
Managing Adaptive Versatile Environments

G. Michael Youngblood, Diane J. Cook, and Lawrence B. Holder
Department of Computer Science & Engineering

The University of Texas at Arlington
Box 19015, Arlington, Texas 76019-0015
{youngbld, cook, holder}@cse.uta.edu

Abstract
The goal of the MavHome project is to develop technolo-
gies to Manage Adaptive Versatile environments. In this
paper, we present a complete agent architecture for a sin-
gle inhabitant intelligent environment and discuss the de-
velopment, deployment, and techniques utilized in our
working intelligent environments. Empirical evaluation
of our approach has proven its effectiveness at reduc-
ing inhabitant interactions in simulated and real environ-
ments.

1 Introduction
The MavHome Project (Managing an Adaptive Versatile
Home) is focused on conducting research in smart home
technologies from the aspect of treating an environment
as an intelligent agent [10]. We seek to develop and inte-
grate components that will enable the intelligent environ-
ments of the future. The goals of these environments are
to maximize the comfort of the inhabitants, minimize the
consumption of resources, and maintain safety and secu-
rity.

Work in intelligent environments is an important step
in the forward progress of technology. As computing be-
comes more pervasive and people’s lives become busier,
advances in intelligent environments can aid by automat-
ing the simple things (e.g., lighting and HVAC control),
work to actively conserve resources (reducing cost), and
improve safety and security. Environments that sense
their own well-being and can request repair or notify
inhabitants of emergencies can save property and lives.

Homes that can increase their own self-sufficiency over
time can augment busy or aging inhabitants allowing peo-
ple to live in their homes longer (potentially alleviating
some health care system burdens) and free time to allow
people to focus on other aspects of their lives. These are
just some of the potential benefits of working intelligent
environments, research and advancements in this area of
science stand to make a large impact on the future.

The goal of this paper is to present one possible
engineered approach to developing intelligent environ-
ments. We present the MavHome architecture, some of
the lessons learned, some of our experimental results, and
background work in this area of research.

2 Approach
Our work focuses on learning to automate the intelligent
environment. The motivation for this work is the devel-
opment of systems to meet this focus in an accurate and
efficient manner. There are a number of significant chal-
lenges in this work in order to meet our goals, which are
to learn a model of the inhabitant of an intelligent environ-
ment, automate devices to the fullest extent possible using
this model in order to maximize the comfort of the inhab-
itant while maintaining safety and security, and adapt this
model over time to maintain these requirements. In or-
der to accomplish these goals, we must first learn a model
of inhabitant activities, and then incorporate this into an
adaptive system for continued learning and control.

Our development goal is to create an agent based sys-
tem, which the essence of this system is to perceive the
environment through sensors, reason about this informa-

tion in order to make decisions on whether or not an ac-
tion should be taken to change the state of the environ-
ment in which the agent is situated, and then perform this
action through actuators which will affect the perceived
state continuing the cycle ad infinitum. This work focuses
on an agent based system centered around a known single
inhabitant in one of our environments.

The sensing and control capabilities of our intelli-
gent environments fit into the generalized models of any
sensed and controlled system. The sensors, and for that
matter all objects, in our environments are designated
with a zone-number combination (e.g., B3) for unique-
ness. In our environments, there is a one-to-one corre-
spondence between state and action (e.g., an action such
as turning on a light produces the state change of that light
being on) which is an attribute shared by many systems
but certainly not all.

Environments of this nature provide significant chal-
lenges. The largest involves the curse of dimensional-
ity [23]. The state space of an intelligent environment
is enormous. For example, if we were to examine a very
small environment with ten motion sensors and five lights
for a total of fifteen objects and each of these objects
has only two states (they are binary) that would give us
215 = 32, 768 unique states. If we can reason about each
one for 0.01 seconds it would take 5.46 minutes to make
a decision. Our environments have state spaces closer to
the size of 2150 or 1.43x1045 unique states. The size of
the problem space makes it difficult to develop real-time
reasoning for intelligent environments.

The second largest problem is the curse of generaliza-
tion. Most approaches to state space reduction involve
generalization techniques that reduce the state spaces into
similar groups, mostly around commonalities that often
do not provide sufficient information to discern context
and context-specific action. In the intelligent environment
domain where inhabitants are involved in specific local
activities generalizing will often produce undesirable re-
sults. For example, if an inhabitant reads, listens to music,
and watches television all in the same room and the com-
monality between these events is that the same light is on
in the room, then a generalized approach will only pro-
vide an automation of that light, missing the desired au-
tomation of the CD player and television as appropriate.
The challenge is to develop a solution that can maintain
a small state space for macro reasoning, but still main-

tains the details for micro reasoning and automation. It
is important for a model to help the system understand
the current inhabitant activity with sufficient detail so that
correct automation decisions can be made.

The big assumption we make is that people are crea-
tures of habit and will provide some periodicity and/or
frequency to a number of activities they perform in any
given environment, that these patterns can be observed
through sensor perception, and that these patterns can be
represented as Markov chains. This base pattern repre-
sentation of a Markov chain represents a certain identifi-
able pattern of activity or episode. These episodes may
be abstracted into higher-level episodes that represent a
grouping of related episode activity. In order to distin-
guish pattern permutations when building hierarchies we
add history to the transitions to determine the correct tran-
sition probabilities.

Figure 1: Watching television Markov chain

As a basic example, Figure 1 shows a typical Markov
chain of inhabitant activity, namely the pattern of watch-
ing television. Patterns similar to watching television such
as listening to music and reading a book can be grouped
together because they occur in the same space in an en-
vironment. Furthermore, activities that occur on that side
of the house could be grouped together and eventually all
activities in a house fall under the root note as shown in
Figure 2.

This location-based hierarchical decomposition of ac-
tivities illustrates the type of information we are trying to
learn about the inhabitants of an environment—how they
utilize the environment. The model influenced by location
is typical of human partitioned state spaces, but in this
work we seek to learn the structure automatically through
observation. Hierarchical decomposition of the Markov
activity model will be guided by how the inhabitant in-
teracts in the environment. In other words, the hierarchies
we learn are based upon observed patterns so that if the in-
habitant eats then watches television followed by a period
of sleep then those activities are more likely to be grouped
together because at a higher level they form a pattern.

