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Abstract. Networks are a fundamental and flexible way of representing various complex systems. Many domains such as
communication, citation, procurement, biology, social media, and transportation can be modeled as a set of entities and their
relationships. Temporal networks are a specialization of general networks where every relationship occurs at a discrete time. The
temporal evolution of such networks is as important to understand as the structure of the entities and relationships. We present
the Independent Temporal Motif (ITeM) to characterize temporal graphs from different domains. ITeMs can be used to model
the structure and the evolution of the graph. In contrast to existing work, ITeMs are edge-disjoint directed motifs that measure
the temporal evolution of ordered edges within the motif. For a given temporal graph, we produce a feature vector of ITeM
frequencies and the time it takes to form the ITeM instances. We apply this distribution to measure the similarity of temporal
graphs. We show that ITeM has higher accuracy than other motif frequency-based approaches. We define various ITeM-based
metrics that reveal salient properties of a temporal network. We also present importance sampling as a method to efficiently
estimate the ITeM counts. We present a distributed implementation of the ITeM discovery algorithm using Apache Spark and
GraphFrame. We evaluate our approach on both synthetic and real temporal networks.
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1. Introduction

Networks have been widely used to represent entities, relationships, and behaviors in many real-
world domains including power grids [10], social networks [22], microbial interaction networks [49],
corporate networks [51], the food web [19], and modeling adversarial activities [11]. These complex
systems do not show a temporal or structural continuum, but rather show a characteristic non-linear
dynamic behavior [4,52]. Count-based metrics such as the number of entities (i.e., nodes), the number
of interactions (i.e., edges), and the average connectivity of the entities in the network (i.e., degree) are
important measures that represent the population and the interaction density of the entities involved in the
network. However, these measures are limited in their ability to describe non-linear, localized, and dynamic
properties of the systems. To uncover structural, temporal, and functional insights of complex systems,
network motifs have been used extensively in recent years as they provide a tractable approximation of
the networks that can be measured and updated within given memory and compute constraints. Holme et
al. [15] define a library of motifs that can represent six fundamental interactions types in synchronous and
asynchronous communication [45], as shown in Fig. 1. In the case of synchronous communication, both
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Table 1
Temporal ordering of events

Event edge_id time:t edge:<source, edge type, destination>
E1 e1 0 <bob, rent, car>
E1 e2 10 <bob, driveTo, shopping mall>
E1 e3 30 <bob, starts, shooting>
E2 e4 10 <john, rent, car>
E2 e5 30 <john, driveTo, shopping mall>
E2 e6 0 <john, starts, shooting>

Fig. 1. Fundamental interaction types define by motifs.

participants are active and engaged, whereas, in the case of asynchronous communication, the receiver
may not be present when the sender initiates the message. In addition to the structure of a graph, [8,25],
the motifs can also measure temporal patterns in a graph. Recent temporal motif-based approaches [17,40]
count all the isomorphic instances of a motif that are formed within a given duration, and use the count
to characterize the graph. In addition to the global temporal patterns of the graph, it is also desirable to
discover the local temporal evolution of the graph which is important for many domains such as social
networks, communication networks, and terrorism activity knowledge graphs. Table 1 shows a notional
example of two events. Both the events that take 30 time units to form and can be represented as star
temporal motifs but {e1, e2, e3} and {e6, e4, e5} differ in the order they are formed. Such an ordering
of events is a critical piece of information to measure the spread of misinformation in social networks,
packet switching in communication networks, etc.

We present the Independent Temporal Motif (ITeM) as the elementary building block of temporal
networks. The core contribution of ITeM is an unsupervised, temporal motif based graph characterization
approach that encodes temporal ordering of the edges, in addition to the structure of the motif. Another
research contribution of ITeM is the use of edge-disjoint (or Independent) motifs to characterize the
network. In contrast to the count of isomorphic instances used in [17,40], ITeM better characterizes a
network because it contains more information about the structure and temporal evolution of the network
which is useful to measure the resilience of a network topology such as communication or power-grid
network.

The rest of the paper is organized as follows. Section 2 presents related work and highlights out research
contributions of this work. Section 3 lays out various definitions. We start by defining Atomic Motif and
extend it to Temporal Motif and Independent Temporal Motif. We also define various ITeM-based metrics
used to characterize salient properties of a temporal graph. We present our core approach and distributed
algorithms in Section 4. Section 5 shows our experimentation with synthetic and real-world datasets to
summarize the temporal networks and measure their similarity. Section 6 presents conclusions and future
work.

2. Related work

Extensive research has been done on the appropriate definition of network motifs [37,53] and their
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application to various network analytical tasks. Cao et al. [8] use network motifs to define the network
backbone, which is a collection of relevant nodes and edges in the large-scale network. They define a
motif-based extraction method to extract the functional backbone of the complex network. The functional
backbone is indicative of certain functional properties of the network that cannot be explained by
centrality-based backbones. Similarly, Shen et al. [49] use a weighted motif to cluster microbial interaction
networks. Network motifs can also be used to identify the exchange of emotions in online communication
networks, such as Twitter [25], using emotion-exchange motifs. The emotion-exchange motifs containing
reciprocal edges manifest anger or fear, either in isolation or in any combination with other emotions.
Conversely, positive emotions are characteristic of one-way motifs. Jin et al. [18] define TrendMotif that
describes a recurring subgraph of weighted vertices and edges in a dynamic network over a user-defined
period. The TrendMotif can indicate the increasing and/or decreasing intervals for the weighted vertices
or edges over the time period. Borgwardt et al. [7] extend pattern mining on static graphs to time series of
graphs where each graph has the same set of vertices and observed addition and deletion of edges.

