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Abstract— We introduce a graph-based relational learning
approach using graph-rewriting rules for temporal and struc-
tural analysis of biological networks changing over time. The
analysis of dynamic biological networks is necessary to un-
derstand life at the system-level, because biological networks
continuously change their structures and properties, while an
organism performs various biological activities. A dynamic
graph represents dynamic properties as well as structural
properties of biological networks. Microarray data can reflect
dynamic properties of biological processes. Biological networks,
which contain various molecules and relationships between
molecules, show structural properties representing various re-
lationships between entities. Most current graph-based data
mining approaches overlook dynamic features of biological
networks, because they are focused on only static graphs.
Most approaches for analysis of microarray data disregard
structural properties on biological systems. But our dynamic
graph-based relational learning approach describes how the
graphs temporally and structurally change over time in the
dynamic graph representing biological networks in combination
with microarray data.

I. INTRODUCTION

Analysis of biological networks is one of the key ways
to understand biosystems. Our bodies are not only well-
organized biological networks but also dynamic systems.
Biological networks include various molecules and relation-
ships between molecules. Furthermore, the networks dynam-
ically change their structures and properties, while organisms
carry out various biological activities, such as digestion,
respiration and so on. While there are many other aspects
to the activity of biological networks, our focus is on the
temporal and structural analysis.

A graph is a relational data structure representing data
using vertices and edges, and is a natural way to represent
biological networks, where vertices denote biomolecules and
edges denote relations between molecules. Graph-based data
mining is a process to discover novel knowledge in data
represented as a graph. Several graph-based data mining ap-
proaches have been applied to identify interesting patterns in
biological networks. However, the current graph-based data
mining approaches overlook dynamic features of biological
networks, because most of them are focused on only static
graphs. Temporal data mining can mine dynamic features in
the temporal sequence of biological networks. But it is hard
for temporal data mining to discover structural features as
well as dynamic features in the biological networks.
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This research proposes a novel algorithm to discover struc-
tural features along with temporal features in the temporal
sequence of biological networks. Our dynamic graph-based
relational learning approach uses graph-rewriting rules to
analyze how biological networks change over time.

Graph-rewriting rules define how one graph changes to
another in its topology replacing vertices, edges or subgraphs
according to the rewriting rules. First, we generate a dy-
namic graph, which is a sequence of graphs representing
biological networks changing over time. Then, our approach
discovers rewriting rules, which show how to replace sub-
graphs, between two sequential graphs. Discovered graph
rewriting rules give us two aspects of novel knowledge.
First, temporal patterns in graph rewriting rules show how
the graphs change over time, such as periodic repeating of
graph rewriting rules or temporal orders among several rules.
Second, graph rewriting rules describe how the substructures
in rules connect to the parent graph, in other words, how the
molecules are related to the biological network at the specific
time. The graph rewriting rules learned by our approach
can describe how the structures of graphs change and how
substructures in rules are related to other substructures in
graphs. This approach enables us to investigate dynamic
patterns in biological networks for both aspects: temporal
and structural analyses.

First, we discuss several works related to structural and
temporal analysis of biological networks including microar-
ray analysis and several computational methods. We also de-
fine the graph rewriting rules for our research. We present our
Dynamic Graph Relational Learning (DynGRL) algorithm
with several experiments. In our experiments we generate
dynamic graphs of the citrate cycle metabolic pathways and
MAPK pathways using KEGG PATHWAY database and
microarray data of yeast. Then, we apply our DynGRL
approach to the dynamic graphs. The results show our discov-
ered graph rewriting rules and temporal patterns in rewriting
rules such as periodic repeating and temporal orders.

The goal of this research is, first, to discover novel
temporal patterns in the graph rewriting rules to describe
structural changes of graphs in a dynamic graph. The second
is to visualize and understand how the biological networks
change their structures. The next step would be to automate
the general rule discovery phase.

