
Inference of Node Replacement Recursive Graph Grammars

Jacek P. Kukluk, Lawrence B. Holder, and Diane J. Cook

 {kukluk, holder, cook} @cse.uta.edu
Department of Computer Science and Engineering

University of Texas at Arlington
Box 19015, Arlington, TX 76019

Abstract

In this paper we describe an approach to learning
node replacement graph grammars. This approach is
based on previous research in frequent isomorphic
subgraphs discovery. We extend the search for
frequent subgraphs by checking for overlap among
the instances of the subgraphs in the input graph. If
subgraphs overlap by one node we propose a node
replacement grammar production. We also can infer a
hierarchy of productions by compressing portions of
a graph described by a production and then infer new
productions on the compressed graph. We validate
this approach in experiments where we generate
graphs from known grammars and measure how well
our system infers the original grammar from the
generated graph.

Keywords: Grammar Induction, Graph
Grammars, Graph Mining.

1. Introduction

String grammars are fundamental to linguistics and
computer science. Graph grammars can represent
relations in data which strings cannot. Graph
grammars can represent hierarchical structures in
data and generalize knowledge in graph domains. In
this paper we study the problem of grammar
inference. We introduce an algorithm which builds
on previous work in discovering frequent subgraphs
in a graph [Cook94]. We check if subgraphs overlap
and if they overlap by one node, we use this node and
subgraph structure to propose a node replacement
graph grammar.

We found only a few studies in graph grammar
inference. Jeltsch and Kreowski [Jeltsch90] did a
theoretical study of inferring hyperedge replacement
graph grammars. Oates et al. [Oates03] discuss the
problem of inferring probabilities of every grammar
rule for stochastic hyperedge replacement context
free graph grammars. In terms of similarity to string
grammar inference we consider the Sequitur system
developed by Nevill-Manning and Witten [Nevill97].

Sequitur infers hierarchical structure by replacing
substrings based on grammar rules.

The most relevant work to this research is Jonyer et
al.’s approach [Jonyer04]. Their system starts by
finding frequently occurring subgraphs in the input
graphs. Frequent subgraphs are those that when
replaced by single nodes minimize the description
length of the graph. They check if isomorphic
instances of the subgraphs that minimize the measure
are connected by one edge. If they are, a production
S→ PS is proposed, where P is the frequent
subgraph. P and S are connected by one edge. Our
approach is similar to Jonyer’s in that we also start by
finding frequently occurring subgraphs, but we test if
the instances of the subgraphs overlap by one node.
Jonyer’s method of testing if subgraphs are adjacent
by one edge limits his grammars to description of
“chains” of isomorphic subgraphs connected by one
edge.

2. Node replacement recursive graph
grammar

We define a graph with labels on vertices and edges.
Every edge of the graph can be directed or
undirected. The definition of a graph grammar
describes the class of grammars that can be inferred
by our approach. We emphasize the role of recursive
productions in the name of the grammar, because the
type of inferred productions are such that the non-
terminal label on the left side of the production
appears one or more times in the node labels of a
graph on the right side. It is the main characteristic of
our grammar productions. Our approach can also
infer non-recursive productions. The embedding
mechanism of the grammar consists of connection
instructions. Every connection instruction is a pair of
vertices that indicate where the production graph can
connect to itself in a recursive fashion.

A labeled graph G is a 6-tuple,

()LEVG ,,,,, ηνμ= , where

543

V - is the set of nodes, VVE ×⊆ - is the set of
edges, LV →:μ - is a function assigning labels to

the nodes, LEv →: - is a function assigning labels

to the edges, }1,0{: →Eη - is a function assigning
direction property to edges (0 if undirected, 1 if
directed). L - is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a
tuple ()PGr ,,, ΓΔ∑= , where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels, which are all
terminals,
P - is a finite set of productions of the
form),,(CGd , where Δ−∑∈d , G is a graph, and
there are two types of productions:
(1) recursive productions of the form),,(CGd ,

with Δ−∑∈d , G is a graph, where there is at least
one node in G labeled d . C is an embedding
mechanism with a set of connection instructions,

VVC ×⊆ , where V is the set of nodes of G . A

connection instruction Cvv ji ∈),(implies that

derivation can take place by replacing iv in one

instance of G with jv in another instance of G . All

the edges incident to iv are incident to jv . All the

edges incident to jv remain unchanged

 (1) non-recursive production, there is no node in G
labeled d (our inference system does not infer an
embedding mechanism for these productions).

3. The algorithm

An example in Figure 1 shows a graph composed of
three overlapping substructures. The algorithm
generates candidate substructures and evaluates them
using the following measure of compression,

()
() ()SGsizeSsize

Gsize

|+

where G is the input graph, S is a substructure and
SG | is the graph derived from G by compressing

each instance of S into a single node. ()gsize can be
computed simply by summing the number of nodes
and edges: () () ()gedgesgverticesgsize += . Another

successful measure of ()gsize is the Minimum
Description Length (MDL) discussed in detail in
[Cook94]. Either of these measures can be used to
guide the search and determine the best graph

grammar. In our experiments we used only the size
measure.

