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Abstract  
We describe an algorithm and experiments for inference of 
edge replacement graph grammars. This method generates 
candidate recursive graph grammar productions based on 
isomorphic subgraphs which overlap by two nodes. If there 
is no edge between the two overlapping nodes, the method 
generates a recursive graph grammar production with a 
virtual edge. We guide the search for the graph grammar 
using the size of a graph. We show experiments where we 
generate graphs from known graph grammars, use our 
method to infer the grammar from the generated graphs, and 
then measure the error between the original and inferred 
grammars. Experiments show that the method performs well 
on several types of grammars, and specifically that error 
decreases with increased numbers of unique labels in the 
graph. 

 

1. Introduction 
 

There is overlap in the recurring patterns or motifs 
representing the building blocks of networks in nature. 
Palla et al. [11] point out the existence of an overlap 
between parts of graphs representing social networks and 
proteins. They call them overlapping communities. Most 
knowledge discovery and data mining approaches look for 
independent recurring patterns, but do not consider how 
these patterns can connect and overlap iteratively or 
recursively to generate arbitrary-sized relational data. 
Graph grammars provide a representation for such 
knowledge. 
 
In our method of graph grammar inference we search for 
overlap between isomorphic subgraphs of a graph. The 
overlap allows our method to propose recursive graph-
grammar productions. The first approach was to search for 
overlap by a single node, which led to developing a system 
for inference of Node Replacement Recursive Graph 
Grammars [7]. In this paper we describe an approach that 
allows inference of Edge Replacement Recursive Graph 
Grammars. In the next section we will describe related 
work. Then, we give definition, inference algorithm and 
discuss inference error. We also address how different 

                                                                 
 Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

numbers of labels used in the graph affect the inference 
error. Experiments with the chemical structure of G tetrad 
and conclusions close the paper.  

2. Related work  
  
Jeltsch and Kreowski [4] analyzed theoretically the 
inference of hyperedge replacement graph grammars 
introducing operations on a set of undirected, unlabeled 
graphs which guarantee that the inferred grammar can 
generate the input set of graphs. Oates, Doshi, and Huang 
[13] assume that the structure of a graph of a hyperedge 
replacement context free graph grammar is given. They are 
interested in inference of probabilities associated with every 
rule of a grammar. Jonyer, Holder, and Cook [5][6] 
developed an approach to infer node replacement graph 
grammars which describe graphs in the from of ‘chains’, 
where isomorphic copies of subgraphs are adjacent to each 
other in a chain by a single edge. Nevill-Manning and 
Witten [10] developed SEQUITUR which works on strings, 
but their approach is similar to ours in the sense that it 
infers hierarchical structure by replacing substrings by 
grammar rules. The new, compressed string is searched for 
substrings which can be described by grammar rules, and 
they are then compressed with the grammar and the process 
continues iteratively. Similarly, in our approach we replace 
the part of a graph described by the inferred graph grammar 
with a single node, and we look for grammar rules on the 
compressed graph and repeat this process iteratively until 
the graph is fully compressed.  

 
Our system grows isomorphic subgraphs similarly as Cook 
and Holder’s [2][3] approach to frequent subgraphs 
discovery with the main difference that it checks for overlap 
between growing subgraphs. The overlap allows us to 
propose recursive grammar rules. There are other systems 
which search for frequent subgraphs in a graph and 
therefore they could possibly be adopted to graph grammar 
inference. Kuramochi and Karypis [8] developed FSG. Yan 
and Han introduced gSpan [14]. 

 



3. Edge replacement recursive graph 
grammar  

 

We define a graph as a set of nodes and edges, where each 
can have a label. Each edge can be directed or undirected. 
We infer an embedding mechanism for recursive 
productions which consists of four integers for every non-
terminal edge. These integers are node numbers. Two nodes 
belong to one instance of a graph and two to the other. They 
describe how instance of a graph defined in the grammar 
production would be expanded during derivations. In every 
iteration of the grammar inference algorithm we are finding 
only one production, and it is ether non-recursive or 
recursive. The reader can refer to examples in Figure 1 and 
Figure 3 while examining the definition. In Figure 1 (a) we 
see an example of the grammar used for generation and in 
Figure 1 (b) the equivalent inferred grammar.  

 

Figure 1. The original grammar (a) used to generate 
examples and the inferred grammar (b).  

