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Abstract. Graph grammars combine the relational aspect of graphs with the iterative and recursive aspects of string grammars,
and thus represent an important next step in our ability to discover knowledge from data. In this paper we describe an approach
to learning node replacement graph grammars. This approach is based on previous research in frequent isomorphic subgraphs
discovery. We extend the search for frequent subgraphs by checking for overlap among the instances of the subgraphs in the
input graph. If subgraphs overlap by one node we propose a node replacement grammar production. We also can infer a
hierarchy of productions by compressing portions of a graph described by a production and then infer new productions on the
compressed graph. We validate this approach in experiments where we generate graphs from known grammars and measure
how well our system infers the original grammar from the generated graph. We also describe results on several real-world tasks
from chemical mining to XML schema induction. We briefly discuss other grammar inference systems indicating that our study
extends classes of learnable graph grammars.

Keywords: Grammar induction, graph grammars, graph mining

1. Introduction

String grammars are fundamental to linguistics and computer science. Graph grammars can represent
relations in data which strings cannot. Graph grammars can represent hierarchical structures in data and
generalize knowledge in graph domains. They have been applied as analytical tools in physics, biology,
and engineering [7,15]. Our objective with this research is to develop algorithms for graph grammar
inference capable of learning recursive productions. We introduce an algorithm which builds on previous
work in discovering frequent subgraphs in a graph [5]. We check if subgraphs overlap and if they overlap
by one node, we use this node and subgraph structure to propose a node replacement graph grammar. We
also can infer a hierarchy of productions by compressing portions of a graph described by a production
and then infer new productions on the compressed graph. We validate this approach in experiments
where we generate graphs from known grammars and measure how well our system infers the original
grammar from the generated graph. We show how inference error depends on noise, complexity of the
grammar, number of labels, and size of input graph. We also describe results on several real-world tasks
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from chemical mining to XML schema induction. A vast amount of research has been done in string
grammar inference [20]. We found only a few studies in graph grammar inference, which we describe
in the next section.

In the remainder of the paper we the first define graph grammars. Next we describe our algorithm for
inferring graph grammars. Then, we show experiments to reveal the advantages and limitations of our
method. We close with conclusions and future directions.

2. Related work

Jeltsch and Kreowski [9] did a theoretical study of inferring hyperedge replacement graph grammars
from simple undirected, unlabeled graphs. Their paper leads through an example where from four
complete bipartite graphs K3,1, K3,2, K3,3, K3,4, the authors describe the inference of a grammar
that can generate a more general class of bipartite graphs K3,n, wheren � 1. The authors define four
operations that lead to a final hyperedge replacement grammar. The operations are: INIT, DECOMPOSE,
RENAME, and REDUCE. The INIT operation will start the process from a grammar which has all sample
graphs in its productions and therefore it generates only the sample graphs. Then, the DECOMPOSE
operation transforms the initial productions into productions that are more general but can still produce
every graph from the sample graphs. RENAME allows for changing names of non-terminal labels.
REDUCE removes redundant productions. Jeltsch and Kreowski [9] start the process from a grammar
which has all the sample graphs in its productions. Then they transform the initial productions into
productions that are more general but can still produce every graph from the sample graphs. Their
approach guarantees that the final grammar will generate graphs that contain all sample graphs.

Oates et al. [17] discuss the problem of inferring probabilities of every grammar rule for stochastic
hyperedge replacement context free graph grammars. They call their program Parameter Estimation for
Graph Grammars (PEGG). They assume that the grammar is given. Given a structure of a grammarS
and a finite set of graphsE generated by grammarS, they ask what are the probabilitiesθ associated
with every rule of the grammar. Their strategy is to look for a set of parametersθ that maximizes the
probability p(E| S, θ).

In terms of similarity to string grammar inference we consider the Sequitur system developed by
Nevill-Manning and Witten [16]. Sequitur infers hierarchical structure by replacing substrings based
on grammar rules. The new, compressed string is searched for substrings which can be described by
grammar rules, and they are then compressed with the grammar and the process continues iteratively.
Similarly, in our approach we replace the part of a graph described by the inferred graph grammar with
a single node and we look for grammar rules on the compressed graph and repeat this process iteratively
until the graph is fully compressed.

The most relevant work to this research is Jonyer et al.’s approach to node-replacement graph grammar
inference [10,11]. Their system starts by finding frequently occurring subgraphs in the input graphs.
Frequent subgraphs are those that when replaced by single nodes minimize the description length of the
graph. They check if isomorphic instances of the subgraphs that minimize the measure are connected by
one edge. If they are, a productionS → PS is proposed, whereP is the frequent subgraph.P andS are
connected by one edge. Our approach is similar to Jonyer’s in that we also start by finding frequently
occurring subgraphs, but we test if the instances of the subgraphs overlap by one node. Jonyer’s method
of testing if subgraphs are adjacent by one edge limits his grammars to description of “chains” of
isomorphic subgraphs connected by one edge. Since an edge of a frequent subgraph connecting it to the
other isomorphic subgraph can be included to the subgraph structure, testing subgraphs for overlap allows
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Fig. 1. Jonyer’s approach to graph grammar inference finds chain of patterns in the tree.

us to propose a class of grammars that have more expressive power than the graph structures covered by
Jonyer’s grammars. For example, testing for overlap allows us to propose grammars which can describe
tree structures, while Jonyer’s approach does not allow for tree grammars. In Fig. 1 we illustrate the
limitation of Jonyer’s approach. We generated a tree from a grammar that has two productions. The first
production is selected 60% of a time, and the second production is a terminal which is a single vertex and
is selected 40% of a time. The grammar found by Jonyer’s approach, and resulting compressed graph,
are shown on the right side of the figure. The grammar represents the chain of patterns connected by one
edge in the graph, but it cannot represent the tree. The approach we propose in this paper does not have
this limitation.

