
Scalable SVM-based Classification in Dynamic
Graphs

Yibo Yao and Lawrence Holder
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99164-2752

Email:{yibo.yao, holder}@wsu.edu

Abstract—With the emergence of networked data, graph
classification has received considerable interest during the past
years. Most approaches to graph classification focus on design-
ing effective kernels to compute similarities for static graphs.
However, they become computationally intractable in terms of
time and space when a graph is presented in a incremental
fashion with continuous updates, i.e., insertions of nodes and
edges. In this paper, we examine the problem of classification
in large-scale and incrementally changing graphs. To this end, a
framework combining an incremental Support Vector Machine
(SVM) with the Weisfeiler-Lehman (W-L) graph kernel has been
proposed to study this problem. By retaining the support vectors
from each learning step, the classification model is incrementally
updated whenever new changes are made to the subject graph.
Furthermore, we design an entropy-based subgraph extraction
strategy to select informative neighbor nodes and discard those
with less discriminative power, to facilitate an effective classifi-
cation process. We demonstrate the advantages of our learning
techniques by conducting an empirical evaluation on two large-
scale real-world graph datasets. The experimental results also
validate the benefits of our subgraph extraction method when
combined with the incremental learning techniques.

I. INTRODUCTION

In recent years, networked data has gained popularity in the
data mining community, due to a great amount of information
becoming available in the form of social networks, hyper-
linked web documents, chemical compounds, and communi-
cation networks. Thus there has been a growing interest in
developing algorithmic techniques for performing supervised
learning classification tasks on these graph datasets. The aim
of graph classification is to learn a discriminative model from
the given training graphs and predict the class labels for the
testing graphs. The problem of classification in a large-scale
graph usually involves classifying nodes [1] or subgraphs [2]
into suitable categories. In a binary classification scenario,
a node/subgraph is assigned to either a positive class or a
negative class. For example, authors in a co-authorship network
can be classified into two classes: those who are prolific and
those who are not. Similarly, chemical compounds can be
classified into two classes: those which are active and those
which are not. A detailed investigation of various graph mining
and classification algorithms as well as their applications can
be found in [3].

Graph classification is itself a challenging task due to the
rich and arbitrary structure of graphs. Most graph classification
approaches are designed based on kernel machines, which
aim to compute similarities between graphs by enumerating
their common substructures, e.g., walks [4], subtrees [5], and

subgraphs [6]. Conventionally, they assume that the graph data
is limited in size and thus can be stored in memory or local
storage, which makes it possible to do multiple-scans during
the learning process within reasonable time constraints. How-
ever, in many real-world applications, graphs are presented in a
streaming fashion with the rapid appearance of nodes or edges
in the underlying networks. The structures of such networks
are highly dynamic and frequently updated over time. For
example, social networks (e.g., Facebook), are continuously
formed by the increasing social interactions among entities.
Due to the dynamic nature of those networks, classical graph
kernel methods will be incapable of calculating similarities
effectively between graphs for the following reasons.

• With the increasing volume of graph data, it is impos-
sible to hold all information about the underlying net-
work structure in memory or local storage. When the
graph is evolving over time, old information regarding
nodes or edges must be eliminated from storage in
order to maintain a modest speed of accessibility,
which makes it infeasible to compute the global kernel
matrix for all seen data.

• When the sets of nodes and edges are becoming larger,
enumerating the substructures (e.g., paths, subtrees)
will result in longer training time. Furthermore, the
structures of many real-world networks may con-
stantly evolve over time. As a result, a classification
model needs to be effectively updated whenever new
structural information becomes available. Unfortu-
nately, traditional graph kernels built on batch mode
will not be able to scale well because the resources
needed for learning similarity matrices will increase
dramatically.

• There is always noisy structural information inside
large-scale networks. The existence of these irrele-
vant features may deteriorate the classification perfor-
mance or introduce unexpected structural complexity
during the learning progress. However, no effective
strategy exists to select informative structural infor-
mation to facilitate the classification progress in a
dynamic graph.

In order to address the above challenges, we report in this
paper, an incremental graph kernel framework based on Sup-
port Vector Machine (SVM) to investigate the problem of
classification on large-scale and dynamically changing graphs.
The main idea of our incremental classification framework is to
construct a classifier based on the data of the current batch and

2014 IEEE International Conference on Data Mining

1550-4786/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDM.2014.69

650

the support vectors retained from the previous batch, and then
use this model to predict the class labels of the future batch.
The classification model is incrementally trained upon the
arrival of a new batch of data. This methodology has favorable
properties regarding time and space issues through summariz-
ing historic data by preserving the support vectors. In case
that the entire network cannot be loaded completely into main
memory, we adopt a windowing method on the incremental
SVM classification algorithm. The sliding window maintains
recent data which is available for training and discards all older
information from memory. Since the problem of subgraph
classification can be transformed into node classification by
introducing a virtual node for each subgraph, we focus on
node classification in this paper. But our techniques can be
easily extend onto subgraph classification. While classifying
nodes in a single graph, it is natural to take advantage of the
information from neighbor nodes. Therefore, for a target node
to be classified, we design an entropy-based scheme to extract
a subgraph surrounding this node, in which the informative
neighbor nodes are included through discriminative links and
the irrelevant ones are filtered out. To the best of our knowl-
edge, this is the first work to leverage graph kernel to classify
nodes inside a large-scale dynamic graph. We empirically test
our algorithms on two real-world dynamic graph datasets.
The experimental results clearly demonstrate the benefits of
our entropy-based subgraph extraction strategy, as well as the
impressive performance of the proposed incremental learning
techniques when compared to state-of-the-art methods.

The rest of this paper is organized as follows: Section II
reviews the related work. Some notations and the problem of
interest are defined in Section III. In Section IV, the proposed
framework including the detailed methods is described. Exper-
imental results are given in Section V. Some conclusions are
drawn in Section VI.

