
Inference of Edge Replacement Graph Grammars

Jacek P. Kukluk1, Lawrence B. Holder2, and Diane J. Cook2

1Dept. of Computer Science & Engineering
University of Texas at Arlington

2School of Electrical Engineering and Computer Science
Washington State University

kukluk@cse.uta.edu, holder@wsu.edu, cook@eecs.wsu.edu

Abstract
We describe an algorithm and experiments for inference of
edge replacement graph grammars. This method generates
candidate recursive graph grammar productions based on
isomorphic subgraphs which overlap by two nodes. If there
is no edge between the two overlapping nodes, the method
generates a recursive graph grammar production with a
virtual edge. We guide the search for the graph grammar
using the size of a graph. We show experiments where we
generate graphs from known graph grammars, use our
method to infer the grammar from the generated graphs, and
then measure the error between the original and inferred
grammars. Experiments show that the method performs well
on several types of grammars, and specifically that error
decreases with increased numbers of unique labels in the
graph.

1. Introduction

There is overlap in the recurring patterns or motifs
representing the building blocks of networks in nature.
Palla et al. [11] point out the existence of an overlap
between parts of graphs representing social networks and
proteins. They call them overlapping communities. Most
knowledge discovery and data mining approaches look for
independent recurring patterns, but do not consider how
these patterns can connect and overlap iteratively or
recursively to generate arbitrary-sized relational data.
Graph grammars provide a representation for such
knowledge.

In our method of graph grammar inference we search for
overlap between isomorphic subgraphs of a graph. The
overlap allows our method to propose recursive graph-
grammar productions. The first approach was to search for
overlap by a single node, which led to developing a system
for inference of Node Replacement Recursive Graph
Grammars [7]. In this paper we describe an approach that
allows inference of Edge Replacement Recursive Graph
Grammars. In the next section we will describe related
work. Then, we give definition, inference algorithm and
discuss inference error. We also address how different

 Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

numbers of labels used in the graph affect the inference
error. Experiments with the chemical structure of G tetrad
and conclusions close the paper.

2. Related work

Jeltsch and Kreowski [4] analyzed theoretically the
inference of hyperedge replacement graph grammars
introducing operations on a set of undirected, unlabeled
graphs which guarantee that the inferred grammar can
generate the input set of graphs. Oates, Doshi, and Huang
[13] assume that the structure of a graph of a hyperedge
replacement context free graph grammar is given. They are
interested in inference of probabilities associated with every
rule of a grammar. Jonyer, Holder, and Cook [5][6]
developed an approach to infer node replacement graph
grammars which describe graphs in the from of ‘chains’,
where isomorphic copies of subgraphs are adjacent to each
other in a chain by a single edge. Nevill-Manning and
Witten [10] developed SEQUITUR which works on strings,
but their approach is similar to ours in the sense that it
infers hierarchical structure by replacing substrings by
grammar rules. The new, compressed string is searched for
substrings which can be described by grammar rules, and
they are then compressed with the grammar and the process
continues iteratively. Similarly, in our approach we replace
the part of a graph described by the inferred graph grammar
with a single node, and we look for grammar rules on the
compressed graph and repeat this process iteratively until
the graph is fully compressed.

Our system grows isomorphic subgraphs similarly as Cook
and Holder’s [2][3] approach to frequent subgraphs
discovery with the main difference that it checks for overlap
between growing subgraphs. The overlap allows us to
propose recursive grammar rules. There are other systems
which search for frequent subgraphs in a graph and
therefore they could possibly be adopted to graph grammar
inference. Kuramochi and Karypis [8] developed FSG. Yan
and Han introduced gSpan [14].

