
Graph-based Data Mining in Dynamic Networks: Empirical Comparison of
Compression-based and Frequency-based Subgraph Mining

Chang Hun You, Lawrence B. Holder and Diane J. Cook
School of Electrical Engineering & Computer Science

Washington State University
Pullman, WA, USA

{changhun, holder, cook}@eecs.wsu.edu

Abstract

We propose a dynamic graph-based relational mining
approach using graph-rewriting rules to learns patterns in
networks that structurally change over time. A dynamic
graph containing a sequence of graphs over time represents
dynamic properties as well as structural properties of the
network. Our approach discovers graph-rewriting rules,
which describe the structural transformations between two
sequential graphs over time, and also learns description
rules that generalize over the discovered graph-rewriting
rules. The discovered graph-rewriting rules show how net-
works change over time, and the description rules in the
graph-rewriting rules show temporal patterns in the struc-
tural changes. We apply our approach to biological net-
works to understand how the biosystems change over time.
Our compression-based discovery of the description rules
is compared with the frequent subgraph mining approach
using several evaluation metrics.

1. Introduction

Most of our world can be represented as networks in-
cluding entities and relationships between the entities. For
example, biological cells can be represented as biological
networks, which include various molecules and relation-
ships between molecules. The biological cells are also ac-
tive systems, which promote reproduction and sustain its
life. Active systems refer to dynamic properties of bio-
logical networks, which continuously change, while a cell
performs various biological activities. Like the analysis of
biological networks, analysis of dynamic networks is an
emergent area of graph-based data mining. The dynamic
graph contains a sequence of graphs representing a network
changing over time. We propose a novel approach to an-
alyze structural features along with temporal features in a

dynamic graph.
For analysis of dynamic graphs, we first structurally rep-

resent how one graph is transformed into another. Sev-
eral approaches [4] can measure the difference between two
graphs. But our first goal is to describe how two graphs are
different, not merely that they are different or by how much.
We use graph-rewriting rules to show how two graphs are
different. The second step is to discover temporal patterns
in the discovered graph-rewriting rules. The temporal pat-
terns can describe how and which graph-rewriting rules are
applied in order to generate a sequence of changing graphs
over time.

This paper first introduces several preceding approaches
related to analysis of dynamic graphs. Then, we present
our definition of graph-rewriting rules and more general de-
scription rules. We also introduce our two step algorithm
to discover graph-rewriting rules in a dynamic graph, and
description rules in the discovered graph-rewriting rules us-
ing a compression-based approach. In our experiments,
we generate several dynamic graphs of the biological net-
works using the mathematical modeling data. Then, we
apply our approach to the dynamic graphs. We compare
our compression-based approach with the frequent sub-
graph mining approaches [17, 28] in learning the descrip-
tion rules from the graph rewriting rules. The description
rules show which graph rewriting rules are repeated peri-
odically and can help us predict the future changes of the
dynamic graphs.

2. Related Work

Several methods have addressed data mining in a dy-
namic graph. Sun et al. [26] propose a technique to discover
communities and detect changes in graphs changing over
time using matrix and encoding schemes. Other work [3, 4]
proposes several detection measures of abnormal changes
in the sequence of graphs and graph distance measures be-

tween two graphs. Lahiri et. al. [18] introduce an approach
to predict the future structure in a dynamic network using
frequent subgraphs. Our approach uses the compression-
based metric to discover temporal patterns in a dynamic
graph.

The graph is an abstract data structure consisting of
vertices and edges which are relationships between ver-
tices. Graph-based data mining denotes a collection of al-
gorithms for mining the relational aspects of data repre-
sented as a graph. Graph-based data mining has two major
approaches: frequent subgraph mining and compression-
based approach. Compression-based approach will be de-
scribed in section 4. Frequent subgraph mining is focused
on finding frequent subgraphs in a graph. There are two
well-known approaches to bioinformatics domains. Fre-
quent SubGraph discovery, FSG, finds all connected sub-
graphs that appear frequently in a set of graphs. FSG starts
by finding all frequent single and double edge graphs. Dur-
ing each iteration FSG expands the size of frequent sub-
graphs by adding one edge to generate candidate subgraphs
[17]. Graph-based Substructure Pattern Mining, gSpan,
uses the depth-first search and lexicographic ordering [28].
Koyuturk et. al. [14] applied the frequent subgraph mining
approach to metabolic pathways.

In this work, we mainly use the compression-based ap-
proach to discover graph rewriting rules and description
rules. To evaluate our approach, we compare our methods
with the frequent subgraph mining approach.

Temporal data mining attempts to learn temporal pat-
terns in sequential data, which is ordered with respect to
some index like time stamps, rather than static data [23].
Temporal data mining is focused on discovery of relational
aspects in data such as discovery of temporal relations or
cause-effect association. In other words, we can understand
how or why the object changes rather than merely static
properties of the object. Temporal data mining approaches
discover temporal patterns in data, but they disregard rela-
tional aspects among entities. For example, they can iden-
tify temporal patterns of appearance of genes such that a
gene, YBR218C, appears before another gene, YGL062W,
but cannot identify how these two genes interact with each
other.

