
Handling of Numeric Ranges for Graph-Based Knowledge
Discovery

Abstract— Discovering interesting patterns from structural
domains is an important task in many real world domains.
In recent years, graph-based approaches have demonstrated to
be a straight forward tool to mine structural data. However,
not all graph-based knowledge discovery algorithms deal with
numerical attributes in the same way. Some of the algorithms
discard the numeric attributes during the preprocessing step.
Some others treat them as alphanumeric values with an exact
matching criterion, with the limitation to work with domains
that do not have this type of attribute or discovering patterns
without interesting numerical generalizations. Other algorithms
work with numerical attributes with some limitations. In
this work, we propose a new approach for the numerical
attributes handling for graph-based learning algorithms. Our
experimental results show how graph-based learning benefits
from numerical values handling by increasing accuracy for the
classification task and descriptive power of the patterns found
(being able to process both nominal and numerical attributes).
This new approach was tested with the Subdue system in the
Mutagenesis and PTC (The Predictive Toxicology Challenge)
domains showing an accuracy increase around 22% compared
to Subdue when it does not use our numerical attributes
handling method. Our results are also superior to those reported
by other authors, around 7% for the Mutagenesis domain and
around 17% for the PTC domain.

I. INTRODUCTION

In data mining and machine learning the domain data
representation determines in a great measure the quality
of the results of the discovery process. Depending on the
domain, the Data Mining process analyzes a data collection
(such as flat files, log files, relational databases, etc.) to
discover patterns, relationships, rules, associations, or useful
exceptions to be used for decision making processes and for
the prediction of events and/or concept discovery. Graph-
based algorithms have been used for years to describe (in
a natural way) flat, sequential, and structural domains with
acceptable results [1], [2].

Some of these domains contain numeric attributes (at-
tributes with continuous values). Domains containing this
type of attributes are not correctly manipulated by graph-
based knowledge discovery systems, although they can be
appropriately represented. To the best of our knowledge there
does not exist a graph based knowledge discovery algorithm
that deals with continuous valued attributes in the same way
that our new approach does. A solution proposed in the
literature to solve this problem is the use of discretization
techniques as a pre-processing or post-processing step but
not at the knowledge discovery phase. However, we think
that these techniques do not use all the available knowledge
that can be taken advantage of during the processing phase.

When graph-based knowledge discovery systems first ap-
peared, they were not able to identify that number 2.1 was
similar to 2.2, taking them as totally different values. This
was the reason why those algorithms did not obtain so rich
results as other algorithms that dealt with numeric attributes
in a special way (such as the C4.5 classification algorithm
that although it does not work with structured domains, it
works with numerical data for flat domains). After some
years, the number of real world structural domains containing
numerical attributes increased as well as the need to have
knowledge discovery systems able to deal with that type
of attributes. Then, some of the available algorithms were
extended in different ways in order to deal with numerical
data as we describe in the Related Work Section.

There are two main contributions of this work. The first
one consists of the creation of a graph-based representation
for mixed data types (continuous and nominal). The second
one corresponds to the creation of an algorithm for the
manipulation of these graphs with numerical ranges for the
data mining task (both, classification and description). In this
way, we can work with structural domains represented with
graphs containing numeric attributes in a more effective way
as we describe in the experimental Results’ Section of the
paper.

II. RELATED WORK

In this Section, we describe two methods that work
with structural domains (and in some way, with numerical
attributes) that were used in our experiments. The first is
an Inductive Logic Programming (ILP) system: “CProgol”
and the second a Graph-based system: “Subdue”, which in
this work, was extended with our novel method to deal with
numerical attributes.

A. Inductive Logic Programming

Logic was one of the first formalisms used in artificial
intelligence to represent knowledge structures in computers.
Inductive logic programming combines inductive learning
methods with the representation power and formalism of
first order logic. A logic knowledge representation has the
advantage of being sufficiently versatile at covering the
needed concepts and at the same time to allow deductive
processes from those concepts [3].