3. Edge replacement recursive graph
grammar

We define a graph as a set of nodes and edges, where each
can have a label. Each edge can be directed or undirected.
We infer an embedding mechanism for recursive
productions which consists of four integers for every non-
terminal edge. These integers are node numbers. Two nodes
belong to one instance of a graph and two to the other. They
describe how instance of a graph defined in the grammar
production would be expanded during derivations. In every
iteration of the grammar inference algorithm we are finding
only one production, and it is ether non-recursive or
recursive. The reader can refer to examples in Figure 1 and
Figure 3 while examining the definition. In Figure 1 (a) we
see an example of the grammar used for generation and in
Figure 1 (b) the equivalent inferred grammar.

Figure 1. The original grammar (a) used to generate
examples and the inferred grammar (b).

A labeled graph G is a 6-tuple, ()LEVG ,,,,, ηνμ= ,

where V - is the set of nodes, VVE ×⊆ - is the set of
edges, LV →:μ - is a function assigning labels to the

nodes, LEv →: - is a function assigning labels to the

edges, }1,0{: →Eη - is a function assigning direction

property to edges (0 if undirected, 1 if directed).
L - is a set of labels on nodes and edges.

An edge replacement recursive graph grammar is a 5-tuple

()PGr ,,,, ΩΓΔ∑= , where ∑ - is an alphabet of node

labels, Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels, Ω -is an alphabet of
terminal edge labels, ∑⊆Ω , P - is a finite set of
productions of the form),,(CGd , G is a graph, and there

are recursive productions, where Ω−Γ∈d , and there is at
least one edge in G labeled d . C is an embedding
mechanism with a set of connection instructions,

);(VVVVC ××⊆ , where V is the set of nodes of G . A

connection instruction Cvvvv lkji ∈),;,(implies that

derivation can take place by replacing iv , kv in one instance

of G with lj vv , respectively, in another instance of G . All

the edges incident to iv are incident to jv , and all the edges

incident to kv are incident to lv . All the edges incident to

jv and kv remain unchanged. If, in derivation process after

applying connection instruction),;,(lkji vvvv , nodes

ji vv , are adjacent by an edge, we call edge),(ji vve = a

real edge, otherwise edge),(ji vve = is used only in the

specification of the grammar, and we drow it to show two
nodes where the connection instructions are applied, and we
call this edge a virtual edge.

4. The Algorithm

The algorithm operates on a data structure called a
substructure. A substructure consists of a graph definition
of the repetitive subgraph and its instances. We illustrate it
in Figure 2. Initially, the graph definitions of substructures
are single nodes, and there are as many substructure
inserted into the queue Q as there are different labels on
nodes in the input graph. We expand the substructure in all
possible ways by a single edge or by single edge and a
node. We allow substructures to grow and their instances to
overlap but by no more than two nodes. We evaluate
substructures. The total number of substructures considered
is determined by the input parameter Limit. The input
parameter Beam specifies the width of a beam search, i.e.,
the length of Q.

Figure 2. The input graph (a), substructure graph
definition (b) and four overlapping instances of

repetitive subgraph (c).

If two nodes 21 ,vv in G both belong to two different

instances, we propose a recursive grammar rule. If 21 ,vv

are adjacent by an edge, it is a real edge, and we determine

its label which we use to specify the terminating production
(see Figure 3). We insert recursive substructures together
with non-recursive substructures into the newQ. Recursive
substructures compete with non-recursive substructures.
They are evaluated with a measure:

()
())|(SGsizeNTSsize

Gsize

++

NT is the number of connection instructions. G|S is a graph
G where we compress all instances of the substructure S to
a single node. The size is number of nodes plus number of
edges. The algorithm uses a heuristic search whose
complexity is polynomial in the size of the input graph to
find frequent subgraphs. Checking for overlap between
instances of substructures, do not change the complexity of
this algorithm.

The algorithm can learn grammars with multiple
productions. When we find production (recursive or not) we
compress portion of the graph described by the production.
Every connected subgraph described by the production is
compressed into a node. Then we perform again inference
on the compressed graph. We progress with alternating
inference and compression until we cannot compress the
graph any more.

