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Abstract

We present a method for finding biologically meaning-
ful patterns on metabolic pathways using the SUBDUE
graph-based relational learning system. A huge amount of
biological data that has been generated by long-term re-
search encourages us to move our focus to a systems-level
understanding of bio-systems. A biological network, con-
taining various biomolecules and their relationships, is a
fundamental way to describe bio-systems. Multi-relational
data mining finds the relational patterns in both the en-
tity attributes and relations in the data. A graph consist-
ing of vertices and edges between these vertices is a nat-
ural data structure to represent biological networks. This
paper presents a graph representation of metabolic path-
ways to contain all features, and describes the application
of graph-based relational learning algorithms in both su-
pervised and unsupervised scenarios. Supervised learning
finds the unique substructures in a specific type of pathway,
which help us understand better how pathways differ. Unsu-
pervised learning shows hierarchical clusters that describe
the common substructures in a specific type of pathway,
which allow us to better understand the common features
in pathways.

1 Introduction

After the identification of the double helix, many biolo-
gists have pursued the origin of life. With advances in com-
puter science, bioinformatics plays a central role in solving
this fundamental problem. Bioinformatics has been focused
on molecular-level research until now. Genomics and pro-
teomics, main areas in molecular-level research, have stud-
ied the function and structure of macro molecules in organ-
isms, and produced a huge amount of results. However,
proteins and genes can play their roles only in harmony
with the whole cytoplasmic environment. Molecular-level
understanding is definitely a fundamental step, but it is not

the final step. A biological organism is a system which is
not just composed of various objects, but also has dynamic
and interactive relationships between them. A systems-level
understanding is a more efficient way to solve the problem
[6].

A biological network is a fundamental way to define a
complex biological system in terms of both the structure
and its dynamics. Identification of biological networks is
an initial and fundamental step in systems biology. Biolog-
ical networks consist of biological objects and their rela-
tionships. For a long time, molecular biologists have been
focused on identification of the patterns, such as domain or
motif, in protein or gene molecules. These molecules have
many kinds of atoms and relationships between them. The
identified substructures (patterns) in these molecules have
been efficiently used to study the structures and predict un-
recognized molecules. The patterns in biological networks
are also important to understand the system. The different
aspect in the structure of biological networks is that rela-
tionships are more various than ones of the molecular struc-
tures. Relationships in biological networks include chem-
ical reactions, enzyme activities and signal transductions.
The patterns of these relationships provide better under-
standing of biological networks and systems. A pattern can
be the most important feature to distinguish a network from
another, or a pattern can be the common property to group
several networks. And also this pattern can be used as a rule
to construct a new biological network.

Graph-based approaches, as subfields of multi-relational
data mining, are applied to mine patterns in biological net-
works [7, 4]. A graph has been widely used to represent a
variety of relational data such as computer networks, social
networks, and biological data. A biological network is an-
other appropriate field to be represented as a graph. Graph-
based data mining can be applied to find the meaningful
patterns in the biological network which is represented as a
graph.

In this paper, we introduce the SUBDUE graph-based
relational learning system [9] and KEGG PATHWAY
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database [5]. We then show the application of SUBDUE
to metabolic pathways which are downloaded from the
KEGG PATHWAY database and represented as a graph.
The goal of this research is to show the substructures
learned by SUBDUE have understandable biological mean-
ing. These substructures can be considered as building
blocks of metabolic pathways. Supervised learning shows
that the learned substructures can identify what is unique
about a specific type of pathway, which allows us to un-
derstand better how pathways differ. Unsupervised learning
generates hierarchical clusters that show what is common
about a specific type of pathway, which provides us better
understanding of the common structure in pathways. Ulti-
mately, we could consider these blocks as guides to define a
graph grammar for metabolic pathways that would improve
both our ability to build new networks and our understand-
ing of pathways.

2 Graph-based Approach on Pathways

Our approach in this research is processed in three
phases. As a preprocessing phase, we generate our graph
representation using the KGML data from the KEGG
PATHWAY database [8]. Then we apply the SUBDUE
graph-based relational learning system to data in the man-
ner of supervised and unsupervised learning. Finally, we
verify the learned substructures using the linked database
of KEGG.