In the real world the current state of our environments

Figure 2: Basic hierarchical Markov model

is never fully understood. We can make observations and
infer about the general state of the environment, but the
environment is still only partially observable—we cannot
observe what takes place in people’s minds, in the duct-
work, behind the couch, inside the television, and so forth.
In our environments what we actually learn are Hidden
Markov Models (HMMs) . HMMs still describe a pro-
cess that goes through a series of states, but each state
has a probability distribution of possible transitions [34].
Each state also represents a perceived observation that en-
capsulates many possibly unseen events that are hidden
from the observer. We depart from the traditional state-
based chains of the Markov model which typically rep-
resent the entire world state in favor of an event-based
chain, one in which the world state is represented only by
the single change observed at that point in time. Since
our model focus is on a single inhabitant, we concentrate
on the changes made to the world state by that individ-
ual and assume that the rest of the world has not changed.
Our model, as such, represents a chain of events where
each event represents the observation that we make at a
given point. Each event encapsulates all of the hidden
acts that may occur as well. You can build HMMs into a
hierarchy and call it a Hierarchical Hidden Markov Model
(HHMM). If you tie actions and rewards to the transi-
tions between states this model becomes known as a Hi-
erarchical Partially-observable Markov Decision Process
(HPOMDP) [13, 38].

Our main challenge is to learn an inhabitant model
solely from observation. The learned model can only uti-

lize data from the perception of the environment and de-
signed mechanisms for converting that data into a useful
knowledge representation. The model should be compu-
tationally tractable, accurately reflect the interactivity pat-
terns of the inhabitant, and provide for the accurate and
efficient automation of the environment.

Learning past the initial model is our second challenge.
Automation systems for intelligent environments are only
useful in the real world if they can adapt to the ever chang-
ing lifestyles of the inhabitants to whom they cater. The
system should accommodate for both a slow drift in pat-
terns and for dramatic shifts. The system should adapt
quickly while minimizing the loss of accuracy and effi-
ciency. The goal is to provide for the life-long adaptation
of the system with the inhabitant of the environment.

This work seeks to utilize information presented to it.
The better the quality of information, the better the model,
and the better the control policy. Central to our approach
is the necessity to recognize the Markov chain patterns of
the life of an inhabitant in one of our environments and
to recognize the patterns of the abstract patterns, com-
prising a sequence of the low-level patterns—all from ob-
servation data. The large quantities of observed data and
the desire to extract the patterns from it have led us to
the data-mining community. If we could employ a data-
mining technique to discover the periodic and frequent
episodes of behavioral patterns in the data, we could use
that knowledge to build our inhabitant models. We utilize
the work by Ed Heierman in his Episode Discovery (ED)
technique [17] as a tool for extracting the desired knowl-
edge from the data stream.

If a data-mining technique can generate knowledge to
create a hierarchical model, then in order to be able to
use it for automation we will require information that will
provide a mapping from the real world observations to
the specific location within our model. The event stream
coming into the system provides one clue as to which pat-
tern we are currently observing, but may be insufficient
to truly pinpoint the exact chain of current activity. What
we need to develop is a belief in which state the current
world is engaged in order to utilize our learned model to
automate future events. Understanding what is the most
probable next event to occur would assist in this belief. A
prediction algorithm trained on our observation data sets
and with reasonable accuracy could be used to provide
this type of information. In addition, since our approach

is to create hierarchical layers that are labeled as groups
of events there will always be a probability of member-
ship given an observation data stream to these groupings.
An algorithm that produces a probability of membership
given the current event stream to learned groups would
provide information that could narrow the choices of spe-
cific patterns observed and improve the belief of which
state the system is currently engaged. The combination
of recent history, the current event stream, a membership
probability across the hierarchical layers, and a prediction
of the next event to occur yield a belief state of where in
the derived model the current inhabitant is interacting. If
we look ahead in the model we can determine events that
will occur in the near future, and if these events are within
the control of the system it can issue actions to automate
them.

Invariably, there will be events that escape periodic or
frequent patterns, but are desired items for automation.
The notion of encoding safety, security, and user prefer-
ences into the system is important to our system goals.
In order to accommodate these needs, we are employing
the use of a rules engine that will maintain a knowledge
base of user preference, safety, and security rules and con-
straints. These rules would incorporate knowledge such
as not opening the mini-blinds at night or turning on ex-
haust fans at high humidity levels. It can also accommo-
date user preference that could specify rules such as to
not automate particular items perhaps because it is their
favorite lamp or they just do not feel comfortable with the
automation for a particular device. These rules can also
be used to incorporate desired events outside the realm
of normal observation by the system. For example, pat-
terns that cannot be performed by the inhabitants such as
turning off all of the lights when the inhabitant leaves the
environment can be encoded as a rule.

Since our goal is to learn how to automate the intel-
ligent environment, the rules engine can also serve as a
feedback mechanism. Whenever a rule is violated or fires,
feedback can be given to the learning mechanisms of the
decision-making component to incorporate into its knowl-
edge for the future. Ideally, the decision-maker would
learn not to violate the safety and security rules and au-
tomate the inhabitant-designed rules as well.

3 Architecture

A decision-maker is our core control policy component.
Our approach is to utilize an overall control algorithm
in a three-phase system. The first phase will extract the
appropriate observation data from a database and control
the data-mining algorithm in order to find patterns and
patterns of patterns to build a hierarchical hidden Markov
model. This HHMM will be extended with actions and re-
wards to form a HPOMDP model of the inhabitant for the
environment under evaluation. The observation data will
also be used to train a prediction algorithm. The observa-
tion data and data-mined patterns will be used to train an
episode membership algorithm. After the initial informa-
tion is processed, the model is derived, and components
are trained, we can move into the next phase.

Figure 3: Phase 1: Knowledge discovery and initial learn-
ing phase

The second phase involves the operational use of the
components under the direction of the decision-maker
to automate the environment. The decision-maker takes
the incoming data stream and provides the information

to the predictor and the episode membership algorithms
to receive a predicted state and membership probabili-
ties. Based upon the current event, the recent history, the
next state prediction, and the probabilities of membership
the decision-maker will develop a belief state of where
in the learned HPOMDP model the inhabitant’s activi-
ties are currently engaged. If the belief is strong enough
and exists in a series of non-abstract events (i.e., there is
sufficient evidence and probability that current observa-
tions are part of a known low-level Markov chain) then
the decision-maker will look ahead and make an action
decision (if one exists). These action decisions automate
the environment. While the second phase continues to au-
tomate the environment, as feedback is returned from the
rules engine and the inhabitant interacting in the environ-
ment, we enter the third phase.

The third phase involves adaptation and learning by
the decision-maker altering the transition probabilities be-
tween events based on feedback in order improve au-
tomation performance. These local changes to the model
accommodate minor changes in the activity patterns of
the inhabitant over time. The decision-maker will also
continue to periodically reexamine the historical data us-
ing the data-mining tool to determine if new patterns are
emerging with the goal of detecting shifts in the patterns.
Large lifestyle changes in the inhabitant may lead to a
breaking of the current model. In order to accommodate
such shifts the decision-maker must evaluate performance
and pattern change information in order to contemplate
potential reset of the entire system in order to accommo-
date a major change in the inhabitant’s patterns. These
three phases are designed to initiate, operate, and main-
tain a system for the automation of the intelligent envi-
ronment.

