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Abstract

We give an algorithm for isomorphism testing of planar graphs suitable
for practical implementation. The algorithm is based on the decomposi-
tion of a graph into biconnected components and further into SPQR-trees.
We provide a proof of the algorithm’s correctness and a complexity analy-
sis. We determine the conditions in which the implemented algorithm out-
performs other graph matchers, which do not impose topological restric-
tions on graphs. We report experiments with our planar graph matcher
tested against McKay’s, Ullmann’s, and SUBDUE’s (a graph-based data
mining system) graph matchers.
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1 Introduction

Presently there is no known polynomial time algorithm for testing if two gen-
eral graphs are isomorphic [13, 23, 30, 31, 43]. The complexity of known al-
gorithms are O(n!n3) Ullmann [12, 47] and O(n!n) Schmidt and Druffel [44].
Reduction of the complexity can be achieved with randomized algorithms at
a cost of a probable failure. Babai and Kŭcera [4], for instance, discuss the
construction of canonical labelling of graphs in linear average time. Their
method of constructing canonical labelling can assist in isomorphism testing
with exp(−cn log n/ log log n) probability of failure. For other fast solutions re-
searchers turned to algorithms which work on graphs with imposed restrictions.
For instance, Galil et al. [21] discuss an O(n3 log n) algorithm for graphs with
at most three edges incident with every vertex. These restrictions limit the
application in practical problems. We recognize planar graphs as a large class
for which fast isomorphism checking could find practical use.

The motivation was to see if a planar graph matcher can be used to improve
graph data mining systems. Several of those systems extensively use isomor-
phism testing. Kuramochi and Karypis [32] implemented the FSG system for
finding all frequent subgraphs in large graph databases. SUBDUE [10, 11] is
another knowledge discovery system, which uses labeled graphs to represent
data. SUBDUE is also looking for frequent subgraphs. The algorithm starts
by finding all vertices with the same label. SUBDUE maintains a linked list
of the best subgraphs found so far in computations. Yan and Han introduced
gSpan [51], which does not require candidate generation to discover frequent
substructures. The authors combine depth first search and lexicographic order
in their algorithm.

While the input graph to these systems may not be planar, many of the
isomorphism tests involve subgraphs that are planar. Since planarity can be
tested in linear time [7, 8, 27], we were interested in understanding if introducing
planarity testing followed by planar isomorphism testing would improve the
performance of graph data mining systems.

Planar graph isomorphism appeared especially interesting after Hopcroft
and Wong published a paper pointing at the possibility of a linear time algo-
rithm [28]. In their conclusions the authors emphasized the theoretical character
of their paper. They also indicated a very large constant for their algorithm.
Our work takes a practical approach. The interest is in an algorithm for testing
planar graph isomorphism which could find practical implementation. We want
to know if such an implementation can outperform graph matchers designed for
general graphs and in what circumstances. Although planar isomorphism test-
ing has been addressed several times theoretically [19, 25, 28], even in a parallel
version [22, 29, 42], to our knowledge, no planar graph matcher implementation
existed. The reason might be due to complexity. The linear time implementation
of embedding and decomposition of planar graphs into triconnected components
was only recently made available. In this paper, we describe our implementation
of a planar graph isomorphism algorithm of complexity O(n2). This might be a
step toward achieving the theoretical linear time bound described by Hopcroft
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and Wong. The performance of the implemented algorithm is compared with
Ullmann’s [47], McKay’s [38], and SUBDUE’s [10, 11] general graph matcher.

In our algorithm, we follow many of the ideas given by Hopcroft and Tar-
jan [25, 26, 46]. Our algorithm works on planar connected, undirected, and
unlabeled graphs. We first test if a pair of graphs is planar. In order to com-
pare two planar graphs for isomorphism, we construct a unique code for every
graph. If those codes are the same, the graphs are isomorphic. Constructing the
code starts from decomposition of a graph into biconnected components. This
decomposition creates a tree of biconnected components. First, the unique codes
are computed for the leaves of this tree. The algorithm progresses in iterations
towards the center of the biconnected tree. The code for the center vertex is the
unique code for the planar graph. Computing the code for biconnected com-
ponents requires further decomposition into triconnected components. These
components are kept in the structure called the SPQR-trees [17]. Code con-
struction for the SPQR-trees starts from the center of a tree and progresses
recursively towards the leaves.

In the next section, we give definitions and Weinberg’s [48] concept of con-
structing codes for triconnected graphs. Subsequent sections present the algo-
rithm for constructing unique codes for planar graphs by introducing code con-
struction for biconnected components and their decomposition to SPQR-trees.
Lastly, we present experiments and discuss conclusions. An appendix contains
detailed pseudocode, a description of the algorithm, a proof of uniqueness of
the code, and a complexity analysis.

2 Definitions and Related Concepts

2.1 Isomorphism of Graphs with Topological Restrictions

Graphs with imposed restrictions can be tested for isomorphism with much
smaller computational complexity than general graphs. Trees can be tested in
linear time [3]. If each of the vertices of a graph can be associated with an inter-
val on the line, such that two vertices are adjacent when corresponding intervals
intersect, we call this graph an interval graph. Testing interval graphs for iso-
morphism takes O(|V | + |E|) [34]. Isomorphism tests of maximal outerplanar
graphs takes linear time [6]. Testing graphs with at most three edges incident
on every vertex takes O(n3 log n) time [21]. The strongly regular graphs are the
graphs with parameters (n, k, λ, µ), such that

1. n is the number of vertices,
2. each vertex has degree k,
3. each pair of neighbors have λ common neighbors,
4. each pair of non-neighbors have µ common neighbors.

The upper bound for the isomorphism test of strongly regular graphs is

n(O(n1/3 log n)) [45]. If the degree of every vertex in the graph is bounded, the-
oretically, the graph can be tested for isomorphism in polynomial time [35]. If
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the order of the edges around every vertex is enforced within a graph, the graph
can be tested for isomorphism in O(n2) time [31]. The subgraph isomorphism
problem was also studied on graphs with topological restrictions. For example,
we can find in O(nk+2) time if k-connected partial k-tree is isomorphic to a sub-
graph of another partial k-tree [14]. We focus in this paper on planar graphs.
Theoretical research [28] indicates a linear time complexity for testing planar
graphs isomorphism.

2.2 Definitions

All the concepts presented in the paper refer to an unlabeled graph G = (V,E)
where V is the set of unlabeled vertices and E is the set of unlabeled edges. An
articulation point is a vertex in a connected graph that when removed from the
graph makes it disconnected. A biconnected graph is a connected graph without
articulation points. A separation pair contains two vertices that when removed
make the graph disconnected. A triconnected graph is a graph without separa-
tion pairs. An embedding of a planar graph is an order of edges around every
vertex in a graph which allows the graph to be drawn on a plane without any
two edges crossed. A code is a sequence of integers. Throughout the paper we
use a code to represent a graph. We also assign a code to an edge or a vertex of
a graph. Two codes CA = [xA

1 , . . . , xA
i , . . . , xA

na] and CB = [xB
1 , . . . , xB

i , . . . , xB
nb]

are equal if and only if they are the same length and for all i, xA
i = xB

i . Sorting
codes (sorted codes) CA, CB , . . . , CZ means to rearrange their order lexicograph-
ically (like words in a dictionary). For the convenience of our implementation,
while sorting codes, we place short codes before long codes.

Let G be an undirected planar graph and ua(1), . . . , ua(n) be the articulation
points of G. Articulation points split G into biconnected subgraphs G1, . . . , Gk.
Each subgraph Gi shares one articulation point ua(i) with some other subgraph
Gj . Let biconnected tree T be a tree made from two kinds of nodes: (1) bi-
connected nodes B1, . . . , Bk that correspond to biconnected subgraphs and (2)
articulation nodes va(1), . . . , va(n) that correspond to articulation points. An
articulation node va(i) is adjacent to biconnected nodes Bl, . . . , Bm if corre-
sponding subgraphs Bl, . . . , Bm of G share common articulation point ua(i).

2.3 Two Unique Embeddings of Triconnected Graphs

Due to the work of Whitney [50], every triconnected graph has two unique
embeddings. For example Fig. 1 presents two embeddings of a triconnected
graph. The graph in Fig. 1(b) is a mirror image of the graph from Fig. 1(a).
The order of edges around every vertex in Fig. 1(b) is the reverse of the order
of Fig. 1(a). There are no other embeddings of the graph from Fig. 1(a).

2.4 Weinberg’s Code

In 1966, Weinberg [48] presented an O(n2) algorithm for testing isomorphism of
planar triconnected graphs. The algorithm associates with every edge a code.
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Figure 1: Two unique embeddings of the triconnected graph.

It starts by replacing every edge with two directed edges in opposite directions
to each other as shown in Fig. 2(a). This ensures an even number of edges
incident on every vertex and according to Euler’s theorem, every edge can be
traversed exactly once in a tour that starts and finishes at the same vertex.
During the tour we enter a vertex on an input edge and leave on the output
edge. The first edge to the right of the input edge is the first edge you encounter
in a counterclockwise direction from the input edge. Since we commit to only
one of the two embeddings, this first edge to the right is determined without
ambiguity. In the data structures the embedding is represented as an adjacency
list such that the counterclockwise order of edges around a vertex corresponds to
the sequence they appear in the list; the first edge to the right means to take the
consecutive edge from the adjacency list. During the tour, every newly-visited
vertex is assigned a consecutive natural number. This number is concatenated
to the list of numbers creating a code. If a visited vertex is encountered, an
existing integer is added to the code. The tour is performed according to three
rules:

1. When a new vertex is reached, exit this vertex on the first edge to the
right.

2. When a previously visited vertex is encountered on an edge for which the
reverse edge was not used, exit along the reverse edge.

