
Abstract 

We describe a method of learning concepts from 
examples that are represented as a graph.  We 
use this method, implemented using the Subdue 
system, to find concepts when the training ex-
amples are embedded into a single connected 
graph, or supervised graph.  We demonstrate the 
technique using homeland security data. 

1. Introduction 
The ability to mine relational data has become a crucial 
challenge in security-related domains.  For example, the 
U.S. House and Senate Intelligence Committees’ report 
on the activities of the intelligence community before and 
after the September 11, 2001 terrorist attacks revealed 
the necessity for “connecting the dots” (2002); that is, 
focusing on the relationships between entities in the data, 
rather than merely on an entity’s attributes.  A natural 
representation for this information is a graph, and the 
ability to learn concepts from such graphs could lead to 
significant improvement in our ability to identify threats.  
 Graph-based learning systems typically require each 
training example to be represented as a disjoint graph. In a 
highly relational domain, however, the positive and negative 
examples of a concept are not easily separated.  We call 
such a graph a supervised graph, because the graph contains 
embedded class information which may not easily be sepa-
rated into individual labeled components.  Here we describe 
a method of learning concepts from supervised graphs. 

Our goal is to develop a concept learner that allows posi-
tive and negative examples of a concept to be intercon-
nected in one input graph.  This type of learning algorithm 
is useful for domains in which relationships can exist be-
tween individuals from different classes.  For example, con-
sider a social network in which we want to find relational 
patterns distinguishing various income levels.  Individuals 
of a particular income level can appear anywhere in the 
graph and may be related to individuals at other income 
levels, so we cannot easily partition the graph into separate 
cases without potentially severing the target relationships. 
 Traditional learning and data mining algorithms will en-
counter difficulties in preparing data for input when it is 
embedded in a single connected graph.  If individual graphs 

are required for each example, one can excise each example 
along with some amount of surrounding data to create a 
disconnected graph containing the example.  If the examples 
are close enough to each other in the original graph, then 
this surrounding data may overlap with the surrounding data 
of another example or even the example itself. This will 
result in some data appearing in more than one example 
graph.  There is also some risk of taking the wrong amount 
of surrounding data, either too large a region around the 
example causing extra data to be handled, or too small a 
region resulting in the loss of potentially vital information.  
In addition, it may be impossible to determine the “shape” 
of the area that should be excised. Since processing graph-
based data is very resource intensive, any redundant infor-
mation can have a drastic effect on performance. 

2. Subdue-EC 
Subdue was originally written to discover interesting pat-
terns in structural data (Cook and Holder 2000). Subdue 
finds patterns, or substructures, in data that is represented as 
a labeled graph. In accordance with the Minimum Descrip-
tion Length principle, the substructure that Subdue deems to 
be the most interesting is the one that yields the smallest 
descriptive length when it is used to compress the graph. 
 Subdue’s search through the space of candidate substruc-
tures terminates upon reaching a user-specified limit on the 
number of substructures extended, or upon exhaustion of the 
search space. Once Subdue returns the list of best substruc-
tures found, the graph can be compressed using the best 
substructure. The compression procedure replaces all in-
stances of the substructure in the input graph by single ver-
tices, which represent the substructure definition. Iterating 
over this process until the graph can no longer be com-
pressed will produce a hierarchical, conceptual clustering of 
the input data. 
 To allow Subdue to perform concept learning, all graphs 
that are positive examples are kept distinct from the graphs 
that are negative examples. The goal in this case is find sub-
structures which occur in as many positive examples as pos-
sibly but rarely or never in the negative graphs. However, 
this method of learning concepts is still not able to accom-
modate a single graph containing all of the examples. 