A temporal network is a generalization of a static network that changes with time. Many system
modeling approaches model time as an attribute of the entity or the interaction, which makes temporal
graphs a special case of attributed graphs. We interchangeably use network and graph in this paper.
Incorporating time into static graphs has given rise to a new set of important and challenging problems
that cannot be modeled as a static graph problem [21,36]. Network motifs are also used to visualize and
summarize large dynamic graphs [32]. TimeCrunch [46,47] discovers five different temporal patterns of
some common substructures and summarizes the network in terms of a sequence of substructures that
minimizes the Minimum Description Length (MDL) cost of describing the graph. Adhikari et al. [2] use
local substructures to condense a temporal network. Liu et al. [29] propose a Bayesian framework to
estimate the number of temporal motifs in communication networks. A majority of the prior research
does not account for the temporal evolution of the motif. Recent work [40] defines δ-temporal motif as an
elementary unit of the temporal network and provides a general methodology for counting such motifs.
It computes the frequency of overlapping temporal motifs, where one interaction can be part of more
than one temporal motif. In a δ-temporal motif, all the edges in a given motif have to occur inside the
time period of δ time units. Li et al. [28] propose temporal Heterogeneous Information Networks (HIN)
and develop a set of algorithms to count HINs. Aparício et al. [3] use orbit transitions to compare a set
of temporal networks. Dynamic Graphlet (DG) [17] extends static graphlets to analyze structure and
function of molecular network. DG distinguishes graphlet from motif as induced subgraphs that are not
defined based on the statistical significance of the substructure. DG defines orbit in a graphlet to measure
automorphism in the graphlet. Sarkar et al. [43] use the temporal motif to understand information flow
in social networks. Liu et al. [31] define event-pairs and use a library of temporal motifs to focus on
behavior of intermediate events and temporal correlations.

We propose the Independent Temporal Motif (ITeM) as the elementary building block of temporal
networks. In contrast to the related work, ITeMs are edge-disjoint temporal motifs that provide insight
into the temporal evolution of a graph, such as its rate of growth, neighborhood, ordering of temporal
edges, and the change in the role of a vertex over time. The independence of the temporal motif leads
to mutually exclusive motif instances by restricting each edge to participate in only one temporal motif
instance. We use a set of temporal motifs that are simple to compute but at the same time representative
of temporal, structural, and functional properties of the network. We also define properties to measure
the temporal evolution of the motifs, which informs the rate at which motifs are formed in the network.
In contrast to previous work, no limit is put on the δ time window of the motif, but it can be restricted
optionally. We provide algorithms to compute the independent temporal motif distribution of a given
graph. Additionally, we also provide a new distributed implementation using the Apache Spark graph
analytic framework.
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Table 2
Symbols and their descriptions

Symbol Description
T Temporal graph
Gi ith window
t Total number of windows
K Set of Atomic Motifs
mk kth Atomic motif
mkl lth Temporal motif of kth atomic Motif
T Set of time-steps associated with motif edges
M Motif instance
M̂ ITeM instance
vk Number of vertices in kth motif
V̂k # unique vertices in ITeM instances of kth motif
I Set of Importance values for each window
Ii Importance of ith window
z Temporal motif distribution for a given T
d Order of a motif
o Orbit of a motif

3. Definitions

We present the ITeM-based approach to characterize a temporal network. In the following sections,
we present definitions and algorithms used by ITeM to model a temporal network. We also review the
Maximum Independent Set (MIS) problem, which is a subproblem of the proposed algorithm. MIS
has been proved to be an NP-complete problem, and we present a heuristic-based approach to finding
the lower bound on the ITeM frequency [33]. We also outline a sampling method to estimate the true
frequency of a temporal motif in the network. The sampling approach is based on the importance of the
sampled network [30].

A temporal graph is a specialization of a static graph, where each edge of the static graph appears
at a time unit such as second, day, year, etc. Various representations of temporal graphs that are useful
in different scenarios are proposed [35]. We use a window-based representation, where each window
corresponds to a temporal sub-graph between two time-steps.

Definition 1. Temporal Graph: A temporal graph T is an ordered sequence of graphs T = G1, . . . , Gt,
indexed by a window id i = 1, . . . , t. We define Gi = (Vi, Ei), where Vi and Ei denote the vertex and
edge sets, respectively, in the window i, arriving since the window i− 1. We say the temporal graph T is
on vertex set VT = V1 ∪ · · · ∪ Vt and edge set ET = E1 ∪ · · · ∪ Et.

This definition allows for the representation of a large graph with a single window. It is useful for
datasets that are small in size and cover a small period of time.

3.1. Atomic motif

Atomic motifs are small subgraphs that serve as interesting indicators for complex networks. They can
reveal patterns of association among entities in the network. Figure 2 shows a library of atomic motifs
used in the current work. A k-order motif is defined by a subgraph with k vertices. Lower-order motifs
such as isolated vertex (order d = 1), self-loop (d = 1), and isolated edge (d = 2) are examples of fringe
motifs as they have less (sometimes zero) connectivity to the rest of the network. Whereas, higher-order
motifs such as wedge (d = 3), triangle (d = 3), and square (d = 4) are an example of core motifs, which
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Fig. 2. Atomic motifs.

have been found to constitute a major fraction of real-world graphs. Our experimentation shows that
the relative frequencies of fringe and core motifs in a temporal network can be used to compute graph
similarity.

We can define atomic motifs of any number of vertices and edges, but the larger motifs are more
difficult to search for in a network due to the intractability of the subgraph isomorphism, leading to an
exponential increase in the runtime. Previous work shows that the computational cost of motif counting
increases exponentially with k in O(|V |)k [50]. Conversely, smaller atomic motifs are easier to find and
yield better dividends in terms of modeling temporal and structural characteristics of the graph.

We limit our motif library to 4-order motifs. The selection of d-order motifs to include in the search
library has been influenced by previous research in this area, functional interpretation of the motifs
in real-world domains, and computational pragmatism. In addition to the higher-order motifs (d >
2), we also make use of a few fringe motifs that provide insight about a complex network that is not
captured by such higher-order motifs. m1 and m2 correspond to isolated vertices and isolated edges
in the network that are not part of any higher-order motif. An abundance of such motifs is a clear
indicator of a sparse, disconnected state of the network and is important to model some domains, such as
power-grids [12]. Similarly, m3 and m4 correspond to self-loop and multi-edges between the same set of
entities. Frequencies of such motifs show important functional properties of the network and can be used
to convert it into a smaller weighted network, where the self-loops and the multi-edges are converted
into vertex and edge weights, respectively. At the same time, they also contribute to the combinatorial
explosion of the higher-order motifs. The current set of motifs also allows us to analyze multiple domains
without mining important subgraphs specific to that domain. While such subgraphs may better represent
the domain, they require time and data to discover and would need to be limited in size to avoid the search
complexity. We focus on using ITeM distribution for various downstream graph applications such as
summarization, generation, and classification.

