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Abstract— This paper describes graph-based relational, 
unsupervised learning algorithm to infer node replacement 
graph grammar and its application to metabolic pathways. 
We search for frequent subgraphs and then check for overlap 
among the instances of the subgraphs in the input graph. If 
subgraphs overlap by one node, we propose a node 
replacement graph grammar production. We also can infer a 
hierarchy of productions by compressing portions of a graph 
described by a production and then inferring new productions 
on the compressed graph. We show learning curves and how 
the learning process changes when we increase the size of a 
sample set. We examine how computation time changes with 
an increased number of nodes in the input graphs. We 
inferred graph grammars from metabolic pathways which do 
not change more with increased number of graphs in the input 
set. It indicates that graph grammars found represent the 
input sets well. 

 
Keywords: Biological Data Mining, Graph Grammars, 

Metabolic Pathways 

 

1. Introduction 
 A biological network, containing various biomolecules 
and their relationships, is a fundamental way to describe 
bio-systems. Multi-relational data mining finds the relational 
patterns in both the entity attributes and relations in the data. 
A graph consisting of vertices and edges between these 
vertices is a natural data structure to represent biological 
networks. This paper describes graph-based relational, 
unsupervised, learning algorithm to infer node replacement 
graph grammar and its application to metabolic pathways. 
 Genomics and proteomics, main areas in 
molecular-level research, have studied the function and 
structure of macro molecules in organisms, and produced a 
huge amount of results. However, proteins and genes can play 
their roles only in harmony with the whole cytoplasmic 
environment. Molecular-level understanding is definitely a 
fundamental step, but it is not the final step. A biological 
organism is a system which is not just composed of various 
objects, but also has dynamic and interactive relationships 
between them and therefore a systems-level understanding is 

important. Relationships in biological networks include 
chemical reactions, enzyme activities and signal 
transductions. The patterns of these relationships can be 
studied with graph grammars and provide better 
understanding of biological networks and systems.  
  Noam Chomsky [1] pointed out that one of the main 
concerns of a linguist is to discover simple grammars for 
natural languages and study those grammars with the hope of 
finding a general theory of linguistic structure. While string 
grammars represent language, we are looking for graph 
grammars that represent graph properties and can generalize 
these properties from finite graph examples into generators 
that can generate an infinite number of graphs. String 
grammars can be inferred from a finite number of sentences 
and generalize to an infinite number of sentences. Inferring 
graph grammars will generalize the knowledge from the 
examples into a concise form and generalize to an infinite 
number of entities from the domain. A graph grammar can be 
the most important feature to distinguish a biological network 
from another or can be the common property to group of 
several biological networks. Graph grammar can be used as a 
rule to construct a new biological network. 
 We study the inference of node replacement graph 
grammars. We search for frequent subgraphs and then check 
for overlap among the instances of the subgraphs in the input 
graph. If subgraphs overlap by one node, we propose a node 
replacement graph grammar production. We also can infer a 
hierarchy of productions by compressing portions of a graph 
described by a production and then inferring new productions 
on the compressed graph. We validate the approach in 
experiments. We show the graph grammars found in 
metabolic pathways and analyze learning curves of the 
algorithm 

 

2. Metabolic Pathways 
 A cellular system is represented by three kinds of 
biological networks, such as metabolic pathway, 
protein-protein interaction and gene regulatory pathway [10]. 
Our research is currently focused on the metabolic pathways. 
The metabolic pathway is defined as a network of 
biochemical reactions catalyzed by enzymes. Biochemical 