II. RELATED WORKS

A. Study of Biosystems

Analysis of biological networks is an important area
in systems biology. Bioinformatics has been focused on



molecular-level research until now. Genomics and pro-
teomics, main areas in molecular-level research, have studied
function and structure of macromolecules in organisms, and
produced a huge amount of results. However, there are few
molecules (i.e., DNA, RNA, protein, and so on) that can work
alone. Each molecule has its own properties and relationships
with other molecules to carry out its function. Biological
networks have various molecules and relations between them
including reactions and enzyme-relations among genes and
proteins. Here, we define the structure as the relation between
bio-molecules. In addition to the structural aspect, we also
consider the temporal aspect of biological networks, because
the biosystems always change their properties and structures
while interacting with other conditions.

There is much research in the study of biological net-
works. Mathematical modeling, which is an abstract model
to describe a system using mathematical formulae [1], is
a well-known approach to biological networks. Most of
these approaches, as a type of quantitative analysis, model
several kinetics of pathways and analyze the trends in the
amount of molecules and flux of biochemical reactions. But
this approach often oversimplifies pathways and disregards
structural aspects of biological networks like relations among
multiple molecules.

The microarray is another approach to study biosystems.
The microarray is a tool for monitoring gene expression
levels for thousands of genes at the same time [2], [3].
Microarrays can take a snapshot of gene expression levels
for a large amount of genes for each condition in an
experiment and have already produced terabytes of impor-
tant functional genomics data that can provide clues about
how genes and gene products interact and form their gene
interaction networks. Most genes are co-expressed as most
proteins interact with other molecules. Co-expressed genes
can represent common processes or patterns in biological
networks (gene regulatory networks or protein networks) in
the specific condition. Patterns in gene expression levels can
describe changes in the biological status or distinguish two
different states, such as the normal and disease state. But the
microarray analysis can overlook structural aspects, which
show how the genes or expressed gene products are related
to each other in biological networks.

It is necessary to analyze biological networks not only for
the structural aspect but also for the temporal aspect for a
system-level understanding of organisms.

B. Computational Approaches

Graph-based data mining is to discover novel knowledge
in graph-represented data. Graph-based data mining [4], [5]
has been successfully applied to biological networks. This
approach represents biological networks as graphs, where
vertices represent molecules and edges represent relations
between molecules. Graph-based data mining discovers fre-
quent structural patterns in biological networks, but over-
looks temporal properties.

Temporal data mining is to mine temporal patterns in
sequential data, which is ordered with respect to some index

like time stamps, rather than static data [6]. Temporal data
mining focuses on discovery of relational aspects in data such
as discovery of temporal relations or cause-effect association.
In other words, we can understand how or why the object
changes rather than merely static properties of the object.

There are several researches to apply temporal data min-
ing in biological data. Ho et al. [7] propose an approach
to detect temporal patterns and relations between medical
events of Hepatitis data. Farach-Colton et al. [8] intro-
duce an approach of mining temporal relations in protein-
protein interactions. They model the assembly pathways of
Ribosome using protein-protein interactions. Temporal data
mining approaches discover temporal patterns in data, but
they disregard relational aspects among entities. For example,
they can identify temporal patterns of appearance of genes
such that a gene, YBR218C, appears before an other gene,
YGL062W, but cannot identify how these two genes interact
with each other.

There are many aspects to consider for understanding
biological networks, but our research focus on two aspects.
First, we need to focus on relationships between molecules
as well as a single molecule. Second, we should consider
biological networks as dynamic operations rather than static
structures, because every biological process changes over
time and interacts with inner or outer conditions. It is neces-
sary to analyze biological networks not only for structural
aspects but also for dynamic aspects for a system-level
understanding of organisms. For this reason, we need an
approach to analyze biological networks changing over time
in both aspects: structural and dynamic properties. There are
many other factors (e.g., concentrations, regulatory feedback)
that affect the behavior of biological networks but are not
represented in the KEGG data. In future work, we will
introduce these factors into our representation and learn rules
based on them as well.

III. GRAPH REWRITING RULES

Traditional graph grammar approaches determine which
subgraphs will be replaced by other subgraphs. We focus on
representing changing structures, and ultimately we plan to
learn general rules in the discovered rewriting rules.

