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Abstract

We propose a dynamic graph-based relational learning ap-
proach using graph-rewriting rules to analyze how biological
networks change over time. The analysis of dynamic biolog-
ical networks is necessary to understand life at the system-
level, because biological networks continuously change their
structures and properties while an organism performs various
biological activities to promote reproduction and sustain our
lives. Most current graph-based data mining approaches over-
look dynamic features of biological networks, because they are
focused on only static graphs. First, we generate a dynamic
graph, which is a sequence of graphs representing biological
networks changing over time. Then, our approach discovers
graph rewriting rules, which show how to replace subgraphs,
between two sequential graphs. These rewriting rules describe
the structural difference between two graphs, and describe how
the graphs in the dynamic graph change over time. Temporal
patterns discovered in dynamic graphs representing metabolic
pathways show that our approach enables the discovery of dy-
namic patterns in biological networks.
keywords: Temporal Graph Mining, Graph Rewriting Rules, Biolog-
ical Network

1 Introduction

Our bodies are well-organized biological networks, which
promote reproduction and sustain our lives. Furthermore, bi-
ological networks continuously change their structures and
properties, while an organism performs various biological ac-
tivities, such as digestion, respiration and so on. We assume
the structures of biological networks change over time as they
interact with specific conditions, for instance, a disease.

The temporal patterns in the structural changes of biologi-
cal networks can be significant information about a disease and
help researchers develop new drugs. During the development
period, the temporal patterns in the structural changes of bi-
ological networks after taking the medicine are also used for
the development and evaluation of the new drug. Lactose in-
tolerance is the inability to digest lactose because of a lack of
the lactase enzyme, breaking down lactose into galactose and
glucose [2]. Two major treatments are to minimize the intake
of lactose products and take the lactase supplement. Our ap-

proach can help us discover the temporal patterns in the struc-
tural changes of the galactose metabolism pathway after these
treatments, and investigate other treatments (i.e., improving the
production of the lactase enzyme in the pathway).

We propose a novel approach to analyze structural features
along with temporal features in a time series of biological
networks to enhance our systems-level understanding of bio-
organisms. Our dynamic graph-based data mining approach
uses graph-rewriting rules to analyze how biological networks
change over time. Graph-rewriting rules define how one graph
changes to another in its topology replacing vertices, edges or
subgraphs according to the rewriting rules. First, we generate a
dynamic graph, which is a sequence of graphs representing bi-
ological networks changing over time. Then, our approach dis-
covers rewriting rules, which show how to replace subgraphs,
between two sequential graphs. After discovery of whole sets
of graph rewriting rules from a dynamic graph, we discover
temporal patterns in graph rewriting rules. The temporal pat-
terns show what graph rewriting rule is applied before or after
the other is applied. The graph rewriting rules can describe
the structural difference between two graphs. The temporal
patterns in rewriting rules can describe how the graphs in the
dynamic graph changing over time. This approach enables us
to investigate dynamic patterns in biological networks.

This paper, first, introduce, several preceding approaches re-
lated to dynamic analysis of biological networks and temporal
data mining. Then, we define the problem of our research. We
present our Dynamic Graph Relational Learning (DynGRL) al-
gorithm. Our approach is applied to the glycolysis metabolic
pathway in combination with the mathematical modeling. The
results section shows our discovered graph rewriting rules and
temporal patterns of rewriting rules in two aspects: temporal
and structural aspects.

2 Related Works

According to the central dogma in molecular biology, the
genetic information in DNA is transcribed into RNA (tran-
scription) and protein is synthesized from RNA (translation).
These biomolecules (DNA, RNA and proteins) play central
roles in the aspects of the function and structure of organisms.
However, there are few molecules that can work alone. For
an example, a glycolysis (Glucose + 2NAD+ + 2ADP +



2Pi → 2Pyruvate + 2NADH + 2+ + 2ATP + 2H2O),
which is a metabolic pathway converting one molecule of
glucose into two molecules of pyruvate with the production
of two molecules of ATP (Adenosine TriPhosphate), includes
more than 10 biochemical reactions and various enzymes [13].
Biological networks including metabolic pathways, protein-
protein interactions and gene regulatory networks, consist of
various molecules and their relationships [10]. In addition to
the structural aspect, we also consider the temporal aspect of
biological networks, because the biosystems always change
their properties and structures while interacting with other con-
ditions.