 
reaction is a process of interconversion between two 
biochemical compounds (substrate and product) catalyzed by 
an enzyme. The metabolic pathway is a complex network of 
various biochemical processes and their relationships. A 
fundamental step to study metabolic pathways is the 
identification of structures covering a variety of biomolecules 
and their relationships. Dynamics and control methods of 
metabolic pathways should be also considered, because 
biological systems are interactive and well-controlled 
optimized systems. However, our current research is focused 
on identifying the structure. Our ultimate goal is to make a 
blueprint for systems-level understanding and its application 
based on an understanding of the structure, dynamics and 
control of a biological network. The KEGG PATHWAY is a 
widely known database which contains information on 
various kinds of pathways including pathway image files [7]. 
The KEGG PATHWAY database has 47,141 pathways 
generated from 314 reference pathways (on February, 2007). 
The KEGG PATHWAY has two types of pathways: reference 
pathway and organism-specific pathway. The reference 
pathway is a standard pathway which is manually generated 
by biologists and biochemists based on accumulated 
experimental results. The organism-specific pathway is 
automatically generated based on organism-specific genes 
and reference pathways. It has five fundamental categories of 
pathways: Metabolism, genetic information processing, 
environmental information processing, cellular processes and 
human diseases. Recently, drug development has been added 
as a new category. This database contains not only various 
information on pathways, but also plentiful information of 
their components as linked databases. It also has the KGML 
(KEGG Markup Language) as an exchange format for KEGG 
metabolic pathways, based on XML. There are three major 
elements in KGML: Entry, Relation and Reaction Entry 
represents various biomolecules in the metabolic pathway, 
such as enzyme, gene and compound. Relation is a 
relationship between two or more enzymes, genes and other 
pathways. Reaction is a biochemical reaction between two or 
more compounds catalyzed by one or more enzymes. Detailed 
information on KGML is described in [8]. 

3. Related Work 
 There are several graph-based data mining approaches 
applied to biological networks. Pathway Miner [9], a 
graph-mining approach on metabolic pathways, proposes a 
simplified graph representation consisting of enzyme 
relationships. It allows for avoiding the NP-hard subgraph 
isomorphism problem and finding frequent patterns quickly. 
Mining coherent dense subgraphs uses correlation of graphs, 
which represent biological networks [4]. This approach 
compresses a group of graphs into two meta-graphs using 
correlated occurrences of edges for efficiently clustering. 
This method also deals with the interaction between proteins 
and gene products from microarray analysis. Probabilistic 

framework [12] builds a Markov model using a graph of 
metabolic pathway with microarray data, and estimates 
parameters by EM algorithm. This approach finds the 
biologically significant paths and patterns from glycolysis 
pathway. 
 A vast amount of research has been done in inferring 
grammars. These analyses focus on string grammars where 
symbols appear in a sequence. We are concerned with graph 
grammars, which can represent much larger classes of 
problems than string grammars. Only a few studies can be 
found in graph grammar inference.  
 Jeltsch and Kreowski [5] did a theoretical study of 
inferring hyperedge replacement graph grammars from 
simple undirected, unlabeled graphs. They start the process 
from a grammar which has all the sample graphs in its 
productions. Then they transform the initial productions into 
productions that are more general but can still produce every 
graph from the sample graphs.  
 Oates, Doshi, and Huang [14] discuss the problem of 
inferring probabilities of every grammar rule for stochastic 
hyperedge replacement context free graph grammars. They 
assume that the grammar is given. Given a structure of a 
grammar S and a finite set of graphs E generated by grammar 
S, they ask what are the probabilities θ associated with every 
rule of the grammar.  
 In terms of similarity to string grammar inference we 
consider the Sequitur system developed by Nevill-Manning 
and Witten [13]. Sequitur infers a hierarchical structure by 
replacing substrings based on grammar rules. The new, 
compressed string is searched for substrings which can be 
described by the grammar rules, and they are then compressed 
with the grammar and the process continues iteratively. 
Similarly, in our approach we replace the part of a graph 
described by the inferred graph grammar with a single node 
and we look for grammar rules on the compressed graph and 
repeat this process iteratively until the graph is fully 
compressed. 
 Jonyer et al.’s approach to node-replacement graph 
grammar inference [6] starts by finding frequently occurring 
subgraphs in the input graphs. They check if isomorphic 
instances of the subgraphs that minimize the measure are 
connected by one edge. If they are, a production S→ PS is 
proposed, where P is the frequent subgraph. P and S are 
connected by one edge. Jonyer’s method of testing if 
subgraphs are adjacent by one edge limits his grammars to 
descriptions of “chains” of isomorphic subgraphs connected 
by one edge. Since an edge of a frequent subgraph connecting 
it to the other isomorphic subgraph can be included to the 
subgraph structure, testing subgraphs for overlap allows us to 
propose a class of grammars that have more expressive power 
than the graph structures covered by Jonyer’s grammars. For 
example, testing for overlap allows us to propose grammars 
which can describe tree structures, while Jonyer’s approach 
does not allow for tree grammars. 

