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Abstract—Human activity recognition (HAR) from 
wearable sensor data traditionally identifies atomic 
movements (e.g., sit, stand, walk). However, many medical 
fields require recognizing functional activities—higher-level, 
goal-directed behaviors (e.g., errands, socialize, work). 
Functional activity recognition is critical for cognitive health 
assessment, rehabilitation, post-surgical recovery, and 
chronic disease management, yet remains largely 
unexplored due to its inherent complexity and variability for 
in-the-wild settings.  

This work addresses these challenges by investigating 
methods for functional HAR and introducing a novel 
approach that augments feature representations with feature 
token-transformer embeddings to improve classification 
performance. We compare a range of machine learning and 
deep learning methods, analyzing their ability to generalize 
across a diverse population. Additionally, we present 
ArWISE, a large-scale functional activity dataset collected 
longitudinally from n=503 participants, consisting of over 32 
million labeled points. Our experiments demonstrate the 
advantages of incorporating feature embeddings into 
functional HAR models, particularly in handling real-world 
variability and data sparsity. By bridging the gap between 
atomic movement recognition and functional behavior 
modeling, this work lays the foundation for more advanced, 
behavior-aware applications in digital health and human-
centered AI. 

Index Terms— activities of daily living, functional 
activities, human activity recognition, ubiquitous computing, 
wearable sensor data  

 
 

I. INTRODUCTION 

UMAN activity recognition (HAR) provides a 
structured vocabulary for describing sensor-derived 
behavior patterns. Activity-labeled data enable a host 

of health benefits for behavior tracking, detecting deviations 
from typical routines, and developing behavior-aware 
interventions for health and well-being. By assigning labels to 
time series data collected from wearable sensors, HAR 
facilitates the characterization of activities of interest, 
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supports personalized health monitoring, and allows for 
population-level comparisons in research studies. As wearable 
technology becomes increasingly integrated into everyday 
life, accurate HAR systems play a vital role in applications 
ranging from fitness tracking to clinical decision-making. 

Traditional HAR research has primarily focused on 
recognizing atomic movements—short, discrete physical 
actions such as walking, sitting, standing, or climbing stairs. 
While valuable, these atomic movements provide only a low-
level representation of human behavior. In contrast,  
functional activities—which include work, hobbies, hygiene, 
socialization, running errands, eating, housework, and sleep—
encompass higher-order, goal-oriented behaviors that span 
extended time periods and often involve multiple physical 
movements in combination. Recognizing functional activities 
presents unique challenges. Unlike atomic movements, which 
are typically constrained to simple biomechanical motions, 
functional activities are composite in nature, involving a 
sequence of diverse actions and interactions with the 
environment. They can also be semantically ambiguous, 
because different individuals may perform the same 
functional activity in highly variable ways. For instance, 
“working” may involve sitting at a desk and typing for one 
person, while for another, it may involve standing and 
engaging in manual labor. Additionally, functional activities 
exhibit substantial human variability, influenced by individual 
habits, contextual factors, and personal preferences. These 
challenges make it difficult to develop robust models for 
functional HAR using conventional motion-sensor-based 
recognition approaches. Furthermore, for solutions to be 
usable outside of controlled settings, they must handle the 
inconsistences of data collected in the wild, such as activity 
interruptions, collection inconsistencies, and missing data. 

In this work, we investigate methods for functional HAR 
and propose a hybrid approach that combines a traditional 
classifier with feature token-transformer embeddings. Our 
approach leverages the power of transformer-based 
representations to capture complex temporal dependencies 

Ryan Holder is with the University of California at Irvine, Irvine, CA 
92697 USA (e-mail: rholder@uci.edu). 

Brian Thomas is with Washington State University, Pullman, WA 
99164 USA (e-mail: bthomas1@wsu.edu). 

Lawrence B. Holder is with Washington State University, Pullman, 
WA 99164 USA (e-mail: holder@wsu.edu). 

Diane J. Cook is with Washington State University, Pullman, WA 
99164 USA (e-mail: djcook@wsu.edu). 

H

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3586074

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on July 09,2025 at 16:16:57 UTC from IEEE Xplore.  Restrictions apply. 



2 
 
 
within functional activities, improving classification 
performance. Additionally, we introduce a large-scale 
functional HAR dataset, called ArWISE, consisting of over 37 
million labeled points collected longitudinally from 503 
participants in real-world settings. The methods and dataset 
described in this paper are publicly available and provide an 
unprecedented opportunity for advancing functional HAR 
research in diverse, in-the-wild scenarios. 

