
Feature Engineering for Supervised Link Prediction on Dynamic
Social Networks

Jeyanthi Narasimhan1, and Lawrence Holder1
1 School of Electrical Engineering and Computer Science, Washington State University,

Pullman, WA 99164-2752, USA

Abstract— Link prediction is an important network science
problem in many domains such as social networks, chem/bio-
informatics, etc. Most of these networks are dynamic in
nature with patterns evolving over time. In such cases, it
is necessary to incorporate time in the mining process in a
seamless manner to aid in better prediction performance. We
propose a two-step solution strategy to the link prediction
problem in dynamic networks in this work. The first step
involves a novel yet simple feature construction approach
using a combination of domain and topological attributes of
the graph. In the second phase, we perform unconstrained
edge selection to identify potential candidates for prediction
by any generic two-class learner. We design various exper-
iments on a real world collaboration network and show the
effectiveness of our approach.

Keywords: Dynamic Graph Mining, Supervised Learning, Link
Prediction, Feature Extraction, SVD

1. Introduction
One of the graph mining tasks is Relationship Predic-

tion or more commonly, Link Prediction (LP). It refers to
predicting the likelihood of existence of a link between
two entities of a network based on the existing links, node
attribute information and other relevant details [1]. Instances
of the LP problem can be found in application domains
such as sociology, bio-chemistry, and online social networks.
Communication networks can be studied under this context
to disclose existing but missing communication between two
people. Given the past network information of “follows”
relationships from Twitter, it is possible to predict the future
important person(s) in the network which is key to many
business tactics like viral marketing [2]. Generally, any
ecosystem, whether physical or abstract, can be mapped
as networks to study the relationship formation patterns,
and we are interested in finding an answer to the question:
“Is it possible to build features from the graph topological
measures and also time information in such a way that any
supervised learner is able to perform better on the LP task?"

The existing approaches to the LP problem using super-
vised learning use a direct feature construction approach
where each constituent element of a feature vector is found
by measuring a global or local graph/node/edge metric. Since
we are interested in dynamic networks, we offer a feature

Richard P. Brent

Judith A. Hooper

Year SPL DMP CN CKWS PA AA
1980 2 0 0.5 0 0.02 0.48

J. Michael Yohe

J.F. Traub

Richard P. Brent

Judith A. Hooper

Year SPL DMP CN CKWS PA AA
1980 2 0 0.5 0 0.02 0.48
1981 2 0 0.33 0 0.04 0.48

J. Michael Yohe

J.F. Traub

 1980

TFM
Potential Edge

 1981

Fig. 1: Time-Feature matrix (TFM) and a toy example
with real DBLP authors. SPL: Shortest Path Length, DMP:
Degree Mixing Probability (1), CN: Common Neighbors,
CKWS: Common Keywords, PA: Preferential Attachment,
AA: Adamic-Adar measure. Refer to Table 5 for related
details. J.Michael Yohe and J.F. Traub are yet to collaborate
during the years 1980 and 1981, so (J.Michael Yohe, J.F.
Traub) becomes a potential edge and its TFM is gathered
over years till it forms.

construction approach (Section 2) that is indirect in nature,
yet easy to compute and includes time as an inherent compo-
nent (referred hereafter as MetaFeatures). We also found
that the existing work (Section 5) restrict their prediction to
a specific set of nodes. For example, PathPredict [3] selects
authors based on the number of papers and limit the training
set to nodes that are directly reachable. We observe from
figure 3 (Section 4.1) that majority of the edges that form
are between initially unreachable nodes. Few other works
([4], [5]) restrict the nodes for potential edge prediction
to those seen in training years, but since we are looking at
dynamic graphs, imposing this constraint is not suitable here.
We have attempted to provide a generic solution with these
issues in mind. The contributions of this work include: 1)
Novel meta-feature vector construction for the LP problem
based on a well-established Linear Algebra technique. 2)
Events like node arrival, edge formation, and deletion, with
associated time information give rise to dynamic graphs, and
such graphs can grow or shrink over time. We show the
applicability of the meta-feature vector to dynamic graphs
through experiments (Section 4). 3) We design several ex-
periments to evaluate the above feature vector as a predictor
of future link occurrences and compare with the state-of-the-
art.