There are three distinct phases to our approach as just
described. The first phase as shown in Figure 3 is the
Knowledge Discovery and Initial Learning phase which
involves the decision-maker utilizing the data-miner to
produce hierarchical knowledge of inhabitant activity pat-
terns, creating a model, and training the prediction and
episode membership algorithms. The second phase as
shown in Figure 4 is the Operational phase which in-
volves observing the event stream and providing current
observation data to then receiving next observation and
membership probability information from the predictor
and episode membership algorithms in order to form a

Figure 4: Phase 2: Operational phase

belief state in the inhabitant model. This information is
used to potentially make an automation decision. The
rules engine is constantly running during this phase. The
third phase as shown in Figure 5 is the Adaptation and
Continued Learning phase which involves feedback from
the rules engine to adjust the transition probabilities in
the model to improve performance, monitoring of system
performance, and the monitoring of data-mined inhabitant
activity patterns to observe shifts in the inhabitant’s activ-
ities. Together this system is designed to learn a model of
the inhabitant of the intelligent environment, automate de-
vices to the fullest extent possible using this model in or-

Figure 5: Phase 3: Adaptation and continued learning
phase

der to maximize the comfort of the inhabitant while main-
taining safety and security, and adapt this model over time
to accommodate shifts and drifts in the inhabitant’s life
patterns.

3.1 The System Framework

Given the problem and our chosen approach, it is im-
portant to develop a framework in which to support our
work. Our system framework is designed of modular
components and open source software. Modularity is cho-
sen over a monolithic system to promote ease of mainte-
nance and replacement. The architecture is designed to
allow components to be swappable, potentially even hot-
swappable, in order to create a robust and adaptive sys-
tem. We present the framework first in a functional ab-
stract view and then in a detailed concrete form.

3.1.1 Abstract View

The system framework shown in Figure 6 consists of four
cooperating layers. Starting at the bottom, the Physi-
cal layer contains the hardware within the environment.
This includes all physical components such as sensors,
actuators, network equipment, and computers. The Com-
munication layer lies available to all layers to facilitate
communication and service discovery between compo-
nents. The communication layer includes the operating
system, device drivers, low-level component interfaces,
device proxies, and middleware. The Information layer
gathers, stores, and generates knowledge useful for de-
cision making. The information layer contains predic-
tion components, databases, user interfaces, data mining
components, resource utilization information providers,
and high-level aggregators of low-level interfaces (e.g.,
combined sensor or actuator interfaces). The Decision
layer takes in information, learns from stored informa-
tion, makes decisions on actions to automate in the en-
vironment, determines if faults occur and correlates them
back to using components, and develops policies while
checking for safety and security.

Perception is a bottom-up process. Sensors monitor the
environment and make information available through the
communication layer to information layer components.
The database stores this information while other informa-
tion components process the raw information into more
useful knowledge (e.g., predictions, abstractions). New
information is presented to the decision layer components
upon request or arrangement. The decision layer uses
learned experience, observations, and derived knowledge
to select an action (which may be no action). The deci-
sion is checked for safety and security concerns and, if al-
lowed, signals the beginning of action execution. Action
execution flows top-down. The decision action is commu-
nicated to the information layer which records the action
and communicates it to the physical layer. The physical
layer performs the action, thus changing the state of the
world and triggering a new perception. The process re-
peats ad infinitum with periodic retraining of the decision
layer components, policy development, database archiv-
ing, and component maintenance.

Figure 6: Abstract framework

3.1.2 Concrete View

The abstract layers of the system framework are realized
through a set of concrete functional layers. These con-
crete layers are shown with components in Figure 7. The
base layer is the Physical Components layer which con-
sists of all real devices utilized in the system. These de-
vices include powerline control interface hardware, sen-
sor networks, input devices, cameras, and so forth, with
the exception of the computer with which equipment is
interfaced. The physical computer(s) and associated net-
work this system resides on is considered the host of all
layers above the physical. The Computer Interface layer
contains the hardware interfaces to physical devices (e.g.,
PCI card interfaces, USB, Firewire), device drivers to
utilize the hardware, the operating system of the com-

puter, and all software interfaces that provide services or
APIs for hardware access. It should be noted that since
all components of above layers reside and utilize operat-
ing system services, these services are shown to extend
to all layers. In the Logical Interface layer, the hard-
ware device services and APIs are utilized to create sim-
ple, light-weight programs that create a series of atomic
services around each sensor and effector in the system.
These logical proxies provide information and control via
socket and shared memory based interfaces in a modu-
lar design. All of the lower layers are based on sim-
ple single application components, but in higher layers
the components become more complex. The Middleware
layer provides valuable services to the upper layers of the
architecture to facilitate communication and service dis-
covery. The MavHome architecture specifies middleware
that provides both point-to-point (through CORBA) and
publish-subscribe (through multicast messaging utilizing
OS socket services and the IP stack) types of communi-
cation and naming/service discovery provisions. The Ser-
vices layer utilizes the middleware layer to gather infor-
mation from lower layers and provide information to sys-
tem applications above. Services either store information,
generate knowledge, aggregate lower-level components,
or provide some value-added non-decision making com-
putational function or feature (e.g., user interfaces). The
Applications layer is where learning and decision-making
components operate.

3.1.3 Implementation

To provide the reader with a better understanding of
the system framework we employ, we will discuss some
implementation-specific details.

Lighting control is the most prominent effector in most
intelligent environments. We currently use X-10-based
devices in the form of lamp and appliance modules to
control all lights and appliances. The CM-11A interface
is used to connect computers to the power system to con-
trol the devices. Radio-frequency based transmitters (in
remote control form factor) and receivers are also used
for device interaction. X-10 was chosen because of its
availability and low price. Many home users utilize X-
10 technology, so immediate benefits to the current home
user are possible.

Perception through light, humidity, temperature,

Figure 7: Concrete framework

smoke, gas, motion, and switches is performed through
a sensor network we developed. The Argus network sys-
tem is a PIC16F877-based system comprised of a master
board that interfaces to the computer via a serial interface
and connects up to 100 slave boards that host up to 64
sensors each, ganged in groups of four on a sensor dongle.
Special masters have also been developed for high speed
digital and mixed digital/analog sensing applications. A
stepper-motor master has also been developed to control
up to four mini-blinds.

A key element in perception is inhabitant localization.
The Argus Digital Master is used in conjunction with pas-
sive infrared (PIR) sensors placed on the ceiling in traffic
areas to detect motion. The sensors have a 60° field of
view and are placed between eight and ten feet from the
ground depending on the height of the ceiling. In order to

reduce the sensing area, tubes are placed over the sensors
to reduce the floor footprint to a three to four foot sensing
circle. Tests in our environments show a consistent single
inhabitant location detection rate of 95% or better accu-
racy. Multiple inhabitant studies will require augmenting
technology.