ILP is a discipline that investigates the inductive con-
struction of logic programs (first order causal theories)
from examples and previous knowledge. Training examples
(usually represented by atoms) can be positive (those that
belong to the concept to learn) or negative (those that do

not belong to the concept). The goal of an ILP system is
the generation of a hypothesis that appropriately models the
observations through an induction process [3]. ILP systems
can be classified in different ways depending on the way in
which they generate the hypothesis (i.e. top-down or bottom-
up). Some examples of top-down ILP systems are MIS [4]
and Foil [5]. Examples of bottom-up ILP systems are Cigol
[6], Golem [7], and “CProgol” [8].

The ILP system used in this research to compare our
graph-based results is “CProgol”. The “CProgol” learning
process is incremental. It learns a rule at a time, and it
follows the one rule learning strategy. “CProgol” computes
the most specific clause covering a seed example that belongs
to the hypothesis language. That is, it selects an example
to be generalized and finds a consistent clause covering the
example. All clauses made redundant by the found clause,
including all the examples covered by the new clause, are
removed from the theory. The example selection and general-
ization cycle is repeated until all examples are covered. When
constructing hypothesis clauses consistent with the examples,
“CProgol” conducts a general-to-specific search in the theta-
subsumption lattice of a single clause hypothesis.

Inverse entailment is a procedure that generates a single,
most specific clause that, together with the background
knowledge, entails the observed data. The search strategy
is an A*-like algorithm guided by an approximate com-
pression measure. Each invocation of the search returns a
clause, which is guaranteed to maximally compress the data.
However, the set of all found hypotheses is not necessarily
the most compressive set of clauses for the given examples
set. “CProgol” can learn ranges of numbers and functions
with numeric data (integer and floating point) by making use
of the built-in predicates “is”, <, =<, etc. The hypothesis
language of “CProgol” is restricted by mode declarations
provided by the user. The mode declarations specify the
atoms to be used as head literals or body literals in hypothesis
clauses. For each atom, the mode declaration indicates the
argument types, and whether an argument is to be instantiated
with an input variable, an output variable, or a constant.

Furthermore, a mode declaration bounds the number of
alternative solutions for instantiating an atom. Types are
defined in the background knowledge through unary pred-
icates, or by CProlog built-in functions. Arbitrary Prolog
programs are allowed as background knowledge. Besides the
background theory provided by the user, standard primitive
predicates are built into “CProgol” and are available as
background knowledge.

“CProgol” provides a range of parameters to control the
generalization process. One of these parameters specifies the
maximum cardinality of hypothesis clauses. Other, defines a
depth bound for the theorem prover. One more, sets the maxi-
mum layers of new variables. Another parameter specifies an
upper bound on the nodes to be explored when searching for
a consistent clause. CProgol’s Search is guided to maximize
the understanding of the theory with a refinement operator,
which avoids redundancy. In this way, the search produces a

set of high precision rules although it might not cover all the
positive examples and might cover some negative examples.

III. PREVIOUS WORK WITH SUBDUE

Given a continuous variable, there are different ways to
generate numerical ranges from it. The selection of the best
set of numerical ranges (obtained with a specific discretiza-
tion method) is based on its capability to classify the data
set with high precision. The evaluation algorithm must also
have the property of finding the lower possible number of cut
points that generalizes the domain without generating a cut
point for each value. The problem now consists of finding
the borders of the intervals and the number of intervals
(or groups) for each numerical attribute. The number of
possible subsets (or ranges) of values for a given attribute
is exponential.

“Subdue” had previously dealt with numerical attributes in
three different ways (in a limited way). One of them is using
a threshold parameter. A second one is applying a-match cost
function. The third one is the conceptual clustering version
of “Subdue”.

In “Subdue” we define the match type to be used for the
numerical labels of the input graph. There are three match
type conditions. Given two labels “li and “lj , a threshold t

(defined as a general parameter): a) Exact match: “li” =
“lj”. b) Tolerance match: “li matches “lj iff |li − lj | < t.
c) Difference match: where a function is matchcost(li,lj) is
defined as the probability that “lj is drawn from a probability
distribution with the same mean as li and standard deviation
defined in the input file [9].