2. Model: Indirect discriminative feature
construction

Our motivation for working with simple graph topological
measures of a dynamic graph and using supervised learning
for the LP problem is discussed below. Firstly, we think
that there is still room for improvement in the homogeneous
graph approach as invariably existing approaches use heuris-
tics to work with only a small portion of the graph. Secondly,
an ensemble of graph topological features is observed to
be more effective for the problem at hand than using them
separately [3]–[5]. Lastly, the importance of discriminative
features in supervised learning cannot be stressed more, as
any powerful learning algorithm tends to fail when not fed
with good features. The necessity to combine time with the
above three requirements, leads to our design of a time-
feature matrix for meta-feature construction.

2.1 Features: An overview
Graph growth at the macro level is attributed to the node

and edge arrivals at the micro level with continuous evolution
of features. Each potential edge between any two nodes
that have been in the network for some time carries with
it what we call track/historical information (TI). This TI
is maintained in a matrix format with the time in rows
and static graph topological easy-to-construct measures in
columns. A comprehensive list of static features suitable for
the LP problem in general is given by [6]. Figure 1 shows
the feature matrix for a small evolving graph between two
specific authors from DBLP. We have used six features in
most of the experiments - Some of the experiments use fewer
features and their related details are explained in section 4.

Below is a brief overview of how each feature in this
work is computed. Let G be the given undirected graph and
N the set of all nodes at a given instant. Let x, y ∈ N be
the authors or nodes of interest in G. Let Γ(x) be the set of
neighbors of node x and D(x) its degree.

• Common Neighbors: CN(x, y) = |Γ(x)∩Γ(y)|
|N |

• Preferential Attachment: PA(x, y) = |Γ(x)|∗|Γ(y)|
|N |

• Adamic-Adar: AA(x, y) =
∑

z∈Γ(x)∩Γ(y)
1

log|Γ(z)|
• Common Keywords: After stopping and stemming [7]:
CKWS(x, y) = |xkws∩ykws|

|xkws∪ykws|
• Degree mixing probability: Adapted from Net-

workx [8]. Defined as the joint probability of degrees
of two nodes under consideration. For any two degrees,

Table 1: Feature derivation from a Time-Feature Matrix
(TFM). In column 2, 7 := 6 (features) + 1 (time)

Graph growth-Span TFM Shape Constructed Vector
1 (second/minutes/. . .years) 1×7 1×6
2 (second/minutes/. . .years) 2×7 1×6
3 (second/minutes/. . .years) 3×7 1×6

Fig. 2: Typical supervised framework for solving the LP
problem. Approaches differ predominantly in the way of
subsetting the nodes for edge prediction. This leads to
analysis on an induced subgraph.

Di and Dj , this value is calculated as:

DMP (Di,Dj) =

∑
∀x

D(x)=Di

∑
∀y∈Γ(x)
D(y)=Dj

|(D(x),D(y))|∑
∀x

∑
∀y∈Γ(x) |(D(x),D(y))|

(1)
• Shortest Path Length: It is the shortest distance (in

hops) between any two reachable nodes in G.

2.2 Time-feature matrix (TFM): Theory
The novel meta-feature vector of our system is constructed

in two steps. In the first stage, a matrix of features is
calculated for each time unit and each potential edge as
shown in Figure 1. Such a matrix can also be viewed as a
Multivariate Time Series [9] holding the evolution of features
of a potential edge. In the second stage, we compute the
dominant right singular vector (meta-features) of the matrix
calculated in stage one, after slicing out the time column.
This way we convert multidimensional feature values to
single-dimensional ones. Refer to Table 1 for a prototypical
construction of feature vectors from the TF matrix. To see
why we take only the dominant singular vector, let us revisit
the SVD steps.