Two approaches have been developed for the analysis of
biological networks. One approach is graph-based data min-
ing [11, 18]. This approach represents biological networks as
graphs, where vertices represent molecules and edges represent
relations between molecules, and discovers frequent patterns in
graphs. Many approaches of graph-based data mining discover
structural features of biological networks, but they overlook
temporal properties. The other approach is mathematical mod-
eling, which is an abstract model to describe a system using
mathematical formulae [14]. Most of these approaches, as a
type of quantitative analysis, model the kinetics of pathways
and analyzes the trends in the amounts of molecules and the
flux of biochemical reactions. But most of them disregard re-
lations among multiple molecules.

Temporal data mining attempts to learn temporal patterns in
sequential data, which is ordered with respect to some index
like time stamps, rather than static data [16]. Temporal data
mining is focused on discovery of relational aspects in data
such as discovery of temporal relations or cause-effect associa-
tion. In other words, we can understand how or why the object
changes rather than merely static properties of the object.

There are several approaches to apply temporal data mining
in biological data. Ho et al. [8] propose an approach to de-
tect temporal patterns and relations between medical events of
Hepatitis data. They represent medical information of patients
as sequential events and classify temporal patterns and rela-
tions of medical testing results in the sequential events using
the Naive Bayes classifier. Farach-Colton et al. [6] introduce
an approach of mining temporal relations in protein-protein in-
teractions. They model the assembly pathways of Ribosome
using protein-protein interactions. This approach determines
the order of molecular connections using the distance measure
of each interaction between two proteins.

Temporal data mining approaches discover temporal pat-
terns in data, but they disregard relational aspects among en-
tities. For example, they can identify temporal patterns in the
appearance of genes such that a gene, YBR218C, appears be-
fore another gene, YGL062W, but cannot identify how these
two genes interact with each other.

There are two main aspects to consider for understanding bi-
ological networks. First, we need to focus on relations between
molecules as well as a single molecule. Second, we should
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Figure 1. An example of graph rewriting rules between two
graphs G1 and G2. S represents the maximal common sub-
graph between the two graphs. R and A represent the removal
and addition substructures. The red edges with labels marked
by the boxes represent the connection edges.

consider biological networks as dynamic operations rather than
static structures because every biological process changes over
time and interacts with inner or outer conditions. It is necessary
to analyze biological networks not only for structural aspect but
also for dynamic aspect for system-level understanding of our
organisms. For this reason, we need an approach to analyze
graphs which structurally change over time for both aspects:
structural and dynamic properties.

3 Problem definition

This paper focuses on temporal and structural analysis of bi-
ological networks. Our dynamic graph-based relational learn-
ing approach discovers graph rewriting rules in a series of
graphs changing their structures over time. Each graph rewrit-
ing rule represents topological changes between two sequential
graphs. Here, we define graph rewriting rules for our approach.

Graph rewriting is a method to represent topological
changes of graphs using graph rewriting rules [5, 17]. Gen-
erally, graph rewriting rules identify subgraphs in a graph and
modify them. Each graph rewriting rule defines a transforma-
tion between L and R, where L and R are subgraphs in two
graphs G and H respectively, such that L is replaced by R, L is
deleted, or R is created [15]. There are also several algorithms
to discover the node or edge replacement graph grammar using
the minimum description length principle [9, 12]. However,
their scope is limited to static graphs.