There is another way in which “Subdue” matches instances
of a substructure that differ from each other. This is done
using the threshold parameter. Note that this threshold differs
from the “t” threshold described in [9]. This parameter
defines the fraction of the instances of a substructure (or
subgraphs) to match (in terms of their number of vertices
+ edges) that can be different but can still be considered
as a match. Here we use a cost function that only con-
siders the difference between the size of the substructure
and its instances. The function cost is defined as match-
cost(substructure, instance) size(instance) threshold. The de-
fault value of the threshold parameter is set to 0.0, which
implies that graphs must match exactly.

The conceptual clustering version of “Subdue” (Sub-
dueGL) uses a post-processing phase that joins the substruc-
tures that belong to the same cluster. It is based on local
values of the variable using the concept of variable discovery
[10]. With this approach, SubdueGL finds numerical labels
of some of the existent values for each numerical variable.
These substructures are then given to “Subdue” as predefined
substructures in order to find their instances. The instances of
these substructures can appear in different forms throughout
the database. Then, an inexact graph match can be used to
identify the substructures instances. In this inexact match
approach, each distortion of a graph is assigned a cost. A
distortion is described in terms of basic transformations such
as deletion, insertion, and substitution of vertices and edges

(graph edit distance). The distortion costs can be determined
by the user to bias the match to particular types of distortions
[11]. This implementation allows finding substructures with
small variations in their numerical labels. It groups them in a
cluster and allows them to grow in a post-processing phase.
This post-processing is local to each variable, and therefore,
it involves a new search of the substructures. This process
consumes extra time and resources (SubdueGL [10]). This
happens because the substructures to be explored to find more
instances with the new Variables’ Representation had already
been found. “Subdue” will not discover new knowledge, it
will only refine those predefined substructures (clusters).

The previous Subdue’s Approaches deal with numerical
attributes. However, it is important to choose adequate values
for the matchcost, threshold, and conceptual clustering pa-
rameters. These parameters control the amount of inexactness
allowed during the search of instances of a Substructure.
Consequently, the quality of the patterns found is affected.
The problem with discovering patterns in this way is that the
user has to make a guess about the amount of threshold that
will produce the best results. This is a very complex task.

Our new graph-based approach to deal with numerical
attributes differs from others because it considers numer-
ical ranges during the search of the substructures (in the
processing phase). We do not use initial information about
the domain neither matching parameters. The numerical
ranges used at each iteration are dynamic (regenerated at
each iteration). This creates better substructures, more useful
for the classification task as we show in the experimental
Results’ Section.

IV. DEALING WITH NUMERICAL RANGES

Discrete values have important roles in the knowledge
discovery process. They present data intervals with more
precise and specific representations, easier to use and under-
stand. They are a data representation of higher level than that
using continuous values. The discretization process makes
the learning task faster and precise.

The main point of a discretization process is to find parti-
tions of the values of an attribute which discriminate among
the different classes or groups. The groups are intervals and
the evaluation of the partition is based on a commitment, few
intervals and strong classes discriminate better. Clustering
consists of a division of the data samples in groups based
on the similarity of the objects. It is often used to group
information without a label.

Given a continuous variable, there are different ways
to generate numerical ranges from it (different ways to
discretize it). The selection of the best set of numerical ranges
(obtained with a specific discretization method) is based on
its capability to classify the dataset with high precision.

The idea of this work is to add to the graph-based knowl-
edge discovery system, “Subdue”, the capacity to handle
ranges of numbers [12]. In the following subsection, we
describe the new numerical attributes handling algorithm
that we created. In order to add “Subdue” this capacity, we
propose a graph-based data representation, as we show in

figure 1 for temperature: “Temp” with a value of “4.5” and
humidity: “Hum” with a value of “3.2”. For this example of
a flat domain, we use a star-like graph, but we will also work
with structural domains. We transform each example into a
star-like graph with a center vertex named example: “Exa”.
We then create a vertex for each of the attribute values of
the example and link them to the “Exa” vertex. Those edges
are labeled with the name of the attribute. We need to extend
this representation to allow the use of numerical ranges as we
show in figure 2, where attribute “Temp” has now a value
between “3.8” and “9.5” representing the range [3.8, 9.5] and
attribute “Hum” has a value between “3.0” and “4.7” for
the range [3.0, 4.7]. This new data representation is working
inside of “Subdue” and is transparent to the user.