Any t × d real matrix A can be decomposed as A =
UΣV T , where U is a t×t orthogonal matrix whose columns
are the eigenvectors of AAT , Σ is a t × d diagonal matrix
with its diagonal entries in descending order (the diagonal
entries are σ1, σ2, . . .), and V is a d× d orthogonal matrix
whose columns are the eigenvectors of ATA. Let R(A)
be the row space of A and r(A) be its rank. From our
experiments, through the SVD of TFMs, we found that
irrespective of their shape (Table 1), r(TFM) = 1 and
σ1 >> σ2 ' 0. In such cases, the following holds true:

R(A) ⊆ av1 ⊂ <d, a > 0 (2)
dim(R(A)) = r(A) = 1 (3)

where V = [v1,v2, . . . ,vd], vi ∈ <d and dim is the
dimension of a vector space. It can be seen that the R(A)

Table 2: Highlights of LP using supervised learning. ∗Any
type of learning algorithm. +More than one dataset.

Highlights Classification
algorithm

Hetero-
geneous
network

Feature
construction

Dynamic
network Dataset

PathPredict Logistic
Regression X X × DBLP

[4] SVM-RBF × X × DBLP+

[5] Random
Forest

× X × Condmat+

MetaFeatures * × X X DBLP

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1991 1993 1995 1997 1999 2001 2003

%

Year

%bigcc
%diffcc
%samecc

Fig. 3: Positive edges (with TI) Vs CCs in DBLP. %bigcc:
proportion of positive edges that form in the BigCC, %diffcc:
proportion of positive edges connecting two different CCs.
Because of the affinity of BigCC with small CCs, %samecc
curve is seen merging with %bigcc.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

C
V
A
c
c

C
V
A
u
r
o
c

T
r
A
c
c

T
r
A
u
r
o
c

G
e
n
e
r
a
l
i
t
y

A
c
c

G
e
n
e
r
a
l
i
t
y

A
u
r
o
c

%

PathPredict MetaFeatures

Fig. 4: Performance of meta-features based on Table 3
settings. The measures are CV : 10-fold cross-validation
accuracy (Acc) and area under ROC (Auroc), Tr: Training
set acc and auroc, and generalization performance on test
years

is spanned by the first r columns of V , where r = 1 in our
case. This clearly indicates that despite the shape of a TF
matrix, all its rows are linearly dependent and they can be
replaced by the single basis vector, v1. By utilizing v1, we
get uniform lower-dimensional representation of all TFMs
independent of their shape. We have also come across cases
of an entire column being zero leading to a rank-deficient
matrix, and we discuss this in our future work section

We hypothesize and validate by experiments that this TF
matrix and its meta-features capture the discriminative infor-
mation necessary for LP when cast as a binary classification
problem. It should be noted that the time could be in any
unit: seconds, minutes, years, etc., but should be uniform
across all edges. Because of the SVD step, our method does
indirect feature construction as opposed to the related work.
In Table 1, for a graph of age t̆, we construct TFM for
all the potential edges. For those edges that appear during
t̆−th timestamp, we segregate them into one class and the
potential edges become the second class yielding a two-
class dataset. For these two classes of TFMs, we do feature
extraction as explained in the previous paragraphs.

3. Evaluation
The two-class formulation of the LP problem in existing

work [3]–[5] is given by Figure 2. Though our approach is
more general, applicable to both static and dynamic graphs,
for the sake of comparison, we replicated the experiments
of one of the above works [3], except for a small change
(discussed in section 4.1). We also used the same learning
algorithms and metrics to compare the performance. We
report our results on the DBLP [10] co-authorship network
and compare with PathPredict [3]. We did some experiments
for comparison with [4]and [5], but since these works do
not address the generalization issue, which is important for

us in a dynamic setting, we do not report the results here
for brevity - TFM’s performance was comparable with these
works as well.

3.1 Experimental setup
Implementation is done in Python(Weave) [11] and C/C++

and uses Networkx graph library, LAPACK and LIB-
SVM [12] tools for related operations. Since the code
involves multiprocessing routines, the execution is done on
a 16-core 3.6GHz machine.