 

A labeled graph G is a 6-tuple, ( )LEVG ,,,,, ηνμ= , 

where V - is the set of nodes, VVE ×⊆ - is the set of 
edges, LV →:μ  - is a function assigning labels to the 

nodes, LEv →:  - is a function assigning labels to the 

edges, }1,0{: →Eη - is a function assigning direction 

property to edges (0 if undirected, 1 if directed).  
L - is a set of labels on nodes and edges.  

 
An edge replacement recursive graph grammar is a 5-tuple 

( )PGr ,,,, ΩΓΔ∑= , where ∑ - is an alphabet of node 

labels, Δ - is an alphabet of terminal node labels, ∑⊆Δ , 
Γ - is an alphabet of edge labels, Ω -is an alphabet of 
terminal edge labels, ∑⊆Ω , P - is a finite set of 
productions of the form ),,( CGd , G is a graph, and there 

are recursive productions, where Ω−Γ∈d , and there is at 
least one edge in G labeled d . C  is an embedding 
mechanism with a set of connection instructions, 

);( VVVVC ××⊆ , where V  is the set of nodes of G . A 

connection instruction Cvvvv lkji ∈),;,(  implies that 

derivation can take place by replacing iv , kv  in one instance 

of G  with lj vv ,  respectively, in another instance of G . All 

the edges incident to iv are incident to jv , and all the edges 

incident to kv  are incident to lv . All the edges incident to 

jv and kv remain unchanged. If, in derivation process after 

applying connection instruction ),;,( lkji vvvv , nodes 

ji vv , are adjacent by an edge, we call edge ),( ji vve =  a 

real edge, otherwise edge  ),( ji vve = is used only in the 

specification of the grammar, and we drow it to show two 
nodes where the connection instructions are applied, and we 
call this edge a virtual edge. 
 

4. The Algorithm  
 

The algorithm operates on a data structure called a 
substructure. A substructure consists of a graph definition 
of the repetitive subgraph and its instances. We illustrate it 
in Figure 2. Initially, the graph definitions of substructures 
are single nodes, and there are as many substructure 
inserted into the queue Q as there are different labels on 
nodes in the input graph. We expand the substructure in all 
possible ways by a single edge or by single edge and a 
node. We allow substructures to grow and their instances to 
overlap but by no more than two nodes. We evaluate 
substructures. The total number of substructures considered 
is determined by the input parameter Limit. The input 
parameter Beam specifies the width of a beam search, i.e., 
the length of Q.  

 

Figure 2. The input graph (a), substructure graph 
definition (b) and four overlapping instances of 

repetitive subgraph (c). 

 
If two nodes 21 ,vv  in G both belong to two different 

instances, we propose a recursive grammar rule. If 21 ,vv  

are adjacent by an edge, it is a real edge, and we determine 



its label which we use to specify the terminating production 
(see Figure 3). We insert recursive substructures together 
with non-recursive substructures into the newQ. Recursive 
substructures compete with non-recursive substructures. 
They are evaluated with a measure: 

( )
( ) )|( SGsizeNTSsize

Gsize

++
 

NT is the number of connection instructions. G|S is a graph 
G where we compress all instances of the substructure S to 
a single node. The size is number of nodes plus number of 
edges. The algorithm uses a heuristic search whose 
complexity is polynomial in the size of the input graph to 
find frequent subgraphs. Checking for overlap between 
instances of substructures, do not change the complexity of 
this algorithm.  

 
The algorithm can learn grammars with multiple 
productions. When we find production (recursive or not) we 
compress portion of the graph described by the production. 
Every connected subgraph described by the production is 
compressed into a node.  Then we perform again inference 
on the compressed graph. We progress with alternating 
inference and compression until we cannot compress the 
graph any more.  
 

5. Experiments   
 

5.1 Methodology 
 

In our experiments we generate thirty graphs from a known 
grammar, and then we infer the grammar from every 
generated graph. We compute the average inference error 
over these thirty examples.  The generated graphs have 40 
to 60 nodes. Our generator can assign a random label to a 
node or an edge. We compare the original grammar and 
inferred grammar using the following measure of the error:  
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21 , where 

)g,matchCost( 21g  is the minimal number of operations 

required to transform 1g into a graph isomorphic to 2g , or 

2g into a graph isomorphic to 1g . The operations are: 

insertion of an edge or node, deletion of an edge or node, or 
substitution of a node or edge label. CI#  is the number of 
inferred connection instructions, NT#  is the number of 
non-terminal edges in the original grammar, )size( 1g  is the 

sum of the number of nodes and edges in the graph used in 
the grammar production 