Fig. 1. Labels Fig. 2. Ranges Labels

V. HANDLING OF NUMERICAL RANGES

Fig. 3. Numerical Ranges Generation Algorithm

In this Section, we describe the Numerical Ranges’ Gener-
ation algorithm (based on frequency histograms). Our algo-
rithm calculates distances using any of seven measures. The
first distance that we use is a modification to the Tanimoto
distance [13]. The second distance is a modification of the
Euclidean distance [15]. The third distance is a modification
to the Manhattan distance [16]. The fourth distance is a
modification to the Correlation distance [17]. The fifth is
a modification to the Canberra distance [14]. The sixth
and seventh are two new distance measures that we propose.
Figure 3 shows the pseudo-code of our algorithm [12].

The algorithm shown in figure 3, works as follows. The
General function (GenerateRange) receives as parameters the
dataset and the number of examples. In the first step, and for

each numerical attribute, we sort the numerical attribute in
ascending way (Sort function). Next, we create a frequency
histogram of the ordered data. Then, we create an initial
ranges table with four fields corresponding to the center of
the range, its frequency, and its low and high limits. In this
initial ranges table, the center, the low and high limits con-
tain the same value taken from the Frequencies’ Histogram
(GenerateHistogram Function). After that, we calculate the
minimum distance between any two consecutive rows, using
their center fields (Minimal function), and we calculate an
average of all the center fields of the frequency histogram
(Average function). After that, we calculate the centroid for
the center fields of the Ranges’ Table, which corresponds to
the element of the frequency histogram closest to the value
of the average (Center function). We now calculate a type of
distance that is used to calculate the grouping threshold (to
decide which values are grouped to create a numerical range).
In the next step, we calculate a grouping threshold, which
is the sum of the minimum distance plus the distance. After
that, we iteratively group the elements of the Ranges’ Table
until the Ranges’ Table does not suffer any modification
(TypeofGroup function). At this step, we have obtained a
final Ranges’ Table.

Fig. 4. block diagram

Figure 4 describes our algorithm through a blocks diagram
[12]. The blocks diagram shown in figure 4 works as follows.
Block 1. In this block we sort the values of the numerical
attribute using the Quick Sort Algorithm. Block 2. In this
block we calculate the frequency histogram values, grouping
elements with the same value and generating a list composed
of two fields, one for the element value and other for its
frequency. Block 3. In this step we generate the ranges
table. This table is composed of four fields, the center of the

range, its frequency, and its low and high limits. When we
initialize this table, the center and the low and high limits
have the same value. The value of the frequency field is
taken from the frequencies histogram. Blocks 4, 5, and 6
take as input the center field of the ranges table. Block 4.
Calculates the average or arithmetic mean of the center field
of the ranges table. Block 5. Calculates the centroid of all
the elements of the center field of the ranges table (numerical
attribute), which corresponds to the smaller value closest to
the average. (i.e. if the average has the value 6.2 and is the
closest value to the average 5.8, then the center field is 5.8).
Block 6. Calculates the minimum distance between any pair
of elements of the center field of the ranges table. (i.e. if
element one has a value of 7.1 and element two has a value
of 8.4 then the minimum distance is 1.3). Block 7. In this
step we calculate the distance among the elements of the
center field of the ranges table. This calculation depends
on the distance type used, in the blocks diagram we use
the correlation distance with the formula R = cov(x,y)

Sx∗Sy
. The

distance measures used in this work are modifications of the
original equations that we applied to the dataset in order to
generate different ranges tables with respect to the number
of ranges generated and the number of elements grouped in
each range. In order to calculate this distance we use the
center (block 5), the average (block 4), and the values of the
center field from the ranges table. Block 8. Calculates the
grouping threshold, which is the sum of the distance type
(block 7) plus the minimum distance (block 6). Block 9. In
this step we perform an iterative grouping process that is
repeated until there are no more changes in the ranges table.

1) This grouping is done taking into account two consec-
utive elements at each time.

2) We first calculate the distance between the pair of
consecutive elements and compare this distance with
the grouping threshold calculated in block 8 to decide if
these center elements should be grouped. The elements
are grouped as follows.