Graph rewriting is a method to represent structural changes
of graphs using graph rewriting rules [9], [10]. Generally,
graph rewriting rules identify subgraphs in a graph and mod-
ify them. Each graph rewriting rule defines a transformation
between L and R, where L and R are subgraphs in two
graphs G and H respectively, such that L is replaced by R,
L is deleted, or R is created [11].

We define our graph rewriting rules to represent how
substructures change between two graphs rather than just
what subgraphs change. First, we discover maximum com-
mon subgraphs between two sequential graphs G1 and G2.
Then, we derive removal substructures from G1 and addi-
tion substructures from G2. Figure 1 shows an instance of
this process. A maximum common subgraph (denoted by
S) is discovered between two graphs, G1 and G2. Then
the remains in G1 and G2 become removal (denoted by
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Fig. 1. An example of application of graph rewriting rules, where S
denotes the maximum common subgraph between two graphs G1 and G2,
R denotes removal subgraphs and A denotes addition subgraphs. rc and ac
denote the connection edges for the removal and addition rules.

R) and addition (denoted by A) substructures respectively.
These substructures with connection edges rc and ac are
elements of graph rewriting rules: removal and addition rules
respectively. Here, we define several preliminary terms.

A labeled and directed graph G is defined as G = (V,E),
where V is a set of vertices and E is a set of edges.
An edge e (∈ E) is directed from x to y as e = (x, y),
where x, y ∈ V . The graph represents a biological network,
where vertices are labeled by names of entities (molecules,
reactions, and relations), and edges are labeled by names of
relationships between two entities. Each label represents the
identification number or attribute from the KEGG data [12].
The dynamic graphs are essentially subgraphs of the KEGG
network, where an edge in the KEGG network is also in the
dynamic graph if and only if the microarray activation levels
of the two entities (genes) connected by that edge exceed a
certain threshold.

Now, we define a dynamic graph DG as a sequence of n
graphs as follows.

DG = {G1, G2, · · · , Gn}

Each graph Gi is a graph at time i for 1 ≤ i ≤ n. Then,
we define a set of removal substructures RG and a set of
addition substructures AG as follows.

RGi = Gi/Si,i+1

AGi+1 = Gi+1/Si,i+1

RGi denotes a set of removal substructures in a parent
graph Gi, AGi+1 denotes a set of addition substructures in a
parent graph Gi+1, and Si,i+1 is a maximum set of common
subgraphs between two sequential graphs Gi and Gi+1 in a
dynamic graph DG.

A prior graph Gi is transformed to a posterior graph Gi+1

by application of a set of graph rewriting rules GRi,i+1 as
follows.

Gi+1 = Gi

⊕
GRi,i+1

A set of graph rewriting rules GRi,i+1 between two sequen-
tial graphs Gi and Gi+1 is defined in combination with RG,
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Fig. 2. An instance of graph rewriting rules in synthetic biological net-
works. The subgraphs containing the ellipse-shape vertices denote common
substructures in G1 and G2. The subgraphs containing the rectangle-shape
vertices denote the removal (in G1) and addition (in G2) substructures. The
box-labeled edges denote the connection edges.

AG, CE and CL as follows.

GRi,i+1 = {(m, p,CEm, CLm), · · · ,
(n, q, CEn, CLn), , · · · , }

m and n are indices of graph rewriting rules in a set GRi,i+1.
p and q are indices of a removal substructure in RGi and
an addition substructure in AGi+1 respectively. CE and
CL are defined as a set of connection edges and a set of
labels of the connection edges. Each element of RG and
AG corresponds to a set of CE and CL, unless a removal
(addition) substructure does not connect to the parent graph.
CEk and CLk represent connections between substructures
and parent graphs (k = m or n) as follows.

CE = {(d, X, Y ), · · · },
CL = {labelxy, · · · }

d represents whether the edge is directed or undirected
using d and u. X and Y denote vertices as a starting and
ending of the edge. Because the connection edge links the
substructure to the parent graph, one end of this edge is from
the substructure and the other is from the parent graph. The
end vertex from the substructure starts with “s” followed by
the index of the vertex, and the end vertex from the parent
graph starts with “g” followed by the index of the vertex.
For example, (d, g1, s3) represents the directed edge from
a vertex 1 in the parent graph to another vertex 3 in the
substructure. labelxy represents a label for the corresponding
connection edge between two vertices X and Y . The number
of elements of CE (CL as well) represents the number of
connections between substructures and the parent graph. If a
substructure is not connected with the parent graph, both sets
of CE and CL are empty. We will describe more detailed
examples in the results section.