DBLP statistics: For the years 1937 to 2012, there are
about 800K articles and 1.1M in-proceedings. The authors
and edges are 1.1M and 4.1M in number. In the full grown
graph, there are about 94K connected components and the
largest component has 84% of the total nodes. We construct
an undirected and weighted graph from this dataset for
feature extraction. The graph growth is dynamic, and we
allow for node and edge arrival, but not their deletion, hence
this graph grows over time monotonically.

4. Results and Analysis
We conducted a series of experiments (Sections 4.1, 4.2),

checking the generality and the skewed class distribution
suitability to compare our results with PathPredict. The num-
ber of features in the TF matrix differs for each experiment
and the reasons behind this are explained in the respective
sections. For the curious reader, we provide table 2 showing
the contrast between the link prediction solution strategies
referenced in this work that use the supervised learning
paradigm.

Table 3: Experimental Setup for Section 4.1
Train years Test Years Graph type

PathPredict 1989 - 2002 1996 - 2009 Subgraph
MetaFeatures 1981 - 1988 1985 - 1992 BigCC

 0

 0.2

 0.4

 0.6

 0.8

 1

1989 1990 1991 1992 1993 1994 1995

P
r
o
p
o
r
t
i
o
n

Year

Present
NotPresent

SameCC
DiffCC

Fig. 5: DBLP (89 - 02). Training set author join patterns.
Present+Notpresent = total #source authors at the end
of training years. Non-zero diffCC indicates many rank-
deficient TFMs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Accuracy AUROC

%

PathPredict MetaFeatures

Fig. 6: DBLP (89 - 02). Performance comparison based on
Table 4 settings. Accuracy and Auroc are calculated over the
years shown in Figure 5 by adding the individual timestamp
performance shown in Figures 7 & 8.

4.1 Experiment 1
Table 3 shows the differences in the setup between

MetaFeatures and PathPredict for this experiment. We use
the Logistic Regression implementation from LibLinear [13]
to use the same learner as PathPredict. The approaches differ
in the node selection process. While we do not restrict the
source and target authors when considering potential edges,
PathPredict picks close-to-prolific authors and their 2 or 3-
hop authors as targets (indicated as subgraph in the Table 3
as this essentially reduces the graph to a subgraph of those
nodes). BigCC in the table stands for the biggest connected
component based on longitudinal growth (restricted to nodes
in the bigCC of timestamp-1). To avoid negative entries
in the TF table when calculating the SPL, we restrict the
edges selection to bigCC. Implications of this are discussed
in detail in future sections.

The importance of the bigCC in this work is stressed in
Figure 3. The figure shows the pattern of edges that form
in the graph for which we were able to collect the TI in
relation to the connected components(CCs). It is clear from
this figure that as the graph matures over years the positive
edges form predominantly between two authors in the same
CC, and all those components eventually get merged with
the bigCC. As expected, the positive edges connecting two
different CCs diminish quickly in number, but are significant
in the initial stages. Hence, to accommodate all edges that
form, however to avoid negative entries, we chose the bigCC
based approach.

4.1.1 Results

Figure 4 shows cross-validation and training years accu-
racy, the area under the ROC curve and the model generality
performance on DBLP. As can be seen, MetaFeatures stay
close to current work in prediction despite our unconstrained
source/target author selection, i.e., we consider two authors

who are even more than 2 or 3-hops away for potential edge
prediction.

4.2 Experiment 2
Here we set out to compare training set prediction per-

formance between the two approaches, MetaFeatures and
PathPredict. Table 4 shows the experimental setup. At this
point, we would like to emphasize that it is common in the
literature [3]–[5] to restrict the performance analysis to just
training set based metrics like cross-validation accuracy. We
believe that it is important to measure a solution to the LP
problem by considering generalization performance as it is
always possible to get good results by over-training on the
training set. Whereas in experiment 1, we used 6 features
including SPL, because of the disconnectivity of authors of
potential edges, we had to remove the SPL feature from the
TF table in this experiment to avoid feeding negative values
to the SVD step. It is not only meaningless to have negative
entries in SVD, the result of such a decomposition is hard
to interpret since those negative values do not have physical
significance. Indeed, we enter negative values to indicate that
nodes are in different CCs and have a very large distance,
but since mathematically negative values are smaller than
their positive counter parts, their purpose is not served.