3) We create a new range taking as its low limit the lowest
limit of both ranges and as its high limit the highest of
the two. The frequency is recalculated as the sum of
frequencies of both ranges and the new centroid is the
average of the low and high limits of the new range.

Block 10. The positive ranges table has been created (the
positive ranges table), obtained from the positive examples
of the attribute. Block 11. The final ranges table, this final
ranges table (positive ranges table) is obtained from all the
positive examples for this attribute, and in the same way we
obtain a final negative ranges table for the negative examples
for this attribute (negative ranges table). Block 12. This
step corresponds to the reduction process of the ranges table
considering the SetCovering approach, this grouping process
continues until no more changes between the ranges table
occur, it is necessary to mention that we only modify the
positive ranges table. This reduction is based on the five
points of intersection between the ranges.

VI. STRUCTURAL DATABASES

In this work, we experimented with different data repre-
sentations of numerical ranges for two structural databases.
The names of the databases are Mutagenesis and PTC (The
Predictive Toxicology Challenge for 2000-2001). The Na-
tional Institute of Environmental Health Sciences (NIEHS)
created both databases.

A. Carcinogenesis Domain

The PTC (Predictive Toxicology Challenge) carcinogen-
esis databases contain data about chemical compounds and
the results of laboratory tests made on rodents in order to
determine whether chemical compounds induce cancer to
them or not. This database was built for a challenge to predict
the result of the test using machine learning techniques.
The PTC reports the carcinogenicity of several hundred
chemical compounds for Male Mice (MM), Female Mice
(FM), Male Rats (MR) and Female Rats (FR). According
to their carcinogenicity, each of the compounds are labeled
with one of the following labels: EE, IS, E, CE, SE, P, NE, N
where CE, SR, and P mean that the compound is “relatively
active”; NE and N mean that the compound is “relatively
inactive”, and EE, IS and E indicate that its carcinogenesis
“cannot be decided”. In order to simplify our problem, we
label CE, SE, and P as positive while NE and N are taken
to be negative. EE, IS, and E instances were not considered
for the classification task.

B. Mutagenesis Domain

The mutagenesis database originally consists of 230 chem-
ical compounds assayed for mutagenesis in Salmonella Ty-
phimurium. From the 230 available compounds, 188 (125
positive, 63 negative) are considered to be learnable (known
as regression friendly) and thus are used in the simulations.
The other 42 compounds are not usually used for simula-
tions (known as non regression friendly). These databases
have been used with different classification algorithms as
described in the Results’ Section.

VII. RESULTS

In this Section, we present our experimental results with
the Mutagenesis and PTC datasets. In the first experiment,
we did not give any special treatment to any numerical
attribute. In this way, we can show how “Subdue” can be
enhanced when adding it the capability to deal with numeric
attributes. With our second test, we show that “Subdue” can
find interesting patterns containing numerical values using
our approach (also improving its classification accuracy). We
included our Numerical Ranges’ Information to our graph-
based representations and executed a 10-fold cross-validation
with “Subdue”.

A. Graph-Based Data Representation

We generated two general graph-based data representa-
tions to be used for both the mutagenesis and PTC databases.
The first one considers each compound as a different ex-
ample. Compounds are represented by seven attributes

(compound element, compound name, ind1 act (this value
is set to 1 for all compounds containing three or more fused
rings), inda (this value is set to 1 for the five examples of
acenthrylenes as they had lower than expected activity), log-
mutag (log mutagenicity), logP (log of the Compound’s oc-
tanol/water partition coefficient hydrophobicity), and energy
of ε LUMO (energy of the compounds lowest unoccupied
molecular obtained from a quantum mechanical molecular
model). We also consider that each compound has atoms
and links between the atoms and the compound. Each atom
is represented by five attributes (atom element, atom name,
type of atom, type of quanta, and a partial charge). Atoms
are connected by bonds represented by labeled edges. There
exist eight types of bonds (1=Single, 2=Double, 3=Triple,
4=Aromatic, 5=Single or Double, 6=Single or Aromatic,
7=Double or Aromatic, and 8=Any) depending on the type
of connection between the atoms. The edge labels for bonds
are given by a number, which is not considered to be a
numeric attribute since it represents a category.

