
Learning Patterns in the Dynamics of Biological Networks

Chang hun You, Lawrence B. Holder, Diane J. Cook
School of Electrical Engineering & Computer Science

Washington State University
Box 642752, Pullman, WA 99164-2752

{changhun, holder, cook}@eecs.wsu.edu

ABSTRACT
Our dynamic graph-based relational mining approach has
been developed to learn structural patterns in biological net-
works as they change over time. The analysis of dynamic
networks is important not only to understand life at the
system-level, but also to discover novel patterns in other
structural data. Most current graph-based data mining ap-
proaches overlook dynamic features of biological networks,
because they are focused on only static graphs. Our ap-
proach analyzes a sequence of graphs and discovers rules that
capture the changes that occur between pairs of graphs in
the sequence. These rules represent the graph rewrite rules
that the first graph must go through to be isomorphic to the
second graph. Then, our approach feeds the graph rewrite
rules into a machine learning system that learns general
transformation rules describing the types of changes that
occur for a class of dynamic biological networks. The dis-
covered graph-rewriting rules show how biological networks
change over time, and the transformation rules show the
repeated patterns in the structural changes. In this paper,
we apply our approach to biological networks to evaluate our
approach and to understand how the biosystems change over
time. We evaluate our results using coverage and prediction
metrics, and compare to biological literature.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; J.3 [Life and
Medical Science]: Biology and genetics

General Terms
Algorithms

Keywords
Dynamic Network Analysis, Graph Mining, Biological Net-
work, Graph Rewriting Rule

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

1. INTRODUCTION
There are many data that can be represented as graphs,

where vertices represent entities and edges represent rela-
tionships between entities. Moreover, many of them have
dynamic properties such that the structure of graphs can be
changed over time. Our bodies are well-organized and vig-
orous systems, which promote reproduction and sustain our
lives. These well-organized systems can be defined by the
attributes and structural properties of biological networks,
which include various molecules and relationships between
molecules. Vigorous systems refer to dynamic properties
of biological networks, which continuously change, while an
organism performs various biological activities. Therefore,
analysis of the dynamics of biological networks is necessary
to understand biosystems.

Our approach first learns how one graph is structurally
transformed into another using graph rewriting rules, and
abstracts these rules into abstract patterns that represent
the dynamics of a sequence of graphs. Our goal is to describe
how the graphs change over time, not merely whether they
change or by how much. In this way, our approach can help
us understand the dynamics of biological networks.

This paper introduces our definition of graph-rewriting
rules and more general transformation rules. We also present
our two step algorithm to discover graph-rewriting rules in a
dynamic graph, and transformation rules in the discovered
graph-rewriting rules. In our experiments, we generate sev-
eral dynamic graphs using the KEGG pathway database [9]
in combination with the artificial generation and real data
sets. We apply our approach to the pathways to understand
how the biosystems change over time. We evaluate our re-
sults using coverage and prediction metrics, and compare to
biological literature. Our results show important patterns in
the dynamics of biological networks, i.e., discovering known
patterns in the networks. Results also show the learned rules
accurately predict future changes in the networks.

2. RELATED WORK
A graph is a natural way to represent biological networks.

There are several graph mining approaches to biological net-
works [10, 11, 24]. These approaches represent biological
networks as graphs, where vertices represent molecules and
edges represent relations between molecules, and discover
frequent patterns in these graphs. They discover structural
features of networks, but they overlook temporal properties.

There is much research work on the dynamics of biosys-
tems, such as mathematical modeling [16] and microarray
analysis [22]. Mathematical modeling is an abstract model

977

Gi Gi+1

Ri

Ai+1

R1

A2

R2

A3
An

Rn-1...

G1 G2 Gn

Dynamic Graph

(A)

(B)

(C)

...
G1 G5 G7 G11

Sub Sub

Sub Sub

(D)

Figure 1: A framework of dynamic graph analysis. (A) A dynamic graph (B) Learning graph rewriting rules from

two sequential graphs. (C) Learning the entire set of graph rewriting rules. (D) Learning a transformation rule to

abstract the learned graph rewriting rules (e.g., Sub is removed from Gi and then added back in Gi+4).

to describe a system using mathematical formulae. They
model the kinetics of pathways and analyze the trends in the
amounts of molecules and the flux of biochemical reactions.
The microarray is a tool for measuring gene expression levels
for thousands of genes at the same time [3, 15]. Microarrays
can also monitor patterns in gene expression levels over a
period of time or for the different conditions. Patterns in
gene expression levels can represent changes in the biolog-
ical status or distinguish two different states, such as the
normal and disease state. However, these two approaches
disregard the structural aspect of networks.

Temporal data mining attempts to learn temporal pat-
terns in sequential data, which is ordered with respect to
some index like time stamps [17]. Temporal data mining
is focused on discovery of relational aspects in data such
as discovery of temporal relations or cause-effect association
so that we can understand how or why the object changes
rather than merely static properties of the object. Temporal
data mining approaches discover temporal patterns in data,
but they disregard relational aspects among entities.

Several methods have addressed dynamic graph analysis.
Sun et al. [19] propose a technique to discover communities
and detect changes in dynamic graphs that is represented as
matrix and encoding schemes. Tensor analysis is also applied
to dynamic graphs [20, 21]. Other work [1, 2, 18] proposes
several detection measures of abnormal changes in the se-
quence of graphs and graph distance measures between two
graphs. They can measure how much two graphs are differ-
ent, but not show how they are different. Lahiri et. al. [13,
14] introduce an approach to predict the future structure
in a dynamic network and mine periodic patterns using fre-
quent subgraphs. Our approach uses a compression-based
metric instead of the frequency-based approach to discover
patterns in a dynamic graph.