5. Experiments

5.1 Methodology

In our experiments we generate thirty graphs from a known
grammar, and then we infer the grammar from every
generated graph. We compute the average inference error
over these thirty examples. The generated graphs have 40
to 60 nodes. Our generator can assign a random label to a
node or an edge. We compare the original grammar and
inferred grammar using the following measure of the error:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 , where

)g,matchCost(21g is the minimal number of operations

required to transform 1g into a graph isomorphic to 2g , or

2g into a graph isomorphic to 1g . The operations are:

insertion of an edge or node, deletion of an edge or node, or
substitution of a node or edge label. CI# is the number of
inferred connection instructions, NT# is the number of
non-terminal edges in the original grammar,)size(1g is the

sum of the number of nodes and edges in the graph used in
the grammar production

)g,matchCost(21g measures the structural difference

between two graphs with an algorithm for inexact graph

match initially proposed by Bunke and Allermann [1]. For
more details see also [2][3]. Our definition of an error has
two aspects. First, there is the structural difference between
the inferred and the original graph used in the productions.
Second, there is the difference between the number of non-
terminals and the number of connection instructions. If
there is no error, the number of non-terminals in the original
grammar is the same as the number of connection
instructions in the inferred grammar. We would like our
error to be a value between 0 and 1; therefore, we
normalize the error by having in the denominator the sum of
the size of the graph used in the original grammar and the
number of non-terminals. We do not allow an error to be
larger than 1; therefore, we take the minimum of 1 and our
measure as a final value. The restriction that the error is not
larger than 1 prohibits unnecessary influence on the average
error by inferred graph structures significantly larger than
the graph used in the original grammar. We now describe
several experiments showing different aspects of the edge
replacement graph grammar inference system.

5.2 Experiment 1: Virtual and real edges in
productions

In Figure 3 we see the graph on the top where all nodes
have the same label and on the bottom of the figure the
grammar inferred from this graph. We intend to
demonstrate verity of productions and the nature of edge
replacement grammars our approach can handle. The input
graph has four different repetitive patterns. In every pattern
subgraphs overlap on two nodes. The part of the graph with
overlapping squares is isolated. The rest of the graph is a
connected graph. The four patterns correspond to nodes S1,
S2, S3, S4 of the first production S. Our approach finds
production S last. Production S is a non-recursive node
replacement production We find production S by
compressing the input graph with recursive edge
replacement productions found earlier. Production S1 we
find first because it compresses the graph the most. This
production has two non-terminal edges. Edge S1a is virtual.
Edge S1b is real. We can replace both S1a and S1b non-
terminal edges with the graph on the right hand side of
production S1 or terminate. Connection instructions for S1a
and S1b are different as is their termination. The
terminating edge of S1b is an edge with label q. The
termination of S1a is by taking no action. We mark it by
two nodes without an edge. We compress to a single node
the part of the input graph described by the S1 production
before we repeat the inference process. We also do similar
compression after finding S2, S3, and S4. The second
production we find is S2. This production has two virtual
edges as non-terminals. The production S3 has two non-
terminal real edges and production S4 has one non-terminal
real edge.

Figure 3. The graph and inferred grammar from this
graph.

5.3 Experiment 3: Inference error with different
graph structures

We are interested in how inference error depends on
grammar structure. We tested several structures. We show
results in Figure 4. Every point in the plots in Figure 4 was
an average of the inference error from thirty experiments. In
every experiment we generated graphs with 40 to 60 nodes.
Every label of an edge and a node of the graphs not marked
in the Figure 4 and Figure 5 was assigned a label chosen
from k distinct labels, where k is an integer from 1 to 7 in
Figure 4 and from 1 to 16 in Figure 5. We see that the
smallest error we achieved is for the tree structure. As we
complicate the structure and increase the average degree of
nodes and the ratio of the number of edges to the number of
nodes, the error increases. The highest error we had with

complete graph. We show this case separately in Figure 5.
We observed the average value of the inference error for a
complete graph with six nodes. Then we removed from the
complete graph four edges and repeated the experiment.
Next, we remove from the complete graph eight edges and
repeated the experiments again. As we see in Figure 5, the
more edges we have in the graph and the closer the graph is
to the complete graph, the higher the average error. In other
words, the closer the graph is to the complete graph the
more unique labels we need to decrease the error.