All system framework components interface through
either serial, USB, or firewire interfaces. The system
framework and components have been developed on Intel-
based PCs (Pentium 4) and use the Linux operating sys-
tem (SuSE 9.1).

The logical interfaces for all X-10 and Argus-based
components have been written as light-weight config-
urable modules. The logical proxies maintain the current
state of each device and provide a mechanism for reading
and, if applicable, control. The communication protocols
for X-10 devices and Argus components are well defined
and interface availability is advertised through zero con-
figuration (ZeroConf) technology [19].

Components desiring to find X-10 or Argus compo-
nents merely need to perform a link-local query for de-
vices that follow the defined MavHome X-10 and Argus
protocols and a list of available devices will be presented
to the requester. Contact information is returned to the re-
quester to allow connection to the logical proxy. Through
this mechanism no configuration is required and the sys-
tem is very adaptive and dynamic. New proxies advertise
their availability and older ones remove theirs before they
shut down. We have had a high level of success using Ze-
roConf technology with very few problems once the com-
ponents were developed. When we were using a CORBA
name server we had close to a 50% component commu-
nication or discovery failure rate at any given time mostly
due to CORBA TCP communication errors in the name
server ORB.

The system framework uses two main middleware
packages. Communication between high level compo-
nents is performed using the Common Object Request
Broker Architecture (CORBA) due to the clarity of in-
terface design provided by the Interface Description Lan-
guage (IDL), ease of integration, maturity and stability
of the technology, and object-oriented design compatible
with our C++ implemented components. Zero config-
uration technologies are used for replacing the CORBA
naming service and utilizing service discovery. They are
provided by the Apple Multicast DNS responder and ad-

herence to the ZeroConf standard.
Implemented services include a PostgreSQL database

that stores information, user interfaces, prediction com-
ponents, data mining components, and logical proxy ag-
gregators (e.g., the projector screen aggregator that takes
simple “up” or “down” commands to coordinate the ef-
forts of a timed control of three switches to place the
screen in the proper position). Resource utilization ser-
vices monitor current utility consumption rates and pro-
vide usage estimates and consumption queries, but are not
used in this work.

The core of this work resides at the application layer
which along with some of the services comprise the core
system architecture of this approach.

3.2 The System Architecture
Inside the system framework exists the core system archi-
tecture for our approach. At this point, we have presented
our overall approach, architecture, the system framework,
and base technologies. In this section, we will describe
the specific information and decision components imple-
mented with the techniques they employ to create our
working system.

3.2.1 ProPHeT

Decision making is performed in the ProPHeT (Providing
Partially-observable Hidden (HMM/ POMDP) based
decision Tasks) component. The world representation
at this level is the Hierarchical Hidden Markov Model
(HHMM) [13] based upon a hierarchy of episodes of ac-
tivity mined from stored observations. Episode Discov-
ery (ED) is used to generate low-level episode Markov
chains and build the hierarchy of abstract episodes un-
der the direction of ProPHeT. Learning is performed by
extending the HHMM to a hierarchical Partially Observ-
able Markov Decision Process (HPOMDP) and apply-
ing temporal-difference learning. Constant feedback from
ARBITER is used for continuous learning using TD(0)
reinforcement learning [37]. Action decisions are made
by using the incoming event stream, recent history, the
stream episode membership features of Episode Member-
ship (Epi-M) to provide input into the current belief state
in the model, and the Active LeZi (ALZ) prediction of the
next event to chose the appropriate transitional action.

3.2.2 Episode Discovery (ED)

The Episode Discovery (ED) data-mining algorithm dis-
covers interesting patterns in a time-ordered data stream.
ED processes a time-ordered sequence, discovers the in-
teresting episodes that exist within the sequence as an un-
ordered collection, and records the unique occurrences of
the discovered patterns. These features make ED a suit-
able algorithm for mining an intelligent environment data
stream.

Our approach to state space reduction from the large
number of potential environment observations is to ab-
stract inhabitant activity to episodes that represent the
current task of involvement. Given the inhabitant task
episode, observations not related to the task can be
pruned. A difficult problem is how to discover these
episodes.

We use the Episode Discovery (ED) algorithm [16] for
finding inhabitant episodes in the collected data and for
episode classification of streamed observations. ED is
an input, not transaction, based algorithm that mines de-
vice activity streams trying to discover clusters of inter-
actions that are closely related in time. Significance test-
ing is performed on discovered clusters to generate sets
of significant episodes based on the frequency of occur-
rence, length, and regularity. Further processing using
the Minimum Description Length (MDL) principle [33]
and greedy selection produces sets of significant episodes.
These are labeled and directly correspond to an inhabitant
task.

When an inhabitant is first introduced to an intelligent
environment no automation should occur for an initial ob-
servation period. This allows the building of a database of
potential episodes of normal task activity. This is inhab-
itant centric and the observation period duration is deter-
mined by data compressibility which is used to determine
the stability of the data with relation to episode discov-
ery. A stable, consistent data compression as reported by
ED indicates an end to observation. Identification of con-
cept drift and shift is performed by continued monitoring
of streaming data and compressibility. Changes in com-
pressibility indicate a need to re-evaluate the discovered
episodes.

Episode discovery, classification, and identification are
utilized to reduce the state space of an intelligent envi-
ronment to a set of inhabitant-centric tasks. Thus, the

MavHome architecture is inhabitant-centric.

3.2.3 Active LeZi (ALZ)

An intelligent environment must be able to acquire and
apply knowledge about its inhabitants in order to adapt
to the inhabitants and meet the goals of comfort and effi-
ciency. These capabilities rely upon effective prediction
algorithms. Given a prediction of inhabitant activities,
MavHome can decide whether or not to automate the ac-
tivity or even find a way to improve the activity to meet
the system goals.

Specifically, the MavHome system needs to predict
the inhabitant’s next action in order to automate selected
repetitive tasks for the inhabitant. The system will need to
make this prediction based only on previously-seen inhab-
itant interaction with various devices. It is essential that
the number of prediction errors be kept to a minimum–
not only would it be annoying for the inhabitant to re-
verse system decisions, but prediction errors can lead to
excessive resource consumption. Another desirable char-
acteristic of a prediction algorithm is that predictions be
delivered in real time without resorting to an offline pre-
diction scheme.

Based upon our past investigations, MavHome uses the
Active-LeZi algorithm [14] to meet our prediction require-
ments. By characterizing inhabitant-device interaction as
a Markov chain of events, we utilize a sequential predic-
tion scheme that has been shown to be optimal in terms of
predictive accuracy. Active-LeZi is also inherently an on-
line algorithm, since it is based on the incremental LZ78
data compression algorithm.