3. PROBLEM DEFINITIONS
In this section, we define the graph rewriting rule and

the transformation rule to describe the dynamic of a graph.
Graph rewriting rules represent topological changes between
two sequential versions of the graph, and transformation
rules abstract the graph rewriting rules into the repeated
patterns that represent the dynamics of the graph. Figure
1 shows a framework of our approach. The dynamic graph
contains a sequence of graphs that are generated from sam-
pling snapshots of the graph from a continuously-changing
graph, i.e., a sequence of graphs represent one biological

A

B

C D

E

ab

bc bd

cd

ce

C D

E

F
G

cd

ce de

fg

G1 G2

de

de

S

S

R

A

Figure 2: An instance of graph rewriting rules between

graph G1 and G2.

network that changes its structure over time. First, our ap-
proach learns graph rewriting rules including removals (Ri)
and additions (Ai) between two sequential graphs Gi and
Gi+1 (figure 1 (B)), and generates a list of the entire graph
rewriting rules (figure 1 (C)). Then, the final step is to learn
the transformation rules to abstract the structural change
of the dynamic graph based on the repeated patterns in the
graph rewriting rules.

3.1 Graph Rewriting Rules
First, we briefly describe graph rewriting rules for our

approach with an example in figure 2. In our research, a
graph G denotes the directed labeled graph that is defined
as G = (V, E, Lv(V), Le(E)), where V is a set of vertices,
E is a set of edges. To discover graph rewriting rules be-
tween two graphs, we first discover maximum common sub-
graphs (denoted by S) between two sequential graphs G1

and G2. Then, we derive removal (remainder in G1 denoted
by R) and addition subgraphs (remainder in G2 denoted by
A). Our graph-rewriting rules also contain connection edges.
The connection edges are edges, which are used to link re-
moval (or addition) subgraphs to the original graphs. The
edges with boxed labels in figure 2 represent the connection
edges between G1 (G2) and removal subgraph R (addition
subgraph A). The connection edges are important because
they show how the subgraphs are connected to the original
graphs. There can be more than one connection edge linking
one subgraph to the original graph. The connection edges
represent relations between the learned patterns and other
elements in the input networks.

Formally, we define DG = {G1, G2, · · · , Gn} as a dynamic
graph, where each graph Gi is a graph at time i for 1 ≤ i ≤
n. For two consecutive graphs Gi and Gi+1, we define Si,i+1

as the maximum common subgraph between Gi and Gi+1.
Si,i+1 can be a disconnected graph, i.e., describing the set

978

of connected subgraphs common to Gi and Gi+1. Then, we
define a graph rewriting rule GRi,i+1 as follows.

GRi,i+1 = {(Ri, CRi), (Ai+1, CAi+1)}
Then, a removal subgraph Ri and an addition subgraph Ai+1

are defined as follows.

Ri = Gi\Si,i+1, Ai+1 = Gi+1\Si,i+1

CRi and CAi+1 are the sets of connection edges for Ri and
Ai+1 respectively. The graph rewriting rule GR1,2 in figure
2 can be represented as follows.

GR1,2 = {(R1, {(s2, g3, bc), (s2, g4, bd)}),
(A2, {(g3, s1, de)})},

The graph R1 denotes R (in G1) that is linked by two con-
nection edges labeled by ‘bc’ and ‘bd’. A2 denotes A (in
G2) that is linked by one connection edge labeled by ‘de’.
In each edge, sX and gY denote the starting and ending
vertices, where s denotes the vertex in the subgraph and g
denotes the vertex in the original graph.

After iterating this process for n graph, i.e., the entire se-
quence in the dynamic graph, we have n−1 Rs and n−1 As
as shown in figure 1 (C). Here, we consider a set of graphs
L that is a list of graph rewriting rules learned in DG. L con-
tains n−1 Rs and n−1 As like L = {R1, A2, R2, A3, · · · , Rn−1

, An}. We arrange R and A in order of time when the event
occurs.

3.2 Transformation Rules
Next, we discover transformation rules in the learned graph

rewriting rules to abstract the structural changes in the dy-
namic graph as shown in figure 1 (D). A transformation rule
is defined as a pattern in the learned graph rewriting rules,
where the pattern best abstracts (compresses) the learned
graph rewriting rules to best describe structural changes.
More description will be in section 4. If some structural
changes are repeated in the dynamic graph, there exist com-
mon subgraphs in the Rs and As. Then, we can discover the
common patterns over L as our transformation rules. Bio-
logically speaking, if there exists a repeated change of the
structure of a biological network, the change can be an im-
portant pattern in the network. Here, we propose one simple
transformation rule TR, which represents repeated additions
and removals (or vice versa), as follows.

TRe = Sube〈+ta,−tr〉
In the case when the transformation rule represents only
repeated removals (or additions), −tr (or +ta) would be ∅,
like Sub〈−tr〉 (or Sub〈+ta〉). Sub represents a subgraph,
which adds to and/or removes from the graph repeatedly.
+ta represents the time interval from the last removal to the
current addition, and −tr represents the time interval from
the last addition to the current removal. If +ta is shown
before −tr, the addition precedes the removal. For instance,
Sub〈+4,−2〉 denotes a repeated structure added after 4 time
intervals from the last removal and removed after 2 time
intervals from the last addition as shown in figure 1 (D).
e denotes the number of the transformation rules in one
dynamic graph. There can be multiple patterns over L to
describe the structural change of the dynamic graph, where
the best transformation rule that is labeled as TR1 best
describes the change.

C
B

C
A B

A
C

B

C
A B

A G1 G2

E F

S1

S1

S1

S1

F
E

S2S2

FE

e1 e2

(A)

(B) (C)

Figure 3: Discovery of the best compressed subgraph in

a set of graphs at iteration 1 (A), 2 (B), and 3 (C).