In our approach we use the frequent subgraph discovery system Subdue developed by Cook and
Holder [5]. We would like to mention other systems developed to discover frequent subgraphs and
therefore have the potential to be modified into a system which can infer a graph grammar. Kuramochi
and Karypis [13] implemented the FSG system for finding all frequent subgraphs in large graph databases.
FSG starts by all frequent one and two edge subgraphs. Then, in each iteration, it generates candidate
subgraphs by expanding the subgraphs found in the previous iteration by one edge. In every iteration, the
algorithm checks how many times the candidate subgraph occurs within an entire graph. The candidates,
whose frequency is below a user-defined level, are pruned. The algorithm returns all subgraphs occurring
more frequently than the given level. In the candidate generation phase, computation costs of testing
graphs for isomorphism are reduced by building a unique code for the graph (canonical labeling).

Yan and Han introduced gSpan [24], which does not require candidate generation to discover frequent
substructures. The authors combine depth first search and lexicographic order in their algorithm. Their
algorithm starts from all frequent one-edge graphs. The labels on these edges together with labels on
incident nodes define a code for every such graph. Expansion of these one-edge graphs maps them
to longer codes. The codes are stored in a tree structure such that ifα = (a0, a1, . . . , am) and
β = (a0, a1, . . . , am, b), then theβ code is a child of theα code. Since every graph can map to many
codes, the codes in the tree structure are not unique. If there are two codes in the code tree that map
to the same graph and one is smaller then the other, the branch with the smaller code is pruned during
depth first search traversal of the code tree. Only the minimum code uniquely defines the graph. Code
ordering and pruning reduces the cost of matching frequent subgraphs in gSpan.

Since gSpan and FSG are both frequent subgraph mining systems, they also can be used to infer
graph grammars with the modification to allow subgraph instances to overlap and a mechanism for
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overlap detection. Modification of gSpan and FSG where the graph would be compressed with frequent
isomorphic subgraphs would allow for building a hierarchy of productions. Overlapping substructures
are available as an option in the Subdue system [5]. Also, Subdue allows for identification of one
substructure with the best compression score, which we can modify to identify one grammar production
with the best score, while FSG and gSpan return all candidate subgraphs above a user-defined frequency
level leaving interpretation and final selection for the user.

3. Node replacement recursive graph grammar

We give the definition of a graph and graph grammars which is relevant to our implementation. The
defined graph has labels on vertices and edges. Every edge of the graph can be directed or undirected.
We emphasize the role of recursive productions in the name of the grammar, because the type of inferred
productions are such that the non-terminal label on the left side of the production appears one or more
times in the node labels of a graph on the right side. It is the main characteristic of our grammar
productions. Our approach can also infer non-recursive productions. The embedding mechanism of
the grammar consists of connection instructions. Every connection instruction is a pair of vertices that
indicate where the production graph can connect to itself in a recursive fashion. Our graph generator can
generate a larger class of graph grammars than defined below. We will describe the grammars used in
generation later in the paper.

A labeled graph G is a 6-tuple,G = (V, E, µ, ν, η, L), where

V – is the set of nodes,
E ⊆ V × V – is the set of edges,
µ : V → L – is a function assigning labels to the nodes,
v : E → L – is a function assigning labels to the edges,
η : E → { 0, 1 } – is a function assigning direction property to edges (0 if undirected, 1 if directed).
L – is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a tupleGr = (
∑

, ∆, Γ, P ), where∑
– is an alphabet of node labels,

∆ – is an alphabet of terminal node labels,∆ ⊆ ∑
,

Γ – is an alphabet of edge labels, which are all terminals,
P – is a finite set of productions of the form(d,G, C), whered ∈ ∑−∆, G is a graph, and there
are two types of productions:

(1) recursive productions of the form(d,G,C), with d ∈ ∑−∆,G is a graph, where there is at least
one node inG labeledd. C is an embedding mechanism with a set of connection instructions,
C ⊆ V × V , whereV is the set of nodes ofG. A connection instruction(vi, vj) ∈ C implies
that derivation can take place by replacingvi in one instance ofG with vj in another instance of
G. All the edges incident tovi are incident tovj . All the edges incident tovj remain unchanged.

(2) non-recursive production, there is no node inG labeledd (our inference system does not infer
an embedding mechanism for these productions).

Each grammar production can have one or more connection instructions. If the grammar production
does not have a connection instruction, it is a non-recursive production. Each connection instruction
consists of two integers. They are the numbers of vertices in two isomorphic subgraphs. In Fig. 4 we
show three isomorphic instances and connection instructions. Connection instructions are determined
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from overlap. They show how instances overlap in the input graph and can be used in generation. We
compress portions of the graph described by productions. Connection instructions show how one instance
connects to its isomorphic copy. They do not show how an instance is connected to the compressed graph.
We intended to give a definition of a graph grammar which describes the class of grammars which can
be inferred by our approach. We do not infer the embedding mechanism of recursive and non-recursive
productions for the compressed graph, but this is an issue for further theoretical and experimental study.
When a production is non-recursive, instances do not overlap and do not connect to each other. We do
not explicitly give an embedding mechanism for this case.

We introduce the definition of two data structures used in our algorithm.
Substructure S of a graphG is a data structure which consists of:

(1) graph definition of a substructureSG which is a graph isomorphic to a subgraph ofG
(2) list of instances (I1, I2, . . . , In) where every instance is a subgraph ofG isomorphic toSG

Recursive substructure recursiveSub is a data structure which consists of:

(1) graph definition of a substructureSG which is a graph isomorphic to a subgraph ofG
(2) list of connection instructions which are pairs of integer numbers describing how instances of the

substructure can overlap to comprise one instance of the corresponding grammar production rule.
(3) list of recursive instances(IR1, IR2, . . ., IRn) where every instanceIRk is a subgraph ofG.

Every instanceIRk consist of one or more isomorphic, overlapping by no more than one vertex,
copies ofSG.

In our definition of substructure we refer to subgraph isomorphism. However, in our algorithm we
are not solving the subgraph isomorphism problem. We are using a polynomial time beam search to
discover substructures and graph isomorphism to collect instances of the substructures.