3.2.4 Episode Membership (Epi-M)

Effective utilization of the derived HHMM/HPOMDP-
based inhabitant model requires an understanding of how
to map the current observation stream into the derived ab-
stractions. Episode Membership (Epi-M) performs this
function by using the information learned from Episode
Discovery to build internal correlation tables and further
augment those tables with time-based occurrence infor-
mation based on circular probability [5] capture from the
same data stream. Data stream observation over the spec-
ified window span supplied to ED can be used to generate
match probabilities with the episode sets over each layer

of abstraction. Augmenting the probability with the like-
lihood of occurrence based on the observed occurrence
time distribution for each of the discovered episodes with
relation to the current time further improves the accuracy
of possible episode membership reporting. For example,
if the current observation stream matches with 90% prob-
ability either reading a book or the pattern of sleeping
on the couch, but the inhabitant has never slept on the
couch at this time of day, then the probability of sleeping
can be discounted to promote reading as the most prob-
able episode of membership. Epi-M output is used by
ProPHeT to determine belief state in the operational phase
for the current event observations.

3.2.5 ARBITER

When issues of safety and security are of the highest im-
portance in a system there is the need for an enforcer of
rules before actions are made. This system works by us-
ing a knowledge base of rules and evaluating each action
event against these rules to determine if the action vio-
lates them. Actions in violation will be prevented from
occurring and feedback will be sent back to the originat-
ing system (i.e., the decision-maker). Rules are not re-
quired to be just of a safety and security type, any type of
rule can be used in order to guide the behavior of the sys-
tem. Cases where system behaviors are desired but will
never be trained by streaming data or interactions can be
handled by the addition of rules to provide feedback and
facilitate learning of the desired behavior.

Before an action is executed it is checked against the
policies in the policy engine, ARBITER (A Rule-Based
InitiaTor of Efficient Resolutions). These policies con-
tain designed safety and security knowledge and inhabi-
tant standing rules. Through the policy engine the system
is prevented from engaging in erroneous actions that may
perform such activities as turning the heater to 120° F or
from violating the inhabitant’s stated wishes (e.g., a stand-
ing rule to never turn off the inhabitant’s night light).

These components work in concert to learn, adapt, and
automate the inhabitants’ lives in an intelligent environ-
ment.

3.2.6 MavCore

The core of this work lies in the data-mining–decision-
making–belief–rule/feedback chain or in what we call the
EPBA chain comprised of the Episode Discovery (ED),
ProPHeT, belief through Active LeZi and Episode Mem-
bership (Epi-M), and the ARBITER components.

Information and action flow through the system accord-
ing to the three main system phases. These phases as pre-
viously stated can be restated as being Initialization, Op-
eration, and Adaptation.

Figure 8: Core system architecture in initialization phase

The structure of the core components in the initializa-
tion phase and the flow of information are shown in Fig-
ure 8. During initialization, information flows from the
database through ProPHeT into ED. As many instances
of ED as are necessary to process the data into a hierar-
chy of discovered patterns are started by ProPHeT, pro-
vided information, and return information on the discov-
ered patterns to ProPHeT. ProPHeT then trains ALZ over
the same observation data from the database. ProPHeT
determines what information to pull from the database
and performs the necessary data conversions and filter-
ing for each component to accept the data and perform
computation within a reasonable amount of time. After

ALZ, ProPHeT trains Epi-M with the same observation
data and the returned hierarchical data returned from ED.
After deriving the data from the target observation data set
and training the belief supporting components, ProPHeT
generates the HHMM and subsequent HPOMDP models.

Figure 9: Core system architecture in operation phase

The structure of the core components in the opera-
tion phase and the flow of information are shown in Fig-
ure 9. During operation, information flows from events
generated in the environment and perceived by the log-
ical proxies and presented to ProPHeT. ProPHeT relays
these events to ALZ and Epi-M and receives prediction
and membership information. Based upon the incoming
event, history, prediction, membership probabilities, and
the HPOMDP model an action decision may be made.
Any action decisions, or at a minimum the current event,
will flow through to ARBITER to be checked for rule vi-
olations. If a satisfactory action is to be performed, AR-
BITER will contact the appropriate logical proxy to initiate
the action.

The structure of the core components in the adaptation
phase and the flow of information are shown in Figure
10. During adaptation, information flows from the event
stream through ProPHeT to ARBITER, often accompanied
with an action. Rule violations and any other feedback
are relayed back to ProPHeT from ARBITER including in-
habitant feedback correlation to countermanded automa-
tion. ProPHeT uses feedback from ARBITER to adjust
the HPOMDP structure to improve performance and ac-
commodate for pattern drift. Internally ProPHeT is evalu-
ating performance based on feedback and usage. Infor-
mation also flows into and out of ED as ProPHet will
periodically evaluate the continuously-growing observa-
tion database—it should be noted that in our system the

Figure 10: Core system architecture in adaptation phase

database component has an event listener that logs all
events into the database—for changes in patterns and hier-
archy in order to detect pattern shift using ED continually
in the background. ProPHeT will decide based upon per-
formance as well as indications of pattern shift and drift
whether a reset of the decision-maker is required. The re-
set is essentially a reboot of the system using a new set of
observations—one that will hopefully better fit the inhab-
itant.

The operation and adaptation phases occur simultane-
ously until interrupted by the adaptation phase, usually to
return through the initialization phase. All components
with a bold, solid border in the architecture Figures 8, 9,
and 10 represent components that are developed as part of
this work, items with a dashed border are components de-
veloped on the MavHome project but were developed by
others, and components with thin borders represent data
or storage.

This is only one possible approach to developing a so-
lution given the problem and goals. There are many other
possible approaches, but others remain to be explored. We
are exploring this method because it had not been previ-
ously explored in this domain.

4 Experimental Environments
This work uses two real environments and their simulated
counterparts. The MavPad is an on-campus apartment and
the MavLab is the workplace of the researchers of this
project. ResiSim is an in-house developed “residential

simulator” for interactive simulation of intelligent envi-
ronments.

4.1 MavPad
The MavPad is an on-campus apartment that hosts a full-
time student occupant that participates in the project al-
lowing us to learn about them and automate their life.
The MavPad hosts automation capability through 25 X-
10 controllers (3 fans, 13 lights, 1 HVAC unit, and 7
electrical outlets) and 2 ArgusM mini-blind control sys-
tems. Sensing capability is provided by the ArgusMS and
ArgusD systems that provide 18 light, 11 temperature, 4
humidity, 4 leak detection, 4 door open/close, 3 window
open/close, 2 seat occupancy, 4 HVAC vent position, 2
smoke detectors, 2 CO detectors, and 36 motion sensors.
The MavPad has been operational for over a year and has
hosted three inhabitants.

4.2 MavLab
The MavLab is the project name for the Artificial Intelli-
gence Lab which is base of operations for this research.
The MavLab is a workspace setting with offices, cubi-
cles, a break area (MavKitchen), a lounge (MavDen), and
a conference room. The MavLab hosts automation capa-
bility through 54 X-10 controllers (49 light, 5 appliances,
a projection screen) and 14 ArgusM mini-blind control
systems. Sensing capability is provided by the ArgusMS
and ArgusD systems that provide 36 light, 10 temperature,
3 humidity, 2 door open/close, 6 seat occupancy, and 25
motion sensors. MavLab has been in various operational
states for the last two years.