Biological networks have various molecules and rela-
tions between them including reactions and relations among
genes and proteins. In addition to the structural aspect, we
also consider the temporal aspect of biological networks,
because the biosystems always change their properties and
structures while interacting with other conditions. Two ap-
proaches have been developed for the analysis of biolog-
ical networks. One approach is graph-based data mining
[15, 29]. This approach represents biological networks as
graphs, where vertices represent molecules and edges rep-
resent relations between molecules, and discovers frequent

sce:A

sce:B

sce:C sce:D

sce:E

PPrel:---

PPrel:+p PPrel:-p

PPrel:-p

PPrel:---

sce:C sce:D

sce:E

sce:F sce:G

PPrel:-p

PPrel:--- PPrel:-p

PPrel:+p

G1 G2

PPrel:-p

PPrel:-p

S

S

R

A

Figure 1. An instance of graph rewriting rules between
graph G1 and G2 in a synthetic biological networks.

patterns in these graphs. Many approaches of graph-based
data mining discover structural features of biological net-
works, but they overlook temporal properties. The other
approach is mathematical modeling, which is an abstract
model to describe a system using mathematical formulae
[9, 13, 19, 20]. Most of these approaches, as a type of quan-
titative analysis, model the kinetics of pathways and ana-
lyzes the trends in the amounts of molecules and the flux of
biochemical reactions. But most of them disregard relations
among multiple molecules.

In our approach we combine dynamic graph analysis and
temporal data mining to analyze the change in biological
networks over time. The time-slice graphs of particular bio-
logical networks are obtained from the mathematical mod-
els of the networks.

3. Problem Definitions

3.1. Graph Rewriting Rules

This paper focuses on temporal and structural analysis
of a dynamic graph. Our dynamic graph-based relational
learning approach discovers graph rewriting rules in a series
of graphs changing their structures over time. Each graph
rewriting rule represents topological changes between two
sequential graphs. Here, we define graph rewriting rules for
our approach.

Graph rewriting is a method to represent topological
changes of graphs using graph rewriting rules [8, 24]. Gen-
erally, graph rewriting rules identify subgraphs in a graph
and modify them. Each graph rewriting rule defines a trans-
formation between L and R, where L and R are subgraphs
in two graphs G and H respectively, such that L is replaced
by R, L is deleted, or R is created [21]. There are also
several algorithms to discover the node or edge replace-
ment graph grammar using the minimum description length
principle [12, 16]. However, their scope is limited to static
graphs.

Traditional approaches to the identification of graph
rewriting rules determine which subgraphs will be replaced
by other subgraphs. Our approach is focused on repre-
senting changing structures between two graphs rather than
just what subgraphs change. First, we discover maximum
common subgraphs between two sequential graphs G1 and
G2. While this task is NP-Complete, we use a tractable
heuristic approach described later. Then, we derive removal
substructures from G1 and addition substructures from G2.
Figure 1 shows an instance of this process. A maximum
common subgraph (denoted by S) is discovered between
two graphs, G1 and G2. Then the remaining structure in G1

and G2 becomes the removal (denoted by R) and addition
(denoted by A) subgraph respectively.

Our graph-rewriting rules contain connection edges. The
connection edges are edges, which are used to link removal
(or addition) subgraphs to the original graphs. The edges
with boxed labels in figure 1 represent the connection edges
between G1 (G2) and removal rule R (addition subgraph
A). The connection edges are important for two reasons.
First, the connection edges show how the subgraphs are
connected to the original graphs. Second, there can be more
than one connection edge linking one subgraph to the orig-
inal graph. Thus, the connection edges are significant fea-
tures of graph-rewriting rules.

For this approach, we define several preliminary
terms. A directed graph G is defined as G =
(V,E, Lv(V), Le(E)), where V is a set of vertices, E is
a set of edges, Lv(V) is a function to assign labels to ver-
tices and Le(E) is a function to assign labels to edges. An
edge e (∈ E) is directed from x to y as e = (x, y), where
x, y ∈ V .

Here, we define a dynamic graph DG as a sequence of n
graphs as DG = {G1, G2, · · · , Gn}, where each graph Gi

is a graph at time i for 1 ≤ i ≤ n. Then, we define a set of
removal subgraphs RG and a set of addition subgraphs AG
as follows.

RGi = Gi/Si,i+1,

AGi+1 = Gi+1/Si,i+1

RGi denotes a set of removal subgraphs in a graph Gi,
AGi+1 denotes a set of addition subgraphs in the next graph
Gi+1, and Si,i+1 is a maximum set of common subgraphs
between two sequential graphs Gi and Gi+1 in a dynamic
graph DG.

A prior graph Gi is transformed to a posterior graph
Gi+1 by application of a set of graph rewriting rules
GRi,i+1 as denoted by

Gi+1 = Gi

⊕
GRi,i+1

A set of graph rewriting rules GRi,i+1 between two sequen-

tial graphs Gi and Gi+1 is defined as follows.

GRi,i+1 = {(m, p,CEm, CLm), · · · ,
(n, q, CEn, CLn), , · · · , }

m and n are indices of graph rewriting rules in a set
GRi,i+1. p and q are indices of a removal substructure in
RGi and an addition substructure in AGi+1 respectively.
CE and CL are defined as a set of connection edges and
a set of labels of the connection edges. Each element of
RG and AG corresponds to a set of CE and CL, unless a
removal (addition) substructure does not connect to the Gi

(Gi+1). CEk and CLk represent connections between sub-
structures and the original graphs (k = m or n) as follows.

CE = {(d, X, Y), · · ·}
CL = {labelxy, · · ·}

where d represents whether the edge is directed or undi-
rected using d and u. X and Y denote the starting and end-
ing vertices of the edge. Because the connection edge links
the substructure to the original graph, one end of this edge
is from the substructure and the other is from the original
graph. The end vertex from the substructure starts with “s”
followed by the index of the vertex, and the end vertex from
the original graph starts with “g” followed by the index of
the vertex. For example, (d, g1, s3) represents the directed
edge from a vertex 1 in the original graph to another vertex
3 in the substructure. labelxy represents a label for the cor-
responding connection edge between two vertices X and Y .
The number of elements of CE (CL as well) represents the
number of connections between substructures and the orig-
inal graph. If a substructure is not connected to the original
graph, both sets of CE and CL are empty.