Traditional approaches to the identification of graph rewrit-
ing rules determine which subgraphs will be replaced by other
subgraphs. Our approach is focused on representing changing
structures between two graphs rather than just what subgraphs
change. We define our graph rewriting rules to represent how
substructures change between two graphs rather than just what
subgraphs change. First, we discover maximum common sub-
graphs between two sequential graphs G1 and G2. Then, we



derive removal substructures from G1 and addition substruc-
tures from G2. Figure 1 shows an instance of this process. A
maximum common subgraph (denoted by S) is discovered be-
tween two graphs, G1 and G2. Then the remaining structure
in G1 and G2 becomes removal (denoted by R) and addition
(denoted by A) substructures respectively. These substructures
with connection edges (red edges with boxed labels) are el-
ements of graph rewriting rules: removal and addition rules.
For this approach, we define several preliminary terms.

A directed graph G is defined as G = (V,E), where V is
a set of vertices and E is a set of edges. An edge e (∈ E) is
directed from x to y as e = (x, y), where x, y ∈ V . Here,
we define a dynamic graph DG as a sequence of n graphs as
DG = {G1, G2, · · · , Gn}, where each graph Gi is a graph
at time i for 1 ≤ i ≤ n. Then, we define a set of removal
substructures RG and a set of addition substructures AG as
follows.

RGi = Gi/Si,i+1, AGi+1 = Gi+1/Si,i+1

RGi denotes a set of removal substructures in a graph Gi,
AGi+1 denotes a set of addition substructures in the next graph
Gi+1, and Si,i+1 is a maximum set of common subgraphs be-
tween two sequential graphs Gi and Gi+1 in a dynamic graph
DG.

A prior graph Gi is transformed to a posterior graph Gi+1

by application of a set of graph rewriting rules GRi,i+1 as de-
noted by

Gi+1 = Gi

⊕
GRi,i+1

A set of graph rewriting rules GRi,i+1 between two sequential
graphs Gi and Gi+1 is defined as follows.

GRi,i+1 = {(m, p,CEm, CLm), · · · , (n, q, CEn, CLn), · · ·}

m and n are indices of graph rewriting rules in a set GRi,i+1.
p and q are indices of a removal substructure in RGi and an
addition substructure in AGi+1 respectively. CE and CL are
defined as a set of connection edges and a set of labels of the
connection edges. Each element of RG and AG corresponds
to a set of CE and CL, unless a removal (addition) substruc-
ture does not connect to the Gi (Gi+1). CEk and CLk repre-
sent connections between substructures and the original graphs
(k = m or n) as follows.

CE = {(d, X, Y ), · · ·}, CL = {labelxy, · · ·}

d represents whether the edge is directed or undirected using
d and u. X and Y denote the starting and ending vertices of
the edge. Because the connection edge links the substructure
to the original graph, one end of this edge is from the substruc-
ture and the other is from the original graph. The end vertex
from the substructure starts with “s” followed by the index of
the vertex, and the end vertex from the original graph starts
with “g” followed by the index of the vertex. For example,

(d, g1, s3) represents the directed edge from a vertex 1 in the
original graph to another vertex 3 in the substructure. labelxy

represents a label for the corresponding connection edge be-
tween two vertices X and Y . The number of elements of CE
(CL as well) represents the number of connections between
substructures and the original graph. If a substructure is not
connected to the original graph, both sets of CE and CL are
empty.

Using the definitions of graph rewriting rules, we describe
more detail about the example in figure 1. As described pre-
viously, the graph rewriting rule, GR1,2, includes one removal
rule and one addition rule. The removal rule includes one sub-
structure (denoted by R) and two connection edges (red edges
with boxed labels). The addition rule includes one substructure
(denoted by A) and one connection edge. G1 is transformed to
G2 by application of GR1,2 (G2 = G1