4. Hierarchy of graph grammars

We encountered in existing literature a classification of graph grammars based on the embedding
mechanism [12]. The embedding mechanism is important in the generation process, but if we use graph
grammars in parsing or as a tool to mine data and visualize common patterns, the embedding mechanism
may have less importance or can be omitted. Without the embedding mechanism the graph grammar still
conveys information about graph structures used in productions and relations between them. In Fig. 2
we give the classification of graph grammars based on the type of their productions, not based on the
type of embedding mechanism. The production of the grammars in the hierarchy is of the form(d,G,C)
whered is the left hand side of the production,G is a graph, andC is the embedding mechanism.d can
be a single node, a single edge or a graph, and we respectively call the grammar a node-, edge- or graph
replacement grammar. If the replacement ofd with G does not depend on vertices adjacent tod or edges
incident tod, nor any other vertices or edges outsided in a graph hostingd, we call the grammar context
free. Otherwise, the grammar is context sensitive.

We wanted to place the graph grammars we are able to infer in this hierarchy. We circled two of them.
Node replacement recursive graph grammar is the one described in this paper. The set of grammars
inferred by Jonyer et al. [10,11] we callchain grammars. Chain grammars describe graphs or portion of
graphs composed from isomorphic subgraphs where every subgraph is adjacent to the other by one edge.
The productions ofchain grammars are of the formS → PS, whereP is the subgraph.P andS are
connected by one edge.Chain grammars are a subset ofnode replacement recursive graph grammars.
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Fig. 2. Hierarchy of graph grammars.

Node replacement graph grammars describe a more general class of graph grammars than our algorithm
is able to learn. An example of a node replacement graph grammar that we cannot learn is a grammar
with alternating productions, as in Fig. 15.

5. The algorithm

We will first describe an algorithm informally allowing for an intuitive understanding of the idea. The
example in Fig. 3 shows a graph composed of three overlapping substructures. The algorithm generates
candidate substructures and evaluates them using the following measure of compression,

size(G)
size(S) + size(G|S)

whereG is the input graph,S is a substructure andG|S is the graph derived fromG by compressing
each instance ofS into a single node. size(g) can be computed simply by adding the number of nodes
and edges: size(g) = vertices(g) + edges(g). Another successful measure of size(g) is the Minimum
Description Length (MDL) discussed in detail in [4,19]. Either of these measures can be used to guide
the search and determine the best graph grammar. In our experiments we used only the size measure.
The compression measure could also take into account the connection instructions. We could penalize
recursive substructures for the additional information connection instruction carry. We did preliminary
experiments incorporating connection instruction in the measure, but we did not observe significant
improvements in results and therefore we decided to leave the measure unchanged.

The grammar from Fig. 3 consists of a graph isomorphic to three overlapping substructures and
connection instructions. We find connection instructions when we check for overlaps. In this example
there are two connection instructions, 1–3 and 1–4. Hence, in generation of a graph from the grammar,
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1-4

Fig. 3. A graph with overlapping substructures and a graph grammar representation of it.

1 - 3 1 - 4

Fig. 4. Substructure and its instances while determining connection instructions (continuation of the example from Fig. 3).

in every derivation step an isomorphic copy of the subgraph definition will be connected to the existing
graph by connecting node 1 of the subgraph to either a node 3 or a node 4 in the existing graph. The
grammar shown on the right in Fig. 3 cannot only regenerate the graph shown on the left, but also
generate generalizations of this graph. Generalization in this example means that the grammar describes
graphs composed from one or more star looking substructures of four nodes labeled “a” and “b”. All
these substructures overlap on a node with the label “a”.

In our algorithm we allow instances to overlap by one node only. Certainly, real data can contain
instances which overlap on more than one node. We encountered this case in experiments with chemical
structures. We also did studies where we allow instances to overlap by two nodes, which led us to
consider inference of edge replacement recursive graph grammars. Allowing for larger overlap is an
open research issue in inference of new classes of graph grammars which we have not yet explored. In
this paper we limit overlap to only one node. In the algorithm, we do not allow instances to grow further
than overlap by one node.

Algorithm 1 is our grammar discovery pseudocode. The function INFERGRAMMAR is similar
to the descriptions of Cook et al. [5] for substructure discovery and Jonyer et al. [10] for discovering
grammars describing chains of isomorphic subgraphs connected by one edge. The input to the algorithm
is a graphG which can be one connected graph or set of disconnected graphs.G can have directed edges
or undirected edges. The algorithm assumes labels on nodes and edges. The algorithm processes the list
of substructuresQ. In Fig. 4 we see an example of a substructure definition. A substructure consists of
a graph definition and a set of instances from the input graph that are isomorphic to the graph definition.
The example in Fig. 4 is a continuation of the example in Fig. 3. The numbers in parentheses refer to
nodes of the graph in Fig. 3.
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The algorithm starts (line 3) with a list of substructures where every substructure is a single node and
its instances are all nodes in the graph with this node label. The best substructure is initially the first
substructure in theQ list (line 4). In line 8 we extend each substructure inQ in all possible ways by
a single edge and a node or only by single edge if both nodes are already in the graph definition of the
substructure. We allow instances to grow and overlap, but any two instances can overlap by only one
node. We keep all extended substructures innewQ. We evaluate substructures innewQ in line 12. The
recursive substructurerecursiveSub is evaluated along with non-recursive substructures and is competing
with non-recursive substructures. The total number of substructures considered is determined by the



J.P. Kukluk et al. / Inference of node replacement graph grammars 385

input parameterLimit. In line 19 we compressG with bestSub. Compression replaces every instance
of bestSub with a single node. This node is labeled with a non-terminal label. The compressed graph
is further processed until it cannot be compressed any more. In consecutive iterationsbestSub can have
one or more non-terminal labels. It allows us to create a hierarchy of grammar productions. The input
parameterBeam specifies the width of a beam search, i.e., the length ofQ. For more details about the
algorithm see [5,10,11].

