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ABSTRACT
Generating a synthetic graph that is similar to a given real-
world graph is a critical requirement for privacy preservation
and benchmarking purposes. Various generative models at-
tempt to generate static graphs similar to real-world graphs.
However, generation of temporal graphs is still an open re-
search area. We present a temporal-motif based approach to
generate synthetic temporal graph datasets and show results
from three real-world use cases. We show that our approach
can generate high fidelity synthetic graph. We also show
that this approach can also generate multi-type heteroge-
neous graph. We also present a parameterized version of our
approach which can generate linear, sub-linear, and super-
linear preferential attachment graph.

KEYWORDS
Temporal Graph, Graph Generative Model,Motifs Distribu-
tion

1 INTRODUCTION
Graphs are a natural and flexible representation of a set
of entities and the relationships among them. Static graph
represents a set of objects and a set of pairwise relations
between them. A temporal graph is a generalization of a static
graph which changes with time. Time can also be modeled
as a vertex or edge label, which makes temporal graphs a
special case of attributed graphs. Incorporating time into
the static graphs has given rise to a new set of challenging
and important problems that cannot be modeled as a static-
graph problem [15]. Many domains such as social networks,
communication, transportation, sensor networks, biological
networks, co-authorship networks, and procurements can
be naturally modeled as temporal graphs.

Many graph generative models are studied and developed
to generate synthetic graphs. The Random Model [7] and
the Preferential Attachment Model [2] are classic graph gen-
erative models. The Chung-Lu model provides a random
model to generate power law graphs [1] using an input de-
gree distribution. Recently Leskovec and Foloutsos [13, 14]

presented the Kronecker model based on Kronecker ma-
trix multiplication to generate syntactic graphs that repli-
cate multiple graph properties. It uses maximum-likelihood
approach to estimate up to four parameters to model the
graph. For a graph with N nodes, the likelihood has contri-
butions from N! permutations of the nodes[14]. Gleich et
al. [9] present method-of-moments estimators that are com-
putationally much simpler than maximum likelihood. The
Block Two-Level Erdős-Rényi (BTER) model [20] assumes
that any graph with a heavy-tailed degree distribution and
community structure must contain a scale-free collection
of dense ER subgraphs. The BTER model implants a fixed
amount of communities in the network and then generates
dense ER subgraphs within the community. All such models
attempt to satisfy some global graph properties and repli-
cate a given degree distribution, but do not guarantee the
preservation of localized structural properties. Many of these
models also do not generate temporal graphs and can only
generate homogeneous static graphs.

Small subgraph patterns in networks, called network mo-
tifs or graphlets are crucial indicators of the structure and
the evolution of the graphs [17]. Paranjape et al. [17] develop
a notion of a temporal network motif as an elementary unit
of temporal networks and provide a general methodology
for counting such motifs. Pržulj, Nataša [18] postulates that
global statistics on some data may be substantially biased, or
even misleading with respect to the (currently unknown) full
network at certain point of time. Conversely, certain neigh-
borhoods of these networks are well studied, and so local
statistics applied to the well studied areas are more appropri-
ate. [18] presents new systematic measures of a network’s
local structure that imposes a large number of similarity
constraints on networks and use it to compare two cellu-
lar networks. It presents 73 graphlet degree distributions of
graphlets with two to five nodes each. Sarajlic et al. uses
directed graphlets to generalize network distance measures
to compare directed networks [19].

This research presents a graph generative model that uses
non-overlapping directed temporal motifs. Theses motifs
are easy to compute and can model wide range of temporal
networks. This approach strives to preserve local temporal
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structures while generating synthetic graphs. These easy
to compute temporal atomic motifs are used to define any
real-world graph. The core hypothesis of this research is
that preserving local temporal-motifs is sufficient to gener-
ate synthetic graphs that also exhibit similar global graph
properties of the corresponding real-world graph.

Section 2 presents all the temporal definitions used in the
research. Section 3 describes Structural Temporal Modeling
(STM) approach to characterize a real-world graph using
set of algorithms. Graph (non) linearity is discussed in Sec-
tion 4. Section 5 presents empirical results using real-world
graphs to show the performance of STM to generate syn-
thetic graphs. Multi-type graphlet distribution is discussed
in section 6. Conclusion, Future work, and Acknowledgment
are described in sections 7,8,and 9 respectively.