4.3 ResiSim
It is important that this work be well grounded in real-
ity and in dealing with the real world, especially with
the goals being directed to the intelligent environment do-
main. This research work is aimed at real-time decision-
making in the real-world. However, it is not always feasi-
ble to study interactions solely in the real world. A tool for
interactive simulation and data visualization was needed.
Since this is a relatively new area of study there are not
any available simulation tools designed for intelligent en-
vironments or home simulation, so the development of a

tool became an important issue for performing this type
of work.

ResiSim is a residential simulation environment tool.
It is designed to provide a simulation environment for
any indoor environment where people would typically
spend time. It features Markov model-based virtual in-
habitants that interact with the environment and can react
to changes in that simulation. It can also provide real in-
habitant data playback and limited interaction. As an eval-
uation tool it can track automation and its source whether
from an external system, playback, or elsewhere.

5 Experimentation and Results
We have implemented and tested our systems in the pre-
viously described environments and present some of our
findings starting with simulation work with MavLab in
ResiSim followed by MavPad experiments involving real
inhabitants.

5.1 MavLab Simulated Inhabitant
As an illustration of our technique and the software sys-
tem, we have evaluated a simulated typical week in an
inhabitant’s life with the goal of reducing the inhabitant’s
interactions in the MavLab. The data was generated from
a ResiSim virtual inhabitant based on captured data from
the MavLab and was restricted to just motion and lighting
interactions which account for an average of 1400 events
per day (filtered to 250/day). There are on average 25
lighting device interactions a day with the remainder be-
ing motion information. Using our ResiSim (Residentual
Simulator) tool which exactly replicates the real MavLab,
we trained ALZ and ED on real data and then repeated a
typical week in the simulator to determine if the system
could automate the lights throughout the day in real-time.

ALZ processed the data and converged to 99.99% ac-
curacy during training on test data from the data set in 10
iterations. When the system was run with automation de-
cisions being made by ALZ alone, it was able to reduce
interactions by 9.7% event as shown in Figure 13. ALZ
performance on streaming data maintained between 24-
56% accuracy converging to 54% as shown in Figure 11.

ED processed the data and found 10 interesting
episodes, 8 that correspond to automatable actions. This

Figure 11: ALZ Accuracy.

was abstracted through ED to two abstract nodes. A
HPOMDP was constructed in ProPHeT. This system was
able to reduce interactions by 76%. As a comparison, the
HHMM produced was flattened and the abstract nodes re-
moved to produce a flat HMM. This HMM was still able
to reduce interactions by 38.3%. Comparative results are
shown in Figure 12.

Figure 12: MavLab virtual inhabitant interaction reduc-
tion.

The additional abstractions in the hierarchy coupled

with a next state produced by ALZ and a probability of
membership from ED to provide input to the belief state
create a system that improves automation performance
over a flat model or prediction alone. This simulation pro-
vided very clean data with consistent patterns which made
for good episode discovery results. Some of the patterns
started with automatable events which make them almost
impossible to automate because when ProPHeT believes
that the episode is being observed, the automatable event
opportunity has already passed. This experiment repre-
sents some of the best performance of this technique, but
it does not include any ARBITER rules—only automation
through the learned model.

5.2 MavPad Inhabitant 2
As an illustration of the viability of the architecture, the
techniques described in this paper, and the MavHome sys-
tem deployed in the MavPad, we have evaluated a typical
day in the inhabitant’s life with the goal of reducing the
inhabitant’s interactions with the lighting in the MavPad.
The data was restricted to just motion and lighting inter-
actions which account for an average of 10,310 events per
day (filtered to approximately 420 events/day). There are
on average 18 lighting device interactions a day with the
remainder being motion information. Using our ResiSim
tool which exactly replicates the real MavPad, we trained
ALZ and ED on real data and then repeated a typical Mav-
Pad inhabitant day in the simulator to determine if the
system could automate the lights throughout the day in
real-time.

ALZ processed the data and converged to 99.99% ac-
curacy on test data from the data set. When the system
was run with automation decisions being made by ALZ
alone, it was able to reduce interactions by one event as
shown in Figure 13. ALZ performance on streaming data
maintained between 40-60% accuracy.

ED processed the data and found 10 interesting
episodes that correspond to automatable actions. This was
abstracted through ED to three abstract nodes. A HHMM
was constructed in ProPHeT. Figure 14 shows this model
without the production nodes (it is difficult to show the
full models because even the simple models when printed
take over seven feet of paper in order to be legible). This
system was able to reduce interactions by 72.2% to five
interactions. As a comparison, the HHMM produced was

Figure 13: MavPad Inhabitant 2 Interaction reduction.

flattened and the abstract nodes removed to produce a flat
HMM. This HMM was still able to reduce interactions by
33.3% to 12. Comparative results are shown in Figure 13.

We also expanded the experiment beyond the automa-
tion of just a single day of real inhabitant data to a
full ten days under the same conditions. Performance
dropped to 54.9% reduction (83 automations out of 184)
for ProPHeT, 26.6% (49/184) for a flat HMM, and a
10.9% (20/184) reduction for ALZ. Missed automations
were due to insufficient belief state for automation due
to some pattern performance inconsistencies and two pat-
terns that began with an automatable action. Progressive
degradation is a fact of the real data and increasing pat-
tern inconsistencies as well as inhabitant activity patterns
that were not discovered originally because they lacked
sufficient frequency or periodicity.

5.3 MavPad Inhabitant 3

Our third MavPad inhabitant has lived in the apartment
for nine months undergoing various levels of observation
and automation. During the course of this time we have
worked closely with the inhabitant to develop good AR-
BITER rules from a safety and security standpoint, user
preference, and some general desired automations not
captured by episode discovery. Inhabitant three is a very
busy person with a somewhat erratic schedule that made

Figure 14: Learned HHMM from MavPad inhabitant 2 data.

Figure 15: Learned HHMM from MavPad inhabitant 3 data.

experimentation very interesting.

A three week full automation experiment was con-
ducted. Seven weeks of data was used to train ED
which in the raw form consisted of 4,371,179 events (apx.
89K/day) with 2,163 automatable events and was reduced
to 21,863 events (apx. 446/day) with 1,952 automatable
events by filtering unnecessary and noisy data—our fil-
ters key in around the automation areas and filter out large
spans of data where no automations occur, we also filter
some duplicate data and data inconsistencies. There are
on average 40 device interactions a day which included
lights, fans, and mini-blinds (tri-state) with the remain-
der being motion information. ED processed the data for
over 96 hours to find 14 production node-filled abstract
episodes and three hierarchical abstractions of those for
a four-tier HHMM as shown in Figure 15. The model
was extended to a HPOMDP and ARBITER was loaded

with two safety and security rules, one inhabitant prefer-
ence rule, and seven general automation rules. ALZ and
Epi-M were trained—ALZ trained to within 99% as pre-
viously observed.