The graph-based data representation for this dataset is
shown in figure 5. The word “Compound” is used to indicate
an example in the database. We use this as a central vertex
for every example. From this compound vertex, we generate
an edge to each of the atoms of the compound, which are
labeled as “Element”. This compound vertex has also edges
and vertices that define the particular characteristics of every
compound (attributes of the compound). The edge label gives
the name to the attribute, and the vertex label gives it its
value. Finally, every atom represented with a vertex with the
word “Atom” has edges and vertices to define the particular
characteristics of the atom (attributes of the atom). Atoms are
connected to other atoms through bond edges, which were
described above (seven different types of bonds).

Fig. 5. Partial Graph-Based Data Representation “I”.

All the graphs shown in this report were generated with the
Graphviz [18] application. This system requires every vertex
to have a different name, for example, atom1, atom2, ...,
atomN, but this difference does not exist in our graph-based

data representation. It is used only for printing purposes. All
these vertices have the name “Atom” in our graph-based data
representations.

Our second graph-based data representation for the muta-
genesis domain is based on the first representation. We added
it information about the aromatic rings formed by the atoms
of the compound in every example. This type of information
regards to the type of ring. There are forty two different types
of them (“Aromatic”, “Ring”, “Alkane”, “Alkene”, “Alkyne”,
“Amine”, “Carbonyl”, “Ester”, “Carboxylic Acid”, “Anhy-
drid”, “Amide”, “Alkyl Halide”, “Halide”, “Aldehyde”, “Ke-
tone”, “Alcohol”, “Thiol”, “Ether”, “Thio Ether”, “Fenol”,
“Amine Salt”, “Imine”, “Nitrile”, “Iso Cyanate”, “Nitro”,
“Acetale”, “Sulfonic Acid”, “Sulfonic Amide”, “Phosphate
Ester”, “Phosphor Amidate”, “Nitro”, “Methyl”, “Ring Size
5”, “Carbon 5 Aromatic Ring”, “Benzene”, “Carbon 6 Ring”,
“Hetero Aromatic 6 Ring”, “Ring Size 6”, “Anthracene”,
“Ball 3”, “Phenanthrene”, “Hetero Aromatic 5 Ring”), and
to the atoms that form the ring. In order to represent this
data, we add a vertex with the name of the type of ring. We
connect one edge to every atom contained in the ring to this
vertex. The graph-based data representation can be seen in
figure 6.

Fig. 6. Partial Graph-Based Data Representation “II”.

B. Numerical Ranges Table Generation

The process of Numerical Ranges’ Generation creates
seven tables of numerical ranges for each numeric attribute.
Each table corresponds to a different set of numerical ranges
based on the specific type of distance to their neighbors.
For this process, we used the reduction of the numerical
ranges function. This function creates the numerical ranges
of the positive examples in such a way that they do not cover
negative examples. For some cases of numerical ranges,
all the ranges after the reduction process covered negative
examples, being completely eliminated and producing an
empty table. In this case, we did not use this type of ranges
and only considered the other types of numerical ranges

(the positive ranges). We included our Numerical Ranges’
Information to our graph-based representations and executed
a 10-fold cross-validation with “Subdue”. We can see the
results for the mutagenesis domain in table I and for the
PTC domain in table II.

TABLE I
ACCURACY ACHIEVED FOR THE MUTAGENESIS DATABASE.

10-FOLD-CROSS-VALIDATION.
Type of Graph-Based Regression
Data Representation Unfriendly Friendly

Without Rings Without Ranges 47.23% 58.54%
With Ranges 86.85% 85.80%

With Rings Without Ranges 56.12% 61.54%
With Ranges 81.36% 87.71%

Table I shows the results obtained for the mutagenesis
domain with and without the use of numerical ranges for both
data representations (with and without rings). The behavior
of the results for both representations is stable. We think that
by adding rings to representation “I” to create representation
“II”, we obtained better accuracy results and more descriptive
models (with structural information about rings). The input
graph of representation “II” is larger than the one created
for representation “I”. This means that the search space for
representation “II” is larger than the one for representation
“I”. Then, we need to increase Subdue’s Parameters in order
to find a better model in terms of classification accuracy.
However, we obtained a 22% increment when using numeri-
cal attributes with both data representations. This means that
providing “Subdue” the capability to handle numerical ranges
makes it able to find better models.