II. RELATED WORK

The problem of graph classification has often been studied
on static data. There are a large number of effective graph
kernels that have been developed for classifying graphs. Most
of them follow the same principle of enumerating common
substructures to quantify the similarity between graphs. Some
typical substructures that have been used to build graph kernels
include random walks [4], shortest paths [7], subtrees [5],
graphlets [6], and frequent subgraphs [8]. In this paper, our
incremental technique is designed based on one of the fastest
graph kernels, namely the Weisfeiler-Lehman graph kernel [9].

On the other hand, node classification of graphs has been
studied in the context of exploiting the linkage structures to
improve classification accuracy [1], [10]. However, only a few
works [11]–[14] are related to the problem considered in this
paper. In [12], the authors propose a random walk approach
combined with the textual content of nodes in the network
to improve the robustness and accuracy in classifying nodes
in a dynamic content-based network. In [11], a hash-based
probabilistic approach is proposed for finding discriminative
subgraphs to facilitate the classification on massive graph
streams. A 2-dimensional hashing scheme has been designed
to compress and summarize the continuously presented edge
streams, and explore the relation between edge pattern co-
occurrence and class label distributions. Hashing techniques

have also been used in [13] to classify graph streams by
detecting discriminative cliques and mapping them onto a
fixed-size common feature space. The authors in [14] use their
presented Nested Subtree Hash Kernel (NSHK) algorithm to
project different subtree patterns from graph streams onto a set
of common low-dimensional feature spaces, and construct an
ensemble of NSHKs for large-scale graph classification over
streams. The approaches proposed in [13], [14] are closely
related to the problem considered in this paper. Both of
their methods aim to find common feature (subtree or clique)
patterns across the data stream and map those increasing
patterns onto a lower dimensional feature space using random
hashing techniques. However, those two methods are likely to
lose some discriminative substructure patterns by compressing
the expanding feature patterns into a fixed-size feature space
during the hashing process. Meanwhile, they are not directly
applicable to a single large-scale dynamic graph without a
subgraph extraction process.

The framework presented in this paper addresses the novel
task to learn a classification model incrementally on a large-
scale and time-evolving graph. We adopt an incremental learn-
ing strategy to incorporate the discriminative substructure pat-
terns (i.e., the support vectors) from previous batches into the
current training batch, instead of projecting them onto a lower-
dimensional space. Additionally, the proposed subgraph extrac-
tion strategy helps to improve the classification performance
by filtering out irrelevant information. Our methods achieve
impressive performance in terms of classification effectiveness
and learning efficiency as well as avoiding the limitations
discussed in Section I.

III. PRELIMINARIES

We first introduce some important notations and definitions.
In this paper, we focus on the dynamic graphs which are
subject to incremental changes, i.e., continuous insertions of
new nodes and edges. Other types of changes, e.g., deletions
of nodes or edges, modifications of attributes, are beyond the
scope of this paper. For the rest of this paper, we use network
and graph interchangeably.

Definition 1: A labeled graph is denoted as G =
(V, E ,L), where V is a set of nodes V = {v1, . . . , v|V|},
E ⊆ V × V is a set of directed/undirected edges, and L is a
set of labels that can be assigned to nodes or edges to indicate
their unique identifiers or attributes.

Definition 2: Let G = (V, E ,L) and G′ = (V ′, E ′,L′)
denote two labeled graphs. G′ is said to be a subgraph of
G, i.e., G′ ⊆ G, if and only if (1)V ′ ⊆ V ,(2)E ′ ⊆ E , and
(3)L′ ⊆ L.

Definition 3: An update, denoted by U , is an operation
that inserts nodes or edges into the underlying graph.

Definition 4: A incremental dynamic graph G is defined
over a sequence of updates {. . . ,Ui,Ui+1, . . .}, where each Ui
contains a specified operation that is to be applied to the object
graph in a streaming fashion.

We assume that each update operation Ui can be repre-
sented in the form of an edge Ei =< vi1 , vi2 >, where vi1 , vi2
denote the two endpoints. If the underlying dynamic graph is
a directed graph, the edge Ei has a direction pointing from vi1

651

to vi2 . Applying Ei to the current dynamic graph G will result
in the following cases:

• case 1: insertion of a new node, if vi1 /∈ G and vi2 =
∅.

• case 2: insertions of a new node and a new edge
between this new node and an old node, if vi1 /∈ G
and vi2 ∈ G, or vice versa.

• case 3: insertion of a new edge between two old nodes,
if vi1 , vi2 ∈ G.

• case 4: insertions of two new nodes and a new edge
between these two nodes, if vi1 , vi2 /∈ G.

In this paper, we assume that the updates are received in the
form of batches {Bt}∞t=1, and these batches contain various
numbers of insertion operations. By using the batch notation,
an incremental dynamic graph can also be denoted as a
collection of batches G = {B1, . . . , Bt, . . .}. See Fig.1 for
an example.

Fig. 1. An example of a dynamic graph. Updates are received in the form
of batches. For example, when B2 comes in, case 2 happens since two new
nodes F,H are connected to two old nodes B,E; case 4 also happens because
a new edge connecting two new nodes H,G is inserted.

Fig. 2. An instance of a citation network. Pi represents a paper of interest
while Ai represents an author associated to a paper. An edge label represents
the relationship between the two nodes it connects.

Definition 5: We define a node to be classified as a central
node which denotes a central entity from the original data,
and a node as a side node if it is not a central one. Furthermore,
we assume that each side node must be connected only to
central nodes in our graph representation. In other words, we
do not allow edges between any two side nodes in the graph
representation in this paper.

Fig.2 shows one instance of a citation network in which all
papers of interest are marked as central nodes while authors as
side nodes. Such a network would support the classification of
papers, e.g., papers that will receive a high number of citations
versus papers that will not.

Given the aforementioned setting, we now formulate the
problem that we aim to tackle in this paper as follows: Given
a dynamic graph with central and side nodes indicated in its
representation, and each central node vi has an associated class
label yi ∈ {+1,−1}, the goal is to learn a classifier using the
available information up until the current time t, i.e., ∪t

i=1Bi,
and to predict the class labels of new central nodes from the
next batch Bt+1.