The function RECURSIFYSUBSTRUCTURE takes substructureSand, if instances ofS overlap,
proposes recursive substructurerecursiveSub. The list of connection instructions and the list of recursive
instances are two main components ofrecursiveSub. We initialize them in line 1 and 2. We check
for overlap in line 4. Figure 4 assists us in explaining conversion of substructureS into recursive
substructure. Every instance graph has two positive integers assigned to it. One integer, in parentheses
in Fig. 4, is the number of a node in the processed graphG. The second integer is a node number of
an instance graph. The instances are isomorphic to the substructure graph definition and instance node
numbers are assigned to them according to this isomorphism. We check for overlap in line 4. Given pair
of instances (I1, I2) we examine if there is a nodev ∈ G, which also belongs toI1 andI2. We find two
overlapping nodes [3,4], examining node numbers in parentheses in the example in Fig. 4. Having the
number of nodev ∈ G we find corresponding tov two node numbers of instance graphsv I ∈ I1 and
v′I ∈ I2 (line 5 and 6). The pair of integers(vI , v

′
I) is a connection instruction. There are two connection

instructions in Fig. 4, 1-3 and 1-4. If(vI , v
′
I) is not already in the list of connections instructions for

recursive substructure, we include it in line 8. The order in which we test instances in the instance list for
overlap does not matter. Even if one instance overlaps with two or more different instances on different
nodes, overlap does not depend on the order of instances. Therefore, the connection instructions found
from each overlap will be the same, no matter in which order we traverse the instance list.

We create the recursive substructure’s instance list in lines 10 to 13 of RECURSIFYSUBSTRUC-
TURE. A recursive instance is a connected subgraph ofG, which can be described by the discovered
grammar production. It means that for every subset of instances{Im, Im+1, . . . , Il} from the instance
list of S, in which unionIm ∪ Im+1∪ . . . ∪Il is a connected graph, we create one recursive instance
IRk = Im∪ Im+1∪ . . .∪ Il. The recursive instances are no longer isomorphic as instances ofS and they
vary in size. Recursive substructures compete with non-recursive. All instances described by a single
recursive production are collectively replaced by a single node in the evaluation process; whereas, for
non-recursive productions, each instance is replaced by a single node, one per instance. This method of
tends to prefer recursive productions.

Subdue uses a heuristic search whose complexity is polynomial in the size of the input graph [5].
Our modification does not change the complexity of this algorithm. The overlap test is the main
computationally expensive addition of our grammar discovery algorithm. Analyzing informally, the
number of nodes of an instance graph is not larger than V, where V is the number of nodes in the input
graph. Checking two instances for overlap will not take more thanO(V 2) time. The number of pairs of
instances is no more than V2, so the entire overlap test will not take more thanO(V4) time.

6. Hierarchy of productions

In our first example from Fig. 3, we described a grammar with only one production. Now we would
like to introduce a complex example to illustrate the inference of a grammar which describes a more
general tree structure. In Fig. 5 we have a tree with all nodes having the same label. There are two
repetitive subgraphs in the tree. One has three edges labeled “a”, “b”, and “c”. The other has two edges
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(S2) (S2)

Fig. 5. The tree (left) and inferred tree grammar (right).

(S)

Fig. 6. An example of a graph grammar used in the experiments.

with labels “x” and “y”. There are also three edges K1, K2, and K3 which are not part of any repetitive
subgraph. In the first iteration we find grammar production S1, because overlapping subgraphs with
edges “a”, “b”, and “c” score the highest in compressing the graph. Examining production S1, we notice
that node 3 is not involved in connection instructions. It is consistent with the input graph where there
are no two subgraphs overlapping on this node. The compressed graph, at this point, contains the node
S1, edges K1, K2, K3 and subgraphs with edges “x” and “y”. In the second iteration our program finds
all overlapping substructures with edges “x” and “y” and proposes production S2. Compressing the
tree with production S2 results in a graph which we use as an initial production S, because the graph
can be compressed no further. In Fig. 5 productions for S1 and S2 have graphs as terminals. We will
omit drawing terminal graphs in subsequent figures. The tree used in this example was used in our
experiments, and the grammar on the right in Fig. 5 is the actual inferred grammar.

7. Experiments

7.1. Methodology

Having our system implemented, we faced the challenge of evaluating its performance. There are
an infinite number of grammars as well as graphs generated from these grammars. In our experiments
we restricted grammars to node replacement grammars with two productions. The second production
replaces a non-terminal node with a single terminal node. In Fig. 6 we give an example of such a
grammar. The grammar on the left is of the form used in generation. The grammar on the right is the
inferred grammar in our experiment. The inferred grammar production is assumed to have a terminating
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alternative with the same structure as the recursive alternative, but with no non-terminals. We omit
terminating production in Fig. 6. We associate probabilities with productions used in generation. These
probabilities define how often a particular production is used in derivations. Assigning probabilities
to productions helps us to control the size of the generated graph. Our inference system does not
infer probabilities. Oates et al. [17] addresses the problem of inferring probabilities assuming that the
productions of a grammar are given. We are considering inferring probabilities along with productions
as a future work.

We developed a graph generator to generate graphs from a known grammar. We can generate directed
or undirected graphs with labels on nodes and edges. Our generator produces a graph by replacing a
non-terminal node of a graph until all nodes and edges are terminal. The generation process expands the
graph as long as there are any non-terminal edges or nodes. Since selection of a production is random
according to the probability distribution specified in the input file, the number of nodes of a generated
graph is also random. We place limits on the size of the generated graph with two parameters: minNodes
and maxNodes. We generate graphs from the grammar until the number of nodes is between minNodes
and maxNodes. We distinguish two different distortion operations to the graph generated from the
grammar: corruption and added noise. Corruption involves the redirection of randomly selected edges.
The number of edges of a graph multiplied by noise gives the number of redirected edges, where noise is a
value from 0 to 1. We redirect an edgee = (v1, v2) by replacing nodesv1 andv2 with two new, randomly
selected graph nodesv ′1 andv′2. When we add noise, we do not destroy generated graph structure. We
add new nodes and new edges with labels assigned randomly from labels used in already generated graph
structure. We compute the number of added nodes from the formula (noise/(1- noise))*numberof nodes.
The number of added edges we find from (noise/(1- noise))*numberof edges. A new edge connects two
nodes selected randomly from existing nodes of the generated structure and newly added nodes. The
distortion of a graph when we add noise is from added edges and vertices. The higher the noise value,
the higher the probability that newly added nodes will be connected to the rest of the graph. If the noise
value is low, the new added nodes might not get connected to the graph and the distortion to the graph
will be only from added edges.