II. RELATED WORK 

Human activity recognition (HAR) from wearable sensor 
data is now a standard focus for biomedical informatics, 
machine learning, and time series research. HAR methods are 
evolving because the task faces challenges when analyzing data 
from noisy sensors and diverse individuals in real-world 
settings. Many existing efforts are designed to process data 
collected in controlled settings [1], yet recent advances apply to 
more complex settings as well. Many recent approaches rely on 
deep networks to automate representation learning [2], though 
some researchers observe that traditional random forests are 
sometimes more effective [3]. Recent work also successfully 
combines deep learning with classical methods to model related 
problems in biomedicine using a hybrid approach [4], [5].  

When working with raw time series data, attention 
mechanisms improve performance by focusing on parts of the 
input such as selected features, time points, and channels [6], 
[7], [8], [9]. Researchers further enhance performance by 
pretraining the network with available information such as the 
participant, device types, and sensor positions [10], [11]. If data 
are available from multiple sensor modalities, these can be 
fused to improve model robustness [12], [13], [14], [15]. 
Researchers are finding that large language models can play a 
beneficial role in fusing heterogeneous data sources [16], [17], 
[18], [19]. 

Recognizing activities from continuous data collected in the 
wild is a daunting task. Some of the challenges include activity 
variability as well as distribution shifts between persons and 
over time [20]. Unlike laboratory datasets, real-world data are 
not pre-segmented, activities may co-occur, and there is a 
scarcity of reliable ground-truth labels. The conditions under 
which data are collected vary so dramatically between studies 
that proposed evaluation metrics encourage leave-one-subject-
out and leave-one-dataset-out cross validation [21], [22]. Dai et 
al. [10] incorporate domain-invariant contrastive learning to 
account for some of these variances, and Su et al. [23] include 
user information as features then employ adversarial 
disentanglement to remove irrelevant information. 

Another approach to tackling real-world variance is to 
incorporate transfer learning, or domain adaptation, into the 
pipeline. Thukral et al. [24] utilize a teacher-student self-trainer 
to align multiple datasets, Mazankiewicz et al. [25] align feature 
distributions across users, and Wang et al. [11] define 
normalization steps that are resilient to distribution shifts 
between users. Wilson et al. [26] learn domain-invariant 
 

1 The dataset, software, and pretrained model are made available to the 
community at github.com/WSU-CASAS/ArWISE. 

features to adapt labeled data from multiple users to a new 
person with no ground-truth labels. 

Laboratory data simplify the recognition task because each 
sequence corresponds to one activity and the location is fixed. 
In real-world settings, recognition is improved when transitions 
are detected [27], [28] or learned jointly with the activity 
models [29], [30], [31]. Alazeb et al. [32] further noted the 
value of jointly localizing and recognizing activities. 

Obtaining ground-truth activity labels typically relies on 
individuals labeling their own tasks, but this increases user 
burden and interrupts the monitored activities. As a result, 
labeled real-world are extremely rare [33], [34], [35]. Time 
series augmentation [13], [36], [37], [38], [39], [40] and 
synthetic data creation [15], [41] help when more data, or more 
balanced classes, are required. Other researchers make strategic 
use of unlabeled data to pretrain a deep network [42] or self-
train pseudo-labeled training data [21], [43], [44].  

This work uniquely positions itself by considering the 
problem of modeling and recognizing high-level functional 
activities from continuous smartwatch data. Furthermore, we 
examine the ability of deep learning methods to handle large 
amounts of diverse time series data collected from hundreds of 
participants across multiple study cohorts1.  

III. ARWISE DATASET 

Wearable data are a primary driver of current research in digital 
medicine and behavioral health and medicine. However, the 
maturity of machine learning approaches is severely 
constrained by the lack of large-scale, diverse labeled data. The 
dearth of such data is a common lament in the field and impedes 
progress in developing robust activity models that generalize to 
real-world scenarios. 

We introduce ArWISE (Activity recognition from in-the-
Wild SmartwatchEs)2, a dataset containing labeled and 
unlabeled data collected by Apple Watches. ArWISE represents 
readings collected from 20 studies in 2 countries over 8 years. 
 

A. Data Collection 

Data collection followed a consistent protocol for each 
cohort. The process was reviewed and approved by the 
Institutional Review Board at Washington State University 
(protocol number 14460). To participate, participants needed to 
understand English and sign an informed consent form. 
Participants were given an Apple Watch to wear each day on 
their non-dominant arm. While they wore the watch, a custom 
app collected 3D accelerometer and gyroscope readings at 
10Hz. Additionally, the app collected the person’s location 
every minute or when the magnitude of the acceleration vector 
exceeded a threshold. 