Dyads and triads are the most used motifs to model complex networks. Larger acyclic and dense
patterns do not uniquely explain different phases of temporal diffusion, whereas both the triads and
linear chains do a better job [43]. Motifs such as m5 and m6 are examples of feed back and feed
forward loops [5] and are fundamental to understanding transcriptional regulation networks [34], social
networks, and biological systems. Adversarial activities exhibit patterns such as m7 and m9 among
groups of adversaries, representing interactions such as communications and procurements [11]. m7

is also found on or around structural hubs in brain networks [16]. The simple 4-cycle motif m8 is an
easy to find and informative structure. Star motifs m10 and m11 are ubiquitous in many social networks.
Two-hop paths such as m12, m13, and m14 are essential to understanding air-traffic patterns [5] and
procurement patterns [11]. Directed wedges such as m12 and m13 are also fundamental building blocks
of bipartite graphs, which by definition do not show any triad or 4-cycle motifs. We also define residual
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Fig. 3. Example input graph.

edge motif m15, which is a single edge, 2-vertex motif that represents instances of the interactions that
are not discovered as part of any higher-order motif pattern and can be generated using a randomized
network. The residual edge motif m15 differs from isolated edge motif m2. An isolated edge motif m2 is
disconnected from the rest of the graph and the number of m2 instances is a characteristic of the domain
represented by the temporal graph. It is searched before any higher order motif is searched in the graph.
In contrast, m15 represents the leftover edges in the graph. At the end of the search order, these are not
discovered as part of any larger motif. So the number ofm15 instances depends on motif search algorithm.
Figure 3 shows an example graph to illustrate atomic and temporal motifs observed in real-world graphs.
Every edge in the input graph can be represented as a triple < source_id, destination_id, edge_time >
and describes a temporal interaction between source_id and destination_id at a time (edge_time > 0).
As shown in Fig. 3, the edge < 11, 12, 1016 > is an example of a temporal edge between nodes 11 and
12 at a time = 1016. This edge is discovered as m2 since it is disconnected from the rest of the input
graph. Whereas, edge < 10, 17, 1025 > is never discovered as a m2 but it may be a residual edge if it is
not part of any other motif type around nodes 10 and 17.

3.2. Temporal motif

Definition 2. Temporal Motif: A Temporal MotifMt = (V,E, T ) consists of a connected graph with
time-steps on edges where:
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– V is a set of vertices of the motif.
– E is a set of edges e ∈ E, e: (u, v, t), u ∈ V, v ∈ V, t ∈ T where T is a set of time steps associated

with motif edges.
– Edges have a temporal ordering such that for an edge e1: (u1, v1, t1) and e2: (u2, v2, t2) if t1 < t2

then e1 arrives before e2.

A Temporal Motif is a specialization of the atomic motif, where every interaction between two vertices
occurs at a specific time-step. The time step te of an edge e defines a temporal ordering of the edge
within the temporal motifMt. However, it does not correspond to the actual time of the interaction in
the temporal graph. Using this definition, we extend the atomic motif to model its temporal evolution
in terms of size and structure. Characterization of the temporal network using a set of static motifs can
be misleading and inaccurate because the static motifs fail to capture the temporal properties of the
network, such as the scale at which transactions occur [5], burstiness of the transactions, and temporal
dependency among the set of transactions. Additionally, many temporal systems are characterized as a
dense multi-graph, where a pair of entities share many temporal transactions as the network evolves.
This poses additional combinatorial complexity challenges beyond discovering structural motifs in the
network. Figure 5 shows a set of temporal motifs used in this work. We extend the atomic motifs defined
in Fig. 2 and measure two additional properties of a sub-structure using a temporal motif. Firstly, it
measures the temporal ordering of the edges that informs the rate at which local interactions occur in a
temporal graph. It also measures the change in the size of the temporal graph, in the number of nodes, by
categorizing the motif nodes into two states: new and reused. Neither of these properties can be measured
using atomic motifs since they don’t encode edge_time and node state. Sections 3.3.1 and 3.3.2 provide
concrete examples and more detail about using these properties.

3.3. Independent temporal motif (ITeM)

Schreiber and Schwobbermeyer [44] describe three different ways to measure the frequency of any
pattern in a graph. They categorize them as F1, F2, and F3 concepts. In the context of motif computation,
F1 includes every occurrence of a motif instance without any restriction, such as reusing a vertex or
an edge while computing the frequency of motif instances. Paranjape et al. [40] use this definition to
compute overlapping δ-motif frequencies. F2 and F3 concepts put restrictions on the reuse of a vertex or
edge. F2 is an edge-disjoint concept and does not allow the reuse of an edge in more than one instance of
the motif. Similarly, F3 is more restrictive as it is a vertex and edge-disjoint concept and does not allow
reuse of any vertex and edge in more than one instance of the motif.

A major contribution of our work is the ITeM, which is an edge-disjoint temporal motif such that no
two motif instances share any edge between them. ITeM is different from the temporal network modeling
approaches mentioned in the related work, which use overlapping motif instances where some of them
can share any number of edges. Overlapping motif instances can be used to model a network where
it is common to have nodes and edges participate in multiple functional processes such as biological
networks [9] but fails to model a network where each edge represents one transaction between two
entities as in communication and financial networks. Independent motif instances capture a more accurate
state of the network as no two transactions are part of any two motifs. Figure 4 shows a set of ITeM
instances discovered for the input graph shown in Fig. 3. ITeM provides a lossless characterization of the
input graph and can be used to reconstruct the input graph. Algorithms presented in Section 4 use the
order defined in Fig. 5 to discover ITeM instances. ITeMs also define the temporal ordering of the edges
within a motif. Such an ordering is independent of the actual timestamps used to define the temporal
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Fig. 4. ITeMs for example input graph.

edges. This flexible approach allows us to use ITeMs with different granularities of the temporal graph.
Additionally, for a temporal network, ITeM can be used to model the rate at which the network grows
as it distinguishes between adding a transaction using new nodes to the network and reusing them for
multiple future transactions. Overlapping instances fail to capture this phenomenon as they compute all
the isomorphic instances of a motif type. This restriction also poses a greater complexity issue as finding
temporal motifs is proved to be an NP-Complete problem [30]. In the following sub-sections, we define
some key concepts used by ITeM to model a temporal network.