3. When a previously visited vertex is reached on an edge for which the
reverse edge was already used, exit the vertex on the first unused edge to
the right.

The example of constructing a code for edge e1 is shown in Fig. 2. For
every directed edge in the graph two codes can be constructed which correspond
to two unique embeddings of the triconnected graph. Replacing steps 2) and
3) of the tour rules from going “right” to going “left” gives the code for the
second embedding given in Fig. 2(b). A code going right (code right) denotes
for us a code created on a triconnected graph according to Weinberg’s rules
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with every new vertex exiting on the first edge to the right and every visited
vertex reached on an edge for which the reverse edge was already used on a first
unused edge to the right. Accordingly, we exit mentioned vertices to the left
while constructing code going left (code left). Constructing code right and code
left on a triconnected graph gives two codes that are the same as the two codes
constructed using only code right rules for an embedding of a triconnected graph
and an embedding of a mirror image of this graph. Having constructed codes
for all edges, they can be sorted lexicographically. Every planar triconnected
graph with m edges and n vertices has 4m codes of length 2m+1 [48]. Since
the graph is planar m does not exceed 3n − 6. Every entry of the code is an
integer in the range from 1 to n. We can store codes in matrix M . Using Radix
Sort with linear Counting Sort to sort codes in each row, we achieve O(n2)
time for lexicographic sorting. The smallest code (the first row in M) uniquely
represents the triconnected graph and can be used for isomorphism testing with
another triconnected graph with a code constructed according to the same rules.
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Figure 2: Weinberg’s method of code construction for selected edge of the tri-
connected planar graph.

2.5 SPQR-trees

The data structure known as the SPQR-trees is a modification of Hopcroft and
Tarjan’s algorithm for decomposing a graph into triconnected components [26].
SPQR-trees have been used in graph drawing [49], planarity testing [15], and
in counting embeddings of planar graphs [18]. They can also be used to con-
struct a unique code for planar biconnected graphs. SPQR-trees decompose a
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biconnected graph with respect to its triconnected components. In our imple-
mentation we applied a version of this algorithm as described in [1, 24].

Introducing SPQR-trees, we follow the definition of Di Battista and Tamassia
[16, 17, 24, 49]. Given a biconnected graph G, a split pair is a pair of vertices
{u, v} of G that is either a separation pair or a pair of adjacent vertices of
G. A split component of the split pair {u, v} is either an edge e = (u, v) or a
maximal subgraph C of G such that {u, v} is not a split pair of C (removing
{u, v} from C does not disconnect C − {u, v}). A maximal split pair of G with
respect to split pair {s, t} is such that, for any other split pair {u′, v′}, vertices
u, v, s, and t are in the same split component. Edge e = (s, t) of G is called
a reference edge. The SPQR-trees T of G with respect to e = (s, t) describes
a recursive decomposition of G induced by its split pairs. T has nodes of four
types S,P,Q, and R. Each node µ has an associated biconnected multigraph
called the skeleton of µ. Tree T is recursively defined as follows

Trivial Case: If G consists of exactly two parallel edges between s and t, then
T consists of a single Q-node whose skeleton is G itself.

Parallel Case: If the spit pair {s, t} has at least three split components G1, . . .,
Gk (k ≥ 3), the root of T is a P-node µ, whose skeleton consists of k
parallel edges e = e1, . . . , ek between s and t.

Series Case: Otherwise, the spit pair {s,t} has exactly two split components,
one of them is the reference edge e, and we denote the other split com-
ponent by G′. If G′ has cutvertices c1, . . . , ck−1 (k ≥ 2) that partition G
into its blocks G1, . . . , Gk, in this order from s to t, the root of T is an
S-node µ, whose skeleton is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s,
ck = t, and ei = (ci−1, ci) (i = 1, . . . , k).

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G with respect to s, t (k ≥ 1), and, for i = 1, . . . , k,
let Gi be the union of all the split components of {si, ti} but the one
containing the reference edge e = (s, t). The root of T is an R-node µ,
whose skeleton is obtained from G by replacing each subgraph Gi with
the edge ei = (si, ti).

Several lemmas discussed in related papers are important to our topic. They
are true for a biconnected graph G.

Lemma 2.1 [17]Let µ be a node of T . We have:

• If µ is an R-node, then skeleton(µ) is a triconnected graph.

• If µ is an S-node, then skeleton(µ) is a cycle.

• If µ is a P-node, then skeleton(µ) is a triconnected multigraph consisting
of a bundle of multiple edges.

• If µ is a Q-node, then skeleton(µ) is a biconnected multigraph consisting
of two multiple edges.
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Lemma 2.2 [17] The skeletons of the nodes of SPQR-tree T are homeomorphic
to subgraphs of G. Also, the union of the sets of spit pairs of the skeletons of
the nodes of T is equal to the set of split pairs of G.

Lemma 2.3 [26, 36] The triconnected components of a graph G are unique.

Lemma 2.4 [17] Two S-nodes cannot be adjacent in T . Two P -nodes cannot
be adjacent in T .

Linear time implementation of SPQR-trees reported by Gutwenger and Mutzel
[24] does not use Q-nodes. It distinguishes between real and virtual edges. A
real edge of a skeleton is not associated with a child of a node and represents a
Q-node. Skeleton edges associated with a P-, S-, or R-node are virtual edges.
We use this implementation in our experiments and therefore we follow this
approach in the paper.

The biconnected graph is decomposed into components of three types (Fig. 3):
circles S, two vertex branches P , and triconnected graphs R. Every component
can have real and virtual edges. Real edges are the ones found in the origi-
nal graph. Virtual edges correspond to the part of the graph which is further
decomposed. Every virtual edge, which represents further decomposition, has
a corresponding virtual edge in another component. The components and the
connections between them create an SPQR-trees with node type S, P , or R.
The thick arrows in Fig. 3(c) are the edges of the SPQR-trees. Although the de-
composition of a graph into an SPQR-trees starts from one of the graph’s edges,
no matter which edge is chosen, the same components will be created and the
same association between virtual edges will be obtained (see discussion in the
appendix). This uniqueness is an important feature that allows the extension of
Weinberg’s method of code construction for triconnected graphs to biconnected
graphs and further to planar graphs. More details about SPQR-trees and their
linear time construction can be found in [16, 17, 24, 49].

3 The Algorithm

Algorithm 1 Graph isomorphism and unique code construction for connected
planar graphs

1: Test if G1 and G2 are planar graphs
2: Decompose G1 and G2 into biconnected components and construct the tree

of biconnected components
3: Decompose each biconnected component into its triconnected components

and construct the SPQR-tree.
4: Construct unique code for every SPQR-tree and in bottom-up fashion con-

struct unique code for the biconnected tree
5: If Code(G1) = Code(G2) G1 is isomorphic to G2
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Algorithm 1 is a high level description of an algorithm for constructing a
unique code for a planar graph and the use of this code in testing for isomor-
phism. For detailed algorithm, the proof of uniqueness of the code and complex-
ity analysis refer to the appendix. Some of the steps rely on previously reported
solutions. They are: planarity testing, embedding, and decomposition into the
SPQR-trees. Their fast solutions, developed over the years, are described in
related research papers [24, 39, 40, 41]. This report focuses mostly on phases
(4) and (5).

3.1 Unique Code for Biconnected Graphs

This section presents the unique code construction for biconnected graphs based
on a decomposition into SPQR-trees. The idea of constructing a unique code
for a biconnected graph represented by its SPQR-trees will be introduced using
the example from Fig. 3(c). Fig. 3(a) is the original biconnected graph. This
graph can be a part of a larger graph, as shown by the distinguished vertex V 6.
Vertex V 6 is an articulation point that connects this biconnected component
to the rest of the graph structure. Every edge in the graph is replaced with
two directed edges in opposite directions. The decomposition of the graph from
Fig. 3(a) contains six components: three of type S, two of type P and one of
type R. Their associations create a tree shown in Fig. 3(b). In this example, the
center of the tree can be uniquely identified. It can be done in two iterations.
First, all nodes with only one incident edge are temporarily removed. They are
S3, S4, and R5. Nodes P1 and P2 are the only ones with one edge incident.
The second iteration will temporarily remove P1 and P2 from the tree. The one
node left S0 is the center of the tree and therefore we choose it for the root and
start our processing from it. In general, in the problem of finding the center of
the tree, two nodes can be left after the last iteration. If the types of those two
nodes differ, a rule can be established that sets the root node of the SPQR-trees
to be, for instance, the one with type P before S and R. If S occurs together
with R, S can always be chosen to be the root. For the nodes of type P as well
as S, by Lemma 2.4, it is not possible that two nodes of the same type would be
adjacent. However, for nodes of type R, it is possible to have two nodes of type
R adjacent. In these circumstances, two cases need to be computed separately
for each R node as a root.