Using the definitions of graph rewriting rules, we de-
scribe more detail about the example in figure 1. As de-
scribed previously, the graph rewriting rule, GR1,2, in-
cludes one removal rule and one addition rule. The removal
rule includes one substructure (denoted by R) and two con-
nection edges (with boxed labels). The addition rule in-
cludes one substructure (denoted by A) and one connection
edge (with a boxed label). G1 is transformed to G2 by appli-
cation of GR1,2 (G2 = G1

⊕
GR1,2). GR1,2 is described

as follows,

GR1,2 = {(r1, rSub1, {(d, s2, g3), (d, s2, g4)},
{PPrel : +p, PPrel : −p}),
(a1, aSub2, {(d, g3, s1)}, {PPrel : −p})},

where r1 represents an index into the set of removal rules
and a1 represents an index into the set of addition rules. A
removal rule r1 includes a removal substructure rSub1 de-
noted by R in figure 1. rSub1 was connected to the original
graph G1 by two edges (d, s2, g3) and (d, s2, g4), which are

labeled by PPrel : +p and PPrel : −p. These connec-
tion edges are directed edges (indicated by ‘d’). These two
edges are connected from the substructure (denoted by ‘s’)
to the original graph (denoted by ‘g’), where each number
denotes a vertex number in the substructure or the original
graph. For example, (d, s2, g3) denotes a connection from
a vertex number 2 in the substructure to a vertex number
3 in the original graph. In a similar way, an addition rule
a1 includes an addition substructure aSub1 (denoted by A
in figure 1), which is connected by one connection edge
(d, g3, s1) labeled by PPrel : −p.

The graph rewriting rules show how two sequential
graphs are structurally different. After collecting all sets
of graph rewriting rules in a dynamic graph, we also dis-
cover description rules in the graph rewriting rules, which
can describe how the graphs change over time as well as
what structures change.

3.2. Description Rules

As dynamic graph DG has n graphs, we have n−1 RGs
and AGs after learning graph rewriting rules. Then, we
learn description rules in the learned graph rewriting rules
to describe the temporal patterns in dynamic graph. The
description rules can be various forms based on data rep-
resented by dynamic graphs. Here, we propose one simple
description rule DR, which represents repeated additions
and removals (or vice versa), as follows.

DR = Sub(+ta,−tr)

Sub represents a subgraph, which adds to and removes from
the graph repeatedly. +ta represents the time interval from
the last removal to the current addition, and −tr represents
the time interval from the last addition to the current re-
moval. If +ta is shown before −tr, the addition precedes
the removals. For instance, Sub a(+3,−2) denotes a re-
peated description rule with the addition after 3 time inter-
vals from the last removal and the removal after 2 time inter-
vals from the last addition. Naturally, there are other forms
of description rules rather than the repeated add/remove
rules. But this research focuses on the repeated rules as a
starting point.

4. Approach

This section describes our approach to analyze dynamic
graphs. We present a two step algorithm: Learning Graph
Rewriting Rules and Learning Description Rules. The first
algorithm learns graph rewriting rules in a dynamic graph to
represent how two sequential graphs are different, in other
words, how one graph is changed to the other graph. The
second algorithm learns the repeated description rules in the

learned graph rewriting rules to describe how the graphs in
the dynamic graph change over time.

Our approach extends Cook and Holder’s earlier work
[5, 6], which is a graph-based relational learning approach
to discover subgraphs. Their approach evaluates discovered
subgraphs using the Minimum Description Length (MDL)
principle to find the best subgraphs which minimize the de-
scription length of the input graph after being compressed
by the subgraphs. The description length of the substructure
S is represented by DL(S), the description length of the in-
put graph is DL(G), and the description length of the input
graph after compression is DL(G|S). The approach tries to
minimize the Compression of the graph as follows.

Compression =
DL(S) + DL(G|S)

DL(G)

Their approach, which is called as DiscoverSub() in
our algorithms, tries to maximize the V alue of the sub-
graph, which is simply the inverse of the Compression.
We present the V alue with our learned subgraphs in the re-
sults section.

In addition to the MDL based approach, DiscoverSub()
can use the size-based compression as follow,

Compression =
size(S) + size(G|S)

size(G)

where the size of a graph G is calculated as size(G) =
|V | + |E|. Size is a less accurate measure of compression,
as it does not account for the compression of vertex and
edge label information like MDL. However, size is faster to
compute, and results based on size are typically consistent
with those of MDL.

In this research, we use both methods to discover sub-
graphs and compare our results with the frequent subgraph
mining approach.

4.1. Learning Graph Rewriting Rules

This section describes our learning graph rewriting rules
algorithm that discovers graph rewriting rules in a dynamic
graph. The algorithm starts with a dynamic graph DG con-
sisting of a sequence of n graphs as shown in algorithm
1. First, the algorithm creates a list of n virtual graphs,
V GL, corresponding to n time series of graphs at line 1.
Our approach uses a virtual graph to specify the applica-
tion locations of graph rewriting rules. Because a graph
may have multiple graph rewriting rules and several same-
labeled vertices and edges, the exact locations of connection
edges and rewriting rules are important to reduce the error.
The next procedure is to create a two-graph set, Graphs,
including two sequential graphs Gi and Gi+1 (line 5) and
to specify the limit based on unique labeled vertices and

edges of Gi and Gi+1 (line 6). UV L and UEL denote the
number of unique vertex labels and edges in Gi and Gi+1.
The Limit specifies the number of substructures to con-
sider when searching for a common substructure (line 6).
The Limit based on the number of labels in the input graph
bounds the search for a common subgraph within polyno-
mial time but ensure consideration of most of the possible
subgraphs.