3.3.1. Vertex birth-time
We define the birth-time of a vertex in the temporal network as the time of the first transaction involving

the vertex. The birth of a vertex increases the network size by one vertex. For the rest of the life of the
network, that entity is treated as reused and it never increases the network population.

3.3.2. Structural contribution
Structural Contribution of an ITeM instance is a measure of the growth in the graph size as a result of

adding the instance. The Structural Contribution of an independent temporal motif in terms of the number
of edges is always equal to the number of temporal edges in the temporal motif. Figure 5 shows a set
of temporal motifs and their structural contributions. As shown in Fig. 5, every instance of m62 adds
three new temporal edges to an existing network. The structural contribution in terms of the number
of vertices is impossible to measure using static atomic motifs because an atomic motif instance fails
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Fig. 5. Library of temporal motifs used in this work.

to distinguish between the introduction of a new vertex to the network and reusing an existing vertex.
Temporal motifs are required to encode this information to model the size and structure of the graph as
it evolves. As shown in Fig. 5, every instance of the temporal motif m62 adds only one new vertex to
an existing network. Whereas, every instance of the temporal motif m60 adds three new vertices to the
temporal network.

3.3.3. Motif orbit
An orbit of a motif is defined as distinct positions in which a vertex can appear within the motif. An

o-orbit motif is defined as a motif with o distinct vertex positions. A motif of d nodes can have maximum
d orbits depending on its structure. A directed edge is a simple example of 2-orbit motif as a vertex can
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have two distinct positions: source or destination. As shown in Fig. 2, star motifs m10 and m11 have two
orbits each: center and periphery of the star. Whereas m5 has just one orbit but m6 has three different
orbits. The orbit of a vertex in a motif encapsulates its functional role within the motif. A combination of
structural contribution and a change in the orbit of vertices allow us to model the evolution of a network
without measuring the frequency of every automorphic instance. Graph automorphism is a measure of
the symmetry of a structure. It is defined as a mapping from the vertices of a given graph T to itself.

3.3.4. Independence
We also define Independence of a temporal motif as a measure of its uniqueness in a given temporal

graph. The independence can be measured for temporal motifs, temporal edges, or vertices of the temporal
graph. The edge-disjoint concept defined above leads to maximal independent temporal edges because
every edge has a bijection to the set of independent temporal motifs. We define the independence of a
temporal motif and a vertex as follows:

Definition 3. Motif Independence: For a given temporal motif mk, the independence of the motif is
defined as a ratio of the number of ITeM instances to the number of overlapping motif instances.

DMk =

{
|M̂k|
|Mk| , if |Mk| > 0

0, otherwise

where |M̂k| is the total number of ITeM instances, and |Mk| is the total number of motif instances
(|Mk| > |M̂k|).

This frequency-based metric identifies unique temporal motifs in the graph. Highly independent motifs
exhibit the lower average cost of finding isomorphic combinatorial instances because of their uniqueness.

Definition 4. Vertex Independence: For a given temporal motifmk, independence of the involved vertices
is defined as a ratio of the number of unique vertices in ITeM instances to the maximum number of
vertices possible in those instances.

DVk =

{
|V̂k|
|Mk∗vk| , if |Mk| > 0

0, otherwise

where |V̂k| is the number of unique vertices in the ITeM instances of the kth motif, |Mk| is the total
number of motif instances, and vk is the number of vertices in the kth motif.

Temporal motifs with high vertex independence lead to high structural contribution, whereas low
vertex independence leads to co-located independent temporal motifs with a higher number of shared
vertices among them.

4. Approach

In this section we present the algorithm to count ITeM frequency. We also present a variant of it using
window-based Importance sampling.

4.1. Algorithm to count ITeM frequency

Figure 6 shows a simple flow diagram for ITeM discovery. The ITeM discovery process takes a temporal
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Algorithm 1: ITeM (T,K)
Data: T : Temporal Graph
Data: K: Set of Atomic Motifs
Result: Mn: Independent motif instances

1 foreach mk ∈ K do
2 M ← getMotifInstances (mk, T )
3 Mn ←Mn∪ getITeM (M)
4 end
5 return Mn

Fig. 6. ITeM discovery algorithm flow diagram.

graph and a library of atomic motifs as input and iteratively measures the count and temporal evolution of
the motifs. ITeM is a simple and efficient approach to graph characterization because of an abundance of
small motifs in real-world systems. Algorithms 1–3 present the pseudocode to find independent temporal
motif instances in a given temporal graph. Algorithm 1 inputs a temporal graph and a set of atomic motif
types to discover as shown in Figs 3 and 2 respectively. Line 1 discovers all overlapping motif instances
of a given motif type mk. We generate all the temporal motif types corresponding to mk (Fig. 5) and use
GraphFrame [13] to discover the overlapping temporal motif instances. Overlapping motif discovery is a
run-time bottleneck and GraphFrame provides optimized motif discovery using graph-aware dynamic
programming algorithms. It also provides a simple Domain-Specific Language (DSL) to express all the
temporal motifs. Algorithm 2 inputs a set of overlapping temporal motif instances discovered in Line
1 and returns ITeM instances (as shown in Fig. 4). We use the temporal ordering of the edges to define
L(m), a lexical representation of the motif instance. The lexical representation is used as a vertex label
to construct a motif overlap graph H . The motif overlap graph H is an abstract graph that represents
clusters of motif instances sharing at least one edge in the input graph T as defined in Definition 1.
Lines 2–6 map an edge and its associated set of motif instances. Lines 8–10 create a set of vertices Hv

in the abstract graph. Lines 12–16 construct an edge-list He using all the motifs that share a temporal
edge in the input graph. He is constructed by creating an edge in the abstract graph H for every shared
edge in the input graph T . He and Hv are used to construct the abstract graph H on Line 18. The final
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Algorithm 2: getITeM (M )
Data: M : All motif instances
Result: Mn: Independent motif instances

1 /* Create a mapping EM between an edge e and all associated motif instances. L(i)
is the string representation of a motif instance i. */

