mechanism to
collect human play to serve as a baseline for measuring hu-
man consistency.

References
[Hill, 2002] R. Hill, C. Han and M. van Lent. Applying per-

ceptually driven cognitive mapping to virtual urban envi-
ronments. Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence, pp. 886-893, 2002.

[Kondeti, 2005] B. Kondeti. Integration of the D’Artagnan
Cognitive Architecture with Real-Time Simulated Envi-
ronments. M.S. thesis, Department of Computer Science
and Engineering, University of Texas at Arlington, 2005.

[Laird, 2002] J. Laird. Research in Human-Level AI Using
Computer Games. Communications of the ACM, 45(1):
32-35, 2002.

[Laird and van Lent, 2001] J. Laird and M. van Lent. Hu-
man-level AI’s Killer Application: Interactive Computer
Games. AI Magazine, 22:15-25, 2001.

[O’Neill, 2004] J. O’Neill. Efficient Navigation Mesh Im-
plementation. Journal of Game Development, Volume 1,
Issue 1, 2004.

[Nallacharu, 2005] M. Nallacharu. Spatial Reasoning for
Real-Time Simulated Environments. M.S. thesis, De-
partment of Computer Science and Engineering, Univer-
sity of Texas at Arlington, 2005.

[Reynolds, 1999] C. Reynolds. Steering Behaviors for
Autonomous Characters. Proceedings of the Game De-
velopers Conference, pp. 763-782, 1999.

[Youngblood, 2002]. G. M. Youngblood. Agent-Based
Simulated Cognitive Intelligence in a Real-Time First-
Person Entertainment-Based Artificial Environment.
M.S. thesis, Department of Computer Science and Engi-
neering, University of Texas at Arlington, 2002.

[Youngblood and Holder, 2003] G. M. Youngblood and L.
B. Holder. Evaluating Human-Consistent Behavior in a
Real-time First-person Entertainment-based Artificial
Environment. Proceedings of the Sixteenth International
FLAIRS Conference, pp. 32-36, 2003.

Level 3 – Time (secs)

800
Random with goal
Ping
Bread Crumb

700

600

500
400

300
200

100
0

Docks Reykjavik Rommel Riyadh Twinlakes

Figure 7. Average time taken by three agents in the
task 3 scenario of the five maps.