 



 

4. Definitions 
 We give the definition of a graph and a graph grammar 
which is relevant to our approach and the implemented 
system. The defined graph has labels on vertices and edges. 
Every edge of the graph can be directed or undirected. The 
definition of a graph grammar describes the class of grammars 
that can be inferred by our approach. We emphasize the role 
of recursive productions in the name of the grammar, because 
the type of inferred productions are such that the non-terminal 
label on the left side of the production appears one or more 
times in the node labels of a graph on the right side. This is the 
main characteristic of our grammar productions. Our 
approach can also infer non-recursive productions. The 
embedding mechanism of the grammar consists of connection 
instructions. Every connection instruction is a pair of vertices 
that indicate where the production graph can connect to itself 
in a recursive fashion. 

A labeled graph G is a 6-tuple, ( )LEVG ,,,,, ηνμ= , 

where 
V - is the set of nodes, 

VVE ×⊆ - is the set of edges,  
LV →:μ  - is a function assigning labels to the nodes, 

LEv →:  - is a function assigning labels to the edges, 

}1,0{: →Eη - is a function assigning direction property to 

edges (0 if undirected, 1 if directed).  
L - is a set of labels on nodes and edges.  

 
A node replacement recursive graph grammar is a tuple 
( )PGr ,,, ΓΔ∑= , where 

∑ - is an alphabet of node labels, 
Δ - is an alphabet of terminal node labels, ∑⊆Δ , 
Γ - is an alphabet of edge labels, which are all terminals,  
P - is a finite set of productions of the form ),,( CGd , 

where Δ−∑∈d , G is a graph, C  is an embedding mechanism 
with a set of connection instructions, VVC ×⊆ , where V  is 
the set of nodes of G . A connection instruction Cvv

ji
∈),(  

implies that derivation can take place by replacing iv  in one 

instance of G  with jv  in another instance of G . All the 

edges incident to iv are incident to
j

v . All the edges incident to 

j
v remain unchanged. 

A substructure S of a graph G is a data structure which 
consists of: (1) graph definition of a substructure SG which is a 
graph isomorphic to a subgraph of G, (2)  list of instances (I1, 
I2, …, In) where every instance is a subgraph of G isomorphic 
to SG. 

 

A recursive substructure recursiveSub is a data structure 
which consists of: 

(1) graph definition of a substructure SG  which is a graph 
isomorphic to a subgraph of G 

(2) list of connection instructions which are pairs of integer 
numbers describing how instances of the substructure can 
overlap to comprise one instance of the corresponding 
grammar production rule. 

(3) List of recursive instances (IR1, IR2, …, IRn) where every 
instance IRk is a subgraph of G. Every instance IRk  
consist of one or more isomorphic copies of SG, 
overlapping by no more than one vertex in the algorithm 
for node graph grammar inference and no more than two 
vertices in edge grammar inference. 

. 
In our definition of a substructure we refer to subgraph 

isomorphism. However, in our algorithm we are not solving 
the subgraph isomorphism problem. We are using a 
polynomial time beam search to discover substructures and 
graph isomorphism to collect instances of the substructures.  

 

5. Graph Grammar Inference Algorithm 
An example in Figure 1 shows a graph composed of 

three overlapping substructures. The algorithm generates 
candidate substructures and evaluates them using any one of 
the learning biases, which are discussed later. The input to our 
algorithm is a labeled graph G which can be one connected 
graph or set of graphs. G can have directed or undirected 
edges. The algorithm begins by creating a list of substructures 
where every substructure is a single node and its instances are 
all nodes in the graph with the same node label. Initially, the 
best substructure is the node with the most instances. The 
substructures are ranked and placed on the expansion queue 
Q. It then extends all substructures in Q in all possible ways by 
a single edge and a node or only by single edge if both nodes 
are already in the graph definition of the substructure. We 
keep all extended substructures in newQ. We evaluate 
substructures in newQ according to the chosen evaluation 
heuristic.  