Figure 4. The influence on the error of different graph
structures used in grammar productions.

Figure 5. The change in the error with reduced number
of edges from the complete graph structure (top) and an

example of the inferred grammar (bottom).

5.4 Experiment 4: Inference error in the presence
of noise

In Figure 6 we show the results of an experiment where we
generated graphs with the number of nodes from 40 to 60.
The Peterson graph (Figure 6 (a)) was the structure we used
in the graph grammar. The Peterson graph has 10 nodes and
15 edges which allowed us to vary the number of non-
terminal edges in the structure. We assigned distinct labels
to all nodes except six and all edges except six. We
generated graphs with 1, 2, 3, 4, and 5 non-terminals and
noise value, 0.1, 0.2, …, 0.8. For every value of noise and
number of non-terminals we generated thirty graphs from
the grammar and computed average inference error over
thirty values. We distinguish two types of noise: corrupted
and not corrupted. Not corrupted noise is the addition of
nodes and edges to the graph structure generated from the
grammar. We add the number of nodes equal to
(noise/(1- noise))*number_of_nodes and number of
edges equal to (noise/(1- noise))*number_of_edges.
Every new edge randomly connects two nodes of the graph.
We randomly assigned the labels to added edges and nodes
from labels already existing in the graph. We do not change
the structure generated from the graph grammar in the not-
corrupted version. However, in the corrupted version we
change the structure of that generated from the grammar
graph. After adding additional nodes and edges, in the way
we do for non-corrupted version, we redirect randomly
selected edges. The number of edges of a graph multiplied
by noise gives the number of redirected edges. We
randomly assign two new nodes to every selected edge.

The results in Figure 6 show that there is little influence on
error from the number of non-terminals. We see an increase
in the error in the not-corrupted version when the number of
non-terminals reaches 5, but for number of non-terminals 1-
4 we do not see any significant changes. Also, the error in
the not-corrupted version does not increase significantly as
long as the value of noise is less than about 0.5. Corruption
of the graph structure, as expected, causes greater error than
non-corruption. The error increases significantly even with
0.1 noise, and is close to 100% for noise 0.3 and higher.

5.5 Experiment 5: Chemical structure

In Figure 7 (a) we show the chemical structure of G tetrad
[9]. Versions of this structure are used in research on the
HIV-1 virus [12]. We converted this structure to a graph
which we use as an input to our grammar inference system.
We found the grammar which represents the repetitive
pattern of this chemical structure. We show the grammar in
Figure 7 (b). This experiment demonstrates the potential
application of our approach and also a weakness for further

study. Although the grammar production we found captures
the underlying motifs of the chemical structure, it cannot
regenerate the original structure which has the ring form.

We also performed experiments with biological networks,
XML file structures and other chemical structures, which
we will report in other publications. In general, our graph-
grammar inference methods have been able to capture
known recursive structure in these domains.

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

Figure 6. Inference error of a graph grammar with the
Peterson graph structure in the presence of noise and

different number of non-terminals.

6. Conclusions and future work

We described an algorithm for inference of edge
replacement graph grammars. The performance of the
algorithm depends on the number of distinct labels in the
input graph. If there is only one label, the algorithm finds a
two edge grammar. If we use three or more labels in the
input graph, the inference error drops to zero or to a value
close to zero in inference of grammars with a graph
structure of a tree, cycle, Peterson graph, and tetrahedron.
However, as we complicate the structure and increase the
average degree of nodes and the ratio of the number of
edges to number of nodes, the error increases. The highest
error we had is with a complete graph. The closer the graph
structure of the grammar is to a complete graph, the more
unique labels we need to use in the graph to achieve the
same level of average inference error. If we generate graphs
from a graph grammar and then add nodes and edges to this
graph, it does not influence significantly the inference error
in the range of noise 0 to 0.5. There is little influence on
error from the number of non-terminal edges in the Peterson

graph grammar structure when the number of non-terminals
changes from 1 to 4.