2.1 Graph-based Relational Learning

Graph-based relational learning is focused on finding
novel and meaningful, but not necessarily most frequent,
substructures in a graph representation of data. We use
the SUBDUE graph-based relational learning system to dis-
cover patterns which not only abstract instances of the pat-
terns by compression, but also provide better understand-
ing of the data [1]. SUBDUE can perform unsupervised
learning and supervised learning by substructure discovery
guided by the Minimum Description Length (MDL) heuris-
tic [2]. Using background knowledge given as predefined
substructures can guide graph-based relational learning to
find more meaningful substructures. SUBDUE has been ap-
plied to a variety of areas such as Chemical Toxicity, Molec-
ular Biology, Security and Web Search.

2.2 KEGG database

The KEGG PATHWAY is a widely known database
which contains information on various kinds of pathways
including pathway image files [5]. The KEGG PATHWAY
includes several linked databases which have various in-
formation about bio-molecules and reactions on metabolic

Figure 1: A graph representation of a metabolic pathway

pathways. It also uses the KGML (KEGG Markup Lan-
guage) as an exchange format for KEGG metabolic path-
ways, based on XML [8].

KGML data are are converted to graphs for SUBDUE.
Linked databases of the KEGG PATHWAY database are
also used to identify biological meaning of the final pattern.
The ultimate goal of this exploration is to show that the sub-
structure found by SUBDUE is biologically important and
meaningful.

2.3 The Graph Representation

In figure 1, our graph representation has three generic
vertices (Entry, Relation and Reaction), rather than just their
specific names because we would like to show the system-
atic view, like a Relation between two Entries (gene or pro-
tein), or a Reaction between two Entries (compound) cat-
alyzed by another Entry (enzyme). Each generic vertex has
its own satellite vertices to describe its properties.

3 Results and discussion

Our goal is the application of the SUBDUE graph-based
relational learning system to the KEGG metabolic path-
ways to find better understanding and biologically mean-
ingful substructures. These substructures can distinguish
two pathways, or provide the common features in several
pathways.

3.1 Supervised Learning

The main goal of supervised learning is to find the best
substructures to distinguish between a metabolic pathway in
a species group and a different pathway in the same group.
This task provides us the unique substructures in the spe-
cific type of pathways to understand better how pathways
differ. The distinguishing patterns of relationships between
molecules, under few consideration of the feature of each
molecule, can also play an important role in Systems Biol-
ogy with the molecular-level research.
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Table 1: Results of supervised learning

Graphs of metabolic pathways are divided into two ex-
ample sets: positive and negative. SUBDUE searches for
patterns which exist only in positive examples, but not in
negative examples. The discovery algorithm uses the set-
cover approach and it is iterated for the number of positive
examples.

3.1.1 Classification Results

Supervised learning tries to find substructures which ex-
ist in the positive examples, but not in the negative exam-
ples. The choice of which examples are positive and which
are negative might affect the classification result. Since
our goal is the better classification between two groups,
we run two cases. First (A+), we make a positive exam-
ple set and a negative example set. For the second (B+),
we swap the two sets. We use a convention A(+) B(-
):src when we denote each experimental case. For ex-
ample, 00300(+) 00310(-):euk represent A+ case of the
00300 00310:euk experiment.

Table 1 shows the experimental sets and results for su-
pervised learning. The first column shows the name of the
set which consists of three parts: A, B and source group. A
and B represent two groups of pathways [8], and the source
group represents the species set. The Eukaryote (euk) set
consists of all eukaryote species (17) in the KEGG PATH-
WAY database. The 45 set has 45 species, and the 150 set
has 150 species. The second column provides the number of
pathways in each group. This number is less than or equal
to the number of each source set, since the metabolic path-
way may not yet be constructed (or not presented) in the
specific species. For example all 17 species of the eukary-
ote cell have the 00010 pathway. But, Encephalitozoon cu-
niculi (fungi) and Danio rerio (Zebra fish) do not have the

00061 pathway. The third column shows the total size of the
graphs, which is calculated as size(G) = |V | + |E|, where
a graph G = (V,E), V is the set of vertices and E is set of
edges. The last two columns show the maximum running
time and accuracy in each set. We present the classification
accuracy and running time as the maximum values of A+
and B+ in each experimental set. The maximum accuracy
expresses the best case of the classification and the maxi-
mum running time represents the worst case of the running
time. It is computed in terms of accuracy on the training set.