Algorithm 1: Learning Graph Rewriting Rules Algo-
rithm

Input: DG = {G1, G2, · · · , Gn }
Output: RRL
Create V GL = {V G1, V G2, · · · , V Gn}1

RRL = {}2

for i = 1 to n− 1 do3

RemSubSet = AddSubSet = ComSubSet = {}4

Graphs = {Gi, Gi+1}5

Limit = UV L + 4(UEL− 1)6

while No more compression do7

BestSub = DiscoverSub(Limit, Graphs)8

if BestSub ∈ Gi & Gi+1 then9

Add BestSub into ComSet10

end11

Compress Graphs by BestSub12

Mark BestSub on V Gi and V Gi+113

end14

Get remSubs and CE from V Gi15

Add remSubs into RemSubSet and CE into16

RemCESet
Get addSubs and CE from V Gi+117

Add addSubs into AddSubSet and CE into18

AddCESet
Create RR from RemSubSet, AddSubSet,19

RemCESet, AddCESet
Add RR into RRL20

end21

The inner loop (lines 7 to 14) represents the procedure
to discover common substructures between two sequential
graphs. As described previously, DiscoverSub() is used
to find the maximum common subgraph. Even though
to find the maximum common subgraph is NP-Complete,
DiscoverSub() can be used as a polynomial-time approx-
imation to this problem using Limit and iteration as de-
scribed later in section 4.3. After discovery of the best sub-
structure, the algorithm checks whether the substructure is
a subgraph of both graphs Gi and Gi+1. In the affirmative
case, the best substructure is added into ComSubSet and
the two target graphs are compressed by replacing the sub-
structure with a vertex. If the best substructure does not be-
long to one of the two graphs, the algorithm just compresses

the graphs without adding any entry into ComSubSet. Af-
ter compression, the algorithm discovers another substruc-
ture at the next iteration until there is no more compression.

Using the complete list of common substructures,
ComSubSet, the algorithm acquires removal substruc-
tures, remSubs, and addition substructures, addSubs,
(lines 15 and 17). First, the algorithm identifies vertices
and edges not part of common substructures and finds each
disconnected substructure in Gi and Gi+1 using the mod-
ified Breadth First Search (mBFS), which adds each edge
as well as each vertex into the queues as visited or to be
visited. The marked substructures in Gi and Gi+1 are
removal and addition substructures respectively. While
mBFS searches these removal and addition substructures,
it also finds connection edges, CE, as described previously.
These edges are added into RemCESet and AddCESet,
where removal and addition substructures are added into
RemSubSet and AddSubSet respectively (in lines 16 and
18). Using these rewriting substructures and connection
edges, rewriting rules (RR) are created and stored into
RRL (in lines 19 and 20).

4.2. Learning Description Rules

After discovering graph rewriting rules in a dynamic
graph, we try to discover repeated rewrites, which we call
description rules, in the learned graph rewriting rules to bet-
ter understand how graphs change over time. As shown
in Algorithm 2, first, we add all sets (RG and AG) of the
learned subgraphs as examples into one set ExSet, where
every odd position is filled with RG and every even posi-
tion is filled with AG (lines 1 to 3). The ExSet contains
2(n − 1) examples, because we discovered n − 1 graph
rewriting rules. Note that each example (each RG or AG)
contains one or more graphs, which may not be connected
to each other. We then use DiscoverSubs again to find
common subgraphs within ExSet. While a frequent sub-
graph miner could be used for this step, we prefer subgraphs
that are both larger and frequent, i.e., compress well. After
the discovery of the common subgraphs, ExSet is com-
pressed by this subgraph, and the discovery process is iter-
ated until no more compression is achieved or we reached a
user-defined limit Iter on the number of iterations. In case
that the best subgraph at the latter iteration includes the best
subgraph at the former iteration, the results can show hier-
archical clusters as a lattice. More detail on the hierarchical
clustering approach is described in [11].

In our approach, we calculate the temporal distance be-
tween two consecutive instances of the best-compressing
subgraphs to describe how long the removal (or addition)
occurs after the previous addition (or removal). As de-
scribed in section 3.2, Sub 1(+3,−2) and Sub 2(+5,−3)
represent two description rules including two common sub-

Algorithm 2: Learning Description Rules Algorithm
Input: RemSubSet, AddSubSet, Iter, Limit
Output: BestSubSets, ListOfDist
Create ExSet = {}1

Add RemSubSet as odd position into ExSet2

Add AddSubSet as even position into ExSet3

while No more compression and Iter > 0 do4

BestSub = DiscoverSub(ExSet)5

Add BestSub into BestSubSets6

Calculate distance between instances of BestSub7

and Add into ListOfDist
Compress ExSet by BestSub8

Iter = Iter -19

end10

graphs with temporal distances discovered at the first and
second iterations respectively. Later, we compare our
compression-based discovery of description rules with the
frequent subgraph mining approach using several metrics.

4.3. Complexity Issue

The main computational challenge of our algorithm is
to discover maximum common subgraphs between two se-
quential graphs, because this problem is known to be NP-
hard [10]. To avoid this problem, first we use the Limit to
restrict the number of substructures to consider in each iter-
ation. The Limit is computed using the number of unique
labels of vertices and edges in graphs or can be defined by
the user. Second, our algorithm does not try to discover the
all common substructures at once. In each step, the algo-
rithm discovers one common, connected substructure and
iterates the discovery process until discovering the whole
maximum common subgraphs. In our target domain, graphs
that represent biological networks usually contain unique
vertex labels, because each vertex label denotes the name
of the molecule. The maximum common subgraph prob-
lem in graphs with unique vertex labels is known to have
quadratic complexity [7]. Therefore, discovery of the ex-
act graph rewriting rules is still feasible. However, there
will be a tradeoff between exactness and computation time
when analyzing very large graphs.