Figure 2 shows an example of graph rewriting rules
between two graphs, G1 and G2 in synthetic biological
networks. The subgraphs containing the ellipse-shape ver-
tices in both graphs represent common substructures. The
rectangle-shape vertices elements in G1 represent removal
substructures (from G1) and the rectangle-shape elements in



G2 represent addition substructures (to G2).

GR1,2 = {(r1, rSub1, {(d, s1, g2)}, {PPrel : −−−}),
(r2, rSub2, {(d, g5, s1)}, {PPrel : −− |}),
(a1, ∅, {(d, g3, g4)}, {PPrel : −p}),
(a2, aSub1, ∅, ∅)}

GR1,2 represents a set of graph rewriting rules, which is
applied to G1 and produces G2 using G2 = G1

⊕
GR1,2

as described previously. It has three graph rewriting rules.
For example, r1 (r denotes removal.) represents an index of
removal rules including a removal subgraph (rSub1), which
contains a single vertex sce:A. rSub1 was connected by an
edge (d, s1, g2), which is labeled by PPrel : − − −. This
edge is a directed edge (indicated by ‘d’). This edge is from
s1, which denotes a vertex number 1 in rSub1 (s denotes the
substructure) to g2, which denotes a vertex number 2 in G1

(g denotes the parent graph). r2 represents the removal rule
including the single-vertex substructure labeled as sce:F and
the connection edge PPrel : − − |. a1 and a2 represent
addition rules similarly. a1 has empty as the additional
substructure, because a1 is a rule representing an edge with
the italic font label PPrel : −p in G2 without any addition
substructure. a2 has empty for edges and edge labels, because
aSub1 represents a disconnected graph including vertices
sce:H and sce:I in G2.

The graph rewriting rules show how two sequential graphs
are structurally different. After collecting all sets of graph
rewriting rules in a dynamic graph, we also discover temporal
patterns in graph rewriting rules, which can describe how the
graphs change over time as well as which structures change.

IV. DYNAMIC GRAPH-BASED RELATIONAL LEARNING

The first goal of this research is to discover graph rewriting
rules in a dynamic graph representing biological networks
changing over time. This section describes our Dynamic
Graph-Based Relational Learning (DynGRL) approach to
discover graph rewriting rules in a dynamic graph.

A. Algorithm

The algorithm starts with a dynamic graph DG consisting
of a sequence of n graphs as shown in algorithm 1. First,
the algorithm creates a list of n virtual graphs, V GL, corre-
sponding to n time series of graphs at line 1. Our approach
uses a virtual graph to specify the applying locations of
graph rewriting rules. Because a graph may have multiple
graph rewriting rules and several same-labeled vertices and
edges, the exact locations of connections edges and rewriting
rules are important to reduce the discovery error. The next
procedure is to create a two-graph-set, Graphs, including
two sequential graphs Gi and Gi+1 (line 5) and to specify the
limit based on unique labeled vertices and edges of Gi and
Gi+1 (line 6). UV L and UEL denote the number of unique
vertex labels and edges in Gi and Gi+1. The Limit based on
the number of labels in the input graph bounds the search
space within polynomial time and ensure consideration of
most of the possible substructures.

An inner loop (line 7 to 14) represents procedures to dis-
cover common substructures between two sequential graphs.
We use the SUBDUE graph-based relational learning ap-
proach to discover the maximum common substructures [13],
[14]. SUBDUE evaluates substructures using the Minimum
Description Length (MDL) principle to find the best sub-
structure which minimizes the description length of the input
graph after being compressed by the substructure. More
detail on the evaluation approach is described in [13]. The
maximum common subgraph is a reasonable basis from
which to identify changes, and the best MDL substructure
finds this subgraph or something close to it most of the
time, but in a polynomial amount of time. Even though
to find the maximum common subgraph is NP-Complete,
SUBDUE can be used as a polynomial-time approximation
to this problem using Limit and iteration as described later
in the next section.