TABLE II
ACCURACY ACHIEVED FOR THE PTC DATABASE USING A

10-FOLD-CROSS-VALIDATION.
Type of Graph-Based PTC
Data Representation MM FM MR FR

Without Rings Without Ranges 66% 62% 54% 58%
With Ranges 73% 70% 64% 70%

With Rings Without Ranges 69% 65% 57% 61%
With Ranges 78% 74% 72% 83%

Table II shows the results obtained with “Subdue” (with
and without ranges) for the PTC domain. In this table, we
can see that on average, the classification accuracy increased
17% over the algorithms reported in the literature when we
use our proposed method to handle numerical ranges for both
data representations (with and without rings). This accuracy
increment is not as high as we expected it to be, but as in the
previous table, it is due to the execution of “Subdue” with
limited parameters. We can also see in the table that the
classification accuracy for all the subsets of both domains is
stable. This differs from the results reported in related works.

TABLE III
ACCURACY ACHIEVED FOR THE MUTAGENESIS AND PTC DATABASES

USING “CPROGOL” AND A 10-FOLD-CROSS-VALIDATION.
PTC Regression

MM FM MR FR Unfriendly Friendly
58.93% 55.73% 58.00% 59.10% 67.23% 83.50%

Table III shows the results obtained when we executed

“CProgol” with the second data representation (with rings).
The data representations used in “CProgol” are equivalent
to those used in our proposed method to handle numerical
ranges for graph-based systems (“Subdue”). In these results,
we can see that our approach obtains an increase of almost
19.5% for both the PTC and Mutagenesis databases. The
results that we obtained with “CProgol” are slightly inferior
(around 3% to 4%) than those reported in the citations.
This might happen because the background knowledge (or
the parameters setting) used in those other works could be
different to those used by us. We should also consider that
“Subdue” does not use background knowledge, and that we
executed “Subdue” with limited parameters. The background
knowledge used by “CProgol” consists of a set of rules to
describe the Rings’ Structures, but we cannot define data
types in “Subdue” as it is done in “CProgol”. We compared
the results of the previous table (the Mutagenesis and PTC
databases) with the results of other authors (as shown in
the Related Work Section). As we can see, the numerical
ranges handling (using numerical and structural data at the
same time) that we used with the graph-based data mining
system “Subdue”, increased Subdue’s Accuracy with respect
to other algorithms. Analyzing our results we can see that
when we add structural data to representation “I” (which
uses numerical data and some basic relations between its
attributes) to obtain representation “II” (we add relations
based on the Rings’ Components), accuracy increases by
13% (on average) with respect to the accuracies obtained
without using rings.

VIII. CONCLUSION AND FUTURE WORK

There are two main contributions of this work. The first
one consists of the creation of a graph-based representation
for mixed data types (continuous and nominal). The second,
the creation of an algorithm for the manipulation of these
graphs with numerical ranges for the data mining task
(classification and discovery). For our future work we will
test different domains to enrich the results of our approach.
We will also include temporal information with numerical
values. After we have collected this data, we will be able to
perform a spatial and temporal data mining process. Finally
we will compare our results with “Subdue” against other
algorithms that can deal with structural representations with
other inductive logic programming systems and we will
continue the comparison with “CProgol”. This new approach
was tested with the “Subdue” system in the Mutagenesis
and PTC domains showing an accuracy increase around 22%
compared to “Subdue” when it does not use our numerical
attributes handling. Our results are also superior to those
reported by other authors, around 7% for the Mutagenesis
domain and around 17% for the PTC domain. The subdue
model helped to distinguish models of Mutagenesis and
PTC from others in a better way than “CProgol” (accuracy
results are shown in the Results Section) because it is more
descriptive. Finally, the substructures found with subdue
are richer in structure without need to specify background
knowledge to understand them.