⊕
GR1,2). GR1,2 is

described as follows,

GR1,2 = {(r1, rSub1, {(d, s2, g3), (d, s2, g4)},
{PPrel : +p, PPrel : −p}),
(a1, aSub2, {(d, g3, s1)}, {PPrel : −p})},

where r1 represents an index into the set of removal rules and
a1 represents an index into the set of addition rules. A removal
rule r1 includes a removal substructure rSub1 denoted by R
in figure 1. rSub1 was connected to the original graph G1

by two edges (d, s2, g3) and (d, s2, g4), which are labeled by
PPrel : +p and PPrel : −p. These connection edges are
directed edges (indicated by ‘d’). These two edges are con-
nected from the substructure (denoted by ‘s’) to the original
graph (denoted by ‘g’), where each number denotes a vertex
number in the substructure or the original graph. For example,
(d, s2, g3) denotes a connection from a vertex number 2 in the
substructure to a vertex number 3 in the original graph. In a
similar way, an addition rule a1 includes an addition substruc-
ture aSub1 (denoted by A in figure 1), which is connected by
one connection edge (d, g3, s1) labeled by PPrel : −p.

The graph rewriting rules show how two sequential graphs
are structurally different. After collecting all sets of graph
rewriting rules in a dynamic graph, we also discover tempo-
ral patterns in graph rewriting rules, which can describe how
the graphs change over time as well as what structures change.

4 Discovery of Graph Rewriting Rules

The first goal of our research is to discover graph rewrit-
ing rules in a dynamic graph representing biological networks
changing over time. This section describes our algorithm to
discover graph rewriting rules in a dynamic graph.

This section describes our graph rewriting rule discovery
system, DynGRL, that discovers graph rewriting rules in a dy-
namic graph. The algorithm starts with a dynamic graph DG
consisting of a sequence of n graphs as shown in algorithm
1. First, the algorithm creates a list of n virtual graphs, V GL,



corresponding to n time series of graphs at line 1. Our ap-
proach uses a virtual graph to specify the application locations
of graph rewriting rules. Because a graph may have multi-
ple graph rewriting rules and several same-labeled vertices and
edges, the exact locations of connection edges and rewriting
rules are important to reduce the discovery error. The next pro-
cedure is to create a two-graph set, Graphs, including two se-
quential graphs Gi and Gi+1 (line 5) and to specify the limit
based on unique labeled vertices and edges of Gi and Gi+1

(line 6). UV L and UEL denote the number of unique ver-
tex labels and edges in Gi and Gi+1. The Limit specifies the
number of substructures to consider when searching for a com-
mon substructure (line 6). The Limit based on the number of
labels in the input graph bounds the search space within poly-
nomial time and ensure consideration of most of the possible
substructures.

The inner loop (lines 7 to 14) represents the procedure
to discover common substructures between two sequential
graphs. We use the SUBDUE graph-based relational learning
approach to discover substructures [3, 4]. SUBDUE evaluates
substructures using the Minimum Description Length (MDL)
principle to find the best substructure which minimizes the de-
scription length of the input graph after being compressed by
the substructure. More detail on the evaluation approach is de-
scribed in [3]. Even though to find the maximum common sub-
graph is NP-Complete, SUBDUE can be used as a polynomial-
time approximation to this problem using Limit and iteration
as described later in this section. After discovery of the best
substructure, the algorithm checks whether the substructure is
a subgraph of both graphs Gi and Gi+1. In the affirmative
case, the best substructure is added into ComSubSet and the
two target graphs are compressed by replacing the substructure
with a vertex. If the best substructure does not belong to one
of the two graphs, the algorithm just compresses the graphs
without adding any entry into ComSubSet. After compres-
sion, the algorithm discovers another substructure at the next
iteration until there is no more compression.

Using the complete list of common substructures,
ComSubSet, the algorithm acquires removal substruc-
tures, remSubs, and addition substructures, addSubs, (lines
15 and 17). First, the algorithm identifies vertices and edges
not part of common substructures and finds each disconnected
substructure in Gi and Gi+1 using the modified Breadth
First Search (mBFS), which adds each edge as well as each
vertex into the queues as visited or to be visited. The marked
substructures in Gi and Gi+1 are removal and addition sub-
structures respectively. While mBFS searches these removal
and addition substructures, it also finds connection edges,
CE, as described previously. These edges are added into
RemCESet and AddCESet, where removal and addition
substructures are added into RemSubSet and AddSubSet
respectively (in lines 16 and 18). Using these rewriting
substructures and connection edges, rewriting rules (RR) are
created and stored into RRL (in lines 19 to 20).