Algorithm 1: Discovery algorithm
Input: DG = {G1, G2, · · · , Gn }
Output: RRL
Create V GL = {V G1, V G2, · · · , V Gn}1
RRL = {}2
for i = 1 to n− 1 do3

RemSubSet = AddSubSet = ComSubSet = {}4
Graphs = {Gi, Gi+1}5
Limit = UV L + 4(UEL− 1)6
while No more compression do7

BestSub = DiscoverSub(Limit, Graphs)8
if BestSub ∈ Gi & Gi+1 then9

Add BestSub into ComSubSet10
end11
Compress Graphs by BestSub12
Mark BestSub on V Gi and V Gi+113

end14
Get remSubs, CE from V Gi15
Add remSubs into RemSubSet and CE into16
RemCESet
Get addSubs, CE from V Gi+117
Add addSubs into AddSubSet and CE into AddCESet18
Create RR from RemSubSet, AddSubSet,19
RemCESet, AddCESet
Add RR into RRL20

end21

After discovery of the best substructure, the algorithm
checks whether the substructure is a subgraph of both graphs
Gi and Gi+1. In the affirmative case, the best substructure
is added into ComSubSet and the two target graphs are
compressed by replacing the substructure with a vertex. If the
best substructure does not belong to one of the two graphs,
the algorithm just compresses the graphs without adding any
entry into ComSubSet. After compression, the algorithm
discovers another substructure at the next iteration until there
is no more compression.

Using the complete list of common substructures,
ComSubSet, the algorithm acquires removal substructures,
remSubs, and addition substructures, addSubs, (line 15 and
17). First, the algorithm identifies vertices and edges not
part of common substructures and finds each disconnected
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Fig. 3. A visualization of time points when the substructure including
each gene is removed from or added to graphs representing the citrate cycle
pathway at the experiment of threshold 0.6. Genes with (-) represent removal
time points and genes with (+) represent addition time points.

substructures in Gi and Gi+1 using the modified Breadth
First Search (mBFS), which adds each edge as well as
each vertex into the queues as visited or to be visited. The
identified substructures in Gi and Gi+1 are removal and
addition substructures respectively. While mBFS searches
these removal and addition substructures, it also finds con-
nection edges, CE, as described previously. These edges
are added into RemCESet and AddCESet, where removal
and addition substructures are added into RemSubSet and
AddSubSet respectively (in line 16 and 18). Using these
rewriting substructures and connection edges, rewriting rules
are created (in line 19 to 20).

B. Current Challenges

The main challenge of our algorithm is to discover max-
imum common subgraphs between two sequential graphs.
The maximum common subgraph problem is known to be
NP-hard [15]. We try to avoid this problem, first, using the
limit parameter to restrict the number of substructures to
consider in each iteration. Second, our algorithm does not try
to discover the whole common substructures at once. In each
step, the algorithm discovers the small portion of common,
connected substructures and iterates the discovery process
until discovering the whole maximum common subgraphs.
Usually, the size of graphs representing biological networks
changing over time is not very large. Therefore, discovery of
graph rewriting rules is still feasible. However, we still have
challenges to analyze very large graphs.

V. APPLICATION AND RESULTS

We prepare dynamic graphs representing the citrate cycle
metabolic pathway and MAPK pathway in combination with
a microarray data. Then, our graph rewriting rule discovery
system, DynGRL, discovers graph rewriting rules in the dy-
namic graphs. Our results show several temporal patterns of
graph rewriting rules and structural changes in the pathways.

A. Microarray Data and Graph Representation

Tu et al. [16] observe periodical gene expression of
Saccharomyces cerevisiae using microarray analysis. They
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Fig. 4. A visualization of time points when a particular substructure is
removed from or added to graphs representing the citrate cycle pathway
at the experiment of threshold 0.6. Each substructure includes a relation,
which is an enzyme-enzyme relation between two gene, where ECrel(x, y)
represents the relation, and x, y represent the enzyme vertices.

use 36 sets of microarray data for every 25 minutes. The
results show more than 50% of genes (usually involved in
metabolism) have three periodic cycles in the gene expres-
sion. Here, we generate dynamic graphs that contains 36
graphs representing the citrate cycle metabolic pathways and
MAPK pathways in combination with the microarray data. 30
genes out of 7,188 are shown in the citrate cycle pathway and
55 genes are shown in the MAPK pathway. We normalize
each gene expression value from 0 to 1, because we are
focused on trends of the changes of gene expression values.