The components after graph decomposition and associations of virtual edges
are shown in Fig. 3(c). The thick arrows marked Tij in Fig. 3(c) correspond to
the SPQR branches from Fig 3(b). Their direction is determined by the root of
the tree. Code construction starts from the root of the SPQR-trees. The com-
ponent (skeleton) associated with node S0 has four real edges and four virtual
edges. Four branches, T01, Tr01, T02, and Tr02, which are part of the SPQR-
trees, show the association of S0’s virtual edges to the rest of the graph. Let
the symbols T01, Tr01, T02, and Tr02 also denote the codes that refer to virtual
edges of S0. In the next step of the algorithm, those codes are requested. T01

points to the virtual edge of P1. All directed edges of P1 with the same direc-
tion as the virtual edge of S0 (i.e., from vertex V 2 to vertex V 0) are examined
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in order to give a code for T01. There are two virtual edges of P1 directed from
vertex V 2 to vertex V 0 that correspond to the further graph decomposition.
They are identified by tails of T13 and T14. Therefore, codes T13 and T14 must
be computed before completing the code of T01. T13 points to node S3. It is
a circle with three vertices and six edges, which is not further decomposed. If
multi-edges are not allowed, S0 can be represented uniquely by the number of
edges of S3’s skeleton. Since S3’s skeleton has 6 edges, its unique code can be
given as T13 =S(number of edges)S =S(6)S . Similarly T14= S(8)S . Now the
code for P1 can be determined. The P1 skeleton has eight edges, including six
virtual edges. Therefore, T01 =P (8, 6, T13, T14)P , where T13 ≤ T14. Applying
the same recursive procedure to Tr01 gives Tr01=T01=P (8, 6, T r13, T r14)P .
Because of graph symmetry T01 = Tr01. Codes T02 and Tr02 complete the
list of four codes associated with four virtual edges of S0. The codes T02 and
Tr02 contain the code for R node starting from symbol ‘R(’ and finishing with
‘)R’. The code of biconnected component R5 is computed according to Wein-
berg’s procedure. In order to find T25, codes for “going right” and “going left”
are found. Code going right of T25 is smaller than code going left therefore
we select code going right. T25 and Tr25 are the same. The following integer
numbers are assigned to vertices of R5 in the code going to the right of Tr25:
V 2 = 1, V 1 = 2, V 7 = 3, V 4 = 4, V 6 = 5. The ‘ ∗ ’ after number 5 indicates
that at this point we reached the articulation point (vertex V 6) through which
the biconnected graph is connected to the rest of graph structure. The codes
associated with S0’s virtual edges after sorting:

T01 = Tr01 = P (8, 6, S(6)S , S(8)S)P

T02 = Tr02=P (6, 4, R(1 2 3 1 3 4 1 4 5* 2 5 3 5 4 3 2 1)R)P

First, we add the number of edges of S0 to the beginning of the code. There
are eight edges. We need to select one edge from those eight. This edge will
be the starting edge for building a unique code. Restricting our attention to
virtual edges narrows the set of possible edges to four. Further we can restrict
our attention to two virtual edges with the smallest codes (here based on the
length of the code). Since T01 and Tr01 are equal and are the smallest among
all codes associated with the virtual edges of S0, we do code construction for
two cases. We traverse the S0 edges in the direction determined by the start-
ing edge e2 associated with tail of T01, until we come back to the edge from
which we began. The third and fourth edges of this tour are virtual edges. We
introduce this information into a code adding numbers 3 and 4. Next, we add
codes associated with virtual edges in the order they were visited. We have two
candidate codes for the final code of the biconnected graph from our example:

Code(e1)=S(8, 1, 4, Tr02, T r01)S

Code(e2)=S(8, 3, 4, T02, T01)S

We find that Code(e1) < Code(e2), therefore e1 is the reference and starting
edge of the code. e1 is also the unique edge within the biconnected graph from
the example. Code(e1) is the unique code for the graph and can be used for
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isomorphism testing with another biconnected graph. The symbols ‘P (’, ‘)P ’,
‘S(’, ‘)S ’, ‘R(’, and ‘)R’ are integral part of the codes. They are organized in the
order:

‘P (’ < ‘)P ’ < ‘S(’ < ‘)S ’ < ‘R(’ < ‘)R’

In the implemented computer program these symbols were replaced by negative
integers. Constructing a code for a general biconnected graph requires defini-
tions for six cases. Three for S, P , and R nodes if they are root nodes and three
if they are not. Those cases are described in Table 1.

Table 1: Code construction for root and non-root nodes of an SPQR-trees.

Type S

Root S node: Add the number of edges of S skeleton
to the code. Find codes associated with all virtual edges.
Choose an edge with the smallest code to be the starting
reference edge. Go around the circle traversing the edges in
the direction of the chosen edge, starting with the edge after

it. Count the edges during the tour. If a virtual edge is encountered, record
which edge it is in the tour and add this number to the code. After reaching
the starting edge, the tour is complete. Concatenate the codes associated
with traversed virtual edges to the code for the S root node in the order
they were visited during the tour. There are cases when one starting edge
cannot be selected, because there are several edges with the same smallest
code. For every such edge, the above procedure will be repeated and several
codes will be constructed for the S root node. The smallest among them
will be the unique code. If the root node does not have virtual edges and
articulation points, the code is simply S(number of edges)S . If at any point
in a tour an articulation point is encountered, record at which edge in the
tour it happened, and add this edge’s number to the code marking it as an
articulation point.

input

Non-root S node: Constructing a code for node type S,
which is non-root node, differs from constructing an S root
code in two aspects. (1) the way the starting reference edge
is selected. In non-root nodes the starting edge is the one as-
sociated with the input (edge einput ). Given an input edge,
there is only one code. There is no need to consider multi-

ple cases. (2) Only virtual edges different from einput are considered when
concatenating the codes.
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Table 1: (cont).

Type P

Root P node: Find the number of edges and number of
virtual edges in the skeleton of P . Add number of edges to
the code first and number of virtual edges second. If A and B
are the skeleton’s vertices, construct the code for all virtual
edges in one direction, from A to B. Add codes of all virtual
edges directed from A to B to the code of the P root node.

Added codes should be in non-decreasing order. If A or B is an articulation
point add a mark to the code indicating if articulation point is at the head
or at the tail of the edge directed from A to B. Construct the second code
following the direction from B to A. Compare the two codes. The smaller
code is the code of P root node.

input

input

Non-root P node: Construct the code in the
same way as for the root P node but only in one
direction. The input edge determines the direc-
tion.

Type R

Root R node: For all virtual edges of an R root node, find
the codes associated with them. Find the smallest code. Se-
lect all edges for which codes are equal to the smallest one.
They are the starting edges. For every edge from this set
construct a code according to Weinberg’s procedure. When-
ever a virtual edge is traversed, concatenate its code. For

every edge, two cases are considered: “going right” and “going left”. Finally,
choose the smallest code to represent the R root node. If at any point in a
tour an articulation point is encountered, mark this point in the code.

input

input

Non-root R node: Only two cases need to be considered
(“going right” and “going left”), because the starting edge is
found based on input edge to the node. Only virtual edges
different from einput are considered when concatenating the
codes.
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3.2 Unique Code for Planar Graphs

Fig. 4 shows a planar graph. The graph is decomposed into biconnected compo-
nents in Fig. 5. Vertices inside rectangles are articulation points. Biconnected
components are kept in a tree structure. Every articulation point can be split
into many vertices that belong to biconnected components and one vertex that
becomes a part of a biconnected tree as an articulation node (black vertices in
Fig. 5). The biconnected tree from Fig. 5 has two types of vertices: biconnected
components marked as B0−B9 and articulation points, which connect vertices
B0 − B9. For simplicity, our example contains only circles and branches as
biconnected components. In general, they can be arbitrary planar biconnected
graphs, which would be further decomposed into SPQR-trees.

14

13

16

12

11

10

87

6

3210

17

15

9

54

18

Figure 4: Planar graph with identified articulation points

Code construction for a planar graph begins from the leaves of a biconnected
tree and progresses in iterations. We compute codes for all leaves, which are bi-
connected components in the first iteration. Leaves are easily identified because
they have only one edge of a tree incident on them. Leaves can be deleted, and
in the next iteration we compute the code for articulation points. Once we have
codes for articulation points, the vertices can be deleted from the tree. We are
left with a tree that has new leaves. They are again biconnected components.
This time, codes found for articulation points are included into the codes for
biconnected components. This inclusion reflects how components are connected
to the rest of the graph through articulation points. In the last iteration only
one vertex of the biconnected tree is left. It will be either an articulation point
or a biconnected component. In general, trees can have a center containing
one or two vertices, but a tree of biconnected components always has only one
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Figure 5: Constructing a unique code of a planar graph (a) the tree of bicon-
nected components, (b) after the first iteration of the algorithm with leaves
eliminated (c) before the last iteration of the algorithm
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center vertex. Computing the code for this last vertex gives the unique code of
a planar graph.