The total number of substructures considered is 
determined by the input parameter Limit. The best 
substructure identified becomes the right side of the first 
grammar production, and the graph G is compressed using this 
best substructure. Compression replaces every instance of best 
substructure with a single non-terminal node. This node is 
labeled with a non-terminal label. The compressed graph is 
further processed until it cannot be compressed any more, or 
some user-defined stopping condition is reached (maximum 
number of productions, for instance). In consecutive iterations 
the best substructure can have one or more non-terminal 
labels. It allows us to create a hierarchy of grammar 
productions. The input parameter Beam specifies the width of 
the beam search, that is, the length of Q.  
 



 

 
Figure 1: A graph with overlapping substructures and a graph 
grammar representation of it. 
 

Recursive productions are identified during the 
previously described search process by allowing instances to 
grow and overlap. Any two instances are allowed to overlap 
by only one vertex. The recursive substructure is evaluated 
along with non-recursive substructures and is competing with 
non-recursive substructures for placement on Q. Connection 
instructions are created by determining which nodes 
overlapped across instances. Figure 2 shows an example of a 
substructure that is the right side of a recursive rule, along with 
its connection instructions [11]. 

 

 
 

Figure 2: Substructure and its instances while determining 
connection instructions (continuation of the example from 
Figure 1). 

 
One advantage of our algorithm is its modular design in 

which the evaluation of candidate grammar rules is done 
separately from the generation of these candidates. The result 
is that any evaluation metric can be used to drive the search. 
Different evaluation metrics are part of the system and can be 
specified as arguments. We have had great success with the 
minimum description length (MDL) principle on a wide range 
of domains. MDL is an information theoretic approach [15]. 
The description length of the substructure S given the input 
graph G is calculated as DL(S,G) =DL(S)+DL(G|S), where 
DL(S) is the description length of the subgraph, and DL(G|S) 
is the description length of the input graph compressed by the 
subgraph [2][3]. An alternative measure is the size heuristic 
which is computed as 

 
( )

( ) ( )SGsizeSsize

Gsize

|+
 

 

where G is the input graph, S is a substructure and G|S is the 
graph derived from G by compressing each instance of S into a 
single node. size(t) can be computed simply by summing the 
number of nodes and edges: size(t) = vertices(t) + edges(t). 
The third measure is called setcover, which is used for concept 
learning tasks using sets of disconnected graphs. This measure 
maximizes the number of positive examples in which the 
grammar production is found while minimizing the number of 
such negative examples. 

 

6. Experiments 
We perform experiments in two different categories:  
1) Different biological networks within species, 
In this category we want to find common patterns for an 
organism, for instance Salmonella, across different metabolic 
pathways of this organism. The patterns will show the 
structure that is repeated in many metabolic pathways of the 
organism. We can use the inferred grammar understand the 
building blocks of pathways and to compare one organism to 
another.  
2) Different species for a particular biological network. 
In this category we want to find common patterns for a 
specific process, for instance glycolysis, across different 
organisms. The patterns will show the structure that is 
repeated in this process across many organisms. We can use 
the inferred grammar to understand the building blocks of 
processes and to compare one process to another.  

We group the graphs into sets which allow us to search 
for common recursive patterns which can help to understand 
basic building blocks and hierarchical organization of 
processes. We analyze the results to evaluate the effectiveness 
of the algorithms in this domain. 