The TCA cycle is a series of enzyme-catalysed chemi-
cal reactions starting with the results from the glycolysis
pathway and pyruvate oxidation. This pathway, also called
citrate cycle, is a hub in metabolism for three reasons [17].
First, it is the most important pathway to generate ATP, an
energy molecule, in aerobic organisms. Second, this pathway
provides intermediates for many other pathways. Third, the
TCA cycle is closely regulated in coordination with other
pathways. The MAPK (Mitogen-activated protein kinase)
pathway regulates various processes such as proliferation,
cell mating, cell division, and apoptosis [18]. A kinase (also
called phosphotransferase) is an enzyme to catalyze the
phosphorylation process which transfers phosphate groups
(PO3−

4 ) from one molecule to the other. The MAPK path-
way phosphorylates various proteins including transcription
factors and cytoskeletal proteins to influence other pathways.

First, we generate static graphs to represent sce00020 (the
citrate cycle pathway) and sce04010 (the MAPK pathway)
of yeast (Saccharomyces cerevisiae) from the KEGG PATH-
WAY database [12], where vertices represent compounds,
genes, enzymes, relations and reactions, and edges represent
relationships between vertices. Here, we assume only genes
are changed over time, and the amount of other molecules
like chemical compounds constantly remain the same. We use
a threshold t for applying numeric gene expression values on
graph. At each time, we assume a gene, which has more than
t gene expression value, is shown in the graph.

One particular point is our graph representation has en-
zyme vertices, which do not exist in KEGG data. KEGG
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Fig. 5. A visualization of time points when the substructure including each
relation is removed from or added to graphs representing the MAP kinase
pathway at the experiment of threshold 0.6.

data presents a gene when they need to denote a protein or
enzyme in the pathway for the specific species, because the
gene generates the protein or enzyme and the gene is unique
in each species. But our representation presents the enzyme
vertices linked to the genes by G to E edges for representing
the following scheme as well as the central dogma. If there is
an protein made by two genes, A and B, our graph presents
one enzyme vertex linked to two genes. At a specific time,
only gene A can be expressed, but not B. Then, the enzyme
cannot be generated, because the enzyme needs two genes
for synthesis. Only when all genes are expressed, the enzyme
vertex is shown in the graph. In that time, the reaction, which
is catalyzed by the enzyme, is also shown. In this way, we
can observe structures of biological networks based on the
microarray gene expression at each time. Figure 7 shows
examples of our graph representation. G2 have four enzyme
vertices, where each vertex has one or more links to genes.

B. Results

This section shows the temporal and structural patterns of
discovered graph rewriting rules in our experiments.

1) Temporal patterns: As described previously, the goal
of this research is to discover temporal patterns in graph
rewriting rules to describe structural changes of biological
networks changing over time. Because the result of the mi-
croarray data [16] represents three cycles of gene expression,
we observe similar temporal patterns in graph rewriting rules.
First, we represent the result of the citrate cycle pathway.
Then, the result of the MAPK pathway follows.

Figure 3 shows the temporal patterns in removal and
addition rules. This result shows the rewriting rules including
6 out of 30 genes in the TCA cycle experiment using
the threshold 0.6. The points denote time points when the
substructures including each gene are removed or added. The
points above the time axis represent the time points when the
substructures including the specified genes or relation are
removed. The points below the time axis represent the time
points when the substructures including the specified genes
or relation are added. For example, a substructure including
YGR142W genes are added and removed three times. Half of
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Fig. 6. A visualization of relations on the MAPK pathway downloaded
from [12]. The number, (a), denotes the number x, y in PPrel(x, y) and
GErel(x, y). The blue marked relation (PPrel(13, 47)) is first removed or
added. Then, the red marked relations (GErel(54, 55) and GErel(54, 11)
are removed or added. The orange marked relations (PPrel(38, 40) and
PPrel(29, 30)) are removed or added at last.