In the example given in Fig. 5(a) we identify the leaves of the tree first and
find codes for them. They are: B0, B1, B2, B3, B5, B8, B9. Let those symbols
also denote codes for those components. These codes include information about
articulation points. For example, B1=B(S(6∗)S)B . ‘B(’ and ‘)B ’ mark the be-
ginning and the end of a biconnected component code. B1 contains only a circle
with one articulation point. ‘ ∗ ’ denotes the articulation point, and 6 represents
six edges in this component after replacing every edge in the graph with two
edges in opposite directions. After codes for the leaves of the biconnected tree
are computed, those vertices are no longer needed and can be deleted. Fig. 5(b)
presents the remaining portion of the biconnected tree. Codes for articulation
points 4, 5, 15, and 17 can be computed at this point. All codes of the vertices
adjacent to a given articulation point are sorted and concatenated in nonde-
creasing order. Codes for articulation points 15 and 17 are just the same codes
as adjacent leaves B8 and B9 with symbol ‘A(’ at the beginning and ‘)A’ at the
end. The symbols ‘A(’ and ‘)A’ together with ‘B(’ and ‘)B ’ add up to total eight
control symbols. Their order is:

‘A(’ < ‘)A’ < ‘B(’ < ‘)B ’ < ‘P (’ < ‘)P ’ < ‘S(’ < ‘)S ’ < ‘R(’ < ‘)R’

Constructing Code(5) requires sorting codes B0, B1, and B2 and concatenating
them in the order B0 ≤ B2 ≤ B1. Code(5)=A(B0, B2, B1)A. The codes for
articulation points 9 and 13 are not know, because not all necessary codes
were found at this point. In the second iteration codes for B4 and B7 can be
computed. B4 and B7 are circles, therefore the rules for creating codes of S
root vertices from the preceding section apply. The previously found codes of
articulation points must be included in the newly created codes of B4 and B7.
B4’s skeleton has 10 edges, therefore we place the number 10 after the symbol
‘S(’. The reference edge, selected based on the smallest code in B4’s skeleton,
is the edge directed from vertex 8 to vertex 9. The very first vertex after the
reference edge is an articulation point (vertex 9). This adds the number 1 with
a ‘ ∗ ’ to the code since this articulation point does not have any code associated
with it. After traversing three edges in the direction determined by the reference
edge, we find another articulation point (vertex 4). Number 3 is placed next in
the B4 code and is followed by the code of the encountered articulation point.
The next articulation point (vertex 5) is fourth in the tour, so we concatenate
the number 4 and the code for this articulation point, which completes the code
for B4. The B7 code can be found in a similar way. B4 and B7 are:

B4=B(S(10, 1∗, 3, A(B3)A, 4, A(B0, B2, B1)A)S)B

B7=B(S(8, 1∗, 2, A(B8)A, 3, A(B9)A)S)B

In the next iteration we compute codes for articulation points, vertices 13 and
9. This step is the same as the previous one where codes for articulation points
with vertices 4, 5, 16, and 17 were computed. The codes are:

Code(9)=A(B7)A
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Code(13)=A(B5, B4)A, B5 ≤ B4

After this step, the graph from our example is reduced to one biconnected
component shown in Fig. 5(c). The code of B6 is the final code that uniquely
represents the graph from our example. The undirected edge between vertices 9
and 13 is the unique edge of this graph. The B6 code can be used for testing the
graph for isomorphism with another planar graph. Given the order of control
symbols we find that A(B7)A ≤ A(B5, B4)A, therefore the final planar graph
code is

B6=P (2, A(B7)A, A(B5, B4)A)P =
=P (2, A(B(S(8, 1∗, 2, A(B(P (2∗)P )B)A, 3, A(B(P (2∗)P )B)A)S)B)A,

A(B(S(8∗)S)B), B(S(10, 1∗, 3, A(B(P (2∗)P )B)A, 4, A(B(P (2∗)P )B ,

B(P (2∗)P )B , B(S(6∗)S)B)A)S)B)A)P

The presented method of code construction for planar graphs will produce
the same codes for all isomorphic graphs and different codes for non-isomorphic
graphs. The correctness results from the uniqueness of decomposition of a planar
graph into biconnected components and biconnected components into SPQR-
trees. Two isomorphic biconnected graphs will have the same SPQR-trees. If
additionally all the skeletons of corresponding nodes of SPQR-trees are the same
and preserve the same connections between virtual edges, than the graphs rep-
resented by those trees are isomorphic. Similarly, two isomorphic planar graphs
will have the same biconnected tree. If the corresponding biconnected compo-
nents of this tree are isomorphic and the connection of them to articulation
points is preserved, the two planar graphs are isomorphic. For the proof see the
Appendix.

4 Experiments

The purpose of the experiments is to compare the planar graph matcher de-
scribed in this paper with other graph matching systems. Three of them, which
do not impose topological constraints, were selected:

1. The SUBDUE Graph Matcher [10, 11] developed based on Bunke’s al-
gorithm [9]. This graph matcher is a part of the SUBDUE data mining
system and has a wide range of options. It can perform exact and inexact
graph matches on graphs with labeled vertices and edges. If the graphs
are non-isomorphic the program can return the lowest matching cost (cost
is the number of edges and vertices that must be removed from one graph
in order to make the two graphs isomorphic).

2. Ullmann’s algorithm, which has an established reputation and was used
as a reference in many studies about isomorphism and operates on general
graphs. We used the implementation developed by [12, 20].

3. McKay’s Nauty graph matcher [38] was of particular interest because of
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its reputation as the fastest available isomorphism algorithm. McKay’s
Nauty graph matcher can test general graphs for isomorphism.

A desktop computer with a Pentium IV, 1700 MHz processor and 512 MB
RAM was used in the experiments. The tests were conducted on isomorphic
and non-isomorphic pairs of planar, undirected, unlabeled graphs. In all ex-
periments involving a planar graph matcher, the time spent for planarity test
was included in the total time used by the planar graph matcher. In order to
evaluate general properties of the graph matchers with respect to computation
time, a vast number of graphs were generated. We used LEDA [41] functions
that allow for generation of a planar graph with specified number of vertices
and edges.

In Fig. 6 we show the average computation time versus the number of edges
for planar graphs with 20, 50 and 80 vertices. McKay’s, Ullmann’s, SUBDUE,
and the planar graph matcher are compared. The results in Fig. 6 were found
based on one thousand isomorphic pairs of randomly generated, connected pla-
nar graphs. The number of edges of every generated graph was also random.
Graphs were generated in the range of edges from |V |-1 to 3|V |-6. This range
was divided into 17 intervals. Every point marked in Fig. 6 represents aver-
age computation time within one of the 17 intervals. The two vertical arrows
in Fig. 6 indicate points where Ullmann’s algorithm is 20 times slower than
McKay’s and the planar graph matcher is 400 times slower. The planar graph
matcher was outperformed by three other general graph matchers on planar
graphs with 20 vertices. The average code length of the 1000 graphs with 20
vertices used in the experiment was 195 symbols.

Comparing computation time for isomorphic and non-isomorphic graphs in
Fig. 6, we observe a significant drop in computation time for non-isomorphic
graphs while using Ullmann’s algorithm. We do not observe such differences for
testing non-isomorphic and isomorphic graphs when we use McKay, SUBDUE
or planar graph matcher. The runtime of McKay’s graph matcher decreases
with an increasing number of edges in all experiments in Fig. 6 and 7. This
is due to two reasons [37]. First, major computation time of Mckay’s graph
matcher is spent on determining the automorphism group of a graph. There are
fewer automorphisms as we approach the upper limit on the number of edges of
planar graphs 3|V |−6, and therefore faster computation time. Second, Mckay’s
graph matcher is optimized for dense graphs in many of its components.

We excluded SUBDUE from experiments on graphs bigger than 20 vertices
and Ullmann’s graph matchers from experiments on graphs bigger than 80 ver-
tices, because their testing time was too long. In Fig. 7 we compare testing time
of McKay’s and the planar graph matcher with 200, 1000, and 3000 vertices. In
each of these three cases one thousand randomly generated planar, connected
graphs were used in the experiment. We present results only for isomorphic
graphs because we consider them to be the hardest, resulting in the longest
computation time. Fig. 7(a) shows the execution time measured for every pair
of graphs tested for isomorphism. Fig. 7(b) gives the average of the values from
Fig. 7(a). McKay’s graph matcher is faster as the number of edges in the graph



J. Kukluk et al., Planar Graph Isomorphism, JGAA, 8(3) 313–356 (2004) 331

a) isomorphic graphs b) nonisomorphc graphs

25 30 35 40 45 50 55

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

60 80 100 120 140

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

100 120 140 160 180 200 220 240
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Planar

Matcher

Subdue

McKay

Ullman

25 30 35 40 45 50 55

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

60 80 100 120 140

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

100 120 140 160 180 200 220 240
10

-4

10
-3

10
-2

10
-1

10
0

10
1Planar

Matcher

McKay

Ullman

|E|  -  edges

|E|  -  edges

|E|  -  edges|E|  -  edges

|E|  -  edges

|E|  -  edges

|V| = 20 vertices

|V| = 50 vertices

|V| = 80 vertices

x20x400

Planar

Matcher

McKay

Ullman

Figure 6: Average execution time of three general graph matchers and our
planar graph matcher for testing isomorphism of planar graphs with 20, 50 and
80 vertices.
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increases, and it performs especially well on dense planar graphs. When ex-
amining the execution time of the planar graph matcher in Fig. 7(a), we find
that there is a minimum time (about one second) required to check two graphs
for isomorphism by the planar graph matcher. We do not observe any cases
with smaller execution time. This minimum time represents cases of the graphs
tested for isomorphism in linear time. This time is spent on planarity test, de-
composition into biconnected components, decomposition into SPQR-trees, and
for the most part, for the construction of the code that represents the graph.
Code construction is computationally very costly if computations start from a
triconnected root node or if the graph is triconnected and cannot be decom-
posed further. These cases are more frequent as the number of edges in planar
graph approaches |E| = 3|V | − 6. We apply Weinberg’s [48] procedure of O(n2)
complexity to these cases. It results in significant increase in computation time
for dense planar graphs observed both in Fig. 6 and Fig. 7.