At random times throughout each day, the smartwatch 
prompted the participant to select an activity from a scroll-down 
list that best described their current activity. The distribution of 
user-provided labels across 12 activity categories is shown in 

2The ArWISE dataset is available at 
datadryad.org/share/N0QT27E71qLeb1nOcqYR5cP-mevflxke7T3us4BKZtM. 
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Fig. 1. The label was applied to five minutes of sensor readings 
ending at the time of the participant’s response. 

Figure 1. Distribution of data in ArWISE. The chart shows the 
distribution of labeled points across activity categories. The numbers of 
samples in each category are: Eat=2,675,397; Errands=1,755,729; 
Exercise=1,839,335; Hobby=501,637; Housework=8,360,616; Hygiene 
=752,455; Other=1,504,911; Relax=15,634,352; Sleep=1,337,699; 
Socialize=1,504,911; Travel=2,173,760; Work=3,762,277. 

 

Figure 2. The data annotation tool visualized date, time, movement, 
and location. The user could move forward, backward, and zoom in and 
out of timeframes, labeling selected timeframes with one of the specified 
activity categories.  

 
Additionally, an external annotator provided labels for a 

much greater density of data collected for selected participants 
in cohorts 7, 17, and 18. This person used a tool, shown in Fig. 
2, that visualized 3D movement data, a map of visited locations, 
and time stamps, at arbitrary time frames. 

While the data collection mechanism was the same for all 
study cohorts, other parameters varied. These include the 
number of participants, participant demographics, length of 
data collection, and other clinical variables that were collected. 
A summary of study cohort parameters is given in Table I. 

 

B. Dataset Characteristics 

The ArWISE dataset is unique among the resources that are 
typically available for human activity recognition. Some of the 
most-analyzed datasets reflect movement categories based on 
data that are collected in controlled settings [45], [46]. 

However, more recent wearable sensor datasets represent 
activities observed in uncontrolled settings. Although 150 
participants are monitored for only 24 hours with movement-
only sensors, Capture-24 [47] includes labels for functional 
activities of household chores, sports, and sleep in real-world 
settings. ExtraSensory [48] monitors a smaller set of 60 
participants with up to 20 seconds of movement and location 
readings but provides diverse activity and location. The UK 
Biobank [49] offers 7 days of accelerometry data for 100,000+ 
participants and Intuition [50] longitudinally observes 23,004 
participants, though no ground-truth labels are provided for 
these data. 

The ArWISE dataset contains 41,803,079 labeled points 
from 503 participants across 15 cohorts and 469,881,358 total 
points for 854 participants across 20 cohorts. Each point 
represents one minute of data. ArWISE offers unique benefits 
for HAR analysis, including a large set of participants, 
functional activity labels, longitudinal observations, and 
consistency in the data collection mechanism. 

 
TABLE I 

ARWISE COHORTS, LISTED CHRONOLOGICALLY. 
 

Cohort Sample Points Study/participant characteristics 

1 4 4.44×106 Younger adults, self-reported activities 

2 185 1.22×108 
HOA/SCD/MCIa, English and Spanish 
self-reported activities 

3 56 7.08×107 Younger adults, no activity labels 

4 46 3.03×107 HOA/SCD/MCI, self-reported activities 

5 10 1.27×107 Older adult pairs, no activity labels 

6 35 1.38×107 HOA/SCD/MCI, no activity labels 

7 37 8.48×106 
HOA/SCD/MCI, self-reported activities 
and expert-annotated activities 

8 9 1.53×105 Younger adults, self-reported activities 

9 15 1.00×107 Younger adults, self-reported activities 

10 13 1.41×107 Younger adults, self-reported activities 

11 3 1.95×106 Younger adults, self-reported activities 

12 18 1.83×107 Younger adults, self-reported activities 

13 10 7.87×106 Younger adults, self-reported activities 

14 22 1.70×106 Younger adults, self-reported activities 

15 21 3.56×105 HOA/SCD/MCI, no activity labels 

16 6 3.25×106 Younger adults, self-reported activities 

17 103 1.74×108 
HOA/SCD/MCI, self-reported activities 
and expert-annotated activities 

18 16 2.28×107 
HOA/SCD/MCI, self-reported activities 
and expert-annotated activities 

19 16 2.25×107 HOA/SCD/MCI, self-reported activities 

20 229 8.00×108 HOA/SCD/MCI, no activity labels 
aHOA=healthy older adult, SCD=subjective cognitive decline, MCI=mild 
cognitive impairment 

 

C. Data Preprocessing 

Our functional activity recognition models consider both raw 
time series data and engineered features. Table II summarizes 
the features that are available for both cases. 
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TABLE II 