30 genes are removed and added periodically showing three
cycles. Some time points cannot easily be divided into the
three cycles like YKL085W.

We focuses on graph rewriting rules including relations
as well as genes. The KEGG PATHWAY database has three
types of relations such as enzyme-enzyme relation, protein-
protein relation and gene expression relation [12]. They are
donoted as ECrel, PPrel and GErel vertices respectively. In
our graph representation, a relation between genes is shown
as a relation between enzymes, which are linked to the genes.
A relation is shown in the graph, only when all of the related
enzymes are shown. The enzymes are shown, only when all
of the linked genes are shown, in other worlds, when all of
the linked genes have more than t gene expression values.

Figure 4 shows the temporal patterns in enzyme-enzyme
relations (ECrel(x, y)), where x and y denote the enzyme
vertices in the graph. All six relations shown in the exper-
iment with the threshold 0.6 are removed and added in the
three periodic cycles. The periodic temporal patterns in the
relations (figure 4) are observed to be more distinguishable
than the temporal patterns in the genes (figure 3), because of
the following reason. Suppose we have one relation between
two genes, A and B, and A is always shown and B is shown
for only three times. Even though the gene A is always shown
in the graph, the relation is shown only when the gene B is
shown for activating the enzyme-enzyme relation.

We also apply our approach to the MAPK pathway. Unlike
the metabolic pathway case, there are only a few number of
relations showing cycles in the MAPK pathway. Tu et al.
describe most of periodically oscillated genes are involved
in metabolism. In our experiment with the threshold 0.6,
DynGRL discovers 20 relations including protein-protein
relations (PPrel) and gene-enzyme relations (GErel). We
observe only 6 out of 20 relations show cyclic removal and
additions. In addition to the three cycles, we identify the
different temporal patterns from the TCA cycle case. Figure
5 shows the temporal patterns discovered in the MAPK
pathway. The temporal patterns show the ordered patterns
as well as three cycles. The removal and addition rules show
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Fig. 7. Structural changes of a dynamic graph representing the partial TCA cycle. Gi graphs represent the graphs at time i. Rule 1 to 3 represent the
rewriting rules used in the graph transformation from G1 to G3. The edges without the destination vertex in Rule 1 to 3 represent the connection edges.

an order such that, first, the relations (PPrel(13, 47)) are
removed, then two gene-enzyme relations (GErel(54, 55)
and GErel(54, 11)) are removed, and two protein-protein
relations (PPrel(38, 40) and PPrel(29, 30)) are removed
at last. They are added in the same order, too. We can also
observe the additions always precede the removals, unless
the graphs already contain the substructures. Figure 6 shows
the ordered patterns on the MAPK pathway.

Even though we need to explore the biological meaning
of the ordered temporal patterns, we can still claim our
algorithm is useful. The genes and proteins in these three
relation groups do not have any specific common function
except that they belong to the same pathway. However, we
can identify the temporal relations (ordered patterns) of the
groups of relations and related genes. These patterns are
hardly discovered in a static graph-based analysis. We can
also address the different rate of temporal changes using the
different gaps between two rules, i.e., the shorter gap would
represent a faster process rather than the longer gap. This
challenge is left for our future works.

In this experiment, we have shown that DynGRL discovers
graph rewriting rules from a dynamic graph representing the
TCA cycle pathway and MAPK pathway changing over time.
These graph rewriting rules represent temporal patterns that
describe how the structure of the pathways change over time
by showing which elements change periodically or in order.
These temporal patterns and graph rewriting rules help us to
understand dynamic properties of biological networks.

2) Structural patterns: The other goal of this research is to
show structural patterns in pathways. Because an advantage
of the graph representation is visualization, we can under-
stand biological networks better by representing structural
changes over time. This section describes an instance of
discovered substructures with graph rewriting rules.