Learning Concepts from Intelligence Data Embedded in a Supervised Graph 

Joseph T. Potts, Diane J. Cook, Lawrence B. Holder, and Jeffrey Coble 
University of Texas at Arlington 

Arlington, TX 76019 USA 
{potts, cook, holder,coble}@cse.uta.edu 

Keywords:  knowledge discovery and dissemination, graph-based data mining, terrorism 



The new Subdue-EC algorithm processes supervised 
graphs, in which training examples can consist of single 
vertices or entire subgraphs. To embed examples and deter-
mine their class, Subdue-EC requires an additional vertex 
for each user-defined example labeled with the class name 
and connected to each vertex of the example by an edge. If 
an example is represented by an entire subgraph, a new rep-
ressentative class vertex is created and connected by an edge 
to edge vertex of the example subgraph. Note that Subdue’s 
initial state is much smaller because it is focused on in-
stances of the single vertex subgraph with the class label. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Example supervised graph. 
 
 When the graph in Figure 1 is processed by Subdue-EC 
the following substructures are discovered: D (neg), 
B→A→C (pos), C (neg), B→A→B (pos), and B (neg). The 
underlined vertex here is the one being classified. 
 

3. Detecting Security Threats 
As part of a government-sponsored program, a domain has 
been built to simulate the evidence available about terrorist 
groups and their plans prior to execution.  The domain con-
sists of threat and non-threat actors and groups, targets, ex-
ploitation modes, capabilities, resources, communications, 
visits to targets, and transfer of resources. 
The simulator generates a plan of starting a group, recruit-

ing members with needed capabilities, acquiring needed 
resources, visiting a target, and then exploiting the target.  
All data is generalized so that no specific names are used. 
For our experiments, graph vertices represent member 

agents from Threat and Non-threat groups.  Anyone with 
whom these agents communicate is also added to the graph 
(if necessary) and connected to the agent with an undirected 
“association” edge.  Each person may also be described us-
ing attribute and capability vertices. 

Our experiments were conducted on a large graph (graph1) 
consisting of 435,429 vertices and 763,504 edges represent-
ing 61,105 people as well as a smaller graph (graph2) con-
sisting of 217,901 vertices and 314,793 edges representing 
30,715 people.  The target THREAT class is members of 
known threat groups and NONTHREAT for all others.  

Our goal of the experiments was to see how well Subdue-
EC could classify threat and non-threat individuals, given 
training examples embedded in a single connected graph. 

We randomly sampled non-threat individuals to create a 
training set size equal to that of threat individuals.  For indi-
viduals that included one or more of the classifying sub-
structures, Subdue’s classification accuracy was 71.98%.  
At the point we terminated the algorithm, however, 2,304 
individuals remained unclassified. The greatest number of 
misclassifications were false positives / false threats, which 
is a preferred type of mistake for this problem. 

 
 
 
 
 
 
 
Figure 2.  A discovered substructure.  The individual on 
the left is a known threat. 

 
As seen in Figure 2, some of the substructures Subdue-EC 

discovers highlight an association between two individuals 
in addition to attributes and capabilities of the individuals.  
If the individuals to be classified needed to be separated into 
disjoint examples, the relationship may not have been 
found.  If we tried to extract individuals from the graph with 
a large enough neighborhood of information to find these 
discoveries, we would have to decide how much informa-
tion to retain.  The user cannot always know a priori how 
much of a neighborhood must be extracted in order to retain 
all potentially useful information. 

In a separate experiment, we evaluated the generalizability 
of Subdue’s results by using the substructures discovered in 
the first two experiments to classify individuals from a sepa-
rate dataset, graph2.  Of the new graphs, 69% contained the 
classifying substructures, and of these, 67% were classified 
correctly.  As can be seen, while the percentage of accurate 
classifications does drop for the new dataset, Subdue still is 
able to perform fairly well on previously-unseen data. 

As we have demonstrated, the Subdue-EC algorithm is ef-
fective in learning patterns to distinguish threats from non-
threats, especially when focusing on group members and 
communication between group members.  These results 
show the potential of this algorithm for helping intelligence 
analysts better identify and assess possible security threats. 
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