2 foreach i ∈M do
3 foreach e ∈ i do
4 EM(e)← EM(e) ∪ L(i)
5 end
6 end
7 /* For every motif instance label i, create a vertex in the overlap graph. */
8 foreach i ∈M do
9 Hv ← Hv ∪ L(i)

10 end
11 /* Create an edge in the overlap graph, between every motif-instance label pair

(lr, lr+1) that share an edge e in the input graph. */
12 foreach e ∈ EM do
13 foreach (lr, lr+1) ∈ EM(e) do
14 He ← He ∪ (lr, lr+1)
15 end
16 end
17 /* Create the motif overlap graph */
18 H ← G(Hv, He)
19 /* Find non-overlapping temporal instances */
20 Mn ←MaxIndSet(H)
21 return Mn

Algorithm 3: MaxIndSet (H)
Data: H: An undirected abstract graph
Result: I: Maximum Independent set of vertices

1 /* Set every vertex in its own Independent Set */
2 foreach v ∈ Hv do
3 Iv = L(v)
4 end
5 repeat
6 send Iv : v ∈ Hv to every u ∈ Neighbor(v)
7 receive Iu for every u ∈ Neighbor(v)
8 update Iv by the lowest Iu received
9 until Iv does not change;

10 /* Get Independent Set as unique values of Iv */
11 return unique(I)

result is computed using Algorithm 3 on Line 20, which uses a distributed Maximum Independent Set
implementation to compute the ITeM instances. The ITeM instances represent a set of edge-disjoint motif
instances in the input graph. Since finding matches to temporal motifs is proved to be an NP-Complete
problem [30], We use Luby’s Algorithm [33] to discover ITeMs which provides a lower bound on the ITeM
frequency.

Algorithm 3 presents the pseudocode of a distributed implementation of the MIS algorithm. We use
Pregel API, available in Apache Spark, to implement Luby’s Algorithm [33]. We initialize all vertices
in their own independent set as shown in lines 2–4. At lines 5–9 of Algorithm 3, each vertex exchanges
messages with its neighbors and updates its independent set value based on the minimum values received
from all neighbors. This process stops when no vertex in the graph changes its independent set.
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4.2. Complexity analysis

Performance of Algorithms 1–3 is influenced by different structural properties such as degree distribu-
tion and clustering of a real-world graph. Worst-case performance is observed for complete large graphs,
but the real-world graphs are not fully connected and instead show domain dependent characteristics
such as power-law degree distribution, low clustering coefficient, and shrinking diameter as the graph
evolves. For the maximum number of edges E in a given window, the Algorithm 1 has O(|E|2) space
and time complexity, although for real-world graphs it is constrained by the factor of maximum motif
size d. We also extract multi-edges from the input temporal graph which leads to space and run-time
improvements. This leads to Ω(dE/de) space complexity to discover overlapping instances at line 2
of Algorithm 1. Similarly, Algorithm 1 has O(|V |d) time complexity [50]. Algorithm 2 creates a huge
overlapping graph as shown in lines 12 to 18. The worst-case space complexity for a fully connected
graph is O(|E|4), but due to optimizations in Algorithm 1, Algorithm 2 has O(|E|2) space complexity.
The approximate Algorithm 3 uses graph message-passing techniques to identify independent sets in
the overlapping graph and has O(log(n)) run-time complexity [33] that leads to O(log(|E|)) run-time
complexity for Algorithm 3. The overall space and run-time complexities for ITeM discovery are O(|E|2)
and O(k ∗ log(|E|)) respectively, for total k motif types shown in Fig. 5.

4.3. Importance sampling to count ITeM frequency

Our approach includes three major algorithmic components: searching for overlapping temporal atomic
motifs, finding independent temporal motifs, and computing information content and temporal evolution
of such motifs. Out of the three components, finding independent temporal motifs is an NP-Complete
problem, and we use a heuristic to find a lower bound of the actual count. As explained in the previous
section, we construct a motif overlap graph where every vertex is a motif instance and an edge between
two vertices exists if the corresponding motif instances share an edge in the original temporal graph
T . This abstract formulation may lead to a highly-cliqued abstract graph, which is a characteristic of
various real-world domains, such as a social network. A highly-cliqued abstract graph leads to excessive
message-passing in the distributed computing environment. To address this, we use an importance based
sampling approach to approximate the F2 motif frequency computation.

Importance sampling for motifs is presented by Liu et al. [30]. The importance sampling is based on the
assumption that each distribution has some interesting or important regions and the samples drawn from
those regions must be normalized to get an unbiased estimate [38]. Window-based importance sampling
splits the time series dataset into multiple temporal windows and performs computation on each window.
We create window graphs with equal temporal window size, each with a different number of edges within
the window. Each window is assigned an importance, based on the fraction of all the edges present in the
window. The importance is used to normalize the computed metric across all randomly-selected windows.
The normalization reduces the overall variance for real-world domains that do not show a burst. The
current approximation approach does not model such anomalies in the ITeM distribution but allows us to
model the evolution of a network as shown in Section 5. Future work will address this challenge using an
importance decay approach that gives more importance to recent windows. We compute the distribution
of all temporal motifs present in the window graph. At the end of all the windows, we compute the
weighted average of all the distributions, which gives a lower bound estimate of the distribution that can
maintain a relative error tolerance of 5% in the count [30].

For a given temporal graph T with t windows, the importance vector I is an ordered sequence of
window importance Ii: I =< I1, I2, . . . , It−1, It > where the Ii is defined as: Ii = |Ei|

|ET | where Ei is the
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number of edges in a window i and ET is the total number of edges in the temporal graph. For a given
motif mk, the expected motif frequency zk in the temporal graph can be computed from the frequency
∆ki of the motif in the ith window with importance Ii as:

fki =
∆ki

Ii
and zk =

1

t

t∑
i=1

fki

We also define a random variable Xi ∈ {0, 1} that selects a specific window in the entire population.
The expected frequency zk is computed as:

zk =
1

tx

tx∑
i=1

Xi ∗ fki

where tx is the number of windows selected (Xi = 1) for the ITeM disovery. The ITeM distribution z
for a given temporal graph is the distribution of all such temporal motifs over the window population.
z =< z1,z2, . . . ,zK > where |K| is the total number of motifs.