There are other forms of transformation rules besides re-
peated add/remove rules, such as patterns conditional on
context, i.e., removal/addition of structure X if structure
Y is present (or absent), or patterns that describe numeric
changes in combination with structure, i.e., describing trends
of concentration, not just appearance. We will consider
other types of transformation rules in future work.

4. APPROACH
This section describes our approach to analyze dynamic

graphs. We present a two step algorithm: Learning Graph
Rewriting Rules and Learning Transformation Rules. Al-
gorithm 1 learns graph rewriting rules in a dynamic graph
to represent how two sequential graphs are different. Al-
gorithm 2 learns the repeated transformation rules in the
learned graph rewriting rules to describe how the graph
changes over time, where the changes are actually repre-
sented as a sequence of revised graphs. For both algorithms
we rely on a previously-developed method for finding the
best-compressing subgraph in a set of graphs. For the first
algorithm, repeated application of this method allows us to
find the set of all subgraphs common to a pair of consecutive
graphs. For the second algorithm this method allows us to
find the subgraphs repeatedly added and removed in the dy-
namic graph. While we could use a frequent subgraph miner
[12, 23] for this purpose, experiments have shown that the
best-compressing patterns comparably capture the complete
repeated structural changes [25].

We define the best-compressing subgraphs as those which
minimize the description length of the input graph after be-
ing compressed by the subgraphs based on the Minimum
Description Length (MDL) principle [4, 5]. Formally, the
description length of the substructure S is represented by
DL(S), the description length of the input graph is DL(G),
and the description length of the input graph after compres-
sion is DL(G|S). The approach finds a substructure S that
minimizes the Compression of the graph defined as follows.

Compression =
DL(S) + DL(G|S)

DL(G)

Figure 3 shows an example of the subgraph discovery by this
compression-based approach. First, we can discover four

979

instances of one common subgraph denoted by a red circle
(A). After discovery, we compress each instance replacing by
one vertex (S1), and we iterate the discovery process. In the
second iteration (B), we discover two instances of the next
common subgraph, and compress them by one vertex (S2).
We stop the iteration because there is no more common
subgraph, i.e., no more compression (C).

4.1 Learning Graph Rewriting Rules

Algorithm 1 : Learning Graph Rewriting Rules

Input: Dynamic graph DG = {G1, G2, · · · , Gn}
Output: Rewrite rules L, connection edgesC

1: L = {}, C = {}
2: for i = 1 to n − 1 do
3: Graphs = {Gi, Gi+1}, S = {}
4: while More compression possible do
5: BestSub = DiscoverCommonSub in Graphs
6: S = S ∪ BestSub
7: Compress Graphs by BestSub
8: end while
9: Find Ri = Gi\S and CRi in Gi

10: Add Ri into L, and Add CRi into C
11: Find Ai+1 = Gi+1\S and CAi+1 in Gi+1

12: Add Ai+1 into L, and add CAi+1 into C
13: end for

Using the compression-based approach (as DiscoverCom-
monSub in the algorithm), we describe our two step algo-
rithm. Algorithm 1 shows the learning graph rewriting rules
algorithm, where the entire algorithm denotes figure 1 (C)
and the each iteration in the outer loop denotes figure 1 (B).
First, the algorithm initialize L and C to store removal and
addition subgraphs, and connection edges. At line 3, the al-
gorithm prepares two sequential graphs as Graphs, and then
discovers one common subgraph by the compression-based
approach. After compression, the algorithm discovers an-
other subgraph at the next iteration until there is no more
compression. In this way, the algorithm can discover the
maximum common subgraph between two sequential graphs.
After compressing the two graphs by the maximum common
subgraph, the algorithm identifies removal (or addition) sub-
graphs and connection edges (lines 9 and 11) using a modi-
fied Breadth First Search (mBFS), which adds each edge as
well as each vertex into the queues as visited or to be visited.
After compression, each maximum common subgraph is re-
placed by one vertex Si. mBFS starts to search from one
edge linked to Si to find one disconnected subgraph, and the
starting edge is added into C. During the search, if there
is one more edge between the disconnected subgraph and
maximum common subgraph, the edge becomes the other
connection edge. In this way, mBFS can find all discon-
nected subgraphs (without considering the link by the con-
nection edges), and they become removal (or addition) sub-
graphs. mBFS stops the search when all connected edges
are added in C. For example, in figure 3 (C), mBFS starts
from one edge linked to S2 (in case of G1, choose e1), and
these starting edges are added into in C. Since there is one
more linked edge (e2) to S2 in case of G1, e2 is added into
C. Then, there is no place to visit from the vertex E, E
becomes a disconnected subgraph as an addition subgraph.
Since there is no place to visit from the vertex F in G2, F
becomes a disconnected subgraph as a removal subgraph.

In this way, mBFS identifies removal subgraphs Ri and ad-
dition subgraphs Ai+1 with connection edges. The output
of Algorithm 1 includes L and C. L and C are bijective.
L = {R1, A2, · · · , Rn−1, An} is used in Algorithm 2 as an
input. C = {CR1 , CA2 , · · ·CRn−1 , CAn} is used to visual-
ize the relations between the learned subgraphs and original
graphs.