A. Weisfeiler-Lehman Graph Kernel

Graph kernels have been designed to express the similarity
between graphs by mapping graph structures into a high-
dimensional Hilbert space and then calculating their inner
product through kernel functions. The Weisfeiler-Lehman (W-
L) graph kernel [9] is a state-of-the-art graph kernel whose
runtime scales linearly in the number of edges of the graphs.
It is based on the one-dimensional variant of the Weisfeiler-
Lehman isomorphism test [15]. In this algorithm, each node’s
label is updated by incorporating a sorted set consisting of
its neighbor nodes’ labels for a certain number of iterations.
However, the W-L kernel based on batch mode will suffer
from memory and time issues as described in Section I when
applied to dynamic graphs since multiple-scans and holding all
data in memory are not realistic in this situation. The kernel
matrix has to be recomputed whenever a new batch of central
nodes or subgraphs arrives in order to perform classification.
As a result, the computational complexity grows dramatically
as new batches of data continuously stream in.

B. Incremental Support Vector Machines

SVMs have been successfully applied as classification tools
in a variety of domains. The data points which specify the
separating hyperplane, namely, support vectors, convey more
information for classification than those that lie far away from
the hyperplane. This fact indicates a compression scheme for
saving more space as well as an incremental learning technique
for classification on large datasets [16]. In order to make
SVMs suitable for learning with data streams, the support
vectors which define the decision boundary are retained as
a representation of the data seen so far and treated as part of
the training data [17].

IV. FRAMEWORK

In this section, we introduce the three key components
included in our framework in detail: (1) extracting subgraph
for a central node from a large dynamic network, (2) retaining
the support vectors from past data for incremental learning,
(3) sliding a window on the data stream to keep data stored
in memory at a moderate size. When a new batch Bt arrives,
our overall framework works as follows:

1) A subgraph extraction procedure is called to extract
subgraphs for the central nodes in Bt.

652

2) If a sliding window is specified, then delete the old
information which is outside the current window. Go
directly to the next step if no window is set.

3) Combine the support vectors of the classification
model learned from Bt−1 with the subgraphs from
Bt as a new training set. And train a new model Mt

on this set to predict the class labels of the central
nodes from Bt+1.

In the following subsections, we first propose a subgraph ex-
traction scheme for central nodes, then describe the incremen-
tal classification method and the window-based incremental
method.

A. Subgraph Extraction for Central Entities

For classifying nodes in a graph, it is always desirable to
use the linkage structures that encode relationships between
nodes. Therefore, it becomes natural to assign class labels to
the nodes by measuring the similarities between subgraphs
surrounding those nodes. There are many approaches for
extracting a subgraph surrounding a node, e.g., 1-edge hops,
random walks. However, a star-like subgraph extracted using
1-edge hops may not be discriminative enough since it contains
less structural information. On the other hand, a subgraph
extracted by random walks may make the classification process
more complicated.

In order to classify a central node in a dynamic graph,
we design an effective strategy to extract a subgraph for it
by selecting the informative neighbor nodes and discarding
those with less discriminative power. For a node vi ∈ G1,
if it is connected to any central nodes, then we can define
the entropy value for vi. Let N (vi) be the neighbor nodes
of vi, and let npos and nneg denote the numbers of central
nodes with positive class labels and negative class labels in
N (vi) respectively. The probabilities of positive and negative
instances in N (vi) can then be estimated as follows:

p1 =
npos

npos + nneg
and p2 =

nneg

npos + nneg
(1)

Thus the entropy computation for vi can be explicitly written
as:

E(vi) = −p1log2p1 − p2log2p2 (2)

The entropy value of vi expresses the discriminative power
of vi with respect to the two classes (positive and negative)
during the classification process. The lower E(vi) is, the more
power vi has.

To obtain a subgraph for a target central node to be
classified, denoted as vc, a threshold parameter θ needs to be
set for selecting the discriminative neighbor nodes. The main
idea of our extraction method is that we start from vc and keep
extracting neighbor nodes whose entropy values ≤ θ until we
meet other central nodes of the same type as vc. We then
induce a subgraph from the whole large graph, in which we
include all the interconnections between the extracted nodes. It
is worth noting that when computing entropy values for each
node in N (vc), the class label of vc should not be counted
because vc is the target node to be classified. And if a node
vs ∈ N (vc) has no other connections to central nodes except

1Note that vi can be central or side node.

vc (this is the case that vs is attached to the subject graph
through vc), then this node will also be included in extraction.
The subgraph extraction scheme aims to serve two purposes:
(1) select informative neighbor nodes for classification, and (2)
reduce the structural complexity of the subgraph to facilitate
the computation of the kernel matrix in the learning steps.
This method allows us to utilize the discriminative information
included in these neighbor nodes, and has been proven to
perform effectively in our experiments. Algorithm 1 shows
the detailed procedure for extracting a subgraph surrounding
a central node from a graph.

Algorithm 1 Subgraph Extraction (SubExtract)

Input:
G: A graph
vc: A target central node
θ: A threshold for selecting discriminative nodes

Output:
Subvc

: A subgraph surrounding vc

1: I(vc) = {vc}
2: Nv = N (v)
3: while Nv �= ∅ do
4: pop a node v′ from Nv and compute its entropy E(v′)
5: if v′ is not visited and E(v′) ≤ θ then
6: I(vc) = I(vc) ∪ {v′}
7: mark v′ as visited in G
8: if v′ is not the same type as vc then
9: Nv = Nv ∪N (v′)

10: end if
11: end if
12: end while
13: induce a subgraph Subgvc

from G with the nodes in I(vc)
14: return Subgvc

When dealing with a dynamic graph, the subgraph extrac-
tion becomes complicated. In order to control the size of the
dynamic graph stored in memory, we propose to use a sliding
window to retain the most recent data batches and discard the
oldest ones (see the following subsection IV-C). There is a
possibility that a certain update in current batch Bt may refer
to old nodes which have been inserted at batches previous to
Bt (i.e., case 2 or case 3 mentioned in Section III occurs).
We then check the existence of these old nodes. If they have
been removed from memory, we will ignore that update. This
is reasonable because the target concept is likely to change in
data streams. And we want to classify the future data using
the latest model constructed base on recent batches.