5. Experiments

To evaluate the performance and scalability of our approach, we analyzed a rich set of synthetic
and real-world temporal datasets. Datasets used in this study exhibit real-world properties of different
domains such as sparsity, preferential attachment, and long-tail degree distribution. The synthetic dataset
is generated with Gaussian noise in temporal edges. The real datasets show temporal bursts, observed in
social networks. The experiment provides support for our following core contributions:

– ITeMs are a novel way of capturing discerning temporal properties of a temporal network that cannot
be measured using static and overlapping temporal motifs.

– ITeMs outperform the Stanford SNAP temporal motif algorithm (referred as δ-Motif hereinafter)
and Dynamic Graphlet (DG) [17] in measuring the similarity of temporal graphs.

– Our approach is scalable and configurable to analyze a temporal network as one large graph or a
sequence of windows using sampling.

All the experiments are done on a cluster using Apache Spark 2.3.0 and GraphFrame 0.7.0. All the al-
gorithms are implemented in Scala 2.11.8, and the source code is available at https://github.com/temporal-
graphs/STM.

5.1. Results on synthetic networks

ITeMs can efficiently model the evolution of a temporal network using the properties defined in the
section above. To present the accuracy of modeling temporal changes in the network using ITeMs, we
generate a set of synthetic temporal graphs using a stochastic generation method and measure the change
in the similarity as the networks evolve. We benchmark against δ-Motif and DG and show that ITeMs are
better at measuring the changes in the similarity as the networks evolve. For a given population size |V | =
100, we create a temporal graph G0 of one-day time duration, where every vertex creates an edge with
a random target vertex with a low probability p at every second. Then, we create variations of the base
graph by stretching it one day at a time and perturbing timestamps using a Gaussian distribution with zero
mean and 1/6 day as standard deviation. We create thirty such variations (G1, G2, . . . , G30). For example,
the time between edge arrivals in G10 is 10 days longer than in G1. All the graphs in the sequence have
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Fig. 7. Synthetic graphs.

Fig. 8. Temporal graph similarity.

the same structure and only the edge timestamps vary. This allows us to compare capabilities of δ-Motif,
DM, and ITeM to measure temporal variations in graphs.

Figure 7 shows the rate of the addition of temporal edges to the graph. We also show a zoomed-in
version (right) of G28, G29, and G30 to visualize linearity in the temporal stretch as we increase the total
time of the graph. We compute motif frequencies using both algorithms. Similarly, we also compute
temporal, structural, and orbital features using our ITeM approach. For a given approach, we compute a
feature matrix with 31 rows where each row corresponds to one synthetic network. Additionally, each row
represents a fixed-column vector where the length of the row corresponds to total features computed by
the tool. These feature vectors are used to measure the pairwise similarity of the temporal networks. Once
we compute the pairwise similarities for all the networks, we aggregate them for the networks with same
temporal stretch. This explains Fig. 8 where each entry (i, j) represents j avg. Euclidean distance for all
the networks with the total duration i days apart. The experiment is repeated for all the three approaches.
For ITeM, we use non-sampling algorithm as described in Sub-section 4.1.

Figure 8 shows the change in normalized graph similarity as a function of the difference in the time
duration of the synthetic graphs. A point (i, j) on the plot represents the average Euclidean distance j over
all the graphs that are i days apart. Intuitively, the set of graphs that are i days apart have lower average
Euclidean distance than the set of graphs that are i+ 1 days apart. Also, the difference in two average
Euclidean distances decreases as i increases. The δ-Motif allows the use of arbitrarily large δ values (the
limit on the time window spanned by motifs), and we use this feature to identify motifs without any
temporal restriction on the time difference between any two motif edges. Figure 8 (left) shows that the
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Table 3
Temporal graphs datasets

|V | |Etemporal| |Estatic| Time
CM 1,899 59,835 20,296 193 days
BA 3,783 24,186 24,186 1,901 days
EE 986 332,334 24,929 803 days
TT 34,800 171,403 155,507 21 hours
IA 545,196 1,302,439 1,302,253 1,153 days
HT 304,691 563,069 522,618 7 days
RH 55,863 571,927 561,483 3 yrs 4 mos
WT 1,140,149 7,833,140 3,309,592 6 yrs 4 mos

temporal-spatial-orbital features computed by ITeM outperform graph similarity accuracy using δ-Motif
features that are based only on motif counts. The δ-Motif does not capture the temporal variations of
discovered motif instances, whereas ITeM can successfully measure it as the graph is stretched in time
and the average δ time between edges and the time to form a motif increases. For maximum distant
graphs such as G0 and G30, we observe an unexpected sharp change in the similarity using δ-Motif. This
requires a deeper analysis of the algorithm and the output generated by the tool.

DG also characterizes a temporal network in terms of graphlet count for the entire network and
individual nodes. DG also provides a δ parameter to restrict time difference between two edges of the
graphlet, but due to out-of-memory errors, we could not run it in the unbounded setup that was used in
the previous experiment. To benchmark against DG, we used a δ restrictive mode of our algorithm with δ
set to 600 seconds.

Figure 8 (right) shows the result comparing DG and ITeM. As shown in the Fig. 7, the base graph
shifts from a stochastic base model to a Gaussian distribution based temporal network, which explains the
initial sharp increase in the graph distance measured by both algorithms. Both the approaches also show
sub-linear trends afterward but only ITeM continues as the time difference between graphs increases.
DG shows sudden exponential changes in the distance (or similarity) that do not correspond to the linear
temporal evolution of the graphs as shown in Fig. 7 (right). Overall, both the approaches exhibit similar
trends that show the importance of modeling temporal variations and orbital information of the graph, in
addition to the frequency count.

5.2. Results on real-world networks

We analyze various real-world networks and measure the difference in their temporal evolution. The
following list introduces all the datasets used for the experiments. Table 3 describes their static and
temporal scale. We generate tITeM distribution and use it for the measurement. We also use the change in
the distribution over time to detect an event in the network.

– CollegeMsg (CM): CollegeMsg [39] is comprised of private messages sent on an online social
network at the University of California, Irvine. An edge (u, v, t) means that user u sent a private
message to user v at time t.