4.2 Learning Transformation Rules

Algorithm 2 : Learning Transformation Rules

Input: L, Iter
Output: BestCommonSubs,ListOfDist

1: while More compression possible and Iter > 0 do
2: BestSub = DiscoverCommonSub in L
3: Add BestSub into BestCommonSubs
4: Calculate distance between instances of BestSub
5: Add distance into ListOfDist
6: Compress L by BestSub
7: Iter = Iter -1
8: end while

From the result of Algorithm 1, we try to discover re-
peated rewrites as our transformation rules to better un-
derstand how graphs change over time as shown in figure 1
(D). The input L contains 2(n − 1) graphs: n − 1 Rs and
n − 1 As. Note that each example (each R or A) contains
one or more graphs, which may not be connected to each
other. We then use DiscoverCommonSub again to find com-
mon subgraphs in L (line 2). As described in figure 3, the
best common subgraph in L represents the subgraph in our
transformation rule. We calculate the temporal distance
between two consecutive instances of the best-compressing
subgraphs to describe the time at which the removal (or ad-
dition) occurs after the previous addition (or removal) at
line 4. After the discovery of the common subgraph, L is
compressed by this subgraph (line 6), and the discovery pro-
cess is iterated until no more compression is achieved or we
reach a user-defined limit Iter on the number of iterations.
When the best subgraph at a latter iteration includes the
best subgraph from a former iteration, the results can show
the latter best subgraph includes a previously-learned sub-
graph that is replaced by one vertex. More detail will be
described with examples in the results section. In TRe, the
e denotes the number of iterations. If a transformation rule
is discovered in the first iteration, the rule is labeled as TR1

that is the best subgraph in L. If Iter is not specified, Al-
gorithm 2 finds all possible TR in L.

4.3 Complexity Issue
One challenge of our algorithm is to discover maximum

common subgraphs between two sequential graphs, because
this problem is known to be NP-complete [8]. To address
this issue we use a parameter, limit, in DiscoverCommonSub
to restrict the number of substructures to consider in each
iteration. We can express the Algorithm 1’s total runtime
as N1 = NDCS(T − 1), where NDCS is the runtime of Dis-
coverCommonSub and it runs for T-1 times. Algorithm 2’s
running time is dominated by NDCS. NDCS is restricted by
limit that is calculated based on input data, specifically, the
number of unique vertex and edge labels. A previous work
[6] shows NDCS running with a fully-connected graph in
time polynomial with limit. We can avoid the worst case in

980

our domain, because biological networks are usually sparse
graphs and there are not many instances due to plenty of
unique labels. But we still need to pursue reducing the
running time for other domains. Also, our algorithm does
not try to discover the entire set of maximum common sub-
structures at once. In each step, the algorithm discovers a
common, connected substructure and iterates the discovery
process until discovering the entire set.

Graphs that represent biological networks usually contain
unique vertex labels, because each vertex label usually de-
notes the name of the molecule. Because the maximum com-
mon subgraph problem in graphs with unique vertex labels
is known to have quadratic complexity [7], discovery of the
graph rewriting rules is still feasible. However, there will be
a tradeoff between exactness and computation time when
analyzing very large graphs.

4.4 Evaluation Metrics
We use two metrics to evaluate the learned transformation

rules. The first metric is Coverage that represents how well
the rule describes the changes in the graphs. The Coverage
of the BestSub discovered at iteration i in Algorithm 2 is
computed as follows.

Coverage =
size(BestSub)

P
g∈coveredAs,Rs

1
size(g)

2(n − 1)

where the covered As and Rs are the addition and removal
subgraphs in L that contain BestSub. The size of a graph G
is calculated as size(G) = |V | + |E|. These graphs are effi-
ciently identified during the discovery of BestSub, avoiding
the need for costly subgraph isomorphism tests. Coverage
represents the portion of the learned subgraphs (the re-
moval or addition subgraphs) described by the transforma-
tion rule to be based on BestSub. For example, suppose we
have n = 3 graphs from which we find two graph-rewriting
rules. Then, we have two removal and two addition sub-
graphs. Assume the size of R1 is 10, R2 is 12, A2 is 10,
and A3 is 15. Also assume the BestSub is found in R1

and A2, the BestSub has a size of 5. Coverage is com-

puted as 5(1/10+1/10)
4

= 0.25. Higher Coverage indicates
the subgraph can describe more significant (larger portions
of) changes. Currently, Coverage does not consider the size
of connection edges (|C|). Unless the subgraph is isomorphic
with all AGs and RGs, Coverage < 1.

We define Prediction as our second metric to evaluate the
prediction capability of the learned transformation rules as
follows.

Prediction =

P
i∈P d(RealSubi, P redictedSubi)

|P |
P is the set of positions where we predict the PredictedSubi

will show up, RealSubi is the actual subgraph found at po-
sition i, and d(Gm, Gn) is defined as follows.

d(Gm, Gn) =
|mcs(Gm, Gn)|
|Gm ∪ Gn|

d(Gm, Gn) is a graph distance metric by Bunke et. al. [2,
18], where mcs(Gm, Gn) denotes the maximum common
subgraph between Gm and Gn. In contrast to their work
that defines the size of G as the number of vertices in G, we
consider the number of vertices and edges defined in the pre-
vious paragraph. If two graphs Gm and Gn are isomorphic,
d(Gm, Gn) = 1. For example, d(G1, G2) in figure 3 is 11/16,

1 to n

Static Pathway

Dynamic Data

Dynamic Graph

Figure 4: The generation of a dynamic graph in combi-

nation with the data of the dynamic properties. If the

data of the dynamic properties has n time slices, the

dynamic graph has n graphs.

where mcs(G1, G2) = 11 and |Gm ∪ Gn| = 16. Prediction
represents how much the predicted subgraph covers the sub-
graphs in the testing experiments. For example, suppose we
predict a subgraph s will be shown 3 times in the testing
data. Then, we discover the subgraph rs that is partially
different from s at one time point ((Grs, Gs) = 0.5), and iso-
morphic subgraphs with s at another time point. Prediction
is computed as 0.5+1.0+0

3
= 0.5. Currently, our Prediction

measure is not for a temporal prediction, i.e., the exact time
the subgraph appears, but for a sequential prediction, i.e.,
whether the correct sequence of the subgraphs appears.