We examined grammars with one, two, and three non-terminals. The first productions of the grammars
have an undirected, connected graph with labels on nodes and edges on the right side. We use all
possible connected simple graphs with three, four, and five nodes as the structures of graphs used in the
productions. There are twenty nine different simple connected undirected unlabeled graphs [18]. We
show them in Fig. 9. Performing experiments with larger graph structures requires more computation
time. Experiments with complex grammars which involve several productions we plan to describe in
a separate report. We attempted several experiments with large social networks of generated terrorist
networks; however, we did not find meaningful recursive patterns in this domain. For these experiments
the input file had 8 graphs with a total number of vertices of 23,213 and a total number of edges of
34,132. Computations for this graph took 885 seconds. Our graph generator generates graphs from the
known grammar that is based on one of the twenty-nine graph structures. Then we use our inference
system to infer the grammar from the generated graph. We measure an error between the original and
inferred grammar. We use MDL as a measure of the complexity of a grammar. Our results describe the
dependency of the grammar inference error on complexity, noise, number of labels, and size of generated
graphs.

7.2. MDL as a measure of complexity of a grammar

We seek to understand the relationship between graph grammar inference and grammar complexity,
and so need a measure of grammar complexity. One such measure is the Minimum Description Length
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(MDL) of a graph, which is the minimum number of bits necessary to completely describe the graph.
Here we define the MDL measure, which while not provably minimal, is designed to be a near-minimal
encoding of a graph. See [5] for a more detailed discussion.

MDL(graph) = vbits + rbits+ ebits,

where

– vbits is the number of bits needed to encode the nodes and node labels of the graph

vbits = lg v + v lg lu,

v is the number of nodes in the graph;lg v is the number of bits to encode the number of nodesv in
the graph;lu is the number of unique labels in the graph.

– rbits is the number of bits needed to encode the rows of the adjacency matrix of the graph

rbits = (v + 1) lg(b + 1) +
v∑

i=1

lg
(
v
ki

)

b is the maximum number of 1s in any row of the adjacency matrix;ki is the number of 1s in a row
i of the adjacency matrix.

– ebits is the number of bits needed to encode edges given in adjacency matrix

ebits = e(1 + lg lu) + (K + 1) lgm,

e is the number of edges of a graph;m is the maximum number of edges between any two nodes;
in our graphsm = 1 because graphs are simple, therefore(K + 1) lgm = 0; K is number of 1 s in
adjacency matrix of a graph, in our graphsK = e.

Since all the grammars in our experiments have two productions and the second production replaces a
non-terminal with a single node, the complexity of the grammar will vary depending only on the graph
on the right side of the first production. We would like our results for one, two and three non-terminal
grammars to be comparable; therefore we do not want our measure of complexity of a grammar to be
dependent on the number of non-terminals. In every graph used in the productions we reserve three
nodes. We give the same label to these nodes. When we generate a graph, we replace one, two, or three
labels of these nodes with the non-terminal S when we need a grammar with one, two or three non-
terminals. However, when we measure MDL of a graph we leave the original three labels unchanged. In
our experiments we always use that same non-terminal label. In the general case a production can contain
different non-terminals. Every non-terminal would need to be counted as a different label of a graph and
MDL would increase with increasing number of non-terminals. Therefore, replacing all non-terminals
with one label eliminates the influence of the number of non-terminals on.the MDL measure, and we
can compare inference error of the structures of the graphs used in productions across one, two and three
non-terminals.

Next, we give an example of calculating the MDL of a graph using the graph structure from Fig. 6.
The adjacency matrix of the graph and the MDL calculation are as follows.

a a b c a
a 1
a 1 1 1
b 1
c 1
a
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vbits = lg v + v lg lu = lg 5 + 5 lg 9 = 18.17

rbits= (v + 1) lg(b + 1) +
v∑

i=1

lg
(
v
ki

)

= (5 + 1) lg(3 + 1) + lg
(

5
1

)
+ lg

(
5
3

)
+ lg

(
5
1

)
+ lg

(
5
1

)
+ lg

(
5
0

)

= 22.29

ebits = e(1 + lg lu) + (K + 1) lgm = 6(1 + lg 9) + (6 + 1) lg 1 = 25.02

MDL(graph) = vbits + rbits + ebits = 65.48

We can compare this result with an MDL value 26.09 of a triangle with three vertices, three edges and
four different labels.

7.3. Error

We introduce a measure to compare the original grammar to the inferred grammar. Our definition of
an error has two aspects. First, there is the structural difference between the inferred and the original
graph used in the productions. Second, there is the difference between the number of non-terminals and
the number of connection instructions. If there is no error, the number of non-terminals in the original
grammar is the same as the number of connection instructions in the inferred grammar. We compute
the structural difference between graphs with an algorithm for inexact graph match initially proposed by
Bunke and Allermann [2]. For more details see also [5]. We would like our error to be a value between
0 and 1; therefore, we normalize the error by having in the denominator the sum of the size of the graph
used in the original grammar and the number of non-terminals. We do not allow an error to be larger
than 1; therefore, we take the minimum of 1 and our measure as a final value. The restriction that the
error is not larger than 1 prohibits unnecessary influence on the average error taken from several values
by inferred graph structure significantly larger than the graph used in the original grammar.

Error = min
(

1,
matchCost(g1, g2) + |#CI − #NT |

size(g1) + #NT

)
,

where

– matchCost(g1, g2) is the minimal number of operations required to transformg1 to a graph isomorphic
to g2, or g2 to a graph isomorphic tog1. The operations are: insertion of an edge or node, deletion
of a node or an edge, or substitution of a node or edge label.