5. Data Sets and Experiments

5.1. Mathematical Modeling

To evaluate our approach, we prepare eight dynamic
networks representing biological networks that structurally
change over time. The eight biological networks are gener-
ated from the mathematical modeling data, which are down-

loaded from [1], such as MAP kinase pathway [13], gly-
colysis pathway in yeast [9], respiration metabolic oscilla-
tions [27], oscillations in excitable cells cite [19], cell cycle
by growth factor [22], mammalian circadian oscillator [25],
circadian rhythms in fruit fly [20] and cell cycle signaling
network [30]. We generate a static graph representing the
biological networks from the KEGG PATHWAY data [2],
where vertices represent compounds, genes, enzymes, re-
lations and reactions, and edges represent relationships be-
tween vertices. Here, we assume only genes or chemical
compounds change over time. Only when the amount of
gene or chemical compound is larger than a user-defined
threshold is the gene or chemical compound shown in the
graph in the mathematical modeling data experiment. We
also assume that each molecule can be shown at most once
at each time slice.

The mathematical modeling approach explores only nu-
merical values, such as the concentration of molecules and
the flux of reactions. We propose to combine the result of
mathematical modeling and graphs for structural and tem-
poral analysis. The results of the mathematical modeling
data show the trends of amounts of molecules (genes or
compounds). We normalize these concentrations from 0 to
1, because we are focused on trends of the changes and the
concentrations of different molecules vary significantly.

We generate the static graphs representing the biological
networks from the mathematical model, and use a thresh-
old th to activate compounds. At each time, a compound
or gene, which has more than th amount, is shown in the
graph. The reactions between the molecules are shown in
the graph, only when all related molecules are activated. In
other words, every related molecule should be activated to
place a reaction in a graph. We chose from 0.3 to 0.4 as our
thresholds to represent structural changes in the networks
maximally. The simulation time of the mathematical mod-
eling is varied from 140 seconds to 7,000 seconds. In our
experiments, we generate 51 time series for training and the
following 20 time series for testing. Thus, each dynamic
graph has 51 graphs for training and 20 graphs for testing.

5.2. Experiments

As we discussed in the previous section, one goal of this
research is to compare two graph-based data mining ap-
proaches in learning description rules. For this comparison,
we introduce two metrics to measure the approaches.

The first metric is Coverage that represents how well
the rule describes the changes in the graphs. The Coverage
of the BestSub discovered at iteration i in Algorithm 2 is
computed as follows.

Coverage =
size(BestSub)

∑
g∈coveredAGs,RGs

1
size(g)

2(n− 1)

where the covered AGs and RGs are the addition and re-
moval graphs in ExSet that contain BestSub. These
graphs are efficiently identified during the discovery of
BestSub. Coverage represents the portion of the learned
subgraphs (the removal or addition subgraphs) described by
description rule to be based on BestSub. For example,
suppose we have n = 3 graphs from which we find two
graph-rewriting rules. Then, we have two removal and two
addition subgraphs. Assume the size of RG1 is 10, RG2 is
12, AG1 is 10, and AG2 is 15. Also assume the BestSub
is found in RG1 and AG1 has a size of 5. Coverage is
computed as 5(1/10+1/10)

4 = 0.25.
Higher Coverage indicates the subgraph can describe

more significant (larger portion of) changes. Currently,
Coverage does not care about the size of connection edges
(|CE|). Unless the size of the subgraph is isomorphic with
all AGs and RGs, Coverage < 1. We define Prediction
as our second metric to evaluate the prediction capability of
the approaches as follows.

Prediction =

∑
i∈P

size(RealSubi)
size(PredictedSubi)

|P |

where P is the set of positions where we predict the
PredictedSubi will show up, and RealSubi is the actual
subgraph found at position i. Prediction represents how
much the predicted subgraph covers the discovered sub-
graphs in the testing experiments. For example, suppose
we predict a subgraph s (size(s) = 10) will be shown 3
times in the testing data. Then, we discover the subgraph rs
that is a subgraph of s (size(rs) = 5) at one time point, and
the whole subgraph s at another time point. Prediction

is computed as 5/10+10/10+0/10
3 = 0.5. Currently, our

Prediction measure does not include the metric for the
temporal prediction, i.e., when is the exact time the sub-
graph appears. We will discuss this issue in the next section.

We apply five different methods to compare two graph-
based data mining approaches: compression-based and fre-
quent subgraph mining approaches. We use MDL and size-
based compression methods for the compression-based ap-
proach, and use three methods: size-based compression,
most frequent, and largest patterns for the frequent sub-
graph mining. The size-based compression is computed as,
max

i
(size(Subi)num(Subi)), where num(Subi) denotes

the number of instances of the subgraph Subi. The most
frequent pattern denotes the largest subgraphs in the most
frequent subgraphs, and the largest subgraphs denotes the
largest subgraphs in all discovered subgraphs. The mini-
mum support for the subgraphs is 4.0%, because we desire
the subgraphs to appear more than two times in each re-
moval and addition rule.

Our approach first learns graph rewriting rules (100 sets
for each removal and addition) in the dynamic graph. Then,

PER_mRNA

Rct:PER_translation

PER

Rct:PER_phos Rct:PER_p_dephos

PER_p

Rct:PER_p_phos

Rct:PER_pp_dephos

PER_pp

Rct_to_M

Rct_to_P

Rct_to_R
Rct_to_P

Rct_to_P

Rct_to_R Rct_to_R

Rct_to_P

Rct_to_P

Rct_to_R

Figure 2. An instance of the best subgraph discovered in
the experiment of the model 171.