5. EXPERIMENTS AND RESULTS
We perform four experiments to evaluate our approach

using three ways: artificial generation, and combinations
with two real world data sets. We generate a static graph
representing the biological networks from the KEGG PATH-
WAY data [9], where vertices represent compounds, genes,
enzymes, relations and reactions, and edges represent rela-
tionships between vertices. Then, we use our data sets to
transform the static graph to a dynamic graph as shown in
figure 4. In the artificial generation, we use a real biological
network, but we remove and add some subgraphs manually
to generate the dynamic graphs. In the real world data, we
use the KEGG data [9] in combination with additional data
to generate dynamic graphs. Because the KEGG data con-
tains only the static structure of pathways, we need to use
additional data including dynamic properties of pathways.
We refer to results of two researches: one for the cell cycle
signaling pathway with mathematical modeling [16] and the
other for metabolic pathways with microarray data [22].

5.1 Artificial Generation
The biological network used in the artificial generations

is the Notch signaling pathway in humans generated from
the KEGG data. The Notch signaling pathway contains 46
genes in our experiments, and we assume that each gene
can be shown at most once at each time slice. First, we
create one list that contains the names of 46 genes, and
then duplicate the list for 20 time slices. For varying several
conditions, we remove one or more genes at specific times.
Because of the biological semantics, the removal of even one
gene can cause the removal of one or more larger subgraphs.
We generate four dynamic graphs, each of which has 20 time
slices. The size of each dynamic graph varies: 3,380 (164 to

981

Table 1: Coverage of the best subgraphs in Artificial

Data. Data denotes the artificial biological networks.

The number in each iteration denotes x (y), where x de-

notes the number of the discovered subgraphs and y de-

notes the Coverage by the best subgraph discovered at

the iteration. Total denotes the total Coverage.

Data TR1 TR2 TR3 Total

NA 19 (1.0) NA NA 1.0
NB 9 (1.0) NA NA 1.0
NC 8 (0.16) 4 (0.032) 10 (0.05) 0.242
ND 6 (0.15) 5 (0.125) 2 (0.045) 0.320

hsa:3516

enzyme

PPrel:-->

PPrel:-->

GErel:--> GErel:--> PPrel:--|

PPrel:--|

PPrel:---

G_to_ERel_to_E

Rel_to_E

E_to_Rel E_to_Rel Rel_to_E

Rel_to_E

E_to_Rel

Figure 5: The best subgraph discovered in the graph

rewriting rules of the dynamic graph NB .

177) for NA, 3,350 (149 to 174) for NB , 2,733 (102 to 174)
for NC and 3,332 (152 to 174) for ND. The numbers in ()
denote the minimum size and maximum size of a graph in a
dynamic graph respectively.

The goal of the artificial generation experiment is to iden-
tify the strengths and weaknesses of our approach. Table 1
shows the coverage of the best subgraph (our rule) discov-
ered at each iteration of Algorithm 2. The first two dynamic
graphs, NA and NB , can be represented by one transforma-
tion rule, because the removals and additions are simple and
regular. Generally, the structural change in the dynamic
graph is represented by multiple transformation rules like
NC and ND. For example, NC is represented by TR1 as
a portion of the coverage 0.16. But NA is fully covered by
TR1, i.e., TR1 can describe the whole structural change.

Figure 5 shows the best subgraph discovered in the NB

experiments. The instances of the best subgraphs are discov-
ered in the 9 examples (4 removals and 5 additions). “GErel”
denotes the relation between a gene and protein, and“PPrel”
denotes the relation between two proteins. Therefore, the
enzyme generated by a gene, hsa:3516, has 7 relations, such
as 2 relations to other genes and 5 relations to other pro-
teins. The transformation rule including this subgraph can
be visualized as shown in figure 6. The above rhombuses de-
note the removals at the specified time. The below eclipses
denote the additions at the specified time. The numbers on
the arrow denote the temporal distance between two events:
removals and additions. The first addition occurs at time
1, and the first removal occurs after 3 time intervals. From
the first addition at time 1 to the last addition at time 17,
every removal is repeated after 3 time intervals from the last
addition, and every addition is repeated after 1 time interval
from the last removal. The repeated transformation rule can
be represented as shown in figure 6 and can be expressed as
TR1 = Sub1〈+3,−1〉.

1

4 8 12 16

5 9 13 17
3 1 3 3 1 3 11

Figure 6: Visualization of transformation rules includ-

ing the subgraph in figure 5.

G_to_E
component

SUB_1

enzyme

hsa:9794

componentG_to_E
Sub 1 Sub 2

group hsa:1387

enzyme

Figure 7: Two best subgraphs discovered in ND. Sub1
is discovered at times 3, 5, 8, 10, 15, and 18, and Sub2 is

discovered at times 3, 5, 8, 15 and 18. Sub1 is included

into Sub2 as a previously-learned subgraph.

As described in section 4.2, figure 7 shows an example of
a previously-learned subgraph that Sub2 includes Sub1 dis-
covered in ND. At the first iteration (as TR1), the first sub-
graph (Sub1) is discovered at times 5, 10, 15 as removals and
at times 3, 8, 18 as additions. Then, this subgraph is com-
pressed and replaced by one vertex labeled by “Sub 1”. At
the second iteration (as TR2), the second subgraph (Sub2)
is discovered at times 5, 15 as removals, and at times 3, 8, 18
as additions. Because Sub2 includes Sub1, Sub1 is included
into Sub2 as a vertex“Sub 1”. In figure 7, the dashed-line ar-
row represents a pointer to the previously-learned subgraph
Sub1 from Sub2. Biologically hsa:1387 in Sub1 and hsa:9794
in Sub2 are included into a “group” (Sub1) as “component”s.