In this paper we described the approach to graph grammar
inference which extends the class of learnable graph
grammars. Node Replacement Recursive Graph Grammar
inference was limited to the patterns where instances
overlap on exactly one node. In the approach presented in
this paper allowing instances to overlap on two nodes led to
the definition of real and virtual non-terminal edges. With
this approach we can infer the grammar generating chains
of squares overlapping on one edge which was not possible
with node replacement grammars. Patterns often overlap on
two nodes in chemical structures, as we saw in the example
of the previous section; therefore, we have a tool which can
find and represent important patterns in the chemical
domain.

Figure 7. The chemical structure of G tetrad (a) and
inferred grammar structure (b).

The approach has higher error when inferring more
complete graphs. The inferred grammars, as in the example
of chemical structure, can represent the underlying pattern
of the structure, but cannot regenerate the structure if it has
the ring form. The approach requires the existence in the
input graph of frequently occurring isomorphic subgraphs
and their overlap by one edge to infer recursive
productions. Otherwise, the approach can infer non-
recursive productions. Eventually, we will integrate

inference of non-recursive, node-replacement and edge-
replacement productions into one graph-grammar inference
system. All these issues represent directions for future
research.

7. References

[1] H. Bunke,. G Allermann, “Inexact graph matching for
structural pattern recognition.” Pattern Recognition Letters,
1(4) 245-253. 1983

[2] D. Cook and L. Holder, “Substructure Discovery Using
Minimum Description Length and Background Knowledge.”
Journal of Artificial Intelligence Research, Vol 1, (1994),
231-255, 1994

[3] D. Cook and L. Holder, “Graph-Based Data Mining.” IEEE
Intelligent Systems, 15(2), pages 32-41, 2000.

[4] E. Jeltsch, H. Kreowski, “Grammatical Inference Based on
Hyperedge Replacement. Graph-Grammars.” Lecture Notes
in Computer Science 532, 1990: 461-474, 1990

[5] I. Jonyer, L. Holder, and D. Cook, “Concept Formation
Using Graph Grammars”, Proceedings of the KDD
Workshop on Multi-Relational Data Mining, 2002.

[6] I. Jonyer. L. Holder, and. D. Cook, “MDL-Based Context-
Free Graph Grammar Induction and Applications.”
International Journal of Artificial Intelligence Tools,
Volume 13, No. 1, 65-79, 2004.

[7] J. Kukluk, L. Holder, and D. Cook, “Inference of Node
Replacement Recursive Graph Grammars.” Sixth SIAM
International Conference on Data Mining, 2006

[8] M. Kuramochi and G. Karypis, “Frequent subgraph
discovery.” In Proceedings of IEEE 2001 International
Conference on Data Mining (ICDM '01), 313-320, 2001.

[9] S. Neidle (editor), Oxford Handbook of Nucleic Acid
Structure. Oxford University Press, 326, 1999

[10] G. Nevill-Manning and H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm.” Journal of
Artificial Intelligence Research, Vol 7, (1997, 1997),67-82

[11] G. Palla, I. Derényi, I. Farkas and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society.” Nature 435, 2005, 814-818

[12] A. Phan, V. Kuryavyi, J. Ma, A. Faure, M. Andreola, D.
Patel, “An interlocked dimeric parallel-stranded DNA
quadruplex: A potent inhibitor of HIV-1 integrase.”
Proc.Natl.Acad.Sci. USA , 102, 2005, 634 - 639

[13] T. Oates, S. Doshi, and F. Huang, “Estimating maximum
likelihood parameters for stochastic context-free graph
grammars.” volume 2835 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003, 281--298

[14] X. Yan and J. Han, gSpan: “Graph-based substructure
pattern mining.” In IEEE International Conference on Data
Mining, Maebashi City, Japan, 2000