Algorithm 2 discovers the best subgraphs in the learned
graph-rewriting rules as description rules using the above
five methods. We will compare these approaches based on
two metrics: Coverage and Prediction. In addition to this
quantitative assessment, we also visualize the description
rules to better understand the dynamic graph.

6. Results and Discussion

6.1. Results

Table 1 shows the results of our experiments. Running
time of these experiments is only a few seconds for each
method because the graph size is small such as less than 100
at each time and 2,000 for each dynamic graph. The math-
ematical modeling data usually contains small numbers of
molecules (less than 50). However, our approach can be
applied to larger dynamic graphs that are generated based
on microarray data, and the size of them are around 400 at
each time (7,000 for dynamic graphs). In case that two or
more methods have the same Coverage and Prediction,
they discover the same subgraph. As shown in Table 1, the
compression-based approach is better or similar to the fre-
quent subgraph mining approach in terms of Coverage and
Prediction except two cases. In all cases, Prediction is
greater than 70%. However, there are several challenges for
the successful prediction. We will discuss these issues in
the discussion section. In most cases, higher-valued sub-
graphs discovered using the compression-based approach
can show higher Coverage in the graph rewriting rules and
description rules. Only two cases show the frequency-based
approach outperforming the compression-based approach,
because these two models show regularity in terms of only
small subgraphs, not relatively larger ones, i.e., after one
subgraph is added (or removed), portions of the subgraph
are removed (or added) in other ways. We will discuss this
issue as well in the discussion section.

Figure 2 shows an instance of the best subgraph discov-
ered in the experiment of the model 171. The instances are
discovered at time 11, 23, 35 and 47 as removals, and 6,18,

Table 1. Coverage of the best subgraphs in eight dynamic graphs, and prediction in the testing data. Name denotes the name of
the mathematical model in [1] for each dynamic graph. Comp.-MDL and Comp.-Size denote the MDL and size-based compression
methods. Freq.-Size, Freq.-MF and Freq.-Largest denote the size-based compression, the largest subgraph in the most frequent
subgraphs, and the largest subgraph in the frequent subgraph mining approach. Cover. and Predict. denote coverage and prediction.
The best coverage values are in bold.

Name Comp.-MDL Comp.-Size Freq.-Size Freq.-MF Freq.-Largest
Cover. Predict. Cover. Predict. Cover. Predict. Cover. Predict. Cover. Predict.

Model 10 0.025 1.0 0.050 1.0 0.050 1.0 0.091 1.0 0.050 1.0
Model 42 0.073 1.0 0.099 1.0 0.099 1.0 0.097 1.0 0.073 1.0
Model 90 0.043 0.900 0.042 1.0 0.043 0.900 0.031 1.0 0.043 1.0
Model 99 0.127 0.744 0.127 0.744 0.127 0.744 0.087 1.0 0.053 1.0
Model 110 0.096 1.0 0.096 1.0 0.096 1.0 0.077 1.0 0.090 1.0
Model 168 0.051 0.758 0.051 0.758 0.051 0.758 0.062 1.0 0.051 0.758
Model 170 0.040 1.0 0.054 0.778 0.040 1.0 0.054 0.778 0.040 1.0
Model 171 0.073 1.0 0.073 1.0 0.073 1.0 0.043 1.0 0.073 1.0

6

11 23 35 47

18 30 42

12 12 12

5
12

7

12

5 7

12

5 7 5 (A)

Sub 1

Sub 1
5 7 T 6 ~ 47

(B)

59

54 66
5 77

(C)

Figure 3. (A) Visualization of the graph rewriting rules
including the subgraph in figure 2. (B) The description
rule of the graph rewriting rules in (A). (C) Predicted graph
rewriting rules from (B).

30 and 42 as additions as shown in figure 3 (A). The above
rectangles in the figure represent the removals at the de-
noted time slice and the below eclipses represent the addi-
tions at the denoted time slice. The temporal distance from
the removal to addition is 5, and from the addition to re-
moval is 7 as shown in figure 3 (A). From the discovered
subgraphs in figure 3 (B), we can learn the description rule
Sub1(−5, +7) as shown in figure 3 (B). From the learned
description rule, we can predict the future changes of the
graph. As noticed, our research is focused on the predic-
tion of the future structural changes, not the structure of the
graph at the specific time. We predict three graph rewriting
rules, i.e., three structural changes, at time 54, 59, and 66.
As we predict, the instances of the subgraph in figure 2 are
added at time 54 and 66, and removed at time 59.

As described previously, we use graph rewriting rules
to represent the structural changes between two sequential

TIM_mRNA

-[PER_mRNA]

TIM

TIM_pp

-[PER]

-[PER_p]

-[PER_pp]

PER_TIM_cytoPER_TIM_nucle

-[Rct:PER_transcription]

Rct:TIM_transcription

-[Rct:PER_translation]

Rct:TIM_translation

-[Rct:Per_TIM_cpxfrm]

Rct:PER_TIM_cpxshut

-[Rct:PER_phos]

-[Rct:PER_p_phos]

-[Rct:PER_p_dephos]

-[Rct:PER_pp_dephos]

Rct:TIM_p_phos

Rct:TIM_pp_dephos

-[Rct_to_P]

(Rct_to_M)

Rct_to_P

Rct_to_M

-[Rct_to_P]-[Rct_to_M]

Rct_to_P

Rct_to_M

-[Rct_to_R]

(Rct_to_R)

(Rct_to_P)

Rct_to_RRct_to_P

-[Rct_to_R]
-[Rct_to_P]

-[Rct_to_R]
-[Rct_to_P]

-[Rct_to_R]

-[Rct_to_P]

-[Rct_to_R]

-[Rct_to_P]

Rct_to_R

Rct_to_P

Rct_to_P

Rct_to_R

Figure 4. A visualization of discovered substructures
of removal rule including the subgraph in figure 2. La-
bels marked by “-[]” represent the removal rules and labels
marked by “()” represent the connection edges.

graphs. Figure 4 shows a visualization of the graph rewrit-
ing rule including the best subgraph in figure 2. The re-
moval subgraph including the best subgraph are shown with
the labels marked by “-[]”. In case of addition rules, the la-
bels are marked by “+[]”. The connection edges are repre-
sented with the labels marked by “()”. Our graph-rewriting
rules also show us how the subgraphs are related to the orig-
inal graph using the connection edges as follows.