In Table 2 we collect average computation time for pairs of graphs with
10, 20, 50 and 80 vertices, both isomorphic and non-isomorphic. Table 3 gives
average time for isomorphic pairs of graphs with 200, 500, 1000, 2000 and 3000
vertices. Every entry in Table 2 and Table 3 is computed based on 1000 graphs.
Number of edges for every graph is found randomly from the range |V | − 1 ≤
|E| ≤ 3|V | − 6.

Table 2: Average time of testing isomorphic (left columns) and non-isomorphic
(right columns) planar graphs with |V | ≤ 80 vertices. Every entry in the table
is found from 1000 pairs of graphs.

|V |=10 |V |=20 |V |=50 |V |=80
[ms] [ms] [ms] [ms]

McKay 0.01 0.01 0.02 0.02 0.17 0.57 0.56 0.57
Ullmann 0.13 0.05 0.46 0.08 5.99 0.23 1453.12 0.51
SUBDUE 0.68 1.00 14.07 35.31 - - - -
Planar 10.33 7.30 19.92 13.87 44.08 33.44 67.52 59.26

Table 3: Average time of testing isomorphic planar graphs with |V | ≥ 200
vertices. Every entry in the table is found from 1000 pairs of graphs.

|V |=200 |V |=500 |V |=1000 |V |=2000 |V |=3000
[ms] [ms] [ms] [ms] [ms]

McKay 0.01 0.01 0.02 0.02 0.17
Planar 10.33 7.30 19.92 13.87 44.08

Average time taken to test isomorphic graphs from these tables was used to
plot Fig. 8. The isomorphism test time used by the planar graph matcher with
graphs in the range of 10 to 3000 vertices increases almost linearly with number
of vertices. On average, the planar graph matcher is faster than McKay’s graph
matcher on graphs with more than 800 vertices.
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Figure 8: Average time (1000 pairs of isomorphic graphs for every point) of
testing isomorphic pairs of planar graphs with McKay and the planar graph
matcher.

In Fig. 9 we present the most interesting results from our experiments. We
identify the fastest graph matchers for planar graphs. We also identify planar
graphs in terms of their number of vertices and number of edges for which those
graph matchers outperformed all other solutions. The maximum number of
edges in planar graphs is 3|V |−6. The minimum number of edges of a connected
graph is |V |−1. Therefore with |E| edges on the horizontal axis and |V | vertices
on vertical axis we plot two lines |E| = 3|V | − 6 and |E| = |V | − 1. The region
above the |E| = |V |−1 line represents disconnected graphs and the region below
|E| = 3|V | − 6 represents non-planar graphs. The points between those two
lines represent the planar graphs used in our experiments. 7000 pairs of planar
graphs (1000 for every number of vertices |V |=200, 400, 500, 1000, 1500, 2000,
3000) were used to determine the regions in which the planar graph matcher
or McKay’s graph matcher is faster on average. Those regions are identified in
Fig. 9. The average execution time was computed in the same way as in the
experiment for which the results are displayed in Fig. 7. The circles in Fig. 9
show the points for which the average computation time was determined and
the planar graph matcher outperformed McKay’s graph matcher. The points
marked with a star ‘ ∗ ’ indicate the regions for which McKay’s graph matcher
was faster. From Fig. 9 we estimate that the planar graph matcher was faster
than all other graph matchers for planar graphs with |E| < 1

3.8 (|V | − 250).
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edges for which Planar Graph Isomorphism Algorithm outperforms (average
computation time) McKay’s graph matcher.

5 Conclusions and Future Work

We attempted to practically verify very promising theoretical achievements in
the problem of testing planar graphs for isomorphism. For this reason, we devel-
oped a computer program, which used a recently implemented linear algorithm
for decomposing biconnected graphs with respect to its triconnected compo-
nents [24]. It is very likely that this is the first implementation that explores
these planar graph properties.

Our main interest was to find out if the planar graph matcher could im-
prove the efficiency of graph-based data mining systems. Those systems seldom
perform isomorphism tests on graphs with numbers of vertices larger than 20.
In this range, all three general graph matchers tested in our experiments were
better than our planar graph matcher. We see some benefit of using the planar
graph matcher over McKay’s only for graphs with more than 1000 vertices. Even
for such large planar graphs, our implementation was not better than McKay’s
matcher in the entire range of number of edges. We conclude that restriction
to planar graphs in testing for isomorphism does not yet offer benefits that
warrant the introduction of the planar graph matchers into graph-based data
mining systems.

However, there is no doubt that faster solutions for testing planar graphs
for isomorphism are possible and that the region, in which the planar graph
matcher is the fastest, given in Fig. 9, can be made larger. If this region would
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reach small graphs in the range of 10 or 20, the conclusion about introducing
the planar graph matcher to data mining systems would need to be revised.
The planar graph matcher could also be made more applicable by extension to
planar graphs with labels both on edges and on vertices. This, however, would
require longer graph codes.

The result presented here might be particularly useful, if any application
would arise, which would require testing planar graphs for isomorphism with
thousands of vertices. Electronic and Very Large Scale Integration (VLSI) cir-
cuits are examples [2] of such applications. The research in graph planariza-
tion [33] can extend the methods described here for isomorphism testing and
unique code construction to larger classes of graphs than planar.



J. Kukluk et al., Planar Graph Isomorphism, JGAA, 8(3) 313–356 (2004) 337

APPENDIX

A The Algorithm

A.1 Pseudocode

The algorithm is divided into six parts (Algorithm 2-7) and ten procedures.
The first procedure ISOMORPHISM-TEST receives two graphs, G1 and G2,
computes codes for each of them, and compares the codes. Equal codes mean
that G1 and G2 are isomorphic, unequal codes mean that they are not. Pro-
cedure FIND-PLANAR-CODE accepts a planar graph G and returns its code.
First, G is decomposed into biconnected components (line 1). Biconnected tree
T represents this decomposition. The body of the main while loop (lines 2-12)
progresses iteratively finding the code associated with leaf nodes of T and artic-
ulation nodes. The loop at lines 3-5 finds codes for all biconnected components
of G associated with the leaf nodes of T . The codes are stored in the code array
C. C is indexed by T nodes. Every articulation point vA adjacent to the leaf
nodes of T is assigned a code at lines 6-10. Lines 7 and 9 mark in the code
the beginning ‘A(’ and the end ‘)A’ of the code. Codes for articulation nodes
are stored in an A array. When only one node (the center node) is left in the
biconnected tree, the algorithm progresses to line 14. Lines 14-19 determine the
final planar code. If the center node is an articulation node, the final planar
code is retrieved from an A array. If the center node is a biconnected node, the
final code of the biconnected node is computed in line 18. Line 20 returns the
code of the planar graph.

Procedure FIND-BICONNECTED-CODE accepts a biconnected graph G
and an array A, which contains codes associated with articulation points. All
edges of G are replaced with two directed edges in opposite directions at line
1. Line 2 creates the SPQR-tree of G. Line 3 finds the center or two centers of
the SPQR-tree. If there is only one center node, the code L1 of G is computed
at line 4 starting from this center node and we return L1. If the SPQR-tree
has two center nodes, the additional code L2 is found at line 8 starting from
the second center. Then, we return the smaller of L1, L2. Procedure FIND-
BICONNECTED-CODE-FROM-ROOT recognizes the type of center nodes and
calls procedures that compute the biconnected graph code using the SPQR-tree
data structure with P-, S-, or R- nodes in the center.

Procedure CODE-OF-S-ROOT-NODE accepts the skeleton of a center S-
node skeleton(µ), an array of codes associated with articulation points A, and
an SPQR-tree T . The loop at lines 1-3 uses the FIND-CODE procedure to find
codes associated with virtual edges. These codes represent remaining portions
of graph G adjacent to the S-center node. The parameter twin edge of(eV ) is
a virtual edge of the skeleton of a child of the center S-node. The loop at lines
4-23 creates code array CA. Each virtual edge of an S-node skeleton has its
corresponding code in CA. Line 5 appends symbol ‘S(’ to the code indicating
node type and the beginning of the code. Line 21 appends ‘)S ’ indicating the
end of the code. The internal loop at lines 9-21 traverses the skeleton circle and
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Algorithm 2 Graph isomorphism and unique code construction for planar
graphs

G1, G2 - graphs to be tested for isomorphism

ISOMORPHISM-TEST(G1, G2)

1: if G1 and G2 are planar then

2: Code(G1)=FIND-PLANAR-CODE(G1)
3: Code(G2)=FIND-PLANAR-CODE(G2)
4: if Code(G1) = Code(G2) then

5: return G1 is isomorphic to G2
6: else

7: return G1 and G2 are not isomorphic
8: end if

9: end if

FIND-PLANAR-CODE(planar graph G)

T - a tree of biconnected components
A - articulation points code array
C - code array of biconnected components
B - array of biconnected components of G
A, B, C arrays are indexed by T nodes

1: Decompose G into biconnected components represented by tree T . Store
the biconnected components in array B.