The input to our algorithm is a graph G which can be
one connected graph or set of disconnected graphs. G
can have directed edges or undirected edges. The
algorithm assumes labels on nodes and edges. The
algorithm processes the list of substructures Q. In
Figure 2 we see an example of a substructure
definition. A substructure consists of a graph
definition and a set of instances from the input graph
that are isomorphic to the graph definition.

Figure 1: A graph with overlapping substructures and

a graph grammar representation of it.

The algorithm starts with a list of substructures where
every substructure is a single node and its instances
are all nodes in the graph with this node label. The
best substructure is initially the first substructure in
the Q list. We extend each substructure in Q in all
possible ways by a single edge and a node or only by
single edge if both nodes are already in the graph
definition of the substructure. We allow instances to
grow and overlap, but any two instances can overlap
by only one node. We keep all extended substructures
in newQ. We evaluate substructures in newQ. The
recursive substructure is evaluated along with non-
recursive substructures and is competing with non-
recursive substructures. The total number of
substructures considered is determined by the input
parameter Limit. We compress G with best
substructure. Compression replaces every instance of
best substructure with a single node. This node is
labeled with a non-terminal label. The compressed
graph is further processed until it cannot be
compressed any more. In consecutive iterations best
substructure can have one or more non-terminal
labels. It allows us to create a hierarchy of grammar
productions. The input parameter Beam specifies the
width of a beam search, i.e., the length of Q. For
more details about the algorithm see [Cook94,
Jonyer02, Jonyer04].

544

Figure 2: Substructure and its instances while

determining connection instructions (continuation of
the example from Figure 1).

4. Hierarchy of productions

In our first example from Figure 1, we described a
grammar with only one production. Now we would
like to introduce a complex example to illustrate the
inference of a grammar which describes a more
general tree structure. In Figure 3 we have a tree with
all nodes having the same label. There are two
repetitive subgraphs in the tree. One has three edges
labeled “a,” “b,” and “c.” The other has two edges
with labels “x” and “y.” There are also three edges
K1, K2, and K3 which are not part of any repetitive
subgraph. In the first iteration we find grammar
production S1. The compressed graph, at this point,
contains the node S1, edges K1, K2, K3 and
subgraphs with edges “x” and “y.” In the second
iteration our program proposes production S2.
Compressing the tree with production S2 results in a
graph which we use as an initial production S.

a b cS1 a b c

(S1)

(S1) (S1)

1

2 3 4

Connection
instructions

1-2
1-4

x yS2 x y

Connection
instructions

1-2
1-3

1

2 3

(S2)

(S2) (S2)

S2

K2

S2

S1

K1 K3S

a b c K2 K3

a b c a b c

a b cx y

x y

a b c

x yx y

x y

K1

a b c

a)

b)

Figure 3: The tree (a) and inferred tree grammar (b).

5. Experiments

5.1. MDL as a measure of complexity of a
grammar

We seek to understand the relationship between
graph grammar inference and grammar complexity,
and so need a measure of grammar complexity. One
such measure is the Minimum Description Length
(MDL) of a graph, which is the minimum number of
bits necessary to completely describe the graph. The
MDL measure, which while not provably minimal, is
designed to be a near-minimal encoding of a graph.
See [Cook94] for a more detailed discussion.

5.2. Error
We introduce a measure to compare the original
grammar to the inferred grammar.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 ,

where
)g,matchCost(21g is the minimal number of

operations required to transform 1g to a graph

isomorphic to 2g , or 2g to a graph isomorphic to

1g . The operations are: insertion of an edge or node,
deletion of a node or an edge, or substitution of a
node or edge label. CI# is the number of inferred
connection instructions. NT# is the number of non-
terminals in the original grammar.)size(1g is the
sum of the number of nodes and edges in the graph
used in the grammar production

5.3. Experiment 1: Error as a function of
noise and complexity of a grammar

We used twenty nine graphs which are all connected
graphs with one, two, three, four and five nodes in
grammar productions. We assigned different labels to
nodes and edges of these graphs except three nodes
used for non-terminals. As noise we added nodes and
edges to the generated graph structure. We compute
the number of added nodes from the formula
(noise/(1- noise))*number_of_nodes. Similary for
edges. For every value of noise and MDL we
generated thirty graphs and take average value of the
error. We see trends in the plots in Figure 4. Error
decreases as MDL increases. A low value of MDL is
associated with small graphs, with three or four nodes
and a few edges. These graphs, when used on the
right hand side of a grammar production, generate
graphs with fewer labels than grammars with high
MDL.

545

 one non-terminal two non-terminals three non-terminals

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

Figure 4: Error as a function of noise and MDL where graph structure was not corrupted.

Smaller numbers of labels in the graph increase the
inference error, because everything in the graph looks
similar, and the approach is more likely to propose
another grammar which is very different than the
original. One error occurs when inferred graph
structure contains two overlapping copies of the
graph used in the original grammar production. The
structure has significant error, yet does subjectively
capture the recursive structure of the original
grammar.