GR11,12 = {r1, rsub1, CE,CL}
CE = {(d, s2, g10), (d, s11, g5), (d, s11, g9)}
CL = {Rel to M, Rct to R,Rct to P}

These results are biologically significant, because they
describe the repeated structural changes in the biological
networks. The mathematical researches [9, 13, 19, 20,
22, 25, 27, 30] describe that there are periodic changes of
molecules (i.e., concentrations) to perform the metabolism

2

3 6 9 ? 16

? ? 12 15
1 ? ? ? ? 3 ? ? 1

2

3 6 9 13 16

5 8 12 15
1 2 1 2 1 3 1 2 1

(A)

(B)

Figure 5. Visualization of the graph rewriting rules the
best subgraph discovered in the model 99 using the MDL
method (A) and the Freq.-MF method (B).

or other processes in a cell. Our results show known pat-
terns in the temporal changes. In addition, the results shows
structural changes, but not merely changes of amount. The
mathematical modeling [20] shows the trends of chang-
ing amounts of two proteins (PER and TIM) and related
molecules, where they show periodic increase and decrease.
Figure 3 (A) shows the graph rewriting rules including PER
protein and related molecules that correspond to periodic
changes in the amount of the molecule. In addition to the
change of one element, our results show how the changes
are related to other elements (i.e., which elements are re-
moved or added at the same time) as shown in the discov-
ered subgraphs (figure 2) and how the subgraphs are linked
to the original graphs (figure 4). Our results show patterns
in the structural changes, not merely changes of amount.

6.2. Discussion

Even though our results can predict the future struc-
tural changes of dynamic networks and represent how the
changes are related to other elements, there are still several
challenges to overcome.

The first challenge is to synchronize the temporal pat-
terns with the structural patterns. As we discussed in the
experiment section, each molecule can appear only once
at each time slice in our experiments. For this reason, a
subgraph (or molecule) cannot be added (removed) succes-
sively, without any removal (addition). However, the cur-
rent approach can discover the successive removal or addi-
tion as shown in figure 5. Figure 5 (A) shows several suc-
cessive removals and additions. The question marks denote
the time where the subgraph is not discovered, but should
be discovered. The subgraph is not discovered because por-
tions of the subgraph are removed (or added) in other ways,
i.e., included into the other subgraphs.

Figure 6 shows an interpretation of this problem. Some
elements of the subgraph in figure 6 (A) are included in the
subgraph in figure 6 (B). The instances of the subgraph in

CAR1

Rct:k5Rct:k13

ERK2

Rct:k1

Rct_to_M

Rct_to_P

Rct_to_P
Rct_to_M

CAR1

Rct:k13

Rct_to_P

(A) (B)

Figure 6. (A) An instance of the subgraph in figure 5 (A)
discovered in the model 99 using the MDL method. (B) An
instance of the subgraph in figure 5 (B) discovered in the
model 99 using the Freq.-MF method.

figure 6 (B) are discovered in the normal way as shown in
figure 5 (B). In other words, some instances of the subgraph
in figure 6 (A) are removed and added separately (at differ-
ent times). To overcome this problem, we need an approach
to discover the subgraphs over the multiple time slices.

The next challenge is to evaluate the predicted time when
the subgraph will appear. This issue could be addressed
based on the domain. In the case of biological networks,
the order of the structural changes is more important than
the exact time when the changes occur. But there might be
some domain in which we need to predict the exact time a
structural change will occur (i.e., social network analysis to
predict the emergence of a possible threat).

Dynamic network analysis is important and necessary
not only for biological network analysis, but also for many
other domains, such as social networks, web mining and so
on. There are also many challenges to overcome more than
we have addressed here. Dynamic graph-based relational
learning using graph rewriting rules is focused on repre-
senting the changes between two graphs (i.e., two states)
rather than the graph at the specific time. But analyzing the
changes and predicting future changes of the structure of
networks are good starting points for analysis of dynamic
networks.

7. Conclusion

This research formalizes graph rewriting rules to de-
scribe structurally changing networks and describes an al-
gorithm to discover graph rewriting rules in a dynamic
graph. Our second step is to learn the general description
rules in the discovered graph rewriting rules. If the data
show the repeated removals and additions, our approach
can discover the novel description rules describing how the
graphs in a dynamic graph change over time. The algorithm
is evaluated with the dynamic graphs representing biologi-
cal networks in combination with the mathematical model-
ing data. We also compare our compression-based discov-
ery of the description rules with the frequent subgraph min-
ing approach. The results show that the frequency-based

approach, while typically faster, can miss higher-valued pat-
terns discovered using the compression-based approach.

The graph-rewriting rules of dynamic networks can de-
scribe how the networks change over time. The graph-
rewriting rules with the connection edges show how the
learned subgraphs in the rewriting rules are related to the
original graphs. The learned description rules in the graph
rewriting rules can describe not only structural changes of
networks but also temporal patterns in the series of the
structural changes. Our approach can also help us to vi-
sualize the removal and addition of subgraphs at each time
to show how the graphs structurally change. Our approach
helps us to better explore how networks change over time
and guides us to understand the structural behaviors of the
dynamic network. In the biological network domain, the
temporal patterns in structural changes of the network un-
der specific conditions (e.g., infection) can provide essential
information for drug discovery or disease treatments.