 

6.1 The Graph Representation 

Our graph representation has three generic vertices, such 
as Entry, Relation and Reaction, because we would like to 
show the systematic view, like a Relation between two Entries 
(gene or protein), or a Reaction between two Entries 
(compound) catalyzed by a Entry (enzyme). The graph 
representation in Figure 3 has five entries which represent 
enzymes or chemical compounds. Each generic vertex has its 
own satellite vertices to describe its properties  

The biological networks used in our experiments were 
from KEGG. We use a graph representation which has labels 
on vertices and edges. The label entry represents a molecule, a 
molecule group or a pathway. A node labeled entry can be 
connected to a node labeled type. The type can be a value of 
the set: enzyme, ortholog, gene, group, compound, or map. A 
reaction is a process where a material is changed to another 
material catalyzed by an enzyme. A reaction, for example, can 
have one or more enzyme entries, and one or more 
compounds. Labels on edges show relationships between 



 
entities. The meanings are:  Rct_to_P : reaction to Product , 
S_to_Rct : substrate to reaction, E_to_Rct : enzyme (gene) to 
reaction, E_to_Rel : enzyme to relation, Rel_to_E : relation to 
enzyme. Nodes labeled ECrel indicate an enzyme-enzyme 
relation meaning that two enzymes catalyze successive 
reactions. 

 

 
 

Figure 3: The graph representation of a metabolic pathway. 
 

6.2 Error 

We use )g,matchCost( 21g as a measure of inference error 

(distance) between two grammars. )g,matchCost( 21g  is the 

minimal number of operations required to transform 1g to a 

graph isomorphic to 2g , or 2g to a graph isomorphic to 1g . 

The operations are: insertion of an edge or node, deletion of a 
node or an edge, or substitution of a node or edge label.   
 

6.3 Experiments with Sets of Different 
Biological Networks 

We use ten species in our experiments. The abbreviated 
names of the species and their meanings are:  
bsu - Bacillus subtilis, , 
sty - Salmonella enterica serovar,  
xcc - Xanthomonas campestris pv. campestris,  
pto - Picrophilus torridus, 
mka - Methanopyrus kandleri,  
pho - Pyrococcus horikoshii, 
sfx - Shigella flexneri,  
efa - Enterococcus faecalis, 
bar - Bacillus anthracis   

The species we selected randomly from the database. 
The number of networks is different for each species. We 
wanted to see how our algorithm performs when we increase 
sample size of graphs supplied to our inference algorithm. For 
this purpose we divided all the networks into 11 sets such that 
the last set (11th) has all the species. Set 10 excludes the 11th 
portion of all networks. Set 9 excludes 2/11 of all networks 
and set 1 has 1/11 of all networks. If all networks in the 
species do not divide by 11 evenly we distribute the remaining 
networks randomly to the 11 sets.   

We would like to compare our inferred grammar from 

sets of different sizes to the original, true, ideal grammar 
which represents the species. However, such a graph grammar 
is not known. In the first experiment we adopted as an original 
grammar the grammar inferred from the last set.  From each 
set we infer four grammar productions which score the highest 
in the evaluation. We compute the error (distance) of an 
inferred grammar to the grammar inferred from the set with all 
networks. The error is the minimal number of edges, vertices, 
and labels required to be change or removed to transform the 
structure of graph productions from one grammar to the other. 
In figures we refer to it as #transformations. In Figure 4 we 
show the results of the experiment. Every value in the figure is 
an average from three runs. In every run we randomly shuffle 
the networks over 11 sets such that sets are different in every 
run. The very bottom curve in Figure 4 is the average over 11 
table entries.  Data in Figure 6 is organized in the same way. 

In Figure 5 we show the graph grammar inferred from a 
set of thirty and a set of one hundred and ten graphs of 
Picrophilus torridus (pto). 
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Figure 4: Change in inferred grammar measured 
in reference to the biggest set in networks of ten 
species. 
 