– Bitcoin-Alpha (BA): Bitcoin-Alpha [24] is a who-trusts-whom network of people who trade on
Bitcoin Alpha platform. An edge (u, v, t) in the network exists if person u gives a rating to person v
at time t.

– Email-EU (EE): Email-EU [27,54] is an anonymized network about all incoming and outgoing
emails between members of a large European research institution. An edge (u, v, t) in the network
exists if person u sent an email to person v at time t.
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Fig. 9. ITeM distribution (log10) of different datasets.

Fig. 10. Real-world graph similarity (y-axis) using ITeM, SNAP, and DG (x-axis) for CM, BA, EE, TT, and IA.

– Tech-As-Topology (TT): Tech-As-Topology [42] is a temporal network of Autonomous Systems
(AS) where an edge (u, v, t) represents a link between AS u and AS v at time t.

– IA-Stackexch (IA): IA-Stackexch-User-Marks-Post is a bipartite Stack Overflow favorite net-
work [42]. Nodes represent users and posts. An edge (u, v, t) denotes that a user u has marked a
post v as a favorite at time t.

– Higgs Twitter: (HT) Higgs dataset [14] is an anonymized network that has information about
messages posted on Twitter between the 1st and the 7th of July 2012 about the announcement of the
discovery of Higgs boson particle. An edge (u, v, t) represents a Twitter interaction between user u
and v at time t. An interaction can be a re-tweet, mention, or reply.

– Reddit Hyperlink (RH): Reddit hyperlink [23] represents the directed connections between two
subreddits. An edge (u, v, t) represents a hyperlink from subreddit u to subreddit v at time t.

– Wiki-talk (WT): Wiki-talk [40] represents Wikipedia users editing each other’s Talk page. A
directed edge (u, v, t) means that user u edited user v’s talk page at time t.

Figure 9 shows the independent temporal motif distribution of different datasets. Similarly, Fig. 11
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Fig. 11. Motif and vertex independence of different datasets. X-axis represents motif-id and y-axis represents motif independence
(left) and vertex independence (right).

shows motif independence and vertex independence for the datasets. These results give initial clues that
similar domain networks such as CM and EE exhibit similar motif and vertex independence, whereas
BA and TT have a different distribution. We also analyze real-world datasets using ITeM, SNAP δ-Motif
and DG. For ITeM, we use non-sampling algorithm as described in Sub-section 4.1. In the absence of any
ground-truth, we observe the types of motifs and their frequencies discovered by the tools. We restrict our
analysis to the motifs of maximum 4 vertices. ITeM can identify fringe motifs such as isolated nodes,
isolated edges, and self loops. DG does discover single edges but not the isolated nodes and self-loops.
Both DG and SNAP δ-Motif focus on connected networks but ITeM can also measure the fraction of the
graph that exists as disconnected nodes and edges. All three tools discover multi-edges in the network.

We also compute network similarity across all network pairs, using Euclidean distance between the
normalized frequency vectors. Figure 10 shows the similarity between each pair of real-world datasets
using the three approaches. Both DG and ITeM identify CollegeMsg (CM) more similar to Email-EU
(EE) than Bitcoin-Alpha (BA) and Tech-As-Technology (TT). We could not run DG in the unbounded
setup so we restricted δ to 6000 seconds and that leads to single edge only motifs in the case of BA and
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Fig. 12. ITeM frequency changes in the Higgs Twitter (HT) temporal network.

IA. Similarly, SNAP δ-Motif discovers few non-negative motif instances and we treat them as zero for
the analysis. ITeM and δ-Motif also generate a fixed size feature vector for a given input which makes it
easier to use in downstream applications.

5.2.1. ITeM-based temporal evolution measurement
ITeM can also model the temporal evolution of a network using a sequence of temporal graphs, each

with a given time window. We use the Higgs Twitter (IT) dataset and monitor 3-hour windows from
July 1st to July 7th. Our approach iteratively analyzes each window and updates the temporal summary
of the network as it progresses. This allows us to not only analyze a large graph using multiple smaller
graphs but also to identify an anomalous event in the network and to understand how the behavior of
vertices changes in the temporal network. Figure 12 shows a change in ITeM frequencies to reflect a burst
event in the graph. The ITeM frequencies peak at the event on July 4th and then gradually return to a
normal state. ITeM also provides more insight into the event than basic graph density-based measures. As
shown in Fig. 12, the maximum increase is observed in the fringe part of the network, such as self-loops,
isolated edges, and residual edges. Similarly, a higher number of stars and wedges are also observed.
These observations correspond to a network growth phenomenon where a burst of new interactions occurs
in the network among newly-added entities. In the case of HT, this is explained by a higher number of
Twitter users tweeting about the Higgs boson particle discovery for a short period of time.

Figure 13 shows motif independence over time for the same window of the HT. Figures 12 and 13
show that the core motif, such as the star, increases in count but the motif independence decreases sharply.
This happens as the temporal network exhibits the emergence of a hub-like structure with a small number
of extremely-high degree vertices. In contrast to the burst observed in the HT, Wiki-talk (WT) shows a
linear evolution of the graph for a very long time (76 months) as shown in Fig. 16.

5.3. Scalability analysis

A major contribution of this paper is a distributed algorithm to analyze a large temporal graph or
a sequence of temporal graph windows. All the algorithms are developed using the Apache Spark
2.3.0, GraphFrame 0.7.0, and Scala 2.11.8 environment. This allows the use of scalable distributed
data structures to handle large graphs in the order of millions of edges and to iteratively update the
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Fig. 13. ITeM Independence changes in the Higgs Twitter (HT) temporal network.

Fig. 14. ITeM runtime analysis on Email-EU (EE) dataset: Single Graph.

Fig. 15. ITeM runtime analysis on Reddit (RH) dataset: Sequence of temporal graphs.

temporal-structural and orbital properties of the graph. To analyze the scalability of the core algorithm,
we use a Snakemake [20] based automation pipeline and a SLURM [55] based resource manager. We
experiment with different combinations of hardware resources and distributed partitions. Figure 14 shows
the results of the scalability experiment using the EmailEU dataset. ITeM shows initial speed-up up to a
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Fig. 16. ITeM frequency changes in the Wiki-talk (WT) temporal network.

maximum of 32 cores available to the Spark application. Beyond this point, the application suffers from
communication and data serialization overhead. A similar trend was observed as we increased the number
of data partitions, keeping the maximum number of cores fixed. The run-time sharply decreases as we
increase the executor memory from 2 GB to 6 GB, and the decrease slows down after that.