The main challenge of our algorithm is to discover maxi-
mum common subgraphs between two sequential graphs, be-
cause this problem is known to be NP-hard [7]. To avoid this
problem, first we use the Limit to restrict the number of sub-
structures to consider in each iteration. The Limit is com-
puted using the number of unique labels of vertices and edges
in graphs. Second, our algorithm does not try to discover the
whole common substructures at once. In each step, the algo-
rithm discovers a portion of common, connected substructure
and iterates the discovery process until discovering the whole
maximum common subgraphs. Usually, the size of graphs rep-
resenting biological networks is not too large. Therefore, dis-
covery of graph rewriting rules is still feasible. However, we
still have challenges to analyze very large graphs.

Algorithm 1: DynGRL discovery algorithm
Input: DG = {G1, G2, · · · , Gn }
Output: RRL
Create V GL = {V G1, V G2, · · · , V Gn}1

RRL = {}2

for i = 1 to n− 1 do3

RemSubSet = AddSubSet = ComSubSet = {}4

Graphs = {Gi, Gi+1}5

Limit = UV L + 4(UEL− 1)6

while No more compression do7

BestSub = DiscoverSub(Limit, Graphs)8

if BestSub ∈ Gi & Gi+1 then9

Add BestSub into ComSet10

end11

Compress Graphs by BestSub12

Mark BestSub on V Gi and V Gi+113

end14

Get remSubs and CE from V Gi15

Add remSubs into RemSubSet and CE into16

RemCESet
Get addSubs and CE from V Gi+117

Add addSubs into AddSubSet and CE into18

AddCESet
Create RR from RemSubSet, AddSubSet,19

RemCESet, AddCESet
Add RR into RRL20

end21

5 Dynamic Graph Generation and Experiment

We evaluate our algorithm using a dynamic graph represent-
ing the glycolysis metabolic pathway in combination with a
mathematical modeling result. The glycolysis pathway is a se-
ries of enzyme-catalyzed reactions of degrading a molecule of
glucose (6 carbons) to yield two molecules of pyruvate (3 car-
bons) [13]. In the process of glycolysis, some of the free en-
ergy are produced as the forms of ATP and NADH. Glycolysis



is the most important pathway in aerobic respiration, which is
a process to generate energy in a cell.

As described in the previous section, a mathematical model-
ing approach explores only numerical values, such as the con-
centration of molecules and the flux of reactions. We propose
to combine the result of mathematical modeling and graphs for
structural and temporal analysis. We use a result of the simu-
lation of glycolysis pathway of the yeast (Saccharomyces cere-
visiae) [14]. This result contains the trends of concentrations of
14 molecules. We normalize these concentrations from 0 to 1,
because we are focused on trends of the changes and the con-
centration of different molecules are various. Figure 2 shows
the oscillated curves of the normalized concentration of two
molecules: Pyruvate and Acetaldehyde. Because the simula-
tion is performed for 100 seconds, we have 101 time series
data from the initial time to the final time.

We generate a static graph representing the glycolysis path-
way from the KEGG PATHWAY data [1], where vertices rep-
resent reactions, compounds and enzymes, and edges represent
relations between vertices. Usually, a reaction catalyzed by one
or more enzymes contain one or more compounds as substrates
and one or more compounds as products. We use a threshold t
to activate compounds. At each time, we assume a compound,
which has more than t amount, is shown in the graph. The
reactions and enzymes are shown in the graph, only when all
related substrates and products are activated. In other words,
every related compound should be activated to place a reaction
in a graph. We try 0.1 and 0.3 as our thresholds.