Each case shows a different result in terms of running
time and accuracy, depending on what are used as the pos-
itive examples. The average accuracy of all experiments
consisting of A+ and B+ is 71.76%. The average of max-
imum accuracy is 82.3%. Supervised SUBDUE can dis-
tinguish well between two different types of pathways with
more than 60% accuracy (17 sets out of 20) in polynomial
running time.

3.1.2 Verification of the substructures

The goal of supervised learning is to find the patterns which
are not only able to distinguish between two sets of ex-
amples, but are also biologically meaningful. The pattern
found by SUBDUE can differentiate well between two ex-
amples. The pattern exists only in positive examples, not
in negative examples, because of biologically indispensable
reason. We try to verify biological meaning of these pat-
terns by using the linked database of KEGG PATHWAY [8].

Figure 4 shows a substructure of Aquifex aeolicus bac-
teria in 00010(+) 00900(-):45 experiment set. The par-
tial pattern composed of vertices and edges marked by “[
]” is found commonly in 40 instances of 40 examples in
the first iteration of the 00010(+) 00900(-):45 experiment.
This common substructure which covers 90.9% of the pos-
itive examples (40 out of 44) is shown as related to two
reactions. This pattern shows that an enzyme catalyzes
two reactions, which share the same substrate and prod-
uct. Generally, an enzyme catalyzes a reaction, but some
enzymes can be related to two or more reactions. In fig-
ure 3, two reactions vertices are connected to an entry (en-
zyme) vertex by an E to Rct edge, which is linked to a
gene as its type. The two reactions include the shared sub-
strate (linked by a S to Rct edge) and product (linked by a
Rct to P edge). The gene aae:aq 1065 represents the en-
zyme ec:1.2.1.12. This enzyme catalyzes two reactions,
R01061 and R01063, which are oxidoreductase reactions
of NAD+ and NADP+. These two coenzymes are work-
ing as carriers of hydrogen atoms and electrons in some
oxidation-reduction reactions, especially ATP (Adenosine
TriPhosphate: energy material) related reactions. In our ex-
periment, the learned substructure is found only in the pos-
itive examples (Glycolysis), not in the negative examples
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Figure 2: The first best pattern from supervised learning on 00010(+) 00900(-):45 set, drawn using GraphViz [3]

Figure 3: Partial Hierarchical Clusters of metabolic path-
ways in fruit fly, drawn using GraphViz [3]

(Terpenoid biosynthesis). Glycolysis is an energy generat-
ing process which degrades a molecule of glucose in a se-
ries of enzyme-catalyzed reactions to yield two molecules
of the Pyruvates and ATPs. By this conclusion of verifi-
cation, the substructure found by SUBDUE can distinguish
between two metabolic pathways and has an understandable
biological meaning.

3.2 Unsupervised Learning

Unsupervised learning tries to find common substruc-
tures in the different pathways of one species. The ulti-
mate purpose of applying clustering to metabolic pathways
is to provide a better understandable blueprint of metabolic
pathways by using hierarchical topologies. This experi-
ment allows us to understand the common structures of dif-
ferent pathways. The common patterns of relationships in
metabolic pathways can contribute to biological network re-
search in accompany with traditional bioinformatics.

3.2.1 Clustering Results

Seven experiment sets are used in unsupervised learning.
Each set includes all metabolic pathways of a species in
KEGG PATHWAY database (excluding gene regulatory
networks). The smallest number of pathways is 86 in sce
(Saccharomyces cerevisiae). The largest number is 110 in
hsa (Home Sapiens). The range of graph size is 58,166 ∼
90,157 and the range of running time is 267.81 ∼ 598.99
seconds.