2: while number of nodes of T > 1 do

3: for all leaf nodes vL ∈ T , degree(vL) = 1 do

4: C[vL]=FIND-BICONNECTED-CODE(A,B[vL])
5: end for

6: for all articulation points vA ∈ T adjacent to leaf nodes of T do

7: A[vA].append( ”A(” )
8: from C concatenate in increasing order to A[vA] all leaf node codes

adjacent to vA

9: A[vA].append( ”)A” )
10: end for

11: delete from T all leaves
12: delete from T all articulation points with degree 1
13: end while

14: v= the remaining center node of T
15: if v is an articulation point then

16: PlanarCode=A[v]
17: else if v represents biconnected component then

18: PlanarCode=FIND-BICONNECTED-CODE(A,B[v])
19: end if

20: return PlanarCode
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Algorithm 3 Constructing the unique code for biconnected graphs

FIND-BICONNECTED-CODE(articulation points code array A,
biconnected graph G)

T - SPQR-tree
{µ1, µ2} - nodes in the center of an SPQR-tree
L1, L2 - codes of biconnected graph G starting from nodes µ1, µ2.

1: make G bidirected
2: create an SPQR-tree T of G
3: {µ1, µ2} = find center of tree(T )

{two center nodes {µ1, µ2} appear only for symmetrical T tree with two
R-nodes in the center, in all other cases we can find one center or eliminate
the second node assigning order of preferences to S,P,R - nodes}

4: L1=FIND-BICONNECTED-CODES-FROM-ROOT(µ1, A, T )
5: if µ2 = NULL then

6: return L1

7: else

8: L2=FIND-BICONNECTED-CODES-FROM-ROOT(µ2, A, T )
9: return FIND-THE-SMALLEST-CODE{L1, L2}

10: end if

FIND-BICONNECTED-CODES-FROM-ROOT(µ, A, T )

L -code for biconnected graph starting from root node µ

1: L.append( ”B(” )
2: if µ = S node then

3: L=CODE-OF-S-ROOT-NODE(skeleton(µ), A, T )
4: else if µ = P node then

5: L=CODE-OF-P-ROOT-NODE(skeleton(µ), A, T )
6: else if µ = R node then

7: L=CODE-OF-R-ROOT-NODE(skeleton(µ), A, T )
8: end if

9: L.append( ”)B” )
10: return L
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Algorithm 4 Constructing the unique code for S-root node of T

CODE-OF-S-ROOT-NODE(skeleton(µ), A, T )

CV -array of codes associated with virtual edges
CA -code array

1: for all virtual edges eV of skeleton(µ) including reverse edges do

2: ν = the child of µ corresponding to virtual edge eV

CV [eV ]=FIND-CODE(twin edge of(eV ), skeleton(ν), A, T )
{When virtual edge eV ∈ skeleton(µl) and µl is adjacent to µk in
T twin edge of(eV ) denotes corresponding to e virtual edge e′V ∈
skeleton(µk)}

3: end for

4: for all virtual edges eV of skeleton(µ) do

5: CA[eV ].append( ”S(” )
6: CA[eV ].append( number of edges(skeleton(µ)) )
7: e = the edge following ein in the tour around the circle in the direction

given by ein

8: tour counter=1
9: while e 6= eV do

10: if e is a virtual edge then

11: CA[eV ].append( tour counter )
12: CA[eV ].append(CV [e])
13: end if

14: if A[tail vertex(e)] 6= NULL then

15: CA[eV ].append( tour counter )
16: CA[eV ].append( ” ∗ ” )
17: CA[eV ].append(A[tail vertex(e)]), delete A[tail vertex(e)]] code

from A {if code A[tail vertex(e)] does not exist nothing is appended
}

18: end if

19: e = the edge following e in the direction given by eV

20: tour counter=tour counter+1
21: end while

22: CA[eV ].append( ”)S” )
23: end for

24: return FIND-THE-SMALLEST-CODE(CA)
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Algorithm 5 Constructing the unique code for P-root and R-root nodes of T

CODE-OF-P-ROOT-NODE(skeleton(µ), A, T )

{vA, vB} the vertices of the skeleton of a P-node
CA -code array indexed by vA, vB

CV -table of codes associated with virtual edges

1: for all v ∈ {vA, vB} of skeleton(µ) do

2: for all virtual edges eV directed out of v do

3: ν = the child of µ corresponding to virtual edge eV

CV [eV ]=FIND-CODE(twin edge of(eV ), skeleton(ν), A, T )
4: end for

5: CA[v].append( ”P (” )
6: CA[v].append( number of edges(skeleton(µ)) )
7: CA[v].append( number of virtual edges(skeleton(µ)) )
8: concatenate all codes from CV to CA in increasing order
9: if A[v] 6= NULL then

10: CA[eV ].append( ” ∗ ” )
11: CA[eV ].append(A[v]), delete A[v] code from A
12: end if

13: CA[v].append( ”)P ” )
14: end for

15: return FIND-THE-SMALLEST-CODE(CA)

CODE-OF-R-ROOT-NODE(skeleton(µ), A, T )

CV -table of codes associated with virtual edges
CA -code array

1: for all virtual edges eV of skeleton(µ) including reverse edges do

2: ν = the child of µ corresponding to virtual edge eV

CV [eV ]=FIND-CODE(twin edge of(eV ), skeleton(ν), A, T )
3: end for

4: for all virtual edges eV of skeleton(µ) including reverse edges do

5: CA[eV ].append( ”R(” )
6: Apply Weinberg’s [48] procedure to find code associated with eV going

right CodeRight and going left CodeLeft. When virtual edge is encoun-
tered during the tour, append its code to CA[eV ]

7: if at any vertex v during Weinberg’s traversal A[v] 6= NULL then

8: CA[eV ].append(A[v]) delete A[v] code from A
9: end if

10: CA[eV ]=FIND-THE-SMALLEST-CODE([CodeRight, CodeLeft])
11: CA[eV ].append( ”)R” )
12: end for

13: return FIND-THE-SMALLEST-CODE(CA)
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Algorithm 6 Constructing the unique code for S,P,R non root nodes of T

FIND-CODE(ein, skeleton(µ), A, T )

CV -table of codes associated with virtual edges
C -code

1: if µ = S node then

2: C.append( ”S(” )
3: C.append( number of edges(skeleton(µ)) )
4: eV = the edge following ein in the tour around the circle in the direction

given by ein

5: tour counter=1
6: while eV 6= ein do

7: if eV is a virtual edge then

8: ν = the child of µ corresponding to virtual edge eV

C.append(FIND-CODE(eV , skeleton(ν), A, T ))
9: end if

10: if A[tail vertex(eV )] 6= NULL then

11: C.append( tour counter )
12: C.append( ” ∗ ” )
13: C.append(A[tail vertex(eV )]) delete A[tail vertex(eV )] code from A

{if code A[tail vertex(eV )] does not exist nothing is appended }
14: end if

15: eV = the edge following eV in the direction given by ein

16: tour counter=tour counter+1
17: end while

18: C.append( ”)S” )
19: else if µ = P node then

20: for all virtual edges eV 6= ein directed the same as ein do

21: ν = the child of µ corresponding to virtual edge eV

CV [eV ]=FIND-CODE(twin edge of(eV ), skeleton(ν), A, T )
22: end for

23: C.append( ”P (” )
24: C.append( number of edges(skeleton(µ)) )
25: C.append( number of virtual edges(skeleton(µ)) )
26: concatenate all codes from CV to C in increasing order
27: if A[tail vertex(ein)] 6= NULL then

28: C.append( ” ∗ ” )
29: C.append(A[tail vertex(ein)]), delete A[tail vertex(ein)] code from A
30: end if

31: C.append( ”)P ” )
32: else if µ = R node then

33: C=FIND-CODE-R-NON-ROOT(ein, skeleton(µ), A, T )
34: end if

35: return C
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Algorithm 7 Constructing the unique code for R non root node of T and
finding the smallest code

FIND-CODE-R-NON-ROOT(ein, skeleton(µ), A, T )

CV -table of codes associated with virtual edges
C -code

1: for all virtual edges eV 6= ein do

2: ν = the child of µ corresponding to virtual edge eV

CV [eV ]=FIND-CODE(twin edge of(eV ), skeleton(ν), A, T )
3: end for

4: C.append( ”R(” )
5: Apply Weinberg’s [48] procedure to find code associated with ein going right

CodeRight and going left CodeLeft
6: if at any vertex v during Weinberg’s traversal A[v] 6= NULL then

7: C.append(A[v]), delete A[v] from A
8: end if

9: if at any edge e 6= ein during Weinberg’s traversal CV [e] 6= NULL then

10: C.append(CV [e])
11: end if

12: C=FIND-THE-SMALLEST-CODE([CodeRight, CodeLeft])
13: C.append( ”)R” )
14: return C

FIND-THE-SMALLEST-CODE(CA)

1: Remove from CA all codes with length bigger than minimal code length in
CA

2: index=0
3: while CA has more than one code AND index <length of codes in CA do

4: Remove all codes from CA with smaller value of CA[Code[index]] than
minimum of
{CA[Code1[index]], CA[Code2[index]],. . . ,CA[CodeN [index]]}

5: index = index + 1
6: end while

7: return CA[first code]
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appends to CA[eV ] codes associated with the virtual edges and the articulation
points. The procedure CODE-OF-S-ROOT-NODE returns the smallest code
from CA at line 24.

The procedure CODE-OF-P-ROOT-NODE in its main loop at lines 1-14
creates two codes stored in a CA array. In the first code, the virtual edges eV

are directed from vertex vA to vertex vB . This direction is used in the FIND-
CODE procedure called at line 3. Each of the two codes starts with symbol
‘P (’ at line 5. Next, we append the number of edges and number of virtual
edges at lines 6-7. We concatenate all codes associated with virtual edges in
increasing order at line 8. If vA or vB correspond to articulation points in the
original graph, we add this information at line 10. If the code associated with
this articulation point exists, we append it at line 11. At line 15 we return the
smaller of the two codes.