We perform DynGRL with a dynamic graph including 101
graphs representing the glycolysis simulation for 101 seconds.
DynGRL discovers 100 sets of graph rewriting rules during
100 time intervals for each threshold: 0.1 and 0.3. Then, we
discovers some temporal patterns in the graph rewriting rules to
describe temporal and structural aspects of the dynamic graph.

6 Results

As described in the previous section, the goal of this re-
search is to discover temporal patterns in graph rewriting rules
to describe structural changes of metabolic pathways over time.
First, we show temporal patterns in graph rewriting rules.
Then, we discuss structural aspects of the graph rewriting rules.

Because the modeling result represents the oscillation of
glycolysis, we observe several temporal patterns in graph
rewriting rules showing the oscillation. In both experiments
(threshold 0.1 and 0.3), we discover oscillated temporal pat-
terns. Using 0.1 as the threshold, temporal patterns among
three chemical reactants such as C00008 (ADP), C00084 (Ac-
etaldehyde) and C00003 (NAD+) are discovered as shown in
figure 3 (a). The points above the time axis represent the time
when the substructures including each compound are removed
from the graph representing the glycolysis pathway. The points
below the time axis represent the time when the substructures
including each compound are added to the pathway graph. For
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Figure 2. The oscillation curves of changing concentrations
of Pyruvate (C00022) and Acetaldehyde (C00084).

example, the first red diamond time point close to 0 represent
the addition of a substructure including the ADP molecule at
time 2. We also observe these time points are ordered by the
time of removal and addition. Acetaldehyde is added before
ADP is added except the first case, and then NAD+ is added
if applicable. In case of removals, they are removed following
the order of ADP, Acetaldehyde and NAD+.

Similarly, figure 3 (b) shows other temporal patterns be-
tween Acetaldehyde and Pyruvate (C00022) at the experiment
of threshold 0.3. We observe Acetaldehyde is added after Pyru-
vate is added to the pathway graph. In contrast, Pyruvate is re-
moved after Acetaldehyde is removed from the pathway graph.
We can compare these temporal patterns with the mathematical
modeling results shown in figure 2. The oscillation curves rep-
resent that Pyruvate is increased slightly earlier and decreased
slightly later than Acetaldehyde. For this reason, the temporal
patterns in the graph rewriting rules of our dynamic graph rep-
resent the substructures including Pyruvate are added earlier
and removed later.

In the temporal aspect, the results discovered by DynGRL
show several reactants in the glycolysis pathway are increased
and decreased in order and these ordered patterns are repeated
periodically as shown in the mathematical modeling. These
patterns are observed as addition and removal of substruc-
tures of the dynamic graph representing the glycolysis path-
way changing over time. The addition substructures include
the increasing (over the threshold) reactants, and the removal
substructures include the decreasing (under the threshold) re-
actants. The temporal patterns in the learned graph rewriting
rules show the temporal relations that describe how the glycol-
ysis pathway changes over time by showing which elements
changes earlier than the other. These temporal patterns and
graph rewriting rules help us to understand temporal properties
of the glycolysis pathway.

In addition to the temporal aspect, our results can depict
structural changes of the metabolic pathways. Because an ad-
vantage of the graph representation is visualization, we can un-
derstand metabolic pathways better using structural analysis as



!" #!" $!" %!" &!" '!!"

(!!!&$")*+," (!!!&$"-..,"

(!!!##")*+," (!!!##"-..,"

/0+*""

!" #!" $!" %!" &!" '!" (!" )!" *!" +!" #!!"

,!!!!*"-./0" ,!!!!*"1220"

,!!!*&"-./0" ,!!!*&"1220"

,!!!!%"-./" ,!!!!%"122"

34/.""

Figure 3. A visualization of time points when the substructure including each compound is removed from or added to graphs repre-
senting the glycolysis pathway at the experiment of threshold 0.1 (a) and 0.3 (b).

well as temporal analysis. Here we show some instances of
substructures in the discovered graph rewriting rules, and how
they are related to the original graphs.