Refer to Figure 5 to see the proportion of authors of
potential edges joining the graph in different CCs during
the training years. Since we operate on growing graphs,
the present and notpresent represent the potential authors
that have joined the graph or not. The non-zero value of

Table 4: Experimental Setup. ∗: unconstrained node selec-
tion.

Train years Graph type Learner
PathPredict 1989 - 2002 Subgraph Logistic regression

MetaFeatures 1989 - 2002 ∗ Logistic regression

 67

 68

 69

 70

 71

 72

 73

 74

T1 T2 T3 T4 T5 T6 T7

%

Time stamp

sample1
sample2
sample3
sample4
sample5

Avg

Fig. 7: DBLP (89 - 02). Accuracy Performance of Meta-
Features over individual timestamps. Figure 6 shows the
overall behavior.

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

T1 T2 T3 T4 T5 T6 T7

Time stamp

Sample1
Sample2
Sample3
Sample4
Sample5

Avg

Fig. 8: DBLP (89 - 02). Auroc Performance of MetaFeatures
over 7 timestamps shown in Figure 5.

the DiffCC curve shows that in the beginning a number
of authors join the graph connecting different CCs. For
example, about 14% of total #source authors are present
in the graph in the year 1989. Those TFMs are of shape
7x5. Of those, about 78% are in different CCs. Owing to
the way we construct feature matrices, this is a significant
detail because for many potential edges this leads to rank-
deficient and sparse TFMs. The sameCC line in figure 5
represents the pattern of authors joining the graph in the
same CC. Thus, #present = #sameCC + #diffCC.

4.2.1 Results

Figures 7 and 8 show the training set performance of
MetaFeatures for the listed years. Since time information is
an inherent component of our model, the figure shows the
performance for each time stamp (in other words, potential
edges have different TI). T1 indicates timestamp 1. Of all
the edges of interest, we categorize the positive and negative
edges into 7 categories depending on the number of years of
information we collected on them. The five set of samples
shown are created by under-sampling majority class edges,
with positive edges (minority class) replicated each time
(totally 5), thus these samples have equal number of edges
from both classes in all the 5 subsets (this also reduces
bias and allows for broader range of majority samples
to be included in learning). For each sample, we set the
hyperparameters after 10-fold cross validation. The LP prob-
lem is an ideal case of the extreme-skew class distribution
based binary classification problem, and we conduct some
experiments to this end in Section 4.3. Refer to Figure 6
for overall comparison. With just 5 features, MetaFeatures
performs comparably (recall SPL is removed here). This
shows that choosing the right graph topological measure
helps to improve the performance. We plan to investigate
this in detail with more complex features.

4.3 Experiment 3

This experiment was designed to solve the LP problem
preserving its imbalanced nature. Figure 9 captures the acute
level of imbalance between the two classes of edges - those
that form (minority) and those that do not.

Traditionally, though the existing work recognizes this
problem as such, the solution strategies are invariably pro-
vided after random sampling (under- sampling) of majority
class samples - in this case, the edges that do not form. Both
the experiments 1 and 2 (sections 4.1 and 4.2) follow this line
of solving the problem with the TF table, but this experiment
was designed to see if retaining the original distribution of
classes helps for better prediction performance. Figure 10
shows that the positive edges are only a small portion of
edges that form (which we know is a negligible portion
of those that do not form). This indicates that a significant
portion of edges form because of exogenous reasons (e.g., an
author shifting to a different university) and their TI cannot
be collected. Of those positive edges, a small portion are
slings. In this work, we do not consider such edges for
prediction, as they do not include two separate authors. For
example, in figure 10, during the year 1990, of the total
number of edges that formed, only about 3.5% were not
slings and had TI associated with them.