 
)g,matchCost( 21g  measures the structural difference 

between two graphs with an algorithm for inexact graph 

match initially proposed by Bunke and Allermann [1]. For 
more details see also [2][3]. Our definition of an error has 
two aspects. First, there is the structural difference between 
the inferred and the original graph used in the productions. 
Second, there is the difference between the number of non-
terminals and the number of connection instructions. If 
there is no error, the number of non-terminals in the original 
grammar is the same as the number of connection 
instructions in the inferred grammar. We would like our 
error to be a value between 0 and 1; therefore, we 
normalize the error by having in the denominator the sum of 
the size of the graph used in the original grammar and the 
number of non-terminals. We do not allow an error to be 
larger than 1; therefore, we take the minimum of 1 and our 
measure as a final value. The restriction that the error is not 
larger than 1 prohibits unnecessary influence on the average 
error by inferred graph structures significantly larger than 
the graph used in the original grammar. We now describe 
several experiments showing different aspects of the edge 
replacement graph grammar inference system.  
 

5.2 Experiment 1: Virtual and real edges in 
productions 
 

In Figure 3 we see the graph on the top where all nodes 
have the same label and on the bottom of the figure the 
grammar inferred from this graph. We intend to 
demonstrate verity of productions and the nature of edge 
replacement grammars our approach can handle. The input 
graph has four different repetitive patterns.  In every pattern 
subgraphs overlap on two nodes. The part of the graph with 
overlapping squares is isolated. The rest of the graph is a 
connected graph. The four patterns correspond to nodes S1, 
S2, S3, S4 of the first production S. Our approach finds 
production S last. Production S is a non-recursive node 
replacement production We find production S by 
compressing the input graph with recursive edge 
replacement productions found earlier. Production S1 we 
find first because it compresses the graph the most. This 
production has two non-terminal edges. Edge S1a is virtual. 
Edge S1b is real. We can replace both S1a and S1b non-
terminal edges with the graph on the right hand side of 
production S1 or terminate. Connection instructions for S1a 
and S1b are different as is their termination. The 
terminating edge of S1b is an edge with label q. The 
termination of S1a is by taking no action. We mark it by 
two nodes without an edge. We compress to a single node 
the part of the input graph described by the S1 production 
before we repeat the inference process. We also do similar 
compression after finding S2, S3, and S4. The second 
production we find is S2. This production has two virtual 
edges as non-terminals. The production S3 has two non-
terminal real edges and production S4 has one non-terminal 
real edge. 



 

 

Figure 3. The graph and inferred grammar from this 
graph. 

 

5.3 Experiment 3: Inference error with different 
graph structures 
 

We are interested in how inference error depends on 
grammar structure. We tested several structures. We show 
results in Figure 4. Every point in the plots in Figure 4 was 
an average of the inference error from thirty experiments. In 
every experiment we generated graphs with 40 to 60 nodes. 
Every label of an edge and a node of the graphs not marked 
in the Figure 4 and Figure 5 was assigned a label chosen 
from k distinct labels, where k is an integer from 1 to 7 in 
Figure 4 and from 1 to 16 in Figure 5. We see that the 
smallest error we achieved is for the tree structure. As we 
complicate the structure and increase the average degree of 
nodes and the ratio of the number of edges to the number of 
nodes, the error increases. The highest error we had with 

complete graph. We show this case separately in Figure 5. 
We observed the average value of the inference error for a 
complete graph with six nodes. Then we removed from the 
complete graph four edges and repeated the experiment. 
Next, we remove from the complete graph eight edges and 
repeated the experiments again. As we see in Figure 5, the 
more edges we have in the graph and the closer the graph is 
to the complete graph, the higher the average error. In other 
words, the closer the graph is to the complete graph the 
more unique labels we need to decrease the error.  

 

Figure 4. The influence on the error of different graph 
structures used in grammar productions. 

 

 

Figure 5. The change in the error with reduced number 
of edges from the complete graph structure (top) and an 

example of the inferred grammar (bottom).  

 