The procedure CODE-OF-R-ROOT-NODE starts from finding all codes as-
sociated with virtual edges at lines 1-3. Using Weinberg’s procedure we find
two codes: CodeRight for triconnected skeleton of the node starting from eV

and CodeLeft for mirror image of the skeleton also starting from eV . We find
the two codes starting from every virtual edge of the skeleton. We determine
the smallest among these codes and return it at line 13.

Algorithm 6 describes the FIND-CODE procedure. It is a recursive proce-
dure and it calls itself at lines 8, 21 and line 2 of FIND-CODE-R-NON-ROOT
procedure. FIND-CODE uses input edge ein and its direction as an initial edge
to create code for non-root nodes S, P, R. Code for an S-node is found at lines
1-18, for P-node at lines 19-31 and we call FIND-CODE-R-NON-ROOT at line
33 to find code for R-node. The algorithm for non-root nodes is similar as for
root nodes. In the case of non-root nodes we do not have ambiguity related to
lack of a starting edge because ein is the starting edge.

The procedure FIND-THE-SMALLEST-CODE accepts a code array CA.
We find the length of the shortest code and eliminate from CA all codes with
longer length at line 1. Then, in the remaining codes we find the minimum of
values at the first coordinate of the codes. We eliminate all codes that have
bigger value than minimum at the first coordinate. We do the same elimination
process for the second coordinate. We continue this process until only one code
is left in CA or until we reach the last coordinate. We return the first code in
CA.
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A.2 Complexity Analysis

Lemma A.1 [17] The SPQR-tree of G has O(n) S-, P-, and R-nodes. Also,
the total number of vertices of the skeletons stored at the nodes of T is O(n).

Lemma A.2 The construction of the code of a biconnected graph G by Algo-
rithm 3-7 takes O(n2) time.

Proof The algorithms traverse the edges of a biconnected graph G with n
vertices. Graph G is planar, and therefore its number of edges does not exceed
3n−6. By Lemma A.1 the total number of vertices of the skeletons of an SPQR-
tree T stored at the nodes is O(n). Therefore, the total number of real edges
of the skeletons is O(n). Since T has O(n) nodes, also the number of virtual
edges of all skeletons is O(n). The algorithm works on a bidirected graph, which
doubles the number of edges of G. The procedure FIND-CODE (Algorithm 6)
traverses skeletons starting from initial edge ein. The FIND-CODE procedure
traverses every circle skeleton of S-node once in one direction. Also, the edges
of a P-node skeleton are traversed once. The skeleton of an R-node is traversed
two times while building a code for triconnected graph and its mirror image. All
traversals starting from initial edge ein on all edges that belong to all skeletons
of non-root node takes O(n) time. The skeletons of center nodes of T , because
of lack of an initial edge, are traversed as many times as there are virtual edges
in the center node (Algorithms 4 and 5). Since the number of virtual edges in
the center node cannot exceed the total number of nodes in T , the skeleton of
the center node is traversed no more than O(n) times. The skeleton of a center
node has O(n) edges, therefore we visit O(n) edges O(n) times resulting in O(n2)
total traversal steps. Particularly, if G is a triconnected graph, its SPQR-tree
contains only one R-node. Weinberg’s procedure builds codes starting from
every edge and traverses all edges of G resulting in total O(n2) traversal steps.
Overall, the traversal over all skeleton edges, including the center node, takes
O(n2) time. The code built for G is O(n) long. This is because we include two
symbols at the beginning and the end of the code at each node and the code
representation of the skeleton does not require more than the number of vertices
and number of edges of the skeleton combined.

Algorithms 3-7 order lexicographically the codes associated with the virtual
edges of the skeletons of the P-nodes. It also finds the smallest code from the
array of codes while looking for the unique code of an S-root-node and of an R-
root-node. Looking for unique code requires both ordering the codes and finding
the smallest code operations on code arrays of variety of sizes. However, any
code created during the process has length of linear complexity with the number
of vertices and edges traversed to create this code. Also, the number of created
codes has the same complexity as the the number of nodes of T , which is O(n) by
Lemma A.1. Therefore, all codes created during the execution of the algorithm
could be stored in an array of dimension O(n) by O(n). The codes consist of
integers. The values of integers are bound by O(n), because the maximum value
of an integer in the code does not exceed the number of edges of the bidirected
graph G. Sorting an array of O(n) by O(n) dimension lexicographically with
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Radix Sort, where codes can be ordered column by column using Counting
Sort, takes O(n2) time. Therefore, the complexity of finding minimum code
and lexicographical ordering with Radix Sort performed at every node of the
SPQR-tree together is not more than O(n2). 2

Lemma A.3 The construction of the code of a planar graph G by Algorithm
2-7 takes O(n2) time.

Proof Let B1, . . . , Bk denote biconnected components of G. Let T be a bi-
connected tree of G. By Lemma A.2, constructing the code of the biconnected
component Bi, with mi vertices, associated with a leaf node of T takes O(mi

2)
time. Also, the length of Bi code is O(mi). At every step of Algorithms 2-3,
the length of a produced code has linear complexity with the number of vertices
of the subgraph this code represents. Let the times spent to produce the codes
of biconnected components B1, . . . , Bk be given by O(m1

2), . . . , O(mk
2). Since

m1 + . . .+mk = n, and m1
2 + . . .+mk

2 ≤ (m1 + . . .+mk)2, the total time spent
on construction of all codes of all biconnected components of G is O(n2). The
lexicographical ordering of the codes at articulation nodes requires the sorting
of biconnected codes of various lengths. The total number of sorted codes will
not exceed the number of edges of G because G is planar. The length of codes
are bound by O(n) and maximum value (integer) in the code is bounded by
O(n). All partial codes of G can be stored in an array of dimension O(n) by
O(n). Using Radix Sort with Counting Sort on every column of this table takes
O(n2) time. Sorting codes at all articulation nodes combined using Radix Sort,
do not exceed complexity of sorting O(n) by O(n) array. Therefore, the total
process of lexicographical ordering at all articulation nodes of T takes O(n2)
time. Since constructing codes for all biconnected components takes O(n2) and
sorting subcodes of G at articulation points does not take more than O(n2), the
total time for constructing code for planar graph is O(n2). 2

A.3 The Proof of Uniqueness of the Code

We first prove that a code for a biconnected graph is unique and then use this
result to prove that a code for a planar graph is unique. In saying unique code,
we mean that the code produced is always the same for isomorphic graphs and
different for non-isomorphic graphs, and therefore the code can be used for an
isomorphism test. Di Battista and Tamassia [5, 17], who first introduced SPQR-
trees, gave the following properties crucial to our unique code construction and
the proof:

“The SPQR-trees of G with respect to different reference edges are
isomorphic and are obtained one from the other by selecting a dif-
ferent Q-node as the root.”

“The triconnected components of a biconnected graph G are in one-
to-one correspondence with the internal nodes of the SPQR-tree: the
R-nodes correspond to triconnected graphs, the S-nodes to polygons,
and the P-nodes to bonds.”
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Since SPQR-trees are isomorphic regardless of the choice of the reference
edge, we can uniquely identify the center (or two centers) of an SPQR-tree.
We start the proof from the leaves of an SPQR-tree. We show that the codes
associated with the leaves are unique. Next, we show that the codes of the nodes
adjacent to the leaves are unique. We extrapolate this result to all nodes that
are not a center of an SPQR-tree. Finally, we show that the code for a center
node uniquely represents a biconnected graph.

Lemma A.4 The smaller of the two Weinberg’s codes:(1) a code of a tricon-
nected graph GR and (2) a code of the mirror image of GR, found by starting
from specified directed edge ein as the initial edge of GR, uniquely represents
GR.

Proof In the proof we refer to Weinberg’s paper [48]. It introduces code matri-
ces M1 and M2 respective to planar triconnected graphs G1 and G2. Every row
in the matrices is a code obtained by starting from a specified edge. Matrices
M1 and M2 have size 4m × (2m + 1) (m-number of undirected edges of the
graph) because every triconnected graph has 4m codes of length 2m+1. The
codes in the matrices are ordered lexicographically. G1 and G2 are isomorphic
if and only if their code matrices are equal. It is also true that G1 and G2 are
isomorphic if and only if any row of M1 equals any row of M2 [48]. Therefore,
G1 with initial edge ein, and G2 with e′in that corresponds to ein are isomorphic
triconnected graphs if and only if the two codes of G1 (code of G1 and mirror
image of G1) started from directed initial edge ein, and ordered in increasing
order are equal to the two ordered codes of G2 started from e′in. We can select
the smaller of the two codes. Since only one code is sufficient for an isomorphism
test, the smallest code will uniquely represent a triconnected planar graph with
the initial edge ein. 2

Lemma A.5 The code produced by Algorithms 3-7 uniquely represents a bicon-
nected graph.

Proof Let G be an undirected, unlabeled, biconnected multigraph, and T be an
SPQR-tree of G. Since SPQR-trees are isomorphic with respect to different ref-
erence edges, the unrooted SPQR-tree of G is unique [5]. Let us consider three
categories of T nodes: (1) leaf nodes, (2) non-leaf, non-center nodes, and (3)
the center node. Our algorithm does not use an SPQR-tree representation with
Q-nodes. Instead, following the implementation of an SPQR-trees described in
[24], it distinguishes between virtual and real edges in the skeletons and there-
fore we omit Q-nodes in the discussion.