The full system was allowed to automate the environ-
ment which included lights, fans, and mini-blinds and was
able to automate 39.98% (345/863) of the inhabitant’s
life as shown in Figure 16. The system learned the 2
safety and security rules and the inhabitant preference rule
within 6 violations with ARBITER feedback. Those rules
were all based on preventing specific lights from being
automated. The system learned two of the seven general
automation rules because they were modifications of ex-
isting episodes, but the others were not learned because
they did not associate to existing episodes. With regu-
larity those rules should be found by ED and eventually
added to the system on a reboot—we did observe one of

Figure 16: MavPad inhabitant 3 interaction reduction.

the seven show up as a frequent episode in the continuous
ED checks for shift and drift. Figure 17 shows the reduc-
tion of rule firing over the experiment. Note that in that
figure the rule violation curve slope decreases over time
as the system learns rules and the number of violations
decreases over time. On average five rules per day were
fired for what would have been a total of 112 over the
experiment, but only 81 actually fired yielding a 27.7%
reduction in rule violations.

Figure 17: MavPad inhabitant 3 rule violation reduction.

The experiment brought forth some interesting obser-
vations. Inhabitant patterns for turning off household
items (particularly lights) is much more consistent than
turning them on. Object off patterns make up approx-
imately 60% of the episodes and are also more easily
learned by the system—all of the adaptations involved
turning objects off. Inhabitants are slow to correct the
system, and are willing to accept incorrect actions. There
is a definite need to work more in a partnership with the
inhabitant to meet system goals.

5.4 Observations
There are a number of interesting observations we have
made in the course of design, implementation, and ex-
perimentation. The more unique challenges have come
from working with our MavPad inhabitants. We did not
automate our first inhabitant because we were still con-
centrating on sensor reading acquisition and determining
if there was a perceivable pattern to inhabitant activities—
fortunately, there are discoverable patterns. It was observ-
ing the first inhabitant that made it clear that we needed
a good period of observation and that it would take sev-
eral weeks if not months depending on the consistency
of the inhabitants lifestyle. Our second inhabitant partici-
pated for a summer and was automated for two weeks us-
ing ARBITER and a very basic version of ProPHeT (with-
out adaptation). This inhabitant lived a very regimented
lifestyle—even taking showers at approimately the same
time every day (surprisingly between 1:00-1:30 am). Our
third inhabitant lives a very chaotic lifestyle and has been
a challenge for our systems.

Sensor network failure, unreliability, and general
chaotic behavior at times forced a lot of effort towards im-
proving the systems by adding additional fault tolerance
mechanisms, watch dog timers, performance monitors,
and many additional software objects that focus on main-
taining high-availability. Sensor instability due to soft-
ware problems and I2C communication errors plagued
the first couple of months, but those issues have been cor-
rected and the sensors are very stable. One of the biggest
problems on the project so far has been the stability of
the power grid and power loss issues in the stormy sea-
sons. Operating system application stability for programs
operating 24-7 has also been problematic.

A consistent problem we have is that many episodes

actually begin with the automatable event; thus, automa-
tion is difficult if not impossible given our approach in
those instances. Interestingly, ED finds many patterns that
are filtered due to a lack of automatable actions. There is
often a large number of pacing patterns—back and forth
walking in the MavPad. The inhabitants, all students,
have all admitted to this behavior when the are “thinking.”

With inhabitant three, we noticed a new phenomenon in
the course of our experimentation—the system did more
training of the inhabitant than the inhabitant did to the
system. There seemed to be a reluctance to give prompt
feedback on the inhabitant end. On interview, the inhabi-
tant said that they were learning to live in the dark because
it was too bothersome to correct the system. This is proba-
bly human nature. We also observed a few fights between
the system and the inhabitant over control that ultimately
was won by the inhabitant when feedback caused the sys-
tem to change behavior, but for a short duration the sys-
tem caused some duress to the inhabitant—not a desired
effect.

6 Related Work
Our work focuses on the emerging domain of intelligent
environments or smart homes and buildings. Generally,
these environments are defined by the way in which peo-
ple interact with them or in the way that these places in-
teract with the inhabitants. Benefits include providing
comfort and productivity for inhabitants and generating
cost savings for utility consumption. There are many re-
searchers working on interesting problems in this domain.
Due to space considerations we provide a brief mention of
work not directly related to our own to provide a starting
point for the interested reader, and we present more infor-
mation on those projects closely related to our own.

There are many projects that are engaged in develop-
ing frameworks to support intelligent environment work.
These include the MIT Artificial Intelligence Lab AIRE
(Agent-based Intelligent Reactive Environments) group
[3], the AMBIENTE division of the Fraunhofer-IPSI Re-
search Institute in Germany who is a partner of the fifteen
member European AMIGO project [4], the Interactive
Workspaces project at Stanford University [36], the Lab-
oratory for Communication Engineering (LCE) at Cam-
bridge University (originally in conjunction with AT&T

Laboratories Cambridge) [6], the Gaia project at the Uni-
versity of Illinois at Urbana-Champaign [39], and the Uni-
versity of Florida Gator Tech Smart House [18].

Other projects focus more on applications and develop-
ing useful objects. These include the Aware Home Re-
search Initiative (AHRI) at the Georgia Institute of Tech-
nology [2] and MIT Media Lab’s Consortia on Things
That Think (TTT) and their special-interest group on
Counter Intelligence [27].

Industry is interested in providing services and tech-
nology for the intelligent environment and have embarked
on several initiatives. These include the Pervasive Com-
puting Lab at IBM Research [40], the Vision Group at
Microsoft Research and their Easy Living project [25],
British Telecom’s Telecare project [7], CISCO Network’s
Internet Home [8], Intel Corporation’s Proactive Health
Lab [22], Siemens AG’s “living made easy” home au-
tomation products [35], Royal Philips HomeLab [32], and
Accenture’s Room of the Future [1]. A number of com-
mercial retail companies are selling products to make peo-
ple’s homes “smart.” The most prominent of these com-
panies is SmartHome (www.smarthome.com).

There are also a number of healthcare initiatives.
These include the Medical Automation Research Center
(MARC) smart house project at the University of Vir-
ginia [24] and the Robert Gordon University CUSTO-
DIAN (Conceptualization for User involvement in Spec-
ification and Tools Offering the efficient Delivery of sys-
tem Integration Around home Networks) project [11].

There are two prominent learning and adapting initia-
tives that are similar to ours.