ARWISE RAW AND ENGINEERED DATA FEATURES. 
 Category Feature 

Raw 
(10Hz) 

time date and time 
motion yaw, pitch, roll, rotation rate 

(x,y,z), acceleration (x,y,z) 
location latitude, longitude, altitude, 

course, speed 

Eng- 
ineered 
(1 min) 

time time of day (radians, sin, cos), day 
of week 

motion mean & stdev (each raw 
movement variable), 
mean & stdev (rotation vector 
magnitude, acceleration vector 
magnitude) 

location mean & stdev (course, speed) 
mean & stdev (distance from 
home, latitude distance from 
home, longitude distance from 
home) 
mode & stdev (bearing from 
home) 

Activity 
label 

eat, errands, exercise, hobby, housework, 
hygiene, relax, sleep, socialize, travel, work, other 

 
We imputed missing values (with mode for location and 

median for other features) and dropped data points where there 
was not a complete minute of sensor readings leading up to the 
label. We also applied z-score normalization to each feature. 

For the engineered features, we aggregated values over one 
minute leading up to the user (or expert) label. Time of day was 
encoded using two sinusoidal features that reflect its 
periodicity: sin(2πt/86400) and cos(2πt/86400), where t is the 
number of seconds past midnight. We did not use raw location 
values to preserve user privacy and because the values do not 
generalize between individuals. Instead, we defined a person’s 
home as the location visited most often at the beginning of each 
day. We then extracted the Haversine distance and 
trigonometric bearing from the person’s home location. 

D. Functional Activity Challenges 

Recognizing functional activities from a large dataset poses 
several unique challenges. First, data representing hundreds of 
individuals in their everyday lives are highly variable. Models 
built for one set of individuals may not generalize to a new 
person. Second, self-reporting leads to a label sparsity that can 
impact performance. 

Third, functional activities introduce semantic ambiguity. To 
illustrate the point, consider the UMAPs in Fig. 3. The first plot 
shows a random sampling of points that belong to the Relax and 
Work activities. As the plot indicates, most of the Work points 
form a dense and relatively continuous cluster. In contrast, 
Relax points are much more dispersed and partially embedded 
in the Work category, which may create difficulties in 
predicting these classes. This overlap is intuitive, because tasks 

that comprise Work for some individuals (e.g., sitting at a 
computer) represent relaxation for others and vice versa. In 
contrast, Exercise and Sleep, shown in the second UMAP, are 
more clearly differentiated. In both cases, the classes have a 
core region but many additional isolated clusters. 

 Figure 3. 2D UMAP of data samples from (left) the Relax and Work 

categories and (right) the Exercise and Sleep categories, described 
using engineered features from Table II.  

IV. METHODS 

Our goal is to design a machine learning model that can 
recognize functional activities from many data points, activity 
categories, and participants. The models summarized in Section 
II are not directly applicable because they are designed for 
different modalities, activity types, and experimental 
conditions. However, we include models that represent prior 
methods. We additionally assess the impact of supervised and 
unsupervised model pretraining, and transformers. All deep 
networks utilize an Adam optimizer, ReLU activation, sparse 
categorical cross-entropy loss, an accuracy metric for self-
validation, and a softmax classifier output layer with 12 classes. 
Hyperparameters for baseline methods are consistent with those 
used by these structures in HAR. For the FT+RF method, we 
perform grid search over key hyperparameters. Additional fine-
tuning had minimal impact on relative performance. 

For all classifiers, we include data augmentation to address 
class imbalance by creating synthetic points via jitter and 
feature-wise permutation. Approximately 5 synthetic points are 
created for every real point, though the actual number of 
synthetic points for each class is inversely proportional to the 
relative class size. We also added self-supervised training to the 
methods by predicting activities for the unlabeled data points 
and refining the model using the original training data 
combined with points whose label confidence exceeded 0.8. 
Because these enhancements improved predictive accuracy by 
≤0.1%, we do not report the results of these steps separately for 
each model. 

A. Time Series Networks 

Many human activity recognition approaches extract features 
from raw time series using deep networks. We consider five 
such methods, each of which processes ArWISE data windows 
that contain 100 continuous time steps. The first is a 1D CNN, 
an approach that is a popular baseline for recognition of atomic 
movements due to its ability to capture local temporal patterns 
[38], [51]. The second is a long- and short-term time series 
network (LSTNet [52]) that combines a CNN component, a 
recurrent component, a Skip-RNN, an autoregressive 
component, and a fusion layer. Third, we include a transformer 
method that is adapted to handle time series data (TST [53]). 
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Fourth, we consider a model that combines Time2Vec time 
series embeddings with a transformer (T2T). The final model is 
a transformer-based method (TimesNet [54]) that discovers 
multiple periodic time series patterns.  

