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Abstract

Generating a synthetic graph that is similar to a given

real-world graph is a critical requirement for privacy preser-

vation and benchmarking purposes. Various generative

models attempt to generate static graphs similar to real-

world graphs. However, generation of temporal graphs

is still an open research area. We present a temporal-

motif based approach to generate synthetic temporal graph

datasets including the core algorithm, and results from

two real-world use cases.

Introduction

Graphs are a natural and flexible representation of a set of

entities and the relationships among them. A static graph

represents a set of objects and a set of pairwise relations

between them. A temporal graph is a generalization of a

static graph which changes with time. Time can also be

modeled as a vertex or edge label, which makes temporal

graphs a special case of attributed graphs. Incorporating

time into the static graphs has given rise to a new set

of challenging and important problems that can not be

modeled as a static-graph problem [6]. Many domains such

as social networks, communication, transportation, sensor

networks, co-authorship networks, and procurements can

be naturally modeled as temporal graphs.

Many graph generative models are studied and devel-

oped to generate synthetic graphs. Random Model [4]

and Preferential Attachment Model [2] are classic graph

generative models. The Chung-Lu model provides a ran-

dom model to generate power law graphs [1] using an

input degree distribution. Recently Leskovec and Folout-

sos [5]presented the Kronecker model based on Kronecker

matrix multiplication to generate syntactic graphs that

replicate multiple graph properties. All such models at-

tempt to satisfy some global graph properties, but do not

guarantee the preservation of localized structural proper-

ties.
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This research presents a graph generative model that

preserves local temporal structures while generating syn-

thetic graphs. It defines some easy to compute temporal

atomic motifs which are used to define any real-world

graph. The core hypothesis of this research is that preserv-

ing local temporal-motifs is su�cient to generate synthetic

graphs that also exhibit similar global graph properties of

the corresponding real-world graph.

Structural Temporal Modeling

We define Structure Temporal Modeling (STM) as a pro-

cess of identifying temporal-motifs in the real-world graph.

We define some easy to compute atomic-motifs such those

shown in Figure 1 which can characterize any given real-

world graph. We guarantee that the motifs are found in

mutually exclusive fashion and we do not find overlapping

motifs. We define vertex-birth-time of a vertex as the

earliest arrival time of temporal edges associated with this

vertex. We define motif-birth-time as the earliest time

at which any edge of that motif has arrived. Using these

two definitions we compute the information content of a

motif as the number of new and old vertices associated

with the motif. This leads to multiple temporal-atomic-

motifs for a given atomic-motif. For example, in Figure 1

a triangle atomic-motif is expanded to 4 temporal-atomic-

motifs where 0,1,2, or 3 vertices are new (or re-used).

The six atomic-motifs in Figure 1 can generate up to 20

temporal-atomic-motifs.

For each temporal-atomic-motif we also compute its

formation-time which is the total time taken by the motif

to fully form. At the same time, we also compute average-

arrival-delay in generating each edge of the motif.

Distribution of such temporal-atomic-motifs is com-

puted for a given real-world graph. Motif arrival-rates

are computed by normalizing the distribution over the

entire duration of the input graph. This normalized dis-

tribution is used to generate its synthetic version and the

same distribution is also computed for the synthetic graph.

Variation in these two distributions is used as a metric to

compare quality of the synthetic graph.
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Figure 1: Atomic Temporal Motifs

Figure 2: Synthetic Communication Network

The generator component of the STM uses the distribu-

tion to iteratively generate all the temporal motifs using

arrival rates as generation probabilities. STM uses the

information content of the motifs to decide whether to

create new nodes or reuse existing nodes in the graph

at a given point of time. STM also uses formation-time

and average-arrival-rate to delay the formation of the

temporal-motif.

Experiments

We have developed a scalable framework using Apache

Spark [7] and GraphFrames [3] to compute the

distribution of temporal-atomic-motifs. We have

also developed a graph generator using Python

(https://github.com/lbholder/graph-stream-generator)

that takes the distribution as an input and generates a

synthetic graph. We present results from two domains:

social networks and communication networks. We were

able to model one million edge graphs successfully.

Figure 2 shows the temporal motif distribution of real

and synthetic snapshots of the PNNL internal commu-

Figure 3: Synthetic Social Network

nication network where each edge represents a phone

communication between two persons. Similarly, Figure

3 shows the temporal motif distribution of real and syn-

thetic Twitter graphs generated using the public API,

where each edge represents a Twitter mention by source

to destination. We experimented with two variations of

the synthetic graph generation, random node selection

and preferential node selection where a reused node is

selected based on its degree. As shown in Figures 3 and 2,

STM generates synthetic graphs similar to corresponding

real-world graphs. It is also quantitatively evident from

the very low absolute mean di↵erence value of the motif

probabilities as shown in Table below.

Random Degree

Social Network 3.7398e-07 4.5396e-06

Communication 4.4522e-06 5.3076e-06

Future Work

Future work will model multi-type graphs that increase

the number of candidate temporal motifs. We will address

this challenge.
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