B. Incremental Classifier

To perform classification tasks on large dynamically chang-
ing graphs, the major challenge is to learn a model on currently
available data and incrementally update the model upon the
arrival of new batches of streaming data. Typically, learning a
classifier based on all historic data seen so far will help reduce
the generalization error. However, the learning process itself
will become computationally intractable in terms of memory
and CPU time when the amount of available data tends to be
huge. Moreover, the graph data is constantly generated at a

653

rapid rate, which makes it impossible to store all data in main
memory or scan the data multiple times.

Incremental learning techniques address those issues by
condensing the historic information and combining the con-
densed information with the current batch of data for training
purpose. This approach has shown good performance when
incorporated into the SVM learning process [16], [17]. At each
learning step, the support vectors from the previous batch are
retained as a compact summary of the past data, and they are
combined with the current batch to comprise a new training
set for the next step. This scheme allows us to throw away old
examples that play a negligible role in specifying the decision
boundary in classification.

When dealing with a dynamic graph, we consider every
batch Bt and the support vectors retained from the model
learned based on the previous batch Bt−1 as the current
training set, and build a SVM classification model using the
W-L kernel. It is possible that the set of support vectors
retained from Bt−1 may include some support vectors from
the batches previous to Bt−1. This is because these support
vectors are still identified as important examples when defining
the classification decision boundary on Bt−1. The new model
is then used to predict the class labels of those central nodes
or subgraphs in batch Bt+1. In this setting, we enable the
classification to be updated incrementally when new batches of
data stream in continuously at a rapid rate. Algorithm 2 shows
the pseudocode of the incremental SVM (IncSVM) method.

Algorithm 2 Incremental SVM (IncSVM)

Input:
G: A graph
SVt−1: A set of support vectors
Bt: The current batch
θ: The threshold for selecting neighbor nodes

Output:
Mt: A SVM classification model for prediction

1: SubBt
= ∅

2: for each central node vc in Bt do
3: SubBt

= SubBt
∪ {SubExtract(G, vc, θ)}

4: end for
5: construct a training set TRt = SVt−1 ∪ SubBt

6: learn a classifier Mt on TRt using W-L kernel
7: return Mt (including its support vectors SVt)

C. Window-based Incremental Classifier

Although the incremental SVM method will potentially
utilize less memory by discarding old data points which are
not identified as support vectors, it is still possible that the
algorithm will not scale up effectively when: 1) A huge
amount of support vectors tend to be retained. For example, the
learning problem is a hard one where almost all training data
points are on the decision boundary of the constructed SVM;
2) The large dynamic graph itself is continuously changing
with increasing volume of nodes and edges, which needs
more memory. Furthermore, the target concept of the data
may change with time so that the old examples may not
be a promising predictor for future data. Besides retaining

support vectors, some other strategies are needed to remove old
information which is not valuable in deciding the separating
hyperplane.

We present another incremental SVM learner with a sliding
window which maintains a limited amount of data in memory.
Using a sliding window enables us to keep a large dynamic
network covering the nodes and edges that arrive recently.
When the window is full, the oldest batch of nodes or edges
will be removed from the network so that we can maintain the
network as a moderate size in memory.

The important parameter for this method is the size of
the window W which stores the recent W batches of data.
At time t when the new batch Bt arrives, if the window is
full, the old nodes and edges inserted at batch Bt−W will be
deleted from the underlying network. As a result, the support
vectors form Bt−W are also removed from the retained support
vector list SVt−1. However, in the central node classification
scenario, it is possible that some support vectors remaining
in SVt−1 may connect to nodes from Bt−W , especially the
central nodes of support vectors from Bt−W . In that case, we
modify these support vectors by deleting all the old nodes
which come from Bt−W and their connections. Take Fig.2
as a toy example, a support vector in a citation network is a
subgraph surrounding a central paper node P1 and it contains
another central node P4 which is an old support vector from
Bt−W . We will retain this subgraph of P1 as a support vector
by deleting P4 and the edges related to P4. And the subgraph
of P1 will be eliminated from the support vector list in the
next learning step if it has no discriminative power any more.
Our window-based incremental SVM (WinSVM) is described
in Algorithm 3.

Algorithm 3 Window-based IncSVM (WinSVM)

Input:
G: A graph
SVt−1: A set of support vectors
Bt: The current batch
θ: The threshold for extracting subgraphs
W : Window size

Output:
Mt: A SVM classification model for prediction

1: if the window is full then
2: delete the batch Bt−W from G
3: check SVt−1 and do
4: a. delete the support vectors from Bt−W

5: b. modify the support vectors which contain
nodes from Bt−W

6: end if
7: return IncSVM(G,SVt−1,Bt, θ)

D. Complexity Analysis

In order to analyze the time complexity of our proposed
methods, we assume that each batch has the same number
of central nodes, denoted by |B|, to be streamed into the
underlying large dynamic network. Furthermore, we assume
the subgraph extracted for each central node in a batch has no
more than |V| nodes and |E| edges. Then the computational

654

complexity for the W-L graph kernel is O(r|B||E|+r|B|2|V|)
[9] where r is the number of iterations used in W-L isomor-
phism test.

For IncSVM, the worst case is that the set of support
vectors retained from previous batch contains all the training
examples seen so far. Therefore, at time t, we have t|B|
subgraphs (consisting of the previous t − 1 batches and the
current batch), which indicate that the complexity for IncSVM
is O(rt|B||E|+ rt2|B|2|V|). Similar results can be drawn for
WinSVM. The worst situation is that it retains all training
examples from all previous batches in a window as support
vectors, which causes O(rW |B||E|+ rW 2|B|2|V|) (W is the
size of a sliding window) time to compute a kernel matrix.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the entropy-
based subgraph extraction method and test the proposed incre-
mental learning techniques on two real-world dynamic graph
datasets.