B. Tabular Data Networks 

Time series models often exert costly computational 
demands. However, other deep networks have been explored 
that efficiently process tabular data such as the engineered 
features shown in Table II. In response to these challenges, we 
also consider tabular deep networks. 

We start by considering a fully-connected deep network 
(DNN) consisting of two dense layers with 30% dropout. We 
also include a transformer-based model for tabular data 
(TabTransformer [55]) that processes categorical features along 
with the continuous features, by embedding each categorical 
feature into a dense vector space. We further boosted this 
baseline model using additional normalization, residual 
connections, and dropout. 

C. DNN with Supervised Contrastive Pretraining 

To boost the DNN tabular network, we introduce supervised 
contrastive pretraining. Here, ground truth labels are accessed 
by a contrastive loss function to group similar activity points 
together in the learned representation space. The learned 
embeddings are fine-tuned by the classification deep network 
described in the previous section. 

This embedding model is a feedforward network containing 
dense layers of sizes 128, 64, and 64 embedding units. The 
network also uses 30% dropout, and an L2 normalization layer. 
The contrastive loss computes a similarity matrix between 
embedding points using cosine similarity divided by a 
temperature to control focus on hard negatives (dissimilar 
examples / different classes) versus easier positives (similar 
examples / same class). The temperature parameter controls the 
focus on hard negatives versus easier positives. 

D. DNN with Unsupervised Autoencoder Pretraining 

While classifiers need labeled data to train the model, some 
methods utilize sampled unlabeled data to pretrain a model. 
This pretraining enables the network to create a representation 
that reflects the entire dataset. We design a masked autoencoder 
to act as an unsupervised pretrainer. 

Using an autoencoder, the pretrainer learns to reconstruct its 
own input after randomly-selected features have been masked. 
The result of this process is that the pretrained model learns a 
representation that captures dependencies between the features. 
In our case, the pretrainer selects 30% of the input features for 
masking. The autoencoder is a feedforward network with two 
dense layers (128 and 64 nodes) interspersed with 30% dropout 
layers. The network uses a mean squared error loss function to 
measure reconstruction quality as the squared difference 
between the original and reconstructed values. As in the 
previous model, this pretrainer is later fine-tuned by the deep 
network described in Section IV.B for activity classification. 

E. Random Forest 

Random forest classifiers are popular for many predictive 

clinical tasks. Recently, in some cases they have been outshined 
by deep networks that process large numerical datasets to 
automatically extract features and learn nonlinear relationships 
between feature values to predict class values. In our functional 
HAR task, we consider random forests because of their ability 
to process large noisy datasets and stability when handling 
imbalanced data. We start with a random forest that processes 
the engineered features listed in Table II with 100 trees, a Gini 
impurity measure, and instance weights that are inversely 
proportional to relative class frequency. 

A notable difference between ArWISE and prior benchmark 
datasets summarized in Section III is the inclusion of location 
features. When learning atomic movement types, motion 
features have been sufficient to model and discriminate 
between classes. We hypothesize that for functional activities, 
time and location will also be important. To validate this 
hypothesis, we report performance of the random forest using 
only 3D motion features and compare the results with random 
forest models that use all features listed in Table II, including 
motion, location, and time. 

F. Random Forest + FT-Transformer Embeddings 

Transformer models enhance deep networks by employing 
self-attention to capture influences between features. Typically, 
these influences are relationships between tokens in a sequence. 
Harnessing the power of deep neural networks for 
heterogeneous tabular data is more challenging because 
relationships must be extracted that do not rely on inherent 
spatial or sequential neighbor information.  

Unlike traditional transformers, recent methods apply self-
attention at the feature level. We first capture dependencies 
between ArWISE engineered features using an FT-Transformer 
(Feature Tokenizer + Transformer) [56]. This model, shown in 
Figure 4, converts each data point x described by a feature 
vector of size k into an embedding matrix T of shape kd, which 
it feeds through L transformers. The feature embedder applies 
element-wise multiplication between a learnable weight vector 
and the feature and adds a bias term, projecting the feature into 
a d-dimensional space. Each transformer layer consists of a 
multi-head self-attention component to learn dependencies 
between features, feedforward layers, and normalization with 

Figure 4. FT-Transformer-Augmented Random Forest architecture. 
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dropout to promote model stability and prevent overfit. 

A grid search through hyperparameters finalized the FT-
transformer architecture. This model contains an embedder 
with dimension d=64, a Dense layer of 64 nodes, 4 transformer 
layers with 30% dropout and 64-node feedforward, and a mean 
squared error loss function to promote self-supervised feature 
reconstruction. Pretraining is performed using sampled 
unlabeled data from all ArWISE cohorts. 