Since we find various types of classification algorithms
used in conjunction with the LP problem like Bagging
with Random Forests [5] and SVMs with RBF [4], we
experimented with the polynomial kernel (Figure 12) in
combination with SVMs. The hyperparameters were set
based on 10-fold stratified cross validation experiments.
To make the SVM learner unbiased towards the majority
class, we did cost-sensitive learning with minority class
misclassifications highly penalized. We used LIBSVM for all
the trials under this section. The DBLP years we used were
from 1980 to 1985 and the metric is training set accuracy.
The class distribution is shown in Figure 11 (skewed class

 0.99986

 0.99988

 0.9999

 0.99992

 0.99994

 0.99996

 0.99998

 1

 1990 1994 1998 2002 2006 2010

P
r
o
p
o
r
t
i
o
n

Year

Fig. 9: DBLP over years. Increase in sparsity of the edges
in the graph. This directly controls the % of positive edges
with TI in Figure 10.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1990 1994 1998 2002 2006 2010

%

Year

%Edges %Self-loops

Fig. 10: DBLP. Fraction of edges that form with TI. Edges:
have two distinct authors. Self-loops: Single author papers.

distribution is apparent in the figure).
In addition to the 6 features discussed in section 4.1, we

also used communicability measure [8] in this experiment.
Because SPL and communicability are path-based measures,
we restricted our graph to the bigCC based longitudinal
growth.

4.3.1 Results
Figure 12 shows the individual class based accuracy.

Sometimes, we had to set the SVM hyperparameter C to
even 1000 with misclassification cost of pedges class to 100.
Though the accuracy values are high, we plan to investigate
further here with other years for two reasons: one, there are
variations in the results for the pedges case and two, it is
a well-known fact that a high C will overfit the data. The
accuracy for medges could be because of C or their sheer
count. The last two pairs of bars show the effect of increased
penalty to the minority class.

5. Related work
We broadly classify the solution strategies of the LP prob-

lem into 5 main categories: 1) Technique, 2) static/dynamic
graphs, 3) heterogeneous networks, 4) LP flavor (candidate
edges for prediction) and 5) the domain of application. Some
of the literature is discussed in Section 1 and throughout the

Table 5: Representative list of features in this and other
relevant work for Link Prediction using binary classification.

PathPredict
[3]

[5] [4] MetaFeatures

• Path Count
•Random
Walk
• Normalized
Path Count

• Degree
• Common
Neighbors
• PropFlow
• Preferential-
Attachment

• Sum of papers
• Shortest Distance
• Sum of
neighbors
• Second Shortest
Distance

• Shortest-path
length
• Preferential
Attachment
• Adamic- Adar
• Common
Keywords

paper. For a solution using a regularized matrix factorization
of the adjacency matrix of the graph to learn the latent
features using stochastic gradient descent, refer to [14]. This
solution is on static homogeneous graphs and domain of
application is generic, however they restrict the prediction
to nodes that are only two hops away which will not work
in scenarios shown in figure 3. Techniques that use spectral
theory [15] use graph kernels and model link prediction
as spectral transformation of the Laplacian matrix. This
approach is on static homogeneous graphs and works only
with the bigCC edges. One main issue with the matrix
methods ([14], [15]) is the difficulty in accommodating new
nodes. While most of the works concentrate on finding new
links, Huang and Lin [16] use a time series methodology to
find the repetitive links. MRIP [17] solves the problem on
heterogeneous networks and does temporal analysis, how-
ever their feature construction technique does not involve
time directly. Our work aligns with the solution strategies
that extracts proximity features from a homogeneous graph
to apply supervised learning, but differs from the literature
(Table 5) because we solve the problem for dynamic graphs.
The table also shows the list of features used in MetaFeatures
and in the related works. For a survey on the LP problem,
refer to [1], [18].