Leaf nodes.
Consider leaf nodes of T . Fig. 10 (reverse edges are omitted) shows skeletons
of a P-leaf-node and an S-leaf-node. In the Parallel Case of the SPQR-tree
definition we saw that the skeleton of a P-node consists of k parallel edges be-
tween the split pair {s, t}. Therefore, providing (1) the number of edges of the
skeleton and (2) the node type, is sufficient to uniquely represent a P-leaf-node



J. Kukluk et al., Planar Graph Isomorphism, JGAA, 8(3) 313–356 (2004) 348

skeleton. Similarly, in the Series Case of the SPQR-tree definition we saw that
the S-node skeleton is a cycle e0, e1, . . . , ek. Providing (1) the number of edges
of the skeleton and (2) the node type is sufficient to uniquely represent an S-
leaf-node skeleton. By Lemma 2.1 the skeleton of an R-node is a triconnected
graph. Since the input edge ein to Algorithm 6 determines the initial edge,
by Lemma A.4 we can build a unique code to represent the skeleton of the
R-leaf-node using Weinberg’s method.
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Figure 10: The skeleton of a P-leaf-node (left) and the skeleton of an S-leaf-node
(right).

The skeletons of leaf nodes are in one to one correspondence to subgraphs
of G; therefore the unique codes of leaf skeletons also uniquely represent the
corresponding subgraphs of G. The unique codes of leaf skeletons are produced
when the FIND-CODE procedure (Algorithms 6 and 7) reaches the leaves of T .

Non-leaf, non-center nodes.
Fig. 11 shows a skeleton of a P-node adjacent to leaf nodes µl(1), . . . , µl(k). The
direction of the input edge ein also determines the direction of virtual edges
associated with leaves. From the definition of an SPQR-tree, a P-node intro-
duces k parallel edges incident on split pair vertices {s,t}. Split components
of a split pair {s,t} are also incident to s, t vertices in parallel. In reference
to the discussion above, the codes of µl(1), . . . , µl(k) are unique. Therefore, (1)
the node type, (2) the number of virtual and real edges, and (3) the codes of
µl(1), . . . , µl(k) in increasing order, uniquely represent the skeleton of a P-node
adjacent to leaves of T together with adjacent leaves.

Fig. 12 shows a skeleton of an S-node adjacent to leaves µl(1), . . . , µl(k) of T .
By definition, an S-node is a circle with k edges e0, . . . , ek. The S-node is associ-
ated with a parent node. This association allows for the unique identification of
an edge e0 = ein of the circle. Also, the direction of edge e0 = ein is determined
by the direction of the associated parent’s skeleton edge. The traversal along
edges e0, . . . , ek, starting from e0 in the direction of e0, allows for identification
of the distance from e0 to every virtual edge of the circle. Virtual edges are
associated with the unique codes of leaves µl(1), . . . , µl(k). Therefore, (1) the
node type, (2) the number of edges of the S-node skeleton, and (3)the codes of
µl(1), . . . , µl(k) together with the distance of the associated virtual edges from
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Figure 11: (a) The skeleton of a P-node adjacent to leaves µl(1), µl(2), . . . , µl(k) of
an SPQR-tree and (b) split pair {s, t} of a P-node that splits G into subgraphs
with one-to-one correspondence to the skeletons of the leaves of an SPQR-tree.

e0, represent the S-node adjacent to the leaves of T together with the leaf nodes
without ambiguity.

The skeleton of an R-node, by definition, is a triconnected graph. Wein-
berg’s method traverses each edge of the skeleton once in each direction on
Euler’s path. The initial edge of an Euler’s path is determined by the input
edge. The Eulerian path started from the initial edge is deterministic in both
embeddings of the skeleton, because by the property of triconnected graphs [48],
the set of edges incident to a vertex has a unique order around the vertex. By
lemma A.4 the code of the skeleton of an R-node is unique. If the R-node is ad-
jacent to leaf nodes µl(1), . . . , µl(k), the FIND CODE procedure (Algorithms 6
and 7) inserts the code of a leaf node whenever the virtual edge associated to
this leaf is encountered. The codes of µl(1), . . . , µl(k) are unique and they are
inserted into the unique code of the skeleton of the R-node deterministically
when Euler’s tour encounters split pairs {s1, t1} . . . {sk, tk} associated with leaf
nodes (they identify how split components represented by leaves are adjacent to
the subgraph of G represented by the R-node), creating a unique representation
for the skeleton of the R-node and the leaves adjacent to this R-node in T .

Since we can build unique codes for nodes adjacent to leaves of T , by the
same reasoning we can build unique codes for any non-center node. The S-, P-,
and R- nodes with leaf codes associated with their virtual edges can become
new leaves in the SPQR-tree. Thus, we then have a new SPQR-tree containing
leaves with unique codes. Therefore we can continue to apply the above code
construction until reaching a center node.
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Figure 12: (a) The skeleton of an S-node adjacent to leaves µl(1), µl(2), . . . , µl(k)

of an SPQR-tree and (b) split pairs {sl(1), tl(1)}, . . . , {sl(k), tl(k)} that splits G
into subgraphs with one-to-one correspondence to the skeletons of the leaves of
an SPQR-tree.

Center node.
In reference to the above discussion, a unique code exists for S-,P-,and R-nodes
if we can identify one initial edge of the skeleton. Let us find codes C1, . . . , Ck

starting from all virtual edges of a central node in the same way as for non-
central nodes. All virtual edges are associated with unique codes of nodes
adjacent to the center. Because of the deterministic traversal of R- and S-
nodes, and parallel adjacency of split components to split pair vertices of a
P-node, codes C1, . . . , Ck will be the same for isomorphic graphs and different
for non-isomorphic graphs. Choosing the smallest code Cmin from C1, . . . , Ck

will uniquely identify the initial edge and from the discussion of non-root nodes,
Cmin will uniquely represent the center node and biconnected graph G. The
ambiguity associated with the two center nodes of T is resolved by applying
the procedure of finding a code from the center of T for every center node and
choosing the smaller code.
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Based on the uniqueness of an unrooted SPQR-tree, the unique order of edges
around vertices of a triconnected graph that allows for the deterministic traver-
sal of R-node skeletons, the deterministic traversal of a circle of an S-node
skeleton, and the parallel adjacency of split components to split pair vertices of
a P-node, we can build a unique code for a biconnected graph starting from the
leaves and progressing toward the center of an SPQR-tree. 2

Next, we discuss the correctness of the algorithm of the unique code con-
struction for planar graphs. We show first that any biconnected tree has only
one center node. We use the unique code of biconnected graphs to show that
traversing a biconnected tree from the leaves towards the center allows for unique
code construction for planar graphs.

Lemma A.6 Any biconnected tree has only one center node.

Proof By definition, biconnected nodes are adjacent only to articulation nodes
in a biconnected tree. There are no two articulation nodes adjacent, nor two
biconnected nodes adjacent. The leaves of a biconnected tree are biconnected
nodes. When we remove them, new leaves are articulation nodes. We would
alternately remove biconnected node leaves and articulation node leaves. This
process can only result in either one biconnected node or one articulation node
as the center. 2

Lemma A.7 The code produced by Algorithms 2-7 uniquely represents a con-
nected planar graph G.

Proof The algorithm decomposes a connected planar graph G into biconnected
components. The location of articulation points relative to biconnected com-
ponents is given in biconnected tree. Biconnected tree has two kinds of nodes:
articulation nodes and biconnected nodes. By Lemma A.5 we can produce a
unique code of a biconnected graph. Let us consider leaf nodes of a biconnected
tree. Leaf node Bi is adjacent to one articulation node vi, therefore the corre-
sponding biconnected graph Gi is connected to the remaining of G through one
articulation point ui. The code construction procedure for a biconnected graph
identifies a unique edge of the biconnected graph and traverses along the edges
of P-, S-, and R- skeletons deterministically. Therefore, the distance from the
initial edge to the skeleton’s vertex that corresponds to the articulation point is
identified deterministically, and therefore will be the same regardless of how G
is presented to the algorithm.

Let an articulation node vi be adjacent to a non-leaf biconnected node
Bx and to biconnected leaves Bl, . . . , Bm. Procedure FIND-BICONNECTED-
CODE (Algorithm 3) constructs a unique code corresponding to the biconnected
components Bl, . . . , Bm of subgraphs Gl, . . . , Gm. The new code associated with
vi, made from codes of Gl, . . . , Gm by concatenating them in increasing order,
uniquely represents Gl, . . . , Gm. Let the Bx node correspond to subgraph Gx.
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Since the starting edge of G can be identified uniquely and P-, S-, and R- skele-
tons are traversed deterministically, the distance along traversed edges from the
initial edge of Gx to the articulation points is found without ambiguity. There-
fore, the code of vi and other articulation nodes of Gx are inserted into the
code of Gx uniquely identifying the positions of the articulation points in Gx.
The code of Gx, which includes codes of Gl, . . . , Gm uniquely identifies Gx and
Gl, . . . , Gm. The same reasoning we apply to all nodes of the biconnected tree
moving from the leaves to the center. By Lemma A.6, there is only one center
node of a biconnected tree. The code of the center node combines codes of all
biconnected subgraphs Gl, . . . , Gm and uniquely represents connected planar
graph G. 2
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