A. Benchmark Data

The following datasets are used in our experimental vali-
dation.
(1) IMDB Network: The Internet Movie Database (IMDB)2

consists of data related to movies. Each movie in IMDB
is associated with rich information such as actors, directors,
budget, box-office receipts, etc. In our experiments, we focus
on movies released in the United States from 1990 to 2013 and
build a dynamic movie network by extracting its associated
actors, directors, writers and producers for each movie. The
IDs of movies, actors, directors, writers and producers are
represented as nodes and the relationships between them are
represented by various types of edges. More specifically, in our
representation, we denote that (1) each movie ID is a central
node; (2) all other types of nodes are side nodes; (3) if a movie
M1 is directed by an director D1, there is a directed edge with
label directed-by from M1 to D1; (4) if a movie M1 is acted
by an actor A1, there is a directed edge with label acted-by
from M1 to A1; (5) if a movie M1 is written by a writer W1,
there is a directed edge with label written-by from M1 to W1;
(6) if a movie M1 is produced by a producer P1, there is a
directed edge with label produced-by from M1 to P1. We have
identified 7535 movies released between 1990 and 2013. The
dynamic movie network is formed by continuous insertions
of aforementioned nodes and edges chronologically when new
movies appear along with their actors, directors, writers and
producers. The final network contains over 2.0×105 nodes and
3.4× 105 edges. Our goal is to predict whether a movie will
be successful (the opening weekend box-office receipts exceed
$2 million) [18] when it is released. Among all the identified
movies, 2524 of them (whose opening weekend revenue ≥ $2
million) are labeled as positive while the others are labeled as
negative. Fig.3(a) shows the numbers of positive and negative
movies released in each year between 1990 and 2013.
(2) DBLP Network: DBLP3 is a database containing millions
of publications in computer science. Each paper is associated
with abstract, authors, year, venue, title and references. Similar

2http://www.imdb.com
3http://arnetminer.org/citation

to the work in [19], our classification task is to predict
which of the following two fields a paper belongs to: DBDM
(database and data mining: VLDB, SIGMOD, PODS, ICDE,
EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM, PAKDD,
PKDD, SDM and DEXA) and CVPR (computer vision and
pattern recognition: CVPR, ICCV, ICIP, ICPR, ECCV, ICME
and ACM-MM). However, we could not recreate the complete
settings as described in [19], which used 19,456 papers and
1,000 most frequent keywords to represent the graphs. We
instead have identified 45,270 papers published between 2000
and 2009, and their references and authors. 19,680 of them
are DBDM-related (positive) while 25,590 of them are CVPR-
related (negative). The dynamic DBLP network is then formed
by insertions of papers and authors and the relationships
between these entities. In particular, we denote that (1) each
paper ID is a central node while each author ID is a side node;
(2) if a paper P1 cites another paper P2, there is a directed
edge labeled with cites from P1 to P2; (3) if a paper P1’s
author is A1, there is a directed edge labeled with written-by
from P1 to A1. The final graph contains about 1.2×105 nodes
and 2.5 × 105 edges. Fig.3(b) shows the numbers of positive
and negative papers published in each year between 2000 and
2009.

1990 1995 2000 2005 2010

year

0

100

200

300

400

500

#
m
o
vi
e
s

Numbers of positive and negative movies in each year

Negative

Positive

(a) IMDB

2000 2002 2004 2006 2008

year

0

1000

2000

3000

4000

5000

6000

#
p
a
p
e
rs

Numbers of positive and negative papers in each year

Negative

Positive

(b) DBLP

Fig. 3. The numbers of positive and negative examples in each year for
IMDB and DBLP datasets.

B. Experimental Settings

Baseline Methods: To evaluate the classification perfor-
mance of our learning framework, we compare the proposed
methods with the following baseline methods.

• Nested Subtree Hash Kernel (NSHK) [14] is an
ensemble learning framework which consists of W

655

weighted classifiers built on the most recent W
batches of data

fE(x) =
t∑

i=t−W+1

wifi(x)

where fi is a classification model learned from
batch Bi, wi =

∑
y∈{±} Pt(y)(1 − Pt(y))

2 −
1
|Bt|

∑|Bt|
n=1(0.5(1 − ytnfi(x

t
n)))

2 is the weight for fi
measured by the mean square errors related to fi
and the class distribution, and Pt(y) denotes the class
distribution in Bt. Each classifier of the ensemble is
constructed using W-L kernel. In our experiments, we
fix the ensemble size as 10 and set the dimensionality
for 5 resolutions as {500, 1000, 5000, 10000, 50000}.

• Discriminative Clique Hashing (DICH) [13] uses
random hashing technique to compress infinite edge
space onto a fixed-size one and applies a fast clique
detection algorithm to detect frequent discriminative
cliques as features from a graph stream, and constructs
a simple classifier based on the detected cliques.
We run DICH using the following parameters: fre-
quent clique threshold = {0.01, 0.05, 0.1}, discrim-
inative clique threshold {0.5, 0.6, 0.7}, and size of
compressed edge set = {5000, 10000, 20000}. The
experimental results of DICH are reported using one
of these parameters’ combinations with the highest
classification accuracy.

All SVM-based classification tasks (including NSHK,
IncSVM, WinSVM) are conducted using LIBSVM [20], as
long as we compute the kernel matrices. To make a fair
comparison, we set the maximum number of iterations for
W-L isomorphism test in IncSVM and WinSVM as 5 (Note
that this value should be consistent with the number of
resolutions in NSHK). Unless specified otherwise, we use the
following settings for the parameters of these methods: batch
size |Bt| = {200, 400} for IMDB and {400, 600} for DBLP,
subgraph extraction threshold θ = {0.2, 0.4, 0.6, 0.8, 1.0}, and
window size W = {6, 8, 10}. All experiments are conducted
on a 1.40 GHz single core AMD Opteron machine with 132
GB memory size, running CentOS 6.4.