Here, we discuss the advantage of the compression-based
subgraph discovery. In NC , the first best subgraphs are
discovered 8 times. Actually, the third best subgraphs are
discovered 10 times. Because the Compression of the first
subgraph is better than the Compression of the third sub-
graph, our approach prefers the first subgraph. A frequency-
based approach would prefer the third subgraph. The size of
the first subgraph is 51, and the size of the third subgraph is
5. Also, the Coverage (0.16) of the first subgraph is larger
than the Coverage (0.05) of the third subgraph. For this
reason, the compression-based approach can be more use-
ful than frequent graph mining in the analysis of dynamic
graphs. The detailed comparison results are in [25].

5.2 Mathematical Modeling
We also apply our approach to a dynamic graph based on

the mathematical modeling data. The dynamic graph rep-
resents the cell cycle signaling pathway [16]. The cell cycle
signaling network in our experiment contains 14 molecules
(genes and compounds) and 11 reactions between molecules.
We use a threshold th to activate each compound or gene.
At each time, a compound or gene, which has more than th
amount, is shown in the graph. In other words, the biological
network contains a portion of the 14 molecules with related
reactions at each time. We normalize the concentrations of
14 molecules from 0 to 1, because we are focused on trends
in the changes, and the concentrations of different molecules
vary significantly. Because the simulation is performed for
700 seconds and we take a snapshot at every 10 seconds, we

982

Table 2: Results of the prediction experiments with the modified model. Name denotes the name of the case. Variable

denotes the name of the modified parameter. Mod. denotes the modification (X/Y), where X denotes the new value

and Y denotes the default value. Size denotes the size of each dynamic graph. Transformation Rule denotes the

learned transformation rule. Sub1 size denotes the size of the subgraph in the transformation rule. Coverage denotes

the Coverage of the learned rule, and Prediction represents the Prediction of the learned rule.

Name Variable Mod. Size Transformation Rule Sub1 size Coverage Prediction

M1 k1 200/300 645 Sub1〈+8,−0〉 27 0.115 1.0
M2 k2 3/5 1541 Sub1〈+5,−1〉 30 0.153 0.962
M3 k4 50/30 835 Sub1〈+13,−0〉 27 0.051 1.0
M4 k5 0.2/0.1 1530 Sub1〈+5,−1〉 25 0.155 1.0
M5 k7 6/10 1880 Sub1〈+6,−4〉 28 0.084 1.0
M6 k8 60/100 1007 Sub1〈+9,−0〉 27 0.080 0.864
M7 k10 20/10 1741 Sub1〈+5,−2〉 27 0.119 0.852
M8 k11 0.5/1 1003 Sub1〈+10,−0〉 27 0.066 0.944
M9 k2u 300/50 886 Sub1〈+19,−0〉 27 0.033 1.0
M10 tau 15/25 1402 Sub1〈+4,−0〉 27 0.185 1.0

Average 0.1041 0.962

Rct:+P_Active_Cyclin:CDK

Active_Cyclin:CDK2-Phos_CDC25

Rct:+p_CDC

Rct:+P_1_Phos_CDC25
Rct:+P_Wee1

Rct:SKP_Syn

Rct:CKI+Acive_Cyclin:CDK

Rct:+P_Cyclin:CDK_CKI

Rct:CKI_Degrad

Rct:Active_Cyclin:CDK_Degrad

Phos_Wee1

Cyclin:CDK_PhosCKI
Rct_to_R

Rct_to_M

Rct_to_M

Rct_to_M
Rct_to_M Rct_to_M

Rct_to_R
Rct_to_M

Rct_to_P

Rct_to_R

Rct_to_P

Rct_to_P

Rct_to_P

Rct_to_R

Figure 8: The best subgraph (Sub1) discovered in TR1.

have 51 time slices (t = 1 to 51) of data for training and the
following 20 time series for testing.

Figure 8 shows the best subgraph (Sub1) in TR1 discov-
ered at 16 time slices as visualized in figure 9 (A). The
vertices containing “Rct” in the labels denote reactions like
“Rct:+p CDC”. The vertices without“Rct”denote molecules
(genes or proteins). The three edges, “Rct to R”,“Rct to P”
and “Rct to M”, denote how the molecules are related to
the reactions as reactant, product and modifier respectively.
These results are biologically significant, because they de-
scribe the repeated structural changes in the networks. Qu
et al. [16] describe periodic changes of molecules (i.e., amount
of molecules). Specifically, they mention several molecules
such as Active Cyclin:CDK and Free Cyclin that show pe-
riodic increase and decrease, where the cycles correspond
to the change of the cell size. Figure 9 (A) shows the sub-
graph including Active Cyclin:CDK, that is added and re-
moved periodically corresponding to periodic changes in the
amount of the molecule. In addition, figure 8 show how the
changes are related to other elements (i.e., which elements
are removed or added at the same time) as shown in the dis-
covered subgraphs and how the subgraphs are linked to the
original graphs. Our results show patterns in the structural
changes, not merely changes of amount.

The Coverage is calculated as 0.181. Based on this rule,
we predict the future change as shown in figure 9 (B). We
predict 6 graph rewriting rules (future changes), as we choose
the predicted temporal distance based on the distances ob-

10

15

5

16

1

23 30

6

22 29 36

6 61 1

2

3

1 6

9

1

57

1

64 70

6

63 69

61 1

(A) 37 43

42 49

5 61

50

11

56

6(B)

Figure 9: Visualization of the graph rewriting rules in-

cluding the subgraph in figure 8 in the training data (A)

and the testing data (B).

served in training. The temporal distance and graph rewrit-
ing rules denoted by the bold fonts represent the same pat-
terns with the testing data. 5 patterns out of 6 predictions
are same as training data. The only 6th pattern at time
70 is a non-isomorphic graph with Sub1. d(Sub1, R70) is
computed as 0.833, and the Prediction is 0.972.