Next, instead of relying solely on the model embeddings, we 
merge the engineered features from Table II with the 
corresponding embeddings to create the FT-augmented feature 
vector xL, which is input to the random forest for functional 
activity classification. We hypothesize that combining a deep 
transformer embedder with a classical model will boost 
performance. Embeddings introduce features that are not 
modeled manually, the random forest is robust to noisy data, 
and the hybrid method combines different inductive biases to 
improve generalization over either method alone. 

V. EXPERIMENTAL RESULTS 

We evaluate the performance of the classification methods on 
the ArWISE data. We randomly extract training and test points 
from the global pool dataset with an 80/20 split. A stride of 1 is 
used within training data, but training and test data points do 
not occur within the same minute, avoiding the resulting bias 
due to temporal data leakage. Results are averaged over five 
training/test splits. We trained the models on a machine with an 
Intel Core i9-13900K 5.8GHz CPU, a RTX 4090 24GB GPU, 
and 192GB RAM.  

We assess performance using four metrics: Accuracy, F1 
score, Matthews correlation coefficient, and Top-3 accuracy. 
As Fig. 3 demonstrates, the activity categories reflect some 
overlap. As a result, we report top-3 accuracy as the proportion 
of points where the correct activity class appears among the 
model’s three highest-probability predictions, useful in settings 
where multiple plausible labels may exist and should be 
handled accordingly. Performance for the classifiers using these 
metrics is summarized in Table III. 

A. Time Series Models vs Tabular Data Models 

Models that process 3d motion data for recognizing atomic 
movements frequently process raw sensor readings as a time 
series. Deep networks such as 1D CNNs, RNNs, or LSTMs are 
effective at discovering temporal features but may suffer when 
processing high-dimensional inputs. As Table III shows, the 
time series models perform consistently well, with MCCs in the 
0.37-0.42 range. TimesNet slightly edges out the others for F1 
and MCC, though LSTNet demonstrates the best accuracy. 
Performance is better than random guess (F1.08, MCC0.00) 
and the results validate that temporal modeling is important for 
functional HAR. 

The DNN tabular model performs on par or better than most 
of the time series models, especially in MCC. On the other 
hand, TabTransformer struggles across all metrics. Among the 
most effective methods are DNN with pretraining that include 
supervised contrastive loss and unsupervised autoencoder. The 

results indicate that simple dense networks can capture salient 
information from these data. Furthermore, representation 
learning helps, even for shallow networks with engineered 
features.  

TABLE III 
HAR RESULTS ON ARWISE DATASET. MODELS INCLUDE TIME SERIES 

CLASSIFIERS (CNN, LSTNET, TST, TIMESNET, T2T), TABULAR DEEP 

NETWORKS (DNN, TRASNFORMER), DNN ENHANCED WITH SUPERVISED 

CONTRASTIVE PRETRAINING (DNN+CL) AND MASKED AUTOENCODER 

PRETRAINING (DNN+MAP), RANDOM FOREST WITH MOTION SENSOR 

FEATURES ONLY (RF MOTION), ALL MANUAL FEATURES (RF ALL), RANDOM 

FOREST USING FT-TRANSFORMER EMBEDDINGS (RF EMBED), AND RANDOM 

FOREST USING ENGINEERED FEATURES COMBINED WITH EMBEDDINGS 

(RF+FT). THE TOP PERFORMER IN EACH CATEGORY OF MODELS IS 

HGHLIGHTED IN ITALIC FONT, AND THE TOP OVERALL PERFORMER IS 

HIGHLIGHTED IN BOLD FONT. 
 

Model Accuracy F1 MCC Top3 
CNN 0.568 0.541 0.369 0.809 
LSTNet 0.619 0.566 0.413 0.808 
TST 0.608 0.556 0.408 0.794 
T2Vec+Transformer 0.610 0.566 0.421 0.797 
TimesNet 0.609 0.574 0.423 0.780 
DNN  0.608 0.549 0.483 0.829 
TabTransformer 0.376 0.206 0.000 0.664 
DNN + CL 0.616 0.549 0.492 0.826 
DNN + MAP 0.610 0.551 0.486 0.827 
RF Motion 0.612 0.545 0.488 0.814 
RF All 0.666 0.649 0.578 0.807 
RF Embed 0.675 0.647 0.568 0.863 
RF + FT 0.777 0.761 0.712 0.928 
 

B. Inclusion of Location and Time Features 

Many HAR methods model activities solely based on 
movement (accelerometer and gyroscope) readings. For 
functional activities in the wild, we hypothesize that these 
temporal features need to be supplemented with additional 
context such as location and time of day. Including these 
additional features in the model represents a fundamental 
component of functional HAR in the wild. While atomic 
movements are reproducible at multiple times of day and in 
multiple locations, functional activities are often further 
characterized by their location (e.g., travel occurs outside the 
home and location may change within a single occurrence) and 
time of day (e.g., sleep most often occurs at night). 