C. Performance Evaluation

We evaluate the classification effectiveness and efficiency
with experiments on the two real-world datasets for each
method. The effectiveness is measured by prediction accuracy,
which is the proportion of correctly classified examples to
the total number of examples in each batch. The efficiency
is measured by recording accumulated system runtime (sum-
mation of training time and prediction time for each batch).
The classification performance of our incremental learning
framework is first compared to that of the baseline methods.
Then we study the impact of varying the threshold θ for
subgraph extraction and the window size for WinSVM.

1) Classification Performance on Dynamic Graphs: Since
NSHK and DICH are designed for classifying a graph stream
which contains a sequence of independent graphs instead of
learning from a single large-scale dynamic graph, we need
to extract subgraphs from a dynamic graph for these two

algorithms. In order to make a fair comparison, we extract
the subgraphs for central entities by setting θ = 1.0, which
indicates a naive extraction where the subgraphs are generated
by including all neighbor nodes for each entity. In Fig.4
and Fig.5 we report the classification accuracy at different
learning steps on IMDB and DBLP. We vary the number of
subgraphs in each batch and fix the window size W = 10
for WinSVM4. IncSVM does not scale well on DBLP in
this experiment because almost all training examples tend
to be support vectors, so we exclude its performance report
on DBLP. We can clearly see that our incremental learning
techniques constantly outperform their peers across all batches
of both datasets. These results indicate that, by retaining the
support vectors from previous batches, it is possible to learn
a classifier on dynamic graphs which can achieve higher
accuracy compared to state-of-the-art algorithms. The average
accuracy values across all batches for both IMDB and DBLP
shown in Fig.6 demonstrate this fact. The average accuracy
values are insensitive to |B|, which implies the stability of
our techniques. Another observation is that WinSVM can
generate impressive accuracy comparable to that of IncSVM
on IMDB, which indicates that we can obtain good accuracy
results by setting a proper window size and discarding all
old information outside the window. Overall, the incremental
framework proposed in this paper is able to potentially reduce
the number of training examples by compressing the historic
data to facilitate a learning process, and maintain or improve
classification performance.

Moreover, we record the accumulated system runtime5

across all batches for running these algorithms on IMDB
and DBLP. The results are shown in Fig.7. We find that
DICH takes much less time than NSHK and our incremental
techniques. This is mainly because DICH does not involve
kernel matrix computation, which is actually the most time-
consuming part for NSHK and IncSVM/WinSVM. However,
IncSVM and WinSVM take less time than NSHK on IMDB.
For IMDB, the accumulated learning time of IncSVM is only
28.34%(|B| = 200) and 15.02%(|B| = 400) of that of
NSHK, while the accumulated learning time of WinSVM is
only 12.60%(|B| = 200) and 12.56%(|B| = 400) of that
of NSHK. Considering the higher accuracy that IncSVM and
WinSVM achieve, we conclude that our incremental learning
framework has the best classification performance on IMDB.
On the other hand, WinSVM enables a runtime reduction by
29.39%(|B| = 400) and 19.94%(|B| = 600) of that of NSHK
on DBLP. Given the fact that WinSVM has higher accuracy
than both NSHK and DICH, we may conclude that WinSVM
with a suitable window size is a promising classification
method. Overall, the proposed learning framework is superior
to the peers.

2) Impact of Subgraph Extraction: To investigate the im-
pact of our entropy-based subgraph extraction scheme on
performance, we set |B| = 200 for IMDB and |B| = 600 for
DBLP, and report average classification accuracy and system
runtime for the four algorithms by using different thresholds
θ for extracting subgraphs from IMDB and DBLP. Fig.8 and
Fig.9 plot the average classification accuracy results across all

4W is set to 10 in order to be consistent with NSHK, whose training
examples are the most recent 10 batches.

5Note that the time plots in Fig.7,8,9 are in 10-logarithmic scale.

656

(a) (b)

Fig. 4. Accuracy at each learning step w.r.t. different batch sizes on IMDB, with subgraph extraction threshold θ = 1.0 and window size W = 10 for
WinSVM. The number of subgraphs in each batch: (a)200 and (b)400.

(a) (b)

Fig. 5. Accuracy at each learning step w.r.t. different batch sizes on DBLP, with subgraph extraction threshold θ = 1.0 and window size W = 10 for WinSVM.
The number of subgraphs in each batch: (a)400 and (b)600.

batches and accumulated system runtime w.r.t. θ on IMDB
and DBLP. We observe from Fig.8(a) that the classification
accuracy is sensitive to θ on IMDB. There is a performance
improvement as θ increases from 0.2 to 0.8 and a deterioration
from 0.8 to 1.0 for NSHK, IncSVM and WinSVM, which
demonstrates that our subgraph extraction method is able to
improve classification accuracy through discovering informa-
tive neighbor information during the learning process for graph
kernel based learning algorithms. However, DICH is also
influenced by its own parameters (frequent clique threshold
and discriminative clique threshold [13]), so the results of
DICH do not display the same phenomenon as other three
do. Fig.8(b) shows that, our subgraph extraction method can
reduce accumulated learning time for all the four algorithms
by setting θ < 1.0. Specifically, IncSVM gains an accuracy
improvement by 5.23% and a runtime reduction by 35.16%
from θ = 1.0 to θ = 0.8, while WinSVM gains an accuracy
improvement by 5.15% and a runtime reduction by 48.04%
from θ = 1.0 to θ = 0.8. On DBLP, the accuracy values and
system runtime are more steady w.r.t. θ and there is no clear
accuracy improvement or deterioration like what have been
observed on IMDB. This is probably due to the fact that the
discriminative nodes are extremely rare in the DBLP dynamic
network. For all these three methods, the average classification
accuracy values of θ = 0.8 are approximately equivalent
to those of θ = 1.0, respectively. And they all gain slight
reductions in terms of runtime. Specifically, the accumulated
learning time of WinSVM gains a reduction by 8.39% from

θ = 1.0 to θ = 0.8. These experimental results demonstrate
clear benefits of our entropy-based subgraph extraction method
in terms of classification effectiveness and efficiency.