5.3 Prediction Experiment
Next, we process a simple prediction experiment. Because

our research is focused on patterns in graph rewriting rules
(i.e., patterns in structural changes), we can predict which
graph rewriting rules appear (i.e., which structural changes
occur). To evaluate prediction ability of the learned trans-
formation rules, we perform ten prediction experiments us-
ing the above modeling data.

We modify some initial parameters in the model to gener-
ate different dynamic graphs. The modified parameters and
values are shown in table 2. Like the above modeling exper-
iment, we use 51 time series as training and 20 time series as
testing. Table 2 shows the results. M1 shows the transfor-
mation rule Sub1〈+8,−0〉 that describes Sub1 is added after
8 times from the last removal and is removed right after the
last addition. For example, Sub1 is added at time 12 (during
the time from 11 to 12), and is removed at time 12 (during
the time from 12 to 13).

As shown in table 2, the averages of the rule coverage and
prediction coverage are larger than 0.9, indicating that our
approach is able to learn accurate rules across the differ-
ent conditions yielding different dynamic graphs. In case of

983

Table 3: Dynamic graphs of metabolic pathways and results. Name denotes the KEGG IDs of pathways represented by

the dynamic graphs. The second to fifth column show the information of pathways, such as the number of compounds

(cpd), genes (gene), reactions (rct) and relations (rel). Max. denotes the maximum size of one graph in the dynamic

graph. Min. denotes the minimum size of one graph in the dynamic graph. Total denotes the size of the dynamic

graph. Rule denotes the subgraph is included in the transformation rule. Coverage denotes the Coverage of the

transformation rule. Run denotes the running time (seconds).

Name # cpd # gene # rct # rel Max. Min. Total Rule Coverage Run (sec.)

00020 20 30 17 73 251 46 3,483 Sub3 0.024 10.14
00230 73 172 70 161 618 134 7,861 Sub2 0.048 138.78
00330 19 14 21 25 176 60 3,528 Sub1 0.055 11.78
00564 23 23 21 38 203 56 3,695 Sub4 0.027 12.67

enzyme

maplink:compound maplink:compound

maplink:compound

E_to_Rel

E_to_Rel

E_to_Rel

Sub 1

SUB_1

cpd:C00122

rn:R01082

sce:YPL262W path:sce00220

cpd:C00149
value

value

value

Rct_to_CG_to_E

E_to_Rct

Rel_to_E

C_to_RctSub 3

Figure 10: Two best subgraphs discovered in the exper-

iment of the TCA cycle with the microarray data. Sub1
is included into Sub3 as a previously-learned subgraph.

the M1, M3, M5, M6 and M8, they show relatively small
coverage, because some elements in the best subgraph are
removed (or added) separately. The detail discussion of this
problem is in [25]. M9 contains the entire sequence of discov-
ered subgraphs in the transformation rule, but the oscillation
in M9 shows only two cycles. In most cases, the oscillation
shows more than 5 cycles (i.e., figure 9). Our algorithm can
predict the future structural changes from the learned trans-
formation rules of the graph rewriting rules that represent
the structural changes of dynamic graphs. We will compare
our result with other approaches in the future work.

5.4 Microarray Data
Now, we show the result of the dynamic graphs based on

microarray data. Table 3 shows brief information of the dy-
namic graphs and results. In previous results we show TR1.
Here, it is a little bit different, because the pathway is bigger
than the previous cases and contains many redundant labels.
In the aspect of the dynamic graph mining, TR1 including
Sub1 best describe the structural change. Biologically, TR1

is too general to describe the structural change. In figure 10,
Sub1 that is discovered 46 times at 20 time points contains
only general information: three maplink-relations (relation
between a gene (protein) and pathway) and one enzyme.
Without any specific name of gene or pathway, Sub1 repre-
sents too general information. For this reason, we show Sub3

(as TR3) in figure 10 that contains any specific name of the
gene, because our microarray data represent the trends of
the gene expression values, and the gene is the only infor-
mation that can be changed over time. Sub1 is included into
Sub3 as a previously-learned subgraph. Sub3 includes one

148C

+[sce:YPL262W]

+[enzyme]

path:sce00350

path:sce00330

+[cpd:C00122]

+[cpd:C16254]

+[maplink:compound]

+[maplink:compound]

+[maplink:compound]

+[G_to_E]

+[value]

+[E_to_Rel]

+[value]

+[E_to_Rel]

(Rel_to_E)

+[value]+[E_to_Rel] (Rel_to_E)

sce00350

sce00330
YPL262WC00122

(A)

(B)

Figure 11: (A) A visualization of Sub3 in figure 10. (B)

Sub3 on a portion of the TCA cycle pathway map.

gene (YPL262W) and one pathway (sce00220) and one re-
action (R01082) and two compounds (C00122 and C00149).

Sub3 is discovered as removals at time 14, 23, 26 and as
additions at time 2, 23, 25. Because the original microar-
ray research [22] has only 36 time series, we do not perform
the prediction task. But this experiment shows that our ap-
proach can be applied to real data, because the microarray
data is generated from the yeast cells. The original result of
microarray shows more than 50% of genes have three peri-
odic cycles in the gene expression. In our experiment, the
appearance of most learned graph rewriting rules in four
pathways also shows three periodic cycles like Sub3.