– #CI is the number of inferred connection instructions
– #NT is the number of non-terminals in the original grammar
– size(g1) is the sum of the number of nodes and edges in the graph used in the grammar production

Most of the time matchCost(g1, g2) is only a fraction of the size of the original grammar. We could
choose a larger denominator to ensure that error will not be larger than 1. However, in some cases
the learned grammar was an attached pair of the structure in the original grammar, as in Fig. 10,
where the language of the learned grammar is very close to the original grammar, but the structural
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Fig. 7. Error as a function of noise and MDL where graph structure was not corrupted.
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Fig. 8. Error as a function of noise and MDL where graph structure was corrupted.

difference between the learned and original grammars is large. We decided on size(g1)+ #NT and
limit error to 1, because it gave a clearer picture of the error. Using size(g1) + size(g2) + #NT as
a denominator would also be a valid measure, and be between 0 and 1, but may unduly penalize for
variants of the target grammar.

7.4. Experiment 1: Error as a function of noise and complexity of a grammar

We used twenty nine graphs from Fig. 9 in grammar productions. We assigned different labels to
nodes and edges of these graphs except three nodes used for non-terminals. We generated graphs with
noise from 0 to 0.9 in 0.1 increments. For every value of noise and MDL we generated thirty graphs from
the known grammar and inferred the grammar from the generated graph. We computed the inference
error and averaged it over thirty examples. We generated 8700 graphs to plot each of the three graphs
in Fig. 7. The first plot shows results for grammars with one non-terminal. The second and the third
plot show results for grammars with two and three non-terminals. We did not corrupt the generated
graph structure in experiments in Fig. 7. As noise we added nodes and edges to the generated graph
structure. We used only the ADDNOISE TO GRAPH function of our generator. Figure 8 has the same
results as Fig. 7 with the difference that we corrupted the graph structure generated from the grammar
and then we added nodes and edges to the graph. We used both CORRUPTGRAPH STRUCTURE and
ADD NOISE TO GRAPH functions of the generator to distort the graph.

We see trends in the plots in Figs 7 and 8 Error decreases as MDL increases. A low value of MDL
is associated with small graphs, with three or four nodes and a few edges. These graphs, when used on
the right hand side of a grammar production, generate graphs with fewer labels than grammars with high
MDL. Smaller numbers of labels in the graph increase the inference error, because everything in the
graph looks similar, and the approach is more likely to propose another grammar which is very different
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Table 2
Twenty nine simple graphs ordered according to increasing average inference error of
six experiments in Figs 7 and 8. The numbers in the table refer to structures in Fig. 9

1

  

21    17    22    15     8    10    23    28    20    27    29    19     26    12    

16     3    18     4    24    25     9     5     7    14     6    13    11     1     2 

2 21    23    22    15    18    16    17    20    19     9    28    12    10    14    

26    13    27    25     8    24    29     4     5     7     3     6    11     2     1 
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21    15    23    16    17    19    18    14     9    13    28    12     27    26    

25    24     5    10     4    29    22     6    20     7    11     2     8     1     3 

1 8    10    12    21    17    15    20    23    16    19    18    22    13    14     

9    27     4    28    25     3     7    29    24     6    26     5    11     1     2 

2 9    17    19    16    21    13    18     8    15    14    10    12    25    27    

23    22    24    20    26    28     4     3     6     5    29     7    11     1     2
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9    19    14    12    18    16    13    15    21    17     4    23     10    25    

27    26     5     6    24    20    28    22    29     8     7     3    11     1     2

Fig. 9. Twenty nine simple connected graphs ordered according to non-decreasing MDL value.

than the original. As expected, the error increases as the noise increases in experiments with corrupted
graph structure. However, there is little dependency of an error from the noise if the graph generated
from the grammar is not corrupted (Fig. 7).

We average the value of an error over ten values of noise which gives us the value we can associate
with the graph structure. It allowed us to order graph structures used in the grammar productions based
on average inference error. In Fig. 9 we show all twenty nine connected simple graphs with three,
four and five nodes used in productions ordered in non-decreasing MDL value of a graph structure. We
decided on this order because graphs we produce show dependency of error on MDL of a graph structure.
This order gives us the sense of complexity. In Table 2 we give an order of graph structures for six
experiments with corrupted and non-corrupted structures and one, two, and three non-terminals. The
numbers in the table refer to structure numbers in Fig. 9. We see in Table 2 that graph number 21 is close
to the beginning of the list in all six experiments. Graphs number 1, 2, and 11 are close to the end of all
six lists. We conclude that when graph number 21 is used in the grammar production, it is the easiest
for our inference algorithm to find the correct grammar. When graph number 1, 2, or 11 is used in the
grammar production and generated graphs have noise present, we infer grammars with some error. We
also observe a tendency of decreasing error with increasing MDL in the graph orders in Table 2. Graph
29 has the highest MDL, because it has the most nodes and edges. In five experiments graph 29 is closer
to the end of the list.

Quantitative definition of an error allows us to automate the process and perform tests on thousands
of graphs. The error is caused by a wrongly inferred graph structure used in the production or number
of connection instructions which is too large or too small. However, there are cases where the inferred
grammar represents the graph well, but the graph in the production has a different structure. For example,
we observed that the grammar with MDL= 55.58 and graph number 11 causes an error even if we infer
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riginal grammar                                     Inferred grammar 

(S)

Fig. 10. An inference error where larger graph structure is proposed.

    original grammar                   inferred grammar 

1-2

Fig. 11. Error where inferred grammar is reduced to production with single edge.

(a)                                                       (b)                                                        (c) 

Fig. 12. Graph with overlapping squares (a), inferred grammar (b), and graph generated from inferred grammar (c).

the grammar from graphs with no corruption and zero noise. The inferred graph structure contains two
overlapping copies of the graph used in the original grammar production. We illustrate it in Fig. 10.
The structure has significant error, yet does subjectively capture the recursive structure of the original
grammar.