2 PRELIMINARIES
This section provides formal definitions of temporal graph,
temporal edge, and temporal motifs to describe research
methodology.
Definition 1: Temporal Graph : A temporal graph is a di-
rected graph that can be represented as 5-tuple. G = (V, E,
L, l,T), where V is set of vertices, E is set of edges such that
E ⊆ V x V, L is set of labels on vertices and edges, and l is a
function V ∪ E→ L that assigns labels to vertices and edges,
and T is function that assign time-stamp t to each edge e ⊆ E.

Definition 2: Temporal Edge: A 3-tuple (vs, vd, tk) defines a
temporal edge ek between vertex vi and vj at time tk.

Definition 3:: Temporal Ordering: A temporal ordering of
temporal edges e1 , and e2 where e1 is defined as (vs1, vd1, t1)
and e2 as (vs2, vd2, t2) is defined that e1 > e2 iff:

• t1 < t2
• t1 = t2 and vs1 < vs2
• t1 = t2, vs1 = vs2 and vd1 < vd2

Temporal ordering of vertices is defined based on vertex-
birth-time defined below. A vertex vs1 is considered smaller
than vs2 iff vertex-birth-time(vs2) > vertex-birth-time(vs1). Ver-
tex Id is also an easy to preserve alternative to the vertex-
birth-time and can be used instead of it for the vertex order-
ing.

Definition 4: Atomic Motif: For this research an atomic
motif m is defined as a subgraph with up to three edges and
three vertices without self-loop.
Figure 1 shows structural atomic motifs used in this re-

search. These motifs are selected because they are the small-
est possible motifs that can represent different varieties of
real-world graphs. These motifs are also simple enough to
be computed for large graphs of billion edge scale.

Definition 5: Temporal Atomic Motif: A temporal atomic
motifmsk is a subgraph with temporal ordering of edges and
vertices.

Figure 2 represents all 22 temporal atomic motifs gener-
ated from six atomic motifs described above.

<m10>, <m11>, <m12>, <m13>
.....
.....
<m40>, <m41>, <m42>, <m43>
<m50>, <m51>, <m52>
<m60>, <m61>, <m62>

It shows that a three-vertex motif m1, m2, m3, and m4 can
have four variations each based on how many vertices are
already generated in the temporal graph at a given time t,
and how many of them are new vertices going to be added
to the temporal graph because of the motif. These four vari-
ations are when zero,one,two,or three vertices are re-used
(or newly created).

Definition 5: Temporal Edge Arrival Probability: Temporal
edge arrival probability is defined as the sum of edge arrival
likelihood from all the temporal atomic motifs.
The first two atomic structural motifs have three edges

each and every addition of that motif will increase the graph
size by 3. Structural motifs m3, m4, and m5 add two edges to
the graph, and structural motif m6 which represents a single
directed edge adds one temporal edge to the graph.

p (e ) =
2∑

m=1

3∑
k=0

3 ∗ p (mmk )

+

5∑
m=3

2∑
k=0

2 ∗ p (mmk ) +
1∑

k=0
p (m6k )

Definition 6: Temporal Vertex Arrival Probability: Tem-
poral vertex arrival probability is defined as the sum of vertex
arrival likelihood from all the temporal atomic motifs. Every
atomic motif is expanded to (n+1) temporal motifs where n
is the number of vertices in the atomic motif.

p (v ) =
4∑

m=1
(3 ∗ p (mm0)

+ 2 ∗ p (mm1) + p (mm2)) +
6∑

m=5
(2 ∗ p (mm0) + p (mm1))

3 STRUCTURAL TEMPORAL MODELING
We define Structure Temporal Modeling (STM) as a process
of identifying temporal motifs in a real-world graph. We