To validate our hypothesis, we assessed the impact of 
including location and time features for the same subset of 50 
participants. We evaluated the performance of the random 
forest classifier using only motion features in comparison with 
a random forest that uses all features from Table II. As Table 
III illustrates, the inclusion of these context features improves 
performance for all metrics, increasing F1 by 19%, MCC by 
18%, and rivaling the performance of DNN+CL with all 
features. 
 

C. Hybrid Models 

Next, we consider the models that incorporate FT-
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Transformer embeddings. Using a feature vector comprised 
solely of embeddings improved accuracy and MCC, though F1 
dropped slightly. This result indicates that embeddings capture 
some patterns and relationships not represented by the manually 
engineered features. 

The hybrid model that combines the random forest with the 
feature transformer embeddings performs best among all 
considered models by a wide margin, especially in MCC and 
top-3 accuracy. Based on MCC, TimesNet performs best 
among time series classifiers (MCC=0.423), DNN with 
pretraining performs best among the tabular deep learners 
(MCC=0.492), and random forest performs best overall 
(MCC=0.578 for engineered features, MCC=0.712 for FT-
augmented features). These results offer validation that feature 
engineering combined with embedding is effective for 
functional HAR. 

 

D. Leave-One-Out Cross Validation 

We evaluate a subset of models (the CNN time series model, 
DNN tabular model, and RF+FT model) for their ability to 
generalize predictive performance to new participants. Here, we 
focus on a subset of participants. Most participants do not have 
examples of all 12 activity classes, which complicates 
assessment of leave-one-out cross validation. To address this 
issue, we selected all participants who had labeled instances for 
activities categories that included, but were not limited to, the 
six activity categories found with most participants: Eat, 
Errands, Exercise, Housework, Hygiene, and Work. 

Table V summarizes the results for the 45 participants from 
6 cohorts using a CNN model, DNN model, and RF+FT model. 
We compare results for three evaluation strategies: 1) within-
subject training and testing, 2) pooled training and testing 
across all data points with temporal separation, and 3) leave-
one-subject-out cross validation. 
 

TABLE IV 
FUNCTIONAL HAR RESULTS FOR N=45 PARTICIPANTS CONTAINING 

LABELED EXAMPLES FOR 6 ACTIVITY CATEGORIES. THE COMPARED MODELS 

ARE A DEEP NEURAL NETWORK (DNN) AND A RANDOM FOREST WITH FT-
TRANSFORMER AUGMENTED FEATURES (RF+FT). EVALUATION IS 

CONDUCTED USING DATA FROM THE ENTIRE SET OF PARTICIPANTS (ALL), 
TRAINING AND TESTING WITHIN EACH PERSON SEPARATELY (IND), AND 

LEAVE-ONE-OUT CROSS VALIDATION (LOOCV). FOR THE IND AND LOOCV 

CASES, MEAN RESULTS ARE REPORTED. 
 

Model Method Accuracy F1 MCC Top-3 

CNN 

All 0.499 0.447 0.348 0.662 

Ind 0.484 0.465 0.392 0.660 

Loocv 0.407 0.384 0.239 0.744 

DNN  

All 0.688 0.652 0.533 0.929 

Ind 0.624 0.600 0.429 0.862 

Loocv 0.400 0.382 0.184 0.749 

RF + FT 

All 0.806 0.791 0.720 0.971 

Ind 0.739 0.726 0.621 0.918 

Loocv 0.523 0.492 0.318 0.833 

 

Unsurprisingly, the results in Table V reveal that the models 
consistently perform better when processing data from all 
participants rather than a leave-one-out evaluation. The nature 
of functional activities varies between individuals, so the 
availability of even a small amount of training data for each 
person boosts predictive performance. Because some of the 
participants did not offer many labeled instances, the results of 
training and testing separately on each individual are lower than 
training a model on all participants. In this situation, the RF + 
FT model consistently outperforms the DNN, for all metrics 
and all evaluation conditions. 

Finally, we built a confusion wheel to visualize the types of 
errors that are made by the RF+FT model for the functional 
HAR task. The wheel, shown in Figure 5, shows the distribution 
of true/false positives and negatives for each activity class. The 
thickness of the edge between two nodes is proportional to the 
relative number of times the corresponding activities are 
confused for each other. We see from the confusion wheel that 
Relax is a very heterogeneous category. The activity is often 
confused with Work, Eat, and Housework. Sleep and Relax also 

have a thick connection. Travel does not share much connection 
with other categories except Errands, and Exercise is distinct 
from most categories except Hobby and Relax. These 
observations show the intuitive overlap between functional 
categories and highlight the challenges in predicting and 
tracking functional activities. 