Figure 11 shows the visualization of Sub3 from figure 10
to describe biological meaning of structural patterns. (A)
shows an addition rule in our output, and (B) shows the
same rule marked on the KEGG pathway map [9]. The la-
bels marked by “+[] (-[])” represent the labeled vertices and
edges belonging to the subgraphs of addition rules (removal
rules). Connection edges between the discovered substruc-
tures and original graphs are marked by “()”. In figure 10,
we can notice the three edges labeled by “value” linked to
C00122, which are from the three“maplink”vertices in Sub1.
These three edges are marked by the red boxes in figure
11 (A). The maplink denotes a relation between one gene
(X) in a pathway (Y) and another pathway (Z). The com-
pound that is linked to “maplink”-relation by “value” edge

984

denotes a compound shared in two pathways (Y and Z).
Precisely, the compound has two relations with a gene (X)
and another gene (that cannot be known at this point) in
pathway (Z). Figure 11 (A) can help us understand these
relationships. C00122 is added at time 25 with relations to
three maplink-relations. Two relations out of three maplink-
relations are connected to the other two pathways (sce00330
and sce00350) marked by the blue eclipses. These two path-
ways are not marked by “[]” or “()”, because they already
exist before time 25. In other words, Sub3 is added at time
25, and connected to two pathways by two connection edges.

Microarray data [22] can show three periodic cycles in the
change of the gene expression values. Our approach also can
discover three periodic cycles of removals and additions of
the genes (i.e., YPL262W). In addition to the three periodic
cycles of removal and addition of one element, our results
also show what other elements are related to the removed
(or added) genes, i.e., how the removed (or added) genes
relate to others in the pathway. The connection edge can
help us understand how the learned subgraphs relate to the
original graph at each time.

6. CONCLUSION
This research introduces the use of graph rewriting rules

to describe structurally changing networks, and more gen-
eral transformation rules abstracting the graph rewriting
rules. We also present a two step algorithm to discover
graph rewriting rules and transformation rules in a dynamic
graph. The algorithm is evaluated with the dynamic graphs
representing the biological networks in combination with the
artificial generation, mathematical modeling and microar-
ray data. The graph rewriting rules show how one graph is
transformed into another. The learned transformation rules
over the graph rewriting rules can describe repeated patterns
in the series of the structural changes.

Our results show important patterns in the dynamics of
biological networks, for example, discovering known patterns
in the various networks. Results also show the learned rules
accurately predict future changes in the networks. The con-
nection edge can help us understand how the learned sub-
graphs relate to the original pathway at each time. Our
approach also helps us visualize the change of subgraphs at
each time to show how the networks structurally change,
helps us better explore how networks change over time, and
guides us to understand the structural behaviors of the dy-
namic network.

For our future work we will explore a better approach to
learn transformation rules that can cover graph rewriting
rules that are divided over several consecutive time slices.
Also, our prediction measure needs to include a temporal
distance factor to better evaluate rules in terms of predicting
the precise time at which a change occurs.

7. REFERENCES
[1] H. Bunke, M. Kraetzl, P. Shoubridge, and W. Wallis.

Detection of abnormal change in time series of graphs.
J. of Intercon. Net., 3, Nos 1+2:85–101, 2002.

[2] H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recogn. Lett., 19(3-4):255–259, 1998.

[3] H. Causton, J. Quackenbush, and A. Brazma. A
Beginner’s Guide Microarray Gene Expression Data
Analysis. Blackwell, 2003.

[4] D. Cook and L. Holder. Substructure discovery using
minimum description length and background
knowledge. Journal of AIR, 1:231–255, 1994.

[5] D. Cook and L. Holder. Graph-based data mining.
IEEE Intelligent Systems, 15(2):32–41, 2000.

[6] D. Cook, L. Holder, and S. Djoko. Scalable discovery
of informative structural concepts using domain
knowledge. IEEE Expert, 11:59–68, 1996.

[7] P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. On
graphs with unique node labels. In IAPR-GBR, 2003.

[8] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[9] KEGG. http://www.genome.jp.

[10] M. Koyuturk, A. Grama, and W. Szpankowski. An
efficient algorithm for detecting frequent subgraphs in
biological networks. In ISMB, 2004.

[11] J. Kukluk, C. You, L. Holder, and D. Cook. Learning
node replacement graph grammars in metabolic
pathways. In BIOCOMP, 2007.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, 2001.

[13] M. Lahiri and T. Berger-Wolf. Structure prediction in
temporal networks using frequent subgraphs. In
CIDM, 2007.

[14] M. Lahiri and T. Berger-Wolf. Mining periodic
behavior in dynamic social networks. In ICDM, 2008.

[15] D. J. Lockhart and E. A. Winzeler. Genomics, gene
expression & DNA arrays. Nature, 405:827– 836, 2000.

[16] Z. Qu, W. MacLellan, and J. Weiss. Dynamics of the
cell cycle: checkpoints, sizers, and timers. Biophys J,
85(6):3600–11, Dec 2003.

[17] J. F. Roddick and M. Spiliopoulou. A survey of
temporal knowledge discovery paradigms and
methods. IEEE TKDM, 14(4):750–767, 2002.

[18] P. Shoubridge, M. Kraetzl, W. Wallis, and H. Bunke.
Detection of abnormal change in a time series of
graph. J. of Intercon. Net., 3:85–101, 2002.

[19] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In SIGKDD, 2007.

[20] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In SIGKDD, 2006.

[21] H. Tong, S. Papadimitriou, J. Sun, P. S. Yu, and
C. Faloutsos. Colibri: Fast mining of large static and
dynamic graphs. In SIGKDD, 2008.

[22] B. Tu, A. Kudlicki, M. Rowicka, and S. McKnight.
Logic of the yeast metabolic cycle: Temporal
compartmentalization of cellular processes. Science,
310, 2005.

[23] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, 2002.

[24] C. You, L. Holder, and D. Cook. Application of
graph-based data mining to metabolic pathways. In
ICDM Workshop on DMB, 2006.

[25] C. You, L. Holder, and D. Cook. Graph-based data
mining in dynamic networks: Empirical comparison of
compression-based and frequency-based subgraph
mining. In ICDM Workshop on ADN, 2008.

985