6. Conclusion and Future Work
We presented an indirect way of constructing feature

vectors encapsulating time and tested its suitability for
the LP problem framed in the binary classification setting.
Through various experiments, we could see that having a
correct set of features is important for better classification
performance. We found that many TF matrices have zeros
in an entire column, leading to singular matrices. This is a
direct consequence of potential edges forming by connecting
different connected components. We will have this problem
as long as we include path and neighbor based measures.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

P
r
o
p
o
r
t
i
o
n

Year

medges
pedges

Fig. 11: Class distribution over the years 1980 - 1985
showing dominance of negative edges, edges with TI that
never form (medges). Greater the age of the graph, larger
the skew in class distributions because of sparsity (Figure 9).
pedges: edges with TI that eventually form.

 0

 20

 40

 60

 80

 100

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
5
a

%

Year

medges
pedges

Fig. 12: Accuracy using MetaFeatures on skewed data.
Despite the imbalance in class distribution (Figure 11),
MetaFeatures perform well on the majority medges and com-
parably on pedges. 1985a: with higher penalty for minority
class misclassifications, shows improvement over no-penalty
case (1985).

MetaFeatures performed comparably in most of the cases
despite the unconstrained node selection, making it suitable
for generic link prediction problems in social networks.
Though we have predominantly aimed at comparing our
results with the past work in this paper, it is important to
note that even without any separate label acquisition period,
our model can still verify link occurrence in the future in
a pure dynamic setting. In that case, labels are acquired as
the graph grows, giving us a training dataset for any of the
future link predictions.

In our future work, in addition to verifying the perfor-
mance of MetaFeatures with dynamic graphs from other
domains, we plan to investigate the problem of rank-deficient
TF matrices. There are two ways by which this problem
could be addressed - one is to remove those features and
complement them with new feature(s) that are robust against
this problem (such a feature would have a non-zero value
irrespective of the presence of authors in different CCs) or
conduct experiments by segregating edges that connect and
do not connect CCs.

Acknowledgment
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. 1318913 and
1318957. The authors would like to thank the anonymous
reviewers for their constructive comments and suggestions.

References
[1] L. Getoor and C. P. Diehl, “Link mining: a survey,” SIGKDD Explor.

Newsl., vol. 7, no. 2, Dec. 2005.
[2] M. Richardson and P. Domingos, “Mining knowledge-sharing sites

for viral marketing,” in Proceedings of eighth ACM SIGKDD interna-
tional conference on Knowledge Discovery and Data Mining, 2002.

[3] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, “Co-author
relationship prediction in heterogeneous bibliographic networks,” in
ASONAM, 2011.

[4] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction
using supervised learning,” in In Proc. of SDM 06 workshop on Link
Analysis, Counterterrorism and Security, 2006.

[5] R. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives
and methods in link prediction,” in KDD, 2010.

[6] D. Liben-Nowell and J. Kleinberg, “The link prediction problem
for social networks,” in Proceedings of the twelfth international
conference on Information and knowledge management, ser. CIKM
’03, 2003.

[7] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media Inc, 2009.

[8] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy2008), Aug. 2008, pp.
11–15.

[9] K. Yang and C. Shahabi, “A PCA-based similarity measure for
multivariate time series,” in Proceedings of the 2nd ACM international
workshop on Multimedia databases, 2004.

[10] M. Ley. (1993) Dblp.uni-trier.de: Computer science bibliography.
[11] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001.
[12] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011.

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, 2008.

[14] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,”
in ECML/PKDD, 2011.

[15] J. Kunegis and A. Lommatzsch, “Learning spectral graph transfor-
mations for link prediction,” in Proceedings of the 26th Annual
International Conference on Machine Learning, 2009, pp. 561–568.

[16] Z. Huang and D. K. J. Lin, “The time-series link prediction problem
with applications in communication surveillance,” INFORMS Journal
on Computing, pp. 286–286, 2009.

[17] Y. Yang and N. V. Chawla, “Link prediction in heterogeneous net-
works: Influence and time matters,” in Proceedings of the 2012 IEEE
International Conference on Data Mining, 2012.

[18] L. Lu and T. Zhou, “Link prediction in complex networks: A survey,”
CoRR, vol. abs/1010.0725, 2010.