The aim of unsupervised learning is to find the common
substructures, which describe the regular features in a group
of metabolic pathways. Partial hierarchical clusters of sub-
structures learned from the dme (fruit fly) set are shown in
figure 3. The hierarchical clusters show that the substruc-
tures at the upper level are contained in the lower level.
Namely, the general patterns are used to compose more spe-
cific patterns, and finally the pathway. This is how SUB-
DUE shows the common relational patterns of the pathway
and how the patterns relate to each other hierarchically.

SUB 1 represents a reaction that is found in 972 in-
stances of 90 examples. SUB 3 is found in 3,659 instances
of 47 examples at the third iteration. SUB 4, found in 1,136
instances of 21 examples, represents a relation with the
ECrel property. The ECrel relation is an enzyme-enzyme
relation where two enzymes catalyze successive reaction
steps [8]. SUB 8 consists of two SUB 1s, a SUB 3 and a
SUB 4 with several edges. This substructure, found in 264
instances of 3 examples, contains one relation of two en-
zymes which catalyze two successive reactions. Moreover,
SUB 8 has one more meaning than SUB 4. The key is the
“link” edge which connects to a compound which is a prod-
uct of the first reaction of this relation and a substrate of the
second reaction at the same time [8]. In fact, SUB 1 should
be found in all examples, because it represents a basic bio-
chemical reaction. However, it is found in only 90 exam-
ples out of 92, because KEGG PATHWAY is missing reac-
tions in the dme00193 and dme00531 metabolic pathways.
SUBDUE finds SUB 8 in three metabolic pathways of fruit
fly. This pattern, an enzyme-enzyme relation which relates
three successive chemical compounds, is not only the com-
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Figure 4: The eighth substructure of figure 3 found in Galactose metabolic pathway , drawn using GraphViz [3]

mon relational pattern in these three metabolic pathways,
but also the distinguishing property from other pathways.

3.2.2 Verification of the substructures

Figure 4 shows a specific example of the SUB 8 found
in the dme00052, Galactose metabolic pathway. As be-
fore, the nodes and edges with “[ ]” are commonly found
in other pathways. The enzyme-enzyme relation has
a relationship with two reactions: R01092 and R01105
[8]. R01092 is catalyzed by the enzyme of the gene
dme:CG5288-PA, and R01105 is catalyzed by the enzyme
of the gene dme:CG9092-PA. The substrate of R01092 is
the C05796 compound (Galactin). The product of this re-
action is C00124 (D-Galactose), which is also the substrate
of R01092. R01092 produces C00446 (alpha-D-Galactose
1-phosphate) as the product compound. The relation in this
substructure has the link as a pointer to C00124, because
this compound is the shared metabolite in two reactions cat-
alyzed by two enzymes connected within this relationship.
This substructure shows a relation between two enzymes
which shares a compound, as a substrate by one and a prod-
uct by another.

4 Conclusion

Unlike traditional bioinformatics research, we are fo-
cused on the relationships between molecules, more than
the molecules themselves. There are a variety of biological
molecules in the biological networks, and they are related
to each other as several kinds of forms. The research on the
relationships, as well as molecular-level research, can play
a contributive role in Systems Biology.

Our results show that the substructures learned by SUB-
DUE have understandable biological meaning and, when
considered as building blocks of metabolic pathways, can
be used to help us construct new pathways. In the super-
vised learning scenario the learned substructures can iden-
tify what is unique about a specific type of pathway, which
allows us to understand better how pathways differ. Unsu-

pervised learning generates hierarchical clusters that show
what is common about a specific type of pathway, which
provides better understanding of the common structure in
pathways. Ultimately, we could think of these blocks as
guides to define a graph grammar for metabolic pathways
that would improve both our ability to build new networks
and our understanding of pathways. They also open our
sights to a new application. They can help us identify the
target place of a drug in metabolic pathways. Additionally,
a graph grammar of building blocks will help to simulate
the drug interaction on metabolic pathways.

Future works include research on advanced graph repre-
sentation and a graph grammar of metabolic pathways. Ul-
timately, graph-based relational learning on a graph which
can represent dynamics as well as static structures of
metabolic pathways will enable us to find more efficient
methods for drug discovery.
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