Figure 7 shows structural changes of a dynamic graph
representing the partial TCA cycle including 7 genes and two
enzyme-enzyme relations. G2 shows the graph containing
all possible genes and relations. Gi represents the graph at
time i. The dynamic graph in this example contains three
graphs from time 1 to 3. The edges between two sequential
graphs represent the graph transformation using removal (-
) or addition (+) rules out of the three rules (rule 1 to
3). For example, graph G1 is transformed to G2 with two
addition rules, + rule 1 and + rule 2. The edges without
one end vertex represent the connection edges between
substructures in the rewriting rules and the parent graphs
(Gi) as described previously. The connection edges describe
how the discovered substructures link to the parent graph.

We also show the graph rewriting rule between two graphs
as a formula. For instance, GR1,2 is shown as,

GR1,2 = {(a1, Rule1, CE1, CL1),
= {(a2, Rule2, CE2, CL2}

where a1 and a2 denote the indices of addition rules, and
Rule1 and Rule2 denote rule 1 and 2 in figure 7 respectively.
Connection edges (CE1 and CE2) and labels (CL1 and
CL2) are represented as,

CE1 = {(d, s2, g3), (d, s3, g18), (d, s3, g2)
(d, s3, g2), (d, s4, g15)}

CL1 = {G to E, value,E to Rel,

C to Rct,Rct to C}
CE2 = {(d, s3, g14), (d, s4, g14), (d, s4, g12),

(d, s5, g9), (d, s8, g14), (d, s8, g13)}
CL2 = {value, C to Rct,Rct to C,

G to E,C to Rct,Rct to C}
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Fig. 8. A visualization of discovered subgraphs of addition rules in a
dynamic graph representing the TCA cycle pathway. Labels marked by
”+[]” represent the addition rules and labels marked by ”()” represent the
connection edges.

Vertex numbers in CE1 and CE2 represent the vertex num-
bers in virtual graphs, which are created at the start of
the DynGRL algorithm, to specify the location to link the
substructures to the parent graphs.

Figure 8 shows our visualization result of a substructure
of an addition rule. The labels marked by “+[]” represent the
labeled vertices and edges belonging to the substructure of
the addition rule. The labels are marked by “-[]” in the case
of removal rules. Connection edges between the discovered
substructures and parent graphs are marked by “()”. The
DynGRL system helps to visualize removal or addition rules
on the parent graph with the connection edges.

This result shows how the substructures in graph rewriting
rules are structurally connected to the parent graphs and how
the graphs change after removal or addition rules are applied.
It allows us to better understand structural properties while
the graphs change over time.

We perform DynGRL with a dynamic graph representing
the TCA cycle and MAPK pathway for 36 time series and
discover the whole set of graph rewriting rules for removals
and additions. Results show the temporal relations of genes
and the enzyme-enzyme relations, which are removed and
added periodically with the three cycles or in order. Also, we
can identify how the discovered structures connected to the
parent graphs with connections edges using our visualization.
These temporal patterns and graph rewriting rules help us to
understand dynamic properties as well as structural properties
of biological networks.

VI. CONCLUSION

This research defines graph rewriting rules of a dynamic
graph representing structurally changing biological networks.
We present the dynamic graph-based relational learning
algorithm, DynGRL, to discover graph rewriting rules in a
dynamic graph. The algorithm is evaluated with the dynamic
graphs representing the TCA cycle metabolic pathway and
MAPK pathway in combination with microarray data. The
static graph represents only structural properties of biological

networks, and microarray data represents only dynamic prop-
erties. Our approach can represent both properties at the same
time, and discover novel patterns temporally and structurally.

We discover several interesting temporal patterns in graph
rewriting rules of the metabolic pathways such that some
relations between genes are shown periodically or in order.
Our results are visualized to identify how the biological
networks change structurally over time and what temporal
patterns are discovered repeatedly. Our approach allows us
to identify not only structural changes of metabolic path-
ways but also temporal patterns between multiple structural
changes, providing us better understanding of how biological
networks change over time.

The future works follow several directions. The primary
challenges are to define systematic measures to assess discov-
ered graph rewriting rules and to compare a dynamic graph
generated by learned rewriting rules with a dynamic graph
from real world data. We will also develop approaches to
learn general patterns in the discovered rewriting rules to
predict future structure of biological networks and simulate
the biosystems.
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