7.5. Experiment 2: Error as a function of number of labels and complexity of a grammar

We would like to evaluate how error depends on the number of different labels used in a grammar.
We restricted graph structures used in productions to graphs with five nodes. Every graph structure
we labeled with 1, 2, 3, 4, 5 or 6 different labels. For every value of MDL and number of labels we
generated 30 different graphs from the grammar and computed average error between them and the
learned grammars. The generated graphs were without corruption and without noise. We show the
results for one, two, and three non-terminals in Fig. 13. Below the three dimensional plots, for clarity,
we give two dimensional plots with triangles representing the errors. The larger and lighter the triangle
the larger is the error. We see that the error increases as the number of different labels decreases. We
see on the two dimensional plots the shift in error towards graphs with higher MDL when the number of
non-terminals increases.

The average error for graphs with only one label is 1 or very close to 1. The most frequent inference
error results from the tendency of our algorithm to propose one-edge grammars when inferred from a
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Fig. 13. Error as a function of MDL and number of different labels used in a grammar definition.

graph with only one label. We illustrate this in Fig. 11 where we see a production with a pentagon using
only one label “a”. The inferred grammar has one edge with two connection instructions 1-1 and 1-2.
Since all the edges in the generated graph have the same label and all the nodes have the same label,
this grammar compresses the graph well and is evaluated highly by our compression-based measure.
However, this one-edge grammar cannot generate even a single pentagon. An evaluation measure which
penalizes grammars for an inability to generate an input graph would bias the algorithm away from
single-edge grammars and could correct the one-edge grammar problem. However, this approach would
require graph-grammar parsing, which is computationally complex.

7.6. Experiment 3: Error as a function of size of a graph and complexity of a grammar

We generated graphs from grammars with two non-terminals and noise= 0.2. The number of nodes
of the generated graphs was from the interval [x, x+ 20], where we change x from 20 to 420. For each
value of x and MDL we generated thirty graphs and compute average inference error over them. We
show in Fig. 14 the results for corrupted and not corrupted graph structure. We concluded that there is
no dependency between the size of a sample graph and inference error.

7.7. Experiment 4: Limitations

In Fig. 12 we show an example illustrating the limits of our approach. In Fig. 12(a) we have a graph
consisting of overlapping squares. All labels on nodes are the same, and we omit them. The squares
do not overlap by one node but by an edge. Our algorithm assumes that only one node overlaps in
the instances of the substructure and therefore infers the grammar shown in Fig. 12(b). The inferred
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Fig. 15. The grammar with alternating productions (left) and inferred grammar (right).

grammar can generate chains, an example of which is shown in Fig. 4(c). The original input graph is
not in the set of graphs generated by the inferred grammar. An extension of our method to overlapping
edges would allow us to infer the correct grammar in this example.

Figure 15 shows another example illustrating the limits of our algorithm. The first graph in the
first production on the left is a square with two non-terminals labeled S1, and the graph of the second
production is a triangle with one non-terminal labeled S. Our algorithm is not designed to find alternating
productions of this type. We generated a graph from the grammar on the left, and the grammar we inferred
is on the right in Fig. 15. The inferred grammar has one production in which the graph combines both
the triangle and square. The set of graphs generated by alternating squares and triangles according to the
grammar from the left does not match exactly the set of graphs of the inferred grammar. Nevertheless,
we consider it an accurate inference, because the inferred grammar will describe the majority of every
graph generated by the original grammar. If we were learning alternating productions, we would need
to infer them in separate iterations and analyze connection instructions, not in every iteration as we do
now, but once for all interactions combined.

7.8. Experiment 5: Chemical structures

As an example from the real-world domain of chemistry, we use four chemical structures as the input
graphs in our next experiment. Figures 16 and 17 show the structures of the molecules and the grammar
productions we found in these structures. The first structure in Fig. 16 is the structure of cellulose with
hydrogen bonding. The second molecule is macrocyclic gallium carboxylate [23]. We found a grammar
production with the Ga-Ga bond. The graph used in the production definition appears four times in the
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Fig. 16. Three chemical structures (left) and the inferred grammar production (right).

structure. The third structure in Fig. 16 is water-soluble tin-based metallodendrimer [21]. We inferred
two productions. We found production S1 in the first iteration. Production S1 has connection instruction
1-1 which means that vertex number 1 is replaced by an isomorphic instance of the right hand side of the
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(S2)

Fig. 17. The structure of dendronized polymer and its representation in hierarchical graph grammar productions.

S1 production, and the connecting vertex in the new instance of a graph is also vertex 1. We found the
second production after all instances of S1 were compressed into single vertices. The graph on the right
hand side of production S is a graph of a chemical structure compressed with S1.

In Fig. 17 we have the structure of a dendronized polymer [25]. Its graph grammar representation
consists of three productions. Zhang et al. describe several chemical structures where the graph we found
in production S2 in Fig. 17 appears two, six, and fourteen times. Since production S1 conveys the idea of
“one or more” connected graphs of the S1 structure, it intends to describe the entire family of chemical
structures described in Zhang et al.’s paper. The grammar productions we found capture the underlying
motifs of the chemical structures. They show the repetitive connected components, the basic building
blocks of the structures. We can search for such underlying building block motifs in different domains,
hoping that they will improve our understanding of chemical, biological, computer, and social networks.

7.9. Experiment 6: Inferring XML schema

XML has become a common format for data exchange on the Internet. XML schema or DTDs define
the structure and constraints on XML documents. Developers often need to write schema for existing
XML documents, and so they would find a schema inference system practical. The structure of an XML
file is an example of relational data with repetitive recursive patterns we can represent as graph grammars.
We developed a converter which converts an XML file into a tree. We used the Java implementation
of Document Object Model (DOM) in our converter. According to [1] there are twelve DOM node
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<?xml version="1.0"?> 

<!-- Sample for pa_substance2006.xml  --> 

<!DOCTYPE 

PharmacologicalActionSubstanceSet SYSTEM  

"pa_substance2006.dtd"> 

<!-- Root element --> 

<PharmacologicalActionSubstanceSet> 

   <!-- Substance 1 (Descriptor) --> 

   <Substance> 

      <RecordUI>D000536</RecordUI> 

      <RecordName> 

         <String>Aluminum Hydroxide</String> 

      </RecordName> 

      <!-- The list of PAs for this substance --> 

      <PharmacologicalActionList> 

         <!-- First PA --> 

         <PharmacologicalActionOfSubstance> 

            <DescriptorReferredTo> 

               

<DescriptorUI>D000276</DescriptorUI> 

               <DescriptorName> 

                  <String>Adjuvants, 

Immunologic</String> 

               </DescriptorName> 

            </DescriptorReferredTo> 

         </PharmacologicalActionOfSubstance> 

. 