ACKNOWLEDGMENT

The first author acknowledges Conacyt for the support
provided in his doctoral studies with the scholarship number
86997.

REFERENCES

[1] Jesus A. Gonzalez, Lawrence B. Holder and Diane J. Cook, Experimen-
tal comparison of graph-based relational concept learning with inductive
logic programming systems, In Lecture Notes in ArtificialIntelligence,
volume 2583, 2002, 84-99, (Springer Verlag).

[2] N. S. Ketkar, Lawrence B. Holder and Diane J. Cook, Comparison
of graph-based and logic-based multi-relational data mining, SIGKDD
Explor Newsl, 7(2), 2005, 64-71.

[3] A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King,
Theories for mutagenicity: a study in first-order and feature-based
induction Artificial Intelligence, volumen 85, 1996, 277-299.

[4] E. Shapiro, Inductive inference of theories from facts, Computational
Logic: Essays in Honor of Alan Robinson, 1991, 199-255, (Publisher
MIT).

[5] J. R. Quinlan, Determinate literals in inductive logic programming,
In IJCAI’91: Proceedings of the 12th international joint conference
on Artificial intelligence, 1991, 746-750, (San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.).

[6] S. Muggleton and W. Buntine, Machine invention of first-order pred-
icates by inverting resolution, In Proceedings of the 5th International
Conference on Machine Learning, 1988, 339-352, (Ann Arbor, Mich-
gan, USA: CA: Morgan Kaufmann).

[7] S. Muggleton, W. Building and P. Road, Inverse entailment and progol,
New generation Computing, volume 13, number 3, 245-286, 1995.

[8] S. Muggleton and J. Firth, Cprogol4.4: a tutorial introduction, In
Inductive Logic Programming and Knowledge Discovery in Databases,
2001, 160-188, (Editorial Springer-Verlag).

[9] A. Baritchi, Diane J. Cook and Lawrence B. Holder, Discovering
structural patterns in telecommunications data, In Proceedings of the
Thirteenth International Florida Artificial Intelligence Research Society
Conference, 2000, 82-85, (AAAI Press).

[10] I. Jonyer, Lawrence B. Holder and Diane J. Cook, Concept formation
using graph grammars, In Proceedings of the KDD Workshop on Multi-
Relational Data Mining, volume 2, 2002, 19-43, (Cambridge, MA,
USA: MIT Press).

[11] I. Jonyer, Lawrence B. Holder and Diane J. Cook, Graphbased
hierarchical conceptual clustering, International Journal on Artificial
Intelligence Tools, 2001, 10(1-2), 107-135.

[12] Oscar E. Romero A., Jesus A. Gonzalez and Lawrence B. Holder
Handling of numeric ranges for graph-based knowledge discovery, In
FLAIRS Conference, 2010.

[13] J. Han and M. Kamber, Data Mining: Concepts and Techniques, (Mor-
gan Kaufmann Publishers, 2nd ed edition, Series in Data Management
Systems, 2006, pages 533).

[14] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes and S. Cun-
ningham, Weka: Practical machine learning tools and techniques with
java implementations, In International Workshop: Emerging Knowledge
Engineering and Connectionist-Based Info, 1999, 192-196, (Morgan
Kaufmann Publisher).

[15] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Series in Data Management
Systems, (Second Edition, Morgan Kaufmann Series in Data Manage-
ment Systems, Paperback, 2005, pages 385).

[16] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy,
From data mining to knowledge discovery: An overview, In Advances
in Knowledge Discovery and Data Mining, 1996, 1-34, (AAAI Press
/ The MIT Press).

[17] S. Shekhar, P. Zhang, Y. Huang and R. R. Vatsavai, Chapter 3 Trends
in Spatial Data Mining, Data Mining, in Editor AAAI/MIT Press
(Ed.), Next Generation Challenges and Future Directions, (Depart-
ment of Computer Sciencie and Engineering, University of Minnesota:
AAAI/MIT Press, 2003), pages 24.

[18] E. R. Gansner, E. Koutsofios, S. C. North and K. phong Vo, A
technique for drawing directed graphs, IEEE Transactions on Software
Engineering, volumen 19, 1993, 214-230.