5.4 Experiment 4: Inference error in the presence 
of noise 
 

In Figure 6 we show the results of an experiment where we 
generated graphs with the number of nodes from 40 to 60. 
The Peterson graph (Figure 6 (a)) was the structure we used 
in the graph grammar. The Peterson graph has 10 nodes and 
15 edges which allowed us to vary the number of non-
terminal edges in the structure. We assigned distinct labels 
to all nodes except six and all edges except six. We 
generated graphs with 1, 2, 3, 4, and 5 non-terminals and 
noise value, 0.1, 0.2, …, 0.8. For every value of noise and 
number of non-terminals we generated thirty graphs from 
the grammar and computed average inference error over 
thirty values. We distinguish two types of noise: corrupted 
and not corrupted. Not corrupted noise is the addition of 
nodes and edges to the graph structure generated from the 
grammar. We add the number of nodes equal to 
(noise/(1- noise))*number_of_nodes and number of 
edges equal to (noise/(1- noise))*number_of_edges. 
Every new edge randomly connects two nodes of the graph. 
We randomly assigned the labels to added edges and nodes 
from labels already existing in the graph. We do not change 
the structure generated from the graph grammar in the not-
corrupted version. However, in the corrupted version we 
change the structure of that generated from the grammar 
graph. After adding additional nodes and edges, in the way 
we do for non-corrupted version, we redirect randomly 
selected edges. The number of edges of a graph multiplied 
by noise gives the number of redirected edges. We 
randomly assign two new nodes to every selected edge.  

 
The results in Figure 6 show that there is little influence on 
error from the number of non-terminals. We see an increase 
in the error in the not-corrupted version when the number of 
non-terminals reaches 5, but for number of non-terminals 1-
4 we do not see any significant changes. Also, the error in 
the not-corrupted version does not increase significantly as 
long as the value of noise is less than about 0.5. Corruption 
of the graph structure, as expected, causes greater error than 
non-corruption. The error increases significantly even with 
0.1 noise, and is close to 100% for noise 0.3 and higher.  
 

5.5 Experiment 5: Chemical structure 
 

In Figure 7 (a) we show the chemical structure of G tetrad 
[9]. Versions of this structure are used in research on the 
HIV-1 virus [12]. We converted this structure to a graph 
which we use as an input to our grammar inference system. 
We found the grammar which represents the repetitive 
pattern of this chemical structure. We show the grammar in 
Figure 7 (b). This experiment demonstrates the potential 
application of our approach and also a weakness for further 

study. Although the grammar production we found captures 
the underlying motifs of the chemical structure, it cannot 
regenerate the original structure which has the ring form.  
 

We also performed experiments with biological networks, 
XML file structures and other chemical structures, which 
we will report in other publications. In general, our graph-
grammar inference methods have been able to capture 
known recursive structure in these domains. 
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Figure 6. Inference error of a graph grammar with the 
Peterson graph structure in the presence of noise and 

different number of non-terminals. 

6. Conclusions and future work 
 

We described an algorithm for inference of edge 
replacement graph grammars. The performance of the 
algorithm depends on the number of distinct labels in the 
input graph. If there is only one label, the algorithm finds a 
two edge grammar. If we use three or more labels in the 
input graph, the inference error drops to zero or to a value 
close to zero in inference of grammars with a graph 
structure of a tree, cycle, Peterson graph, and tetrahedron. 
However, as we complicate the structure and increase the 
average degree of nodes and the ratio of the number of 
edges to number of nodes, the error increases. The highest 
error we had is with a complete graph. The closer the graph 
structure of the grammar is to a complete graph, the more 
unique labels we need to use in the graph to achieve the 
same level of average inference error. If we generate graphs 
from a graph grammar and then add nodes and edges to this 
graph, it does not influence significantly the inference error 
in the range of noise 0 to 0.5. There is little influence on 
error from the number of non-terminal edges in the Peterson 



graph grammar structure when the number of non-terminals 
changes from 1 to 4.  
 
In this paper we described the approach to graph grammar 
inference which extends the class of learnable graph 
grammars. Node Replacement Recursive Graph Grammar 
inference was limited to the patterns where instances 
overlap on exactly one node. In the approach presented in 
this paper allowing instances to overlap on two nodes led to 
the definition of real and virtual non-terminal edges. With 
this approach we can infer the grammar generating chains 
of squares overlapping on one edge which was not possible 
with node replacement grammars. Patterns often overlap on 
two nodes in chemical structures, as we saw in the example 
of the previous section; therefore, we have a tool which can 
find and represent important patterns in the chemical 
domain.  

 

Figure 7. The chemical structure of G tetrad (a) and 
inferred grammar structure (b). 

 

The approach has higher error when inferring more 
complete graphs. The inferred grammars, as in the example 
of chemical structure, can represent the underlying pattern 
of the structure, but cannot regenerate the structure if it has 
the ring form. The approach requires the existence in the 
input graph of frequently occurring isomorphic subgraphs 
and their overlap by one edge to infer recursive 
productions. Otherwise, the approach can infer non-
recursive productions. Eventually, we will integrate 

inference of non-recursive, node-replacement and edge-
replacement productions into one graph-grammar inference 
system. All these issues represent directions for future 
research.  
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