<!ENTITY % DescriptorReference

"(DescriptorUI,

DescriptorName)">

<!ELEMENT

PharmacologicalActionSubstanceS

et (Substance*)>

<!ELEMENT Substance

((RecordUI,RecordName),

PharmacologicalActionList)+>

<!ELEMENT

PharmacologicalActionList

(PharmacologicalActionOfSubstan

ce)+>

<!ELEMENT

PharmacologicalActionOfSubstanc

e (DescriptorReferredTo)>

<!ELEMENT DescriptorReferredTo

(%DescriptorReference;)>

<!ELEMENT DescriptorUI

(#PCDATA)>

<!ELEMENT DescriptorName

(String)>

<!ELEMENT RecordUI (#PCDATA) >

<!ELEMENT RecordName (String) >

<!ELEMENT String (#PCDATA)> 

Fig. 18. An XML file describing pharmacology data and the Document Type Definition (DTD).

types: Element, Attr, Text, CDATASection, EntityReference, Entity, ProcessingInstruction, Comment,
Document, DocumentType, DocumentFragment, and Notation. However in our implementation we
build a directed tree with root node always labeled DOC and then the only type of data we extract in the
examples below is ‘Element’. From the perspective of our graph grammar inference system we need a
pattern which is repeated in the graph, so we eliminated unique text data (e.g., names, card numbers, and
price values). We do not assign labels to the edges of the tree.

We selected domains for our experiments where we can easily identify the meaning of results. XML
files often contain data with repetitive structures. An example of the beginning of such a file with
pharmacology data and its Document Type Definition (DTD) is show in Fig. 18. This is a sample file
found on the National Library of Medicine website. The tree after conversion of this file we show
in Fig. 19. In Fig. 20 we see the graph grammar found by our inference system. Productions S1
and S2 give the representation of a structure of an XML file which contains pharmacological data.
Examining the DTD we see that elementPharmacologicalActionSubstanceSet contains zero or more
Substance elements. It is indicated by ‘*’. Similarly, elementPharmacologicalActionList contains
one or morePharmacologicalActionOfSubstance elements. It is marked in the DTD with a ‘+’. We
discover these two concepts in production S1 and S2 in Fig. 20. However, our inference system
cannot distinguish between ‘one or more’ and ‘zero or more’ concepts. In the generation process
we would connect the node labeled S2 of one instance of the production graph to the node with the
same label of another instance. The process would continue until the node labeled S2 would be
replaced by labelPharmacologicalActionSubstanceSet. Production S1 is included as a non-terminal
node of production S2. In our present implementation we do not specify to which node of a graph
on the right hand side of S1 we would connectSubstance node of S2. Following from parent to
child nodes of structure of graphs of S1 and S2 we can find corresponding DTD entries. For example
PharmacologicalActionOfSubstance has only one childDescriptorReferredTo, which corresponds to the
DTD entry<!ELEMENT PharmacologicalActionOfSubstance (DescriptorReferredTo)>. We conclude
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String String String String

Fig. 19. A graph representation of an XML file.

String1-12-2

Fig. 20. Graph grammar found by inference system from the XML tree.

that the recursive patters we found adequately represent the organization of the XML file in this domain.
The connections instructions properly point out at nodes where recursion accrues. The inclusion of
production S1 to S2 also properly shows hierarchy in the data.

8. Conclusions and future work

We described an algorithm for inferring certain types of graph grammars we call recursive node re-
placement graph grammars. The algorithm is based on previous work in frequent substructure discovery.
It checks if frequent subgraphs overlap by a node and proposes a graph grammar if they do. The
algorithm we described has its limitations: the left side of the production is limited to one single node;
only connecting two single nodes is allowed in derivations. The algorithm finds recursive productions
if repetitive patterns occur within an input graph and they overlap. If such patterns do not exist, the
algorithm finds non-recursive productions and builds a hierarchical structure of the input data. Grammar
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productions with graphs of higher complexity measured by MDL are inferred with smaller error. There
is little dependency of error on noise if the generated graphs are not corrupted. The error of grammar
inference increases as the number of different labels used in the grammar decreases. There is no depen-
dency between the size of a sample graph and inference error. If all labels on nodes are the same and all
labels on edges are the same, the algorithm produces a grammar which has only one edge in the graph
definition. One-edge grammars over-generalize if the input graph is a tree, and they are inaccurate in
many other graphs. This tendency to find one-edge grammars from large, connected graphs is due to the
fact that one-edge grammars score high because they can compress the entire graph.

In the pharmacy domain we found two recursive concepts: Pharmacological Action Substance Set
containing one or more Substance elements, and Pharmacological Action List containing one or more
Pharmacological Action Substance. We showed that the graph grammar inference algorithm can extract
the organization and hierarchy of the structure of XML files. We compared the inferred graph grammar
to the DTD noticing correspondence between DTD statements and graph grammar productions.

Grammars inferred by the approach developed by Jonyer et al. [10,11] were limited to chains of
isomorphic subgraphs which must be connected by a single edge. Since the connecting edge can be
included in the production’s subgraph,and isomorphic subgraphs will overlap by one vertex,our approach
can infer Jonyer et al.’s class of grammars. As we noticed in our experiment shown in Fig. 12, when
the subgraphs overlap by more than one node, our algorithm still looks for overlap on only one node
and infers a grammar which cannot generate the input graph. Therefore one extension to the algorithm
would be a modification which would allow for overlap larger than a single node.

The evaluation method can be modified to avoid one-edge grammar productions in graphs with one
label. We are exploring other domains where data can be represented as a graph composed from smaller
structures to further test our inference system and examine it as a data mining tool for these domains.
We are continuing our research in graph grammar inference to develop methods allowing for discovery
of more powerful classes of graph grammars than discussed in this paper.
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