Temporal Graph Generation Based on a Distribution of Temporal Motifs MLG2018, Aug 2018, London, United Kingdom

define some easy to compute atomic motifs such as those
shown in Figure 1 which can characterize any given real-
world graph. We search for these motifs in the graph starting
from larger motifs to smaller ones. Once larger motifs are
foundwe update the graph by removing corresponding edges
from the graph. This strategy guarantees that the motifs
are found in a mutually exclusive fashion and we do not
include overlapping motifs. This approach is similar to the
Minimum Image Support (MIS) approach [3, 4, 22] used in
graph mining research. MIS defines the support of a pattern
as the minimum number of distinct mappings for any vertex
over all the pattern instances in the graph. As pattern size
grows, the MIS values of larger patterns are never greater
than the MIS of smaller sub-patterns. Similarly, any edge
can only participate in one non-overlapping motif, and the
number of such motifs is always bounded by the distinct
edge set in a given temporal motif.

We also compute the information content of every atomic
motif by identifying the number of new vertices used in
the atomic motif formation. This leads to the generation
of temporal atomic motifs as defined above. The number
of temporal motifs is always (n+1) where n is the number
of vertices in the atomic motif. We define vertex-birth-time
of a vertex as the earliest arrival time of temporal edges
associated with this vertex. We also define motif-birth-time
as the earliest time at which any edge of that motif arrives.
Using these two definitions we compute the information
content of a motif as the number of new and old vertices
associated with the motif. This leads to multiple temporal
atomic motifs for a given atomic motif. For example, in Figure
1 a triangle atomic motif is expanded to four temporal atomic
motifs where 0,1,2, or 3 vertices are new (or re-used). The
six atomic motifs in Figure 1 can generate up to 22 temporal
atomic motifs as shown in Figure 2.
For each temporal atomic motif we also compute its for-

mation time which is the total time taken by the motif to
fully form. It is computed as the difference in the earliest and
latest edge associated with the motif. At the same time, we
also compute the average arrival delay in generating each
edge of the motif. average arrival delay allows us to distin-
guish between rapidly formed motifs and the ones that form
over a longer period of time.

Distribution of such temporal atomic motifs is computed
for a given real-world graph. Motif arrival rates are computed
by normalizing the distribution over the entire duration of
the input graph. This normalized distribution is used to gen-
erate its synthetic version and the same distribution is also
computed for the synthetic graph. Variation in these two
distributions is used as a metric to assess the quality of the
synthetic graph.

The generator component of the STM uses the distribution
to iteratively generate all the temporal motifs using arrival

Figure 1: Atomic Motifs

Figure 2: Atomic Temporal Motifs

rates as generation probabilities. STM uses the information
content of the motifs to decide whether to create new nodes
or reuse existing nodes in the graph at a given point of time.
STM also uses formation time and average arrival rate to
delay the formation of the temporal-motif. This is critical to
preserve temporal evolution of the local structures. We have
developed a queue based scheduler to delay the generation
of a specific edge in the motif.

STM Algorithm
In this section we illustrate the basic algorithm used to com-
pute temporal motifs distribution from a real-world graph.
Algorithm 1 is the entry point of STM and it takes input
graph G and a predefined ordered list of structural atomic
motifs M as an input. It iterates through all the structural
motifs and computes arrival rates of each temporal motif in
the input graph. Arrival rate of a temporal motif is used as a
generative probability in the generation step. Arrival rate is
normalized using temporal span of the input graph.
Algorithm 2 takes current graph, a structural motif, and

temporal span of the real-world graph as an input and com-
putes arrival rates of all corresponding temporal motifs. Cur-
rent implementation uses graphframe based Domain-Specific
Language (DSL) for expressing structural motifs. For exam-
ple (a) − [e1]− > (b); (b) − [e2]− > (c ); (c ) − [e3]− > (a)
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Algorithm 1: STM(G,M)
Data: G,M
Result: Pm

1 initialize Pm with default value zero
2 d=getTemporalDuration(G)
3 for eachm ∈ M do
4 <G,Pm> = getTemporalMotifs(G,m,d)
5 end
6 return Pm