Temporal analysis of an evolving network using a window-based approach poses memory constraints
and scalability challenges as the number of windows increases. We preserve minimum information
across the windows to maintain a global summary of the temporal network and to save window-specific
summaries and vertex features to files, to be used by other analytic processes. This allows us to use
our method in a longer running streaming fashion. Although we do not observe a strong sub-linear
trend as the windows progress, as shown in Fig. 15, further analysis of the window graph structure
using ITeM suggests that the run times depend on both the window size and the fringe structure of
the graph. The runtime of Window 5 and 10 decreases even as the graph size increases because those
windows have a higher number of multi-edges in comparison to windows of similar size, which leads to
aggressive subgraph reduction while discovering larger motifs. Future work will perform a more detailed
analysis of the impact of a specific ITeM count on the runtime. For all three approaches, overall run-time
complexity depends on enumerating larger motifs in the network but δ-Motif has developed a set of
specialized algorithms that count certain motif classes faster. Similarly, DG uses constrained dynamic
graphlet counting, a modified counting process to examine fewer instances of a given dynamic graphlet.
In contrast, ITeM uses a general purpose framework to discover temporal motifs. This leads to faster
run-times for δ-Motif and DG but ITeM provides a fault-tolerant framework to analyze large graphs.
Future work will also develop specialized distributed algorithms to find certain classes of motifs instances.

5.4. ITeM-based analysis of real-world COVID-19 indicators

In this section, we present a real-world use case and ITeM-based analysis to extract actionable knowl-
edge from it. Coronavirus Disease 2019 (COVID-19) is an ongoing outbreak and the latest threat to global
health. Understanding the implications of social interaction on COVID-19 indicators is an important
research objective to help formulate policies and guidelines by governments and local authorities. We use
curated state-level COVID-19 indicators [48] such as Active Cases, Deaths, and Hospitalization Rates for
the United States. We also curate domestic US air travel data as shown in Fig. 17a and present its impact
on COVID-19 indicators.
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Fig. 17. Temporal Graph representing domestic US air-travel.

Fig. 18. Weekly real-world Indicators and ITeM trends from April 2020–Aug 2020.

We create a dynamic graph to model air travel between different US states as shown in Fig. 17b. Each
US state is modeled as a node in the graph. We create edges using the total air-travel passenger count.
We create a logarithmic bin to reduce the number of edges between any two states for a given day. We
also create a sequence of weekly temporal graphs to measure temporal trends in the COVID-19 air-travel
dataset. We generate weekly ITeM distributions to observe temporal patterns in the COVID-19 travel
graph. The ITeM allows us to measure the air-travel magnitude and also the travel behavior between US
states. In addition to weekly ITeM distributions, we also compute the weekly distribution of COVID-19
indicators such as Active Cases, Deaths, and Hospitalization Rates for the United States. As shown
in Fig. 18, we qualitatively observe three different classes of real-world COVID-19 indicators. The
“Hospitalization Rate” and the absolute number of people hospitalized in the US averaged over a week
show a similar trend. In contrast, indicators such as “Active Cases”, “Confirmed Cases”, “Deaths” show a
similar upward trend. The “Mortality Rate” does show an initial sharp upward and slowly decreasing
trend in contrast to all the other indicators.

We use Dynamic Time Warping (DTW) [6] to quantify ITeM similarity with the rest of the indicators.
DTW measures the similarity (or distance) between two time series by computing optimal matches
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Fig. 19. COVID-19 real-world indicator similarity with ITeM distribution.

Fig. 20. Average travel trend follows COVID-19 real-world indicators with a shift of one month.

between them. We compute the pair-wise distance between all real-world indicators and ITeM distribution
for each week from April 2020 to August 2020. We used the degree distribution of the travel graph as the
baseline similarity with each indicator. ITeM distribution shows high similarity with average travel and
“Hospitalization Rate” as shown in Fig. 19.

ITeM can also be used as an early indicator of a shift in a real-world indicator. COVID-19 contact
tracing research has estimated a 2 to 14 day incubation period for the virus [1]. Lauer et al. [26] predicts
that more than 97% of people who contract SARS-CoV-2 show symptoms within 11.5 days of exposure.
So the early identification of real-world indicators is beneficial to contact tracing and local government
policy recommendations. Baseline measures such as aggregated travel statistics take about a month to
accurately predict the trend as shown in Fig. 20. In contrast, ITeM provides a shorter prediction window
where real-world indicators show similar trends within three weeks, as shown in Fig. 21. The gain of
one week to estimate the indicators based on higher-order analysis such as ITeM is significant and can
improve policy planning.
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Fig. 21. ITeM-based travel trend follows COVID-19 real-world indicators with a shift of three weeks.

6. Conclusion and future work

Complex temporal networks are observed in the real world, and a better understanding of them is
required to effectively handle real-world applications. We present Independent Temporal Motif (ITeM)
as a building block to characterize temporal graphs. ITeM reveals many salient features of the temporal
graph, such as its core structure, fringe vertices and edges, temporal evolution, and uniqueness. Graphs
from different domains are found to exhibit varied structural and temporal distributions. Likewise, graphs
from similar domains are found to exhibit similar structural properties, but many of them show varied
temporal characteristics. We use these observations to characterize individual graphs and define a metric
to quantitatively measure the similarity among them. We also present the importance sampling based
approach to analyze a large graph as a sequence of smaller windows. We use this to show a change in the
distribution that exhibits a behavioral shift in the way entities interact in a transactional graph, such as a
social network.

The rate at which temporal motifs are formed can also be used to generate synthetic graphs that exhibit
similar evolution as a given real-world graph, as shown in [41]. Additionally, these features can also be
used in a diverse set of applications, such as approximate sub-graph matching, graph mining, and network
embedding learning. We will compare ITeM to other temporal network embedding generation techniques
to measure the benefits of ITeM over other approaches for use in such applications. Future work will
also address scalability challenges by estimating the number of ITeMs using specialized algorithms for
different motif classes and perform a sensitivity analysis of the sampling approach.
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