(a) IMDB (b) DBLP

Fig. 6. Average accuracy across all batches w.r.t. different batch sizes on
IMDB and DBLP.

Another aspect for studying the impact of using different
θ is to investigate the structural complexity of the extracted
subgraphs. We use the average numbers of nodes and edges for
subgraphs at each batch to measure the structural complexity,
which also reflect the computational cost for the proposed
incremental framework (see Section IV-D). From Fig.10, we
can find that, setting θ < 1.0 for IMDB will reduce the
structural complexity of extracted subgraphs to a great extent.
The lower θ is, the lower structural complexity is. Combining
the results from Fig.8 and Fig.10, we can see that our entropy-
based subgraph extraction strategy is capable of retaining

657

|B|=200 |B|=400

batch size

0

10

10
2

10
3

10
4

10
5

a
cc
u
m
u
la
te
d
ti
m
e
(s
e
co

n
d
s)

Accumulated learning time vs. |B| (IMDB)

NSHK

DICH

IncSVM

WinSVM

(a) IMDB

|B|=400 |B|=600

batch size

0

10

10
2

10
3

10
4

10
5

a
cc
u
m
u
la
te
d
ti
m
e
(s
e
co

n
d
s)

Accumulated learning time vs. |B| (DBLP)

NSHK

DICH

WinSVM

(b) DBLP

Fig. 7. Accumulated system runtime across all batches w.r.t. different batch
sizes on IMDB and DBLP.

0.2 0.4 0.6 0.8 1.0

threshold θ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

av
er
ag

e
ac
cu

ra
cy

Average accuracy on IMDB vs. θ (|B|=200)

NSHK DICH IncSVM WinSVM

(a) Average accuracy

0.2 0.4 0.6 0.8 1.0

threshold θ

10

10
2

10
3

10
4

10
5

10
6

a
cc
u
m
u
la
te
d
ti
m
e
(s
e
co
n
d
s)

Accumulated learning time on IMDB vs. θ (|B|=200)

NSHK DICH IncSVM WinSVM

(b) Accumulated learning time

Fig. 8. Average accuracy across all batches and accumulated learning time
on IMDB w.r.t. different values of θ.

informative neighbor nodes and filtering irrelevant ones while
inducing subgraphs for central entities in IMDB. Fig.11 shows
the structural complexity of the extracted subgraphs at each
batch on DBLP. We find that the structural complexity is
insensitive to θ, which indicates that fewer neighbor nodes tend
to be filtered out during the subgraph extraction process. Thus
the classification performance on DBLP remains relatively
steady w.r.t. different values of θ, which is reflected in Fig.9.

3) Impact of Window Size: In the last part, we investigate
the classification performance w.r.t. different window sizes for
one of the proposed learning techniques, namely WinSVM.
According to the results that we have obtained from the
previous subsections, we set subgraph extraction threshold
θ = 0.8 and vary the window size W = {6, 8, 10}. We report
the average classification accuracy across all batches in Table
I. Intuitively, the classification accuracy will increase at the
expense of more space caused by enlarging the window size.
This is mainly because more training examples will be retained
inside a larger window, which will reduce the generalization
error of the classifier. On the other hand, enlarging a window
size will increase runtime because it will consume more time
for WinSVM to train a classifier. Fig.12 demonstrates this

0.2 0.4 0.6 0.8 1.0

threshold θ

0.5

0.6

0.7

0.8

0.9

av
er
ag

e
ac

cu
ra
cy

Average accuracy vs. θ on DBLP (|B|=400)

NSHK DICH WinSVM

(a) Average accuracy

0.2 0.4 0.6 0.8 1.0

threshold θ

10

10
2

10
3

10
4

10
5

10
6

a
cc
u
m
u
la
te
d
ti
m
e
(s
e
co

n
d
s)

Accumulated learning time on DBLP vs. θ (|B|=400)

NSHK DICH WinSVM

(b) Accumulated learning time

Fig. 9. Average accuracy across all batches and accumulated learning time
on DBLP w.r.t. different values of θ.

0 5 10 15 20 25 30 35

batches

0

100

200

300

400

500

600

a
v
e
ra
g
e
n
u
m
b
e
r
o
f
n
o
d
e
s

Number of nodes in each batch (IMDB, |B|=200)

θ=0.2

θ=0.4

θ=0.6

θ=0.8

θ=1.0

(a) Number of nodes

0 5 10 15 20 25 30 35

batches

0

100

200

300

400

500

600

700

a
v
e
ra
g
e
n
u
m
b
e
r
o
f
e
d
g
e
s

Number of edges in each batch (IMDB, |B|=200)

θ=0.2

θ=0.4

θ=0.6

θ=0.8

θ=1.0

(b) Number of edges

Fig. 10. Average numbers of nodes and edges at each batch on IMDB w.r.t.
different values of θ. The number of subgraphs in each batch: |B| = 200.