Algorithm 2: GetTemporalMotifs(G,m,d)
Data: G,m,d
Result: Gnew , Pm

1 Ia ← find(G,m)
2 In ← getNonOverlapping(Ia )
3 Pm (m) ← |Ia |/d
4 Pm ← Pm ∪ Pm (m)

5 Gnew = updateGraph(G,In )
6 return <Gnew , Pm>

describes a triangle with three edges (a,b), (b,c), and (c,a). We
add additional attribute time to represent temporal edges in
the input graph. Line 1 identifies all the structure motifs in
the graph. Line 2 filters them based on the non-overlapping
temporal constraints. In represents a set of temporal motifs
of a given atomic motif. Line 3 computes arrival generative
probability of all such motifs in the set In . Line 4 and 5 up-
date the global motif distribution and the input graph by
removing edges used in forming In .

Algorithm 3: getNonOverlapping(Ia )
Data: Ia
Result: In

1 Ees ← getDisticntEdgeSet(Ia )
2 emin ← min(Ees )
3 Ic ← getCandidateMotifs(Ia ,emin )
4 ev ← empty
5 In ← empty
6 for each i ∈ Ic do
7 if E (i ) < ev then
8 In ← In ∪ i

9 ev ← ev ∪ E (i )

10 else
11 continue
12 end
13 end
14 return In

Algorithm 3 takes all instance of overlapping motifs found
in the graph and returns set of non-overlapping temporal in-
stances. Line 1 computes Ees which is a set of edge sets where
each edge set is a collection of distinct edges across Ees . This
guarantees that no edge is used more than ones in the motif
formation. Line 2 finds number of all the edge set and Line 3
finds all the candidate temporal motifs using the minimum
edge set. Line 6 to 12 iterates through candidate motifs and
identifies all the non-overlapping temporal motifs.

4 (NON)LINEARITY IN TEMPORAL GRAPHS
Preferential attachment and Power law are highly observed
phenomena in real-world graphs of many domains. The clas-
sical preferential attachment model for networks by Barábasi
and Albert [2] assumes a linear relationship between the
number of neighbors of a node in a network and the proba-
bility of attachment. Kunegis et al. [12] perform an extensive
study of forty-seven diverse Web network datasets from
seven network categories and show that contrary to the
usual assumption, preferential attachment is nonlinear in
the networks under consideration. They also observe that the
deviation from linearity is dependent on the type of network,
giving sub-linear attachment in certain types of networks,
and super-linear attachment in others.
Classical work on linearity of graphs does not consider

temporal evolution of the graph. Many Network Growth Mod-
els are suggested [2, 6, 8, 10] to define a preferential attach-
ment function to model growth of the graph. We propose
to use an easy to compute power-law variant as a tempo-
ral graph growth model. We use the following probability
density function to select a vertex in the existing temporal
graph at a give point of time t=ti .

f (x ,α ) = α ∗ xα−1

When the new edges are added to the temporal graph, we also
update the scale of the probability function simultaneously,
if one or more new vertices are added to the graph. Figure 3
shows different α values and their impact on vertex degree
distribution. We observe the following phenomena using the
α parameter in STM:
• α = 1 generates a linear preferential attachment graph
which corresponds to the Barábasi and Albert model
of scale free networks. This is the default value used in
STM without domain knowledge of the input graph.
• α > 1 generates a preferential attachment networkwith
sub-linear function. We can generate an extremely
sparse graph with very few hubs of small size. We also
observe that the rate of sparsification plateaus for α >
1, depending on the graph domain.
• α < 1 varies between linear and super-linear graph.
0.5 < α < 1 successfully generates many real-world
graph which follow the power law distribution such as
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Figure 3: Alpha Variability
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Figure 4: Synthetic CollegeMsg network generation

communication and social networks. α < 0.5 quickly
leads to a super-linear graph where a single vertex
may acquire almost 100% of the edges asymptotically.

5 EXPERIMENTS
We have developed a scalable framework using Apache Spark
[21] and GraphFrames [5] to compute the distribution of
temporal atomic motifs. We have also developed a graph
generator using Python (https://github.com/lbholder/graph-
stream-generator) that takes the distribution as an input and
generates a synthetic graph. We present results from two
domains: social networks and financial network. We were
able to model two million edge graphs successfully. We also
used parameterized version of STM using different α values
and as discussed in the section above α = 0.6 generates
synthetic graph closest to real-world graph.