The future works follow several directions. First, we
need a better approach to learn description rules that can
cover graph rewriting rules that are divided over several
consecutive time slices. Our prediction measure needs to
include a temporal distance factor to better evaluate rules
in terms of predicting the precise time at which a change
occur. Our evaluation will also include regenerating a dy-
namic graph using the discovered graph rewriting rules and
comparing it to the original dynamic graph from real world
data.

References

[1] Biomodels database at European Bioinformatics Institute.
http://www.ebi.ac.uk/biomodels.

[2] Kegg. http://www.genome.jp.
[3] H. Bunke, M. Kraetzl, P. Shoubridge, and W. Wallis. Detec-

tion of abnormal change in time series of graphs. Journal of
Interconnection Networks, 3, Nos 1+2:85–101, 2002.

[4] H. Bunke and K. Shearer. A graph distance metric based
on the maximal common subgraph. Pattern Recogn. Lett.,
19(3-4):255–259, 1998.

[5] D. Cook and L. Holder. Substructure discovery using min-
imum description length and background knowledge. Jour-
nal of Artificial Intelligence Research, 1:231–255, 1994.

[6] D. Cook and L. Holder. Graph-based data mining. IEEE
Intelligent Systems, 15(2):32–41, 2000.

[7] P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. On
graphs with unique node labels. In Proceedings of the IAPR
Workshop on GBR, pages 13–23, 2003.

[8] H. Dörr. Efficient Graph Rewriting and Its Implementation.
Springer, 1995.

[9] K. N. et. al. Sustained oscillations in glycolysis: an exper-
imental and theoretical study of chaotic and complex peri-
odic behavior and of quenching of simple oscillations. Bio-
physical Chemistry, 7:49–62, 1998.

[10] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[11] I. Jonyer, D. Cook, and L. Holder. Discovery and evaluation
of graph-based hierarchical conceptual clusters. Journal of
Machine Learning Research, 2:19–43, 2001.

[12] I. Jonyer, L. Holder, and D. Cook. Mdl-based context-free
graph grammar induction. In Proceedings of FLAIRS, 2003.

[13] B. Kholodenko. Negative feedback and ultrasensitivity can
bring about oscillations in the mitogen-activated protein ki-
nase cascades. Eur J Biochem, 267(6):1583–8, Mar 2000.

[14] M. Koyuturk, A. Grama, and W. Szpankowski. An efficient
algorithm for detecting frequent subgraphs in biological net-
works. Proceedings of the International Conference on In-
telligent Systems for Molecular Biology, 20:200–207, 2004.

[15] J. Kukluk, C. You, L. Holder, and D. Cook. Learning node
replacement graph grammars in metabolic pathways. In Pro-
ceedings of BIOCOMP, 2007.

[16] J. P. Kukluk, L. B. Holder, and D. J. Cook. Inference of node
replacement recursive graph grammars. In Proceedings of
the SIAM International Conference on Data Mining, 2006.

[17] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In Proceedings of the ICDM, pages 313–320, 2001.

[18] M. Lahiri and T. Berger-Wolf. Structure prediction in tem-
poral networks using frequent subgraphs. In Proceedings of
CIDM, 2007.

[19] M. Laub and W. Loomis. A molecular network that produces
spontaneous oscillations in excitable cells of dictyostelium.
Mol Biol Cell, 9(12):3521–32, Dec 1998.

[20] J. Leloup and A. Goldbeter. A model for circadian rhythms
in drosophila incorporating the formation of a complex be-
tween the per and tim proteins. J Biol Rhythms, 13(1):70–87,
Feb 1998.

[21] K. Nupponen. The design and implementation of a graph
rewrite engine for model transformations. Master’s thesis,
Helsinki Univ. of Tech., Dept. of Comp. Sci. & Eng., 2005.

[22] M. Obeyesekere, S. Zimmerman, E. Tecarro, and G. Auch-
muty. A model of cell cycle behavior dominated by kinetics
of a pathway stimulated by growth factors. Bull Math Bio,
61(5):917–34, Sep 1999.

[23] J. F. Roddick and M. Spiliopoulou. A survey of temporal
knowledge discovery paradigms and methods. IEEE TKDM,
14(4):750–767, 2002.

[24] G. Rozenberg. Handbook of Graph Grammars and Comput-
ing by Graph Transformation. World Scientific, 1997.

[25] S. B.-W. S, J. Wolf, H. Herzel, and A. Kramer. Modeling
feedback loops of the mammalian circadian oscillator. Bio-
phys J, 87(5):3023–34, Nov 2004.

[26] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graph-
scope: parameter-free mining of large time-evolving graphs.
In Proceedings of the ACM SIGKDD, pages 687–696, 2007.

[27] J. Wolf, H. Sohn, R. Heinrich, and H. Kuriyama. Mathemat-
ical analysis of a mechanism for autonomous metabolic os-
cillations in continuous culture of saccharomyces cerevisiae.
FEBS Lett, 499(3):230–4, Jun 2001.

[28] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In Proceedings of the ICDM, pages 721–724, 2002.

[29] C. You, L. Holder, and D. Cook. Application of graph-based
data mining to metabolic pathways. In Proceedings of IEEE
ICDM Workshop on Data Mining in Bioinformatics, 2006.

[30] Z. Q. Z, W. MacLellan, and J. Weiss. Dynamics of the
cell cycle: checkpoints, sizers, and timers. Biophys J,
85(6):3600–11, Dec 2003.