VI. DISCUSSION 

Recognizing functional activities from continuous 
smartwatch data has profound implications for digital health, 
behavior monitoring, and medical decision making. Unlike 
atomic HAR, which identifies basic movements, functional 
HAR captures richer behavioral patterns that reflect an 
individual’s routines, social engagement, and independence. 

Functional activities are central to health measures, 
including scales used to determine level of independence and 
need for occupational therapy [57],[58]. Performing such 
activities is key to the Functional Independence Measure [59], 
that monitors recovery from stroke and traumatic brain injury. 
These measures rely on clinician observation or patient self-
report, which can be subjective and infrequent. In contrast, 
this work offers objective, automated tracking of functional 
activities. This shift has the potential to reduce clinical 
burden, enable early detection of health changes, manage 

Figure 5. Confusion wheel. 
Each node shows a 
distribution of points for true 
positives / negatives and 
false positives / negatives. 
Nodes are connected by an 
edge when a point belongs to 
one node (activity) and is 
predicted as the other. The 
thickness of the edge 
indicates the relative number 
of confusions that occur 
between the pair. 
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chronic conditions, and support precision medicine through 
monitoring and intervention. 

This work represents a paradigm shift in HAR by addressing 
functional activity recognition in the wild, a domain that has 
remained largely unexplored due to the semantic complexity, 
inter-individual variability, and real-world sparsity of labeled 
data. Our key innovations include a novel FT-Transformer-
augmented feature representation, which enhances functional 
HAR by capturing dependencies between engineered features 
via self-attention. We also introduce the ArWISE dataset, a  
functional HAR dataset collected from hundreds of participants 
across multiple study cohorts3. 

We perform a comparison of machine learning models for 
functional HAR. Models tailored for atomic HAR are not 
directly included because they are not designed to handle 
functional activities observed in-the-wild. However, we adapt 
many of the technologies and include these as baselines for 
comparison. We demonstrate that our random forest classifier 
combined with FT-Transformer embeddings outperforms 
traditional approaches, including classical methods, deep 
learning methods for i.i.d. and time series data, and methods 
that utilize various approaches to pretraining. The LOOCV 
evaluation reveals that performance is impacted by the number 
of participants, but relative performance between methods 
remains stable. Furthermore, participant-based splits confirm 
that the FT+RF model generalizes across individuals without 
data leakage. Our experimental results also highlight the 
importance of integrating location and time features into the 
model to improve functional activity classification. 

Despite these advances, there are limitations in the current 
study. Our LOOCV results highlight that models perform worse 
when tested on new participants, necessitating the exploration 
of domain adaptation and minimizing the number of training 
examples needed through active learning. Our current approach 
incorporates motion, location, and time. However, additional 
sensor modalities such as heart rate, temperature, and speech 
are not utilized, which could further improve recognition. The 
current approach is also computationally costly. Real-world 
deployment of the methods will need to address battery 
constraints, sensor dropout, and hardware heterogeneity. 

VII. CONCLUSION 

This work advances the field of human activity recognition 
(HAR) by shifting the focus from recognizing atomic 
movements to identifying functional activities. Functional 
HAR enables the study of behavior patterns critical for health 
monitoring, intervention design, and population-level analysis.  
We introduce ArWISE, a set of labeled smartwatch data 
collected from 503 participants in real-world settings. The 
methods and dataset introduced in this paper contribute a 
valuable resource for advancing functional HAR research in 
diverse, in-the-wild scenarios. 

Future research will investigate methods to further fine-tune 
our models, improving them through additional pretraining, 
augmentation, and domain adaptation. While this approach 
currently processes data in the cloud and pushes labels to 
 

3 The dataset, software, and pretrained model are made available to the 
community at github.com/WSU-CASAS/ArWISE. 

devices as needed, future versions may streamline the 
components to fit on edge devices. 

Additionally, we will consider leveraging models of atomic 
movements to generate action-level labels for sensor data. By 
incorporating these fine-grained action labels into the feature 
vectors, we aim to improve the representation of functional 
activities and enhance HAR performance. This approach will 
provide a richer understanding of human behavior by linking 
low-level atomic movements with functional activities. 

This work represents a significant step toward robust and 
scalable functional HAR. By demonstrating the effectiveness of 
a FT-transformer-enhanced random forest model on a large 
complex dataset, we provide a foundation for future 
advancements in wearable sensor-based behavior analysis and 
mobile health. 
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