Figure 4 shows the synthetic graph generation of a college
messaging temporal network [16]. This dataset is comprised
of private messages sent on an online social network at
the University of California, Irvine. Users could search the
network for others and then initiate a conversation based on
profile information. An edge (u, v, t) means that user u sent
a private message to user v at time t.
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Figure 5: CollegeMsg Temporal Motif Distribution

|V| |Etemporal | |Estatic | Time
CollegeMsg 1899 59,835 20,296 193 days

Bitcoin Alpha 3,783 24,186 24,186 1901 days
PhoneEmail 986 20,001 14,613 365 days

Table 1: Temporal Graphs Properties

Figure 6: Motif formation using existing vertices

Figure 4 shows that STM closely follows the degree dis-
tribution curve of the real graph. It also shows that STM
does not create few very high degree nodes but rather cre-
ates smaller hubs. Figure 5 shows structural temporal motif
distribution of the CollegeMsg network and its synthetic
counterpart. Figure 5 combines each temporal motif by its
structural parent and plots them separately to accommodate
the probability range for this category. It shows similar motif
distribution except for a few temporal motifs. Close analy-
sis of the graph formation revealed that many of the single
edge motifs m6 are subsumed by m3 and m4 which leads to
formation of m1 and m2. This is only applicable to motifs
which reuse existing vertices to form the motif. For example
formation ofm63 selects two existing nodes n1 and n2 from
the graph and if n1 and n2 are part of existingm3 orm4 then
the addition can results in the formation ofm1 andm2. This
explains higher probabilities ofm14 orm24. This phenomena
is depicted in Figure 6.
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Figure 7: Synthetic Bitcoin network generation
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Figure 8: Bitcoin Temporal Motif Distribution
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Figure 9: Multi-type Synthetic Phone-Email network gener-
ation

The second dataset is who-trusts-whom network of people
who trade using Bitcoin on a platform called Bitcoin Alpha
[11, 17]. Since Bitcoin users are anonymous, there is a need to
maintain a record of users’ reputation to prevent transactions
with fraudulent and risky users. Members of Bitcoin Alpha
rate other members in a scale of -10 (total distrust) to +10
(total trust) in steps of 1. For this research work we do not
model the rating attributes but only model the temporal
evolution of the user transactions. Figures 7 and 8 shows the
results.

6 MULTI-TYPE MOTIF DISTRIBUTION
Many existing synthetic graph generators can only gener-
ate homogeneous graph with single edge type. There is an
opportunity to develop multi-type, multi-channel graph gen-
erator and we apply STM using multi edge-type motifs. We

can generate two channels simultaneously using 114 differ-
ent temporal motifs. We used PNNL’s anonymized internal
communication dataset snapshop that contains phone and
email communication network within organization. Figure 9
shows a multi-type synthetic graph generation result using
same set of α values.

7 CONCLUSION
Modeling temporal graphs and developing synthetic tem-
poral graph generator is an active research area. Various
graph generative models have been proposed that attempt
to replicate a given degree distribution or preserve some
global properties in a homogeneous static graph. We present
a novel approach of using temporal motif distribution to
generate synthetic temporal graph. This approach closely
follows temporal evolution of the graph and preserve local
structures within the graph.We present our results using two
real-world homogeneous graphs. We also present that our
approach can generate high fidelity multi-type, multi-stream
temporal graph and we present our results using a real-world
connected graph of two edge types. We also propose a simple
power law variant to be used in temporal graph generation
with α parameter. We also show that we can generate linear,
sub-linear, and super-linear graph using different α values.

8 FUTUREWORK
Future work will compute local vertex attributes to use a
machine learning model to select appropriate vertex in the
temporal graph. We will address explosion of number of
candidate temporal motifs in a multi-type graph by only
modeling a subset of most informative temporal motifs based
on data-driven domain knowledge. We will also develop new
temporal metrics to measure the fidelity of synthetic graphs.
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