0 10 20 30 40 50 60 70

batches

5

10

15

20

25

30

35

40

a
v
e
ra
g
e
n
u
m
b
e
r
o
f
n
o
d
e
s

Number of nodes in each batch (DBLP, |B|=600)

θ=0.2

θ=0.4

θ=0.6

θ=0.8

θ=1.0

(a) Number of nodes

0 10 20 30 40 50 60 70

batches

10

20

30

40

50

a
v
e
ra
g
e
n
u
m
b
e
r
o
f
e
d
g
e
s

Number of edges in each batch (DBLP, |B|=600)

θ=0.2

θ=0.4

θ=0.6

θ=0.8

θ=1.0

(b) Number of edges

Fig. 11. Average numbers of nodes and edges at each batch on DBLP w.r.t.
different values of θ. The number of subgraphs in each batch:|B| = 600.

fact. Overall, the results show that WinSVM can achieve
impressive classification performance with a proper window
size. Therefore, WinSVM is a promising technique and a
potential alternative of IncSVM for doing classification on
large-scale dynamic graphs with favorable properties in terms
of processing time and memory.

|B|=200 |B|=400

batch size

1

2

3

4

5

6

7

a
cc
u
m
u
la
te
d
ti
m
e
(×

1
0
3
se
co
n
d
s)

Accumulated learning time on IMDB vs. W (θ=0.8)

W=6

W=8

W=10

(a) IMDB

|B|=400 |B|=600

batch size

1

2

3

4

5

6

7

8

a
cc
u
m
u
la
te
d
ti
m
e
(×

1
0
4
se
co
n
d
s)

Accumulated learning time on DBLP vs. W (θ=0.8)

W=6

W=8

W=10

(b) DBLP

Fig. 12. Accumulated system runtime across all batches w.r.t. different
window sizes for WinSVM on IMDB and DBLP.

D. Limitations

Overall, our experimental findings show the advantage of
the proposed incremental techniques compared to the two
baseline methods in terms of classification effectiveness and
efficiency. However, as we mentioned in Section V-C, IncSVM
will fail to scale well on those datasets in which almost all the
training examples are support vectors. In this case, the incre-
mental learner tends to retain all the training examples from
the previous batches and make kernel computation infeasible.
WinSVM addresses the scalability issue by discarding all old
support vectors which are outside the window. Although this
may reduce the accuracy in some cases, WinSVM is able to
produce results comparable to the competing approaches in
terms of accuracy and runtime.

658

TABLE I. AVERAGE ACCURACY ACROSS ALL BATCHES USING DIFFERENT WINDOW SIZES FOR WINSVM (θ = 0.8).

IMDB DBLP

W |B| = 200 |B| = 400 W |B| = 400 |B| = 600

6 0.828± 0.048 0.837± 0.040 6 0.807± 0.036 0.824± 0.034

8 0.831± 0.050 0.839± 0.041 8 0.819± 0.036 0.832± 0.033

10 0.834± 0.051 0.839± 0.041 10 0.826± 0.036 0.837± 0.034

VI. CONCLUSION

In this paper, we present a novel framework for studying
the problem of classification on large-scale dynamic graphs.
Our techniques combine an incremental SVM and a fast
Weisfeiler-Lehman graph kernel to train a classification model
and constantly update it by preserving the support vectors at
each learning step. Additionally, a sliding window strategy is
incorporated into our framework in order to further reduce
memory usage and learning time. The entropy-based subgraph
extraction method is designed to discover informative neighbor
information and discard irrelevant information when inducing
a subgraph for a central entity to be classified. We validate
the proposed methods for effective classification in large-scale
dynamic graphs.

Our future work will include investigating the pros and
cons of our incremental methods by conducting comparisons
with state-of-the-art classification algorithms on more real-
world dynamic networks. We will also explore the theoretical
relation between the user-defined variables (i.e., window size,
edge extraction threshold) and the classification performance
of the proposed algorithms. Developing algorithms that can be
applied to a dynamic graph which is subject to various types
of updates, (i.e., insertions and deletions of nodes and edges)
is another future direction.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No.1318913.

REFERENCES

[1] S. Macskassy and F. Provost, “Simple models and classification in
networked data,” in CeDER Working Paper 03-04. Stern School of
Business, New York University, 2004.

[2] N. S. Ketkar, L. B. Holder, and D. J. Cook, “Mining in the proximity of
subgraphs,” in ACM KDD Workshop on Link Analysis: Dynamics and
Statics of Large Networks, 2006.

[3] D. J. Cook and L. B. Holder, Mining graph data. John Wiley & Sons,
2006.

[4] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 129–143.

[5] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on graphs.”
in Proc. NIPS, 2009, pp. 1660–1668.

[6] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and S. Vish-
wanathan, “Efficient graphlet kernels for large graph comparison,” in
Proc. AISTATS, 2009, pp. 488–495.

[7] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,”
in Proc. ICDM. IEEE, 2005, pp. 74–81.

[8] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, “Frequent
substructure-based approaches for classifying chemical compounds,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 8, pp. 1036–1050, 2005.

[9] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,” Journal of
Machine Learning Research, vol. 12, pp. 2539–2561, 2011.

[10] Q. Lu and L. Getoor, “Link-based classification,” in Proc. ICML, vol. 3,
2003, pp. 496–503.

[11] C. C. Aggarwal, “On classification of graph streams.” in Proc. SDM.
SIAM, 2011, pp. 652–663.

[12] C. C. Aggarwal and N. Li, “On node classification in dynamic content-
based networks.” in Proc. SDM. SIAM, 2011, pp. 355–366.

[13] L. Chi, B. Li, and X. Zhu, “Fast graph stream classification using
discriminative clique hashing,” in Advances in Knowledge Discovery
and Data Mining. Springer, 2013, pp. 225–236.

[14] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested subtree hash kernels for
large-scale graph classification over streams,” in Proc. ICDM. IEEE,
2012, pp. 399–408.

[15] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canon-
ical form and an algebra arising during this reduction,” Nauchno-
Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[16] C. Domeniconi and D. Gunopulos, “Incremental support vector machine
construction,” in Proc. ICDM. IEEE, 2001, pp. 589–592.

[17] N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental learning with
support vector machines,” in Proc. IJCAI. Citeseer, 1999.

[18] J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational
probability trees,” in Proc. SIGKDD. ACM, 2003, pp. 625–630.

[19] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classification
using labeled and unlabeled graphs,” in Proc. ICDE. IEEE, 2013, pp.
398–409.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for sup-
port vector machines,” ACM Trans. on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

659