5.4. Experiment 2: Error as a function of
number of labels and complexity of a
grammar

We would like to evaluate how error depends on the
number of different labels used in a grammar. We
restricted graph structures used in productions to
graphs with five nodes. Every graph structure we
labeled with 1, 2, 3, 4, 5 or 6 different labels. For
every value of MDL and number of labels we
generated 30 different graphs from the grammar and
computed average error between them and the
learned grammars. The generated graphs were
without noise. We show the results for one, two, and
three non-terminals in Figure 5. We see that the error
increases as the number of different labels decreases.
We see on the two dimensional plots the shift in error
towards graphs with higher MDL when the number
of non-terminals increases.

The average error for graphs with only one label is 1
or very close to 1. The most frequent inference error
results from the tendency of our algorithm to propose
one-edge grammars when inferred from a graph with
only one label. We illustrate this in Figure 6 where
we see a production with a pentagon using only one
label “a”.

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

Figure 5 Error as a function of MDL and number of
different labels used in a grammar definition (two

non-terminals).

 original grammar inferred grammar

Figure 6: Error where inferred grammar is reduced to

production with single edge.

5.5. Experiment 3: Chemical structure

As an example from the real-world domain of
chemistry, we use the structure of cellulose with
hydrogen bonding as the input graph in our next
experiment. Figure 7 shows the structure of the
molecule and the grammar production we found in
this structure. The grammar production we found
captures the underlying motif of the chemical
structure. It shows the repetitive connected
component, the basic building block of the structure.
We can search for such underlining building motifs
in different domains, hoping that they will improve
our understanding of chemical, biological, computer,
and social networks.

546

(a)

(b)

Figure 7: The structure of cellulose with hydrogen
bonding (a) and the inferred grammar production (b).

6. Conclusion and future work

We described an algorithm for inferring certain types
of graph grammars we call recursive node
replacement graph grammars. The algorithm is based
on previous work in frequent substructure discovery.
It checks if frequent subgraphs overlap by a node and
proposes a graph grammar if they do. The algorithm
we described has its limitations: the left side of the
production is limited to one single node; only
connecting two single nodes is allowed in
derivations. The algorithm finds recursive
productions if repetitive patterns occur within an
input graph and they overlap. If such patterns do not
exist, the algorithm finds non-recursive productions
and builds hierarchical structure of the input data.
Grammar productions with graphs of higher
complexity measured by MDL are inferred with
smaller error. There is little dependency of error on
noise if the generated graphs are not corrupted. The
error of grammar inference increases as the number
of different labels used in the grammar decreases.
There is no dependency between the size of a sample
graph and inference error. If all labels on nodes are
the same and all labels on edges are the same, the
algorithm produces a grammar which has only one
edge in the graph definition. One-edge grammars
over-generalize if the input graph is a tree, and they
are inaccurate in many other graphs. This tendency to

find one-edge grammars from large, connected
graphs is due to the fact that one-edge grammars
score high because they can compress the graph well.

Grammars inferred by the approach developed by
Jonyer et al. [Jonyer04] were limited to chains of
isomorphic subgraphs which must be connected by a
single edge. Since the connecting edge can be
included in the production’s subgraph, and
isomorphic subgraphs will overlap by one vertex, our
approach can infer Jonyer et al.’s class of grammars.
We noticed in our experiments that when the
subgraphs overlap by more than one node, our
algorithm still looks for overlap on only one node and
infers a grammar which cannot generate the input
graph. Therefore, one extension to the algorithm
would be a modification which would allow for
overlap larger than a single node.

References

[Cook00] D. Cook and L. Holder, Graph-
Based Data Mining. IEEE Intelligent Systems, 15(2),
pages 32-41, 2000.

[Cook94] D. Cook and L. Holder, Substructure
Discovery Using Minimum Description Length and
Background Knowledge. Journal of Artificial
Intelligence Research, Vol 1, (1994), 231-255

[Doshi02] S. Doshi, F. Huang, and T. Oates,
Inferring the Structure of Graph Grammar from
Data. Proceedings of the International Conference on
Knowledge Based Computer Systems (KBCS'02)

[Jeltsch90] E. Jeltsch, H. Kreowski,
Grammatical Inference Based on Hyperedge
Replacement. Graph-Grammars. Lecture Notes in
Computer Science 532, 1990: 461-474

[Jonyer04] I. Jonyer and L. Holder, and D.
Cook, MDL-Based Context-Free Graph Grammar
Induction and Applications. International Journal of
Artificial Intelligence Tools, Volume 13, No. 1 pages
65-79, 2004.

[Nevill97] G. Nevill-Manning and H. Witten,
Identifying Hierarchical Structure in Sequences: A
linear-time algorithm. Journal of Artificial
Intelligence Research, Vol 7, (1997), 67-82

[Oates03] T. Oates, S. Doshi, and F. Huang.
Estimating Maximum Likelihood Parameters for
Stochastic Context-Free Graph Grammars. Volume
2835 of Lecture Notes in Artificial Intelligence,
pages 281-298. Springer-Verlag, 2003.

547