6.4 Experiments with Biological Networks from 
Different Species 

In this experiment we construct sets of species with the 
same biological network. We used ten metabolic pathways in 



 
our experiments. The pathways’ numbers and their meanings 
are:  
00010  Glycolysis / Gluconeogenesis, 
00020  Citrate cycle (TCA cycle),  
00030  Pentose phosphate pathway,  
00051  Fructose and mannose metabolism,  
00061  Fatty acid biosynthesis (path 1),  
00401  Novobiocin biosynthesis,  
00602 Blood group glycolipid biosynthesis-neolactoseries,  
00730 Thiamine metabolism,  
00830 Retinol metabolism,  
00930 Caprolactam degradation 

 
The first experiment in this section is analogous the first 

experiment of the previous section. In this experiment we 
examine the change in pathways. We created 11 sets. Set 
number 1 has ten networks, set 2 has twenty networks, and so 
on. We increase the number of networks in every set by ten 
such that the last set 11 has one hundred and ten networks. We 
measure the number of transformations required to transform 
the grammar inferred from the set to the grammar inferred 
from set 11. We show results in Figure 6. Every value in 
Figure 6 is an average from three runs. In every run we 
randomly shuffle the networks over 11 sets such that sets are 
different in every run. Figure 7 shows how computation time 
changes when we increase the size of the input set. We collect 
how many vertices has the graph created from all graphs in the 
input set and the time needed for graph grammar inference 
from the set. Figure 8 shows sample graph grammars inferred 
from the set with ten and seventy graphs of network 00010. 
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Figure 5: Graph grammar inferred from a set of thirty (a) and 
one hundred and ten (b) number of graphs in the input set of 
Picrophilus torridus (pto). 
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Figure 6: Change in inferred grammar measured in 
reference to the biggest set in ten networks. 
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(b) 

Figure 7: Time of grammar inference as a function 
of number of vertices in the graph in ten networks, 
linear scale (a) and logarithmic scale (b).   



 

 

 
a) b) 

Figure 8: Graph grammar inferred from a set of ten (a) and 
seventy (b) number of graphs in the input set of network 
00010. 

7. Conclusion 
The experiments on the biological network domain give 

us insight into the performance of the algorithm and to the 
metabolic pathways. Examining Figure 4 we notice that some 
species, have a very regular set of metabolic pathways. 
Increasing the size of the set does not change the inferred 
grammar much. While in other species, like xcc, the set of 
metabolic pathways is very diverse resulting in significant 
changes on the curve. Several curves, pto, pho, efa, gradually 
decrease with the last values being zero. It shows us that our 
algorithm performed well and with increasing number of 
graphs in the input set we find the grammar which does not 
change more with increased number of graphs which indicates 
that grammar found represents the input set well. The very 
bottom chart in Figure 4 shows the average change. We see 
that with the increasing number of graphs in the input sets the 
curve declines to zero which tells us that with the increasing 
number of graphs we infer more accurate grammar. We find 
confirmation of these observations in experiments with sets of 
metabolic pathways of different species which describe the 
same process we show in Figure 6. The average change also 
declines to zero. We see fewer changes in curves in Figure 6 
than in Figure 4. It tells us that there is less diversity in set of 
species within one network than there is in sets of networks 
within one species.  

In Figure 7 we show the computation time as a function 
of the number of vertices in the input set. We plotted two 
curves, one in linear, and one in logarithmic scale. The curves 
in linear scale become almost straight lines in logarithmic 
scale which confirms experimentally the polynomial 
complexity of the algorithm.  Time curves of network 00010, 
00030, and 00401 have a surprising dip towards the right end 
of the scale where we would expect an increase in 
computation time, but instead observe a decrease. We 
suspected that it is because in these cases the input set of 
graphs gets compressed very well in iteration one or two of 

grammar inference and the compressed graph used in 
iterations three and four is small which results in faster 
execution time. However, a closer look at the number of 
vertices in each iteration did not confirm it. We tend towards 
relating the decreasing time phenomenon to the isomorphism 
test and the heuristic used in the algorithm.  

We can use inferred grammar productions not only to 
provide an abstraction of recognized metabolic pathway for 
better understanding but also to construct unknown metabolic 
pathway based on molecular-level experimental data. Future 
work will be in developing algorithms which allow for 
learning larger classes of graph grammars (context sensitive), 
including stochastic graph grammars and applications of these 
algorithms to biological structures.  
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