Figure 4 shows the graphs Gi in the dynamic graph from
time 24 to 32 at the experiment of threshold 0.3. These graphs
show how the glycolysis pathway changes over time. In other
words, what substructures are removed and added over time.
The graph removes a substructure including two reactants:
Acetaldehyde and Pyruvate and three related reactions, and
changes its structure to the graph 25. The structure is not
changed from time 25 to 31. At time 32, the graph changes
more after the addition of a substructure including Pyruvate
and a related reaction, R00200. The removal substructure at
time 24 is also removed at time 49, 60, 72, 84 and 96. As
shown in figure 3 (b), there are six time points (the third point
and the last five points above the axis) when Acetaldehyde and
Pyruvate are removed at the same time. The addition substruc-
ture at time 32 is also added at time 3, 12, 21, 44, 56, 68, 80,
and 92 as shown in figure 3 (b). In this substructure, Acetalde-
hyde (C00084) works as a substrate of a reaction R00754 and
as a product of a reaction R00224. Pyruvate (C00022) works
as a substrate of the reaction R00224 and as a product of the
reaction R00200.

GRk are represented as follows, (k = 24, 25 or 31, 32)

GR24,25 = {(r24, rSub1, CE24, CL24)}
GR31,32 = {(a32, aSub1, CE32, CL32)}

where rSub1 represents the removal substructure of G24 with
labels marked by “-[]”, and aSub1 represents the addition sub-
structure of G32 with labels marked by “+[]”. As described
in section 3, CEm(n) and CLm(n) (m = 24 and n = 32)
represent sets of connection edges and connection edge labels
(denoted by labels marked by “()”) as follows,

CE24 = {(d, s2, g5), (d, s2, g9), (d, s2, g11),
(d, s7, g8), (d, s7, g10), (d, s7, g12)}

CL24 = {S to Rct, S to Rct,Rct to P,

Rct to P, S to Rct, S to Rct}
CE32 = {(d, s2, g5), (d, s2, g9), (d, s2, g8)}
CL32 = {S to Rct, S to Rct,Rct to P}

The structural results show how the substructures are re-
lated to the original graphs (i.e., which connection edges link
the substructures to the original graphs.) as well as what sub-
structures are removed or added. The graph rewriting rules de-
scribe the relational aspects between the substructures (some
elements) and the original graph (the pathway), but not merely
which elements are changed.

In summary, our results show temporal and structural as-
pects of the dynamic graph representing the metabolic path-
way. Temporal patterns show some elements are added and
removed in order and periodically. Structural patterns show
how the original graphs change after applications of removal
and addition rules. These temporal patterns and graph rewrit-
ing rules help us to understand temporal properties as well as
structural properties of biological networks. Some discovered
temporal and structural patterns in a specific disease can show
us how they are different from normal patterns and help us in-
vestigate disease and develop a new treatment.

7 Conclusion

In this research, we formalize graph rewriting rules to de-
scribe structurally changing biological networks. We represent
an algorithm, DynGRL, to discover graph rewriting rules in a
dynamic graph. The algorithm is evaluated with a dynamic
graph representing the glycolysis pathway in combination with
mathematical modeling results. We also discover several tem-
poral patterns in graph rewriting rules of the pathway. Our
results are visualized to identify how the metabolic pathway
changes structurally over time, and what temporal patterns are
discovered repeatedly. Our approaches allow us to identify not
only structural changes of pathways but also temporal patterns
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Figure 4. An example of graph transformations from time 24 to 32. Red substructure with labels marked by “-[]” or “+[]” represent
removal or addition substructures. The blue edges with labels marked by “()” represent the connection edges between.

between multiple structural changes, providing us better under-
standing of how biological networks change over time.

The future works follow several directions. We need more
systematic evaluation for the learned graph rewriting rules in-
cluding regenerating a dynamic graph using the learned graph
rewriting rules to compare with the original dynamic graph
from real world data. We will also focus on the fully auto-
mated approach to learn temporal patterns in the graph rewrit-
ing rules. Finally, we will evaluate how this approach can be
used to predict future structures of biological networks using
the learned patterns.
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