The Adaptive House project at the University of Col-
orado at Boulder under the direction of Michael Mozer
tackles the issue of overcoming the programming prob-
lem with home automation (i.e., where someone must pro-
gram the rules for automation and reprogram them over
time as the inhabitant’s lifestyles change). Their work in-
volves developing a system that controls the HVAC, wa-
ter heater, and interior lighting of a home, learning how to
control these features based on the lifestyle and desires of
the inhabitants, and adapting the control policy over time
in an environment with a minimal user interface. This
project uses an actual residence called the neural network
house equipped with 75 sensors that monitor tempera-
ture, ambient light levels, sound, motion, door and win-
dow openings as well as actuators that control the furnace,

space heaters, water heater, lighting units, and ceiling fans
[28]. The control systems in this work are based on neu-
ral network, reinforcement learning, and prediction tech-
niques called ACHE (Adaptive Control of Home Environ-
ments). Q-learning (a reinforcement learning technique
[37]) uses event-based segmentation over clock-based in
order to make the problem tractable and initiates actions
based on perceived state and reward. In order to simplify
the state space the automation task was decomposed into
zones and a heuristic based determination of event sep-
aration factors was used to partition the experience into
events for the event-based control system. The control
policy involved a mixing of inhabitant comfort and en-
ergy conservation goals. The system used a state estima-
tor to form high-level state representations which were
based upon inhabitant activities (through an occupancy
model and an anticipator which was neural network based
and provided a prediction of occupancy of a space) and
light levels in each zone (through a natural light estima-
tor). This information and the decomposition of spaces
were utilized with multiple Q controllers to automate the
home. Their work also involved some exploration in or-
der to reduce energy consumption by occasionally testing
the inhabitant by altering the control policy unless coun-
teracted by the inhabitant [30].

The adaptive house involved a lot of knowledge en-
gineered into the system in the form of event partition-
ing heuristics, look-up tables for Q-values, and human-
directed partitioning of the system into multiple Q-
learners controlling specific areas of the house. In rela-
tion to our work, the anticipator and occupancy models
are not necessary in our systems due to a better hardware
design and implementation. We agree with the vision and
premise of the adaptive home—that an intelligent envi-
ronment should adapt to the needs, lifestyle, and desires
of its inhabitants [29]. We also agree with the idea of
using a minimal and natural interface as well as focus-
ing on the goal of solving the user programming problem.
Many of the heuristic decisions and partitioning schemes
in the adaptive house are avoided by learning the require-
ments for decompositional and hierarchical construction
of a control policy through observation. In earlier versions
of our work we utilized Q-learning with CMAC tiling in
a control mechanism similar to Mozer’s work [9]; how-
ever, we also discovered similar state space abstraction
problems in automation and a need for better sensor in-

formation in order to accomplish our goals. Our work
can be seen as a direct extension of this shared vision
towards creating environments with control policies ob-
served from their inhabitants.

Researchers from the Intelligent Inhabited Environ-
ments Group (IIEG) at the University of Essex in the
United Kingdom are creating an ambient-intelligence en-
vironment using embedded agents called the iDorm [20].
Their approach involves the use of a fuzzy logic based
Incremental Synchronous Learning (ISL) system to learn
and predict inhabitant needs. Their testbed environment,
a dorm room, involves the access of 11 environmental pa-
rameters and nine effectors (mostly lights). The use of
parallel fuzzy logic controllers (FLC) in a hierarchy is
used to learn and encode rules. Each FLC has a single
modifiable parameter and is used to learn a particular as-
pect of the environmental control. The FLCs are either
static (i.e., pre-seeded with knowledge) or dynamic (i.e.,
observed from the inhabitant). In combination all of the
FLCs form the ISL system and encode the desired control
behavior of the environment. Other management systems
prune down the number of FLCs by observing factors of
redundancy and low usage to keep the system computa-
tionally manageable. The researchers have presented ev-
idence via empirical evaluation of iDorm inhabitants that
the system can perform initial and lifelong learning of in-
habitant needs over a 132 hour experiment [15].

The iDorm project has many similarities to our work.
The notion that there first needs to be an observation pe-
riod followed by usage and learning has been a part of our
systems. The general focus on learned automation is also
the same. Besides the obvious difference in approach,
we seek to learn the hierarchy as well and not engineer it
through heuristics. We agree that it is an important feature
of intelligent environment control systems to have spe-
cific rules for automation and not generalized ones which
tend to not automate the environments correctly, the is-
sue is on how to deal with environments with large state
spaces in order to perform real-time calculations and deci-
sion tasks with the correct level of particularization. In ad-
dition there are a number of other intelligent environment
initiatives. These include the Changing Places/House n
project at MIT which is focused on how technology, ma-
terials, and design strategies can create dynamic, evolv-
ing places that respond to the lives of their inhabitants
[26]; the National Institute of Information and Commu-

nications Technology (NiCT) in Japan and their Keihanna
Human Info-Communications Research Center which is
focused on the development and testing of the Ubiquitous
Home with a goal to support and optimize the usage of in-
formation appliances in the home across the users regard-
less of age or lifestyles [31]; the United Kingdom Equa-
tor Interdisciplinary Research Colloboration comprised of
eight member colleges and universities is another super-
group of researchers working on pervasive computing and
intelligent environment work focused on the integration of
physical and digital interaction in order to bridge the gap
between reality and virtual reality [12]; and the PRIMA
project at INRIA which is concerned with the scientific
foundation for interactive environments [21].

There are many other intelligent environment projects
in academia, government, industry, and even amongst the
enthusiastic general population and home hobbyists. The
current trend is that many groups are combining their ef-
forts to eliminate redundancy of effort and focus on the
research challenges. These super efforts from groups such
as Equator and AMIGO are beginning to produce measur-
able results and forward knowledge in intelligent environ-
ment research.

7 Conclusions
Overall, our approach, design, and experimentation pro-
vide a level of environmental automation for both vir-
tual and real inhabitants from a data-driven automatically
learned model that can adapt to user pattern changes over
time. The key strength of our work is that the model does
not require a human to create the model or for knowledge
to be created in the system for the model to be generated.
A minimal amount of knowledge is required to automate
and adapt—namely the automatable actions. Our model
is also not state restricted since we do not consider all
possible states but just the states actually observed. Our
data-driven model is only as good as the data that is used
to generate it. The less consistent the inhabitant, the less
ability there is to automate their life. Our techniques
are also not very noise tolerant having difficulty discov-
ering and identifying episodes in noisy sensor environ-
ments. The intelligent environment domain presents some
very difficult problems, we have provide an approach with
some success at automation and insight into the unique

challenges ahead.

8 Future Work
We continue to improve our approach and experiment
with inhabitants in our environments. Our immediate
goals are focused on techniques to assist with resource
consumption reduction and to handle sensor noise. We are
also working more in-concert with the inhabitant to alle-
viate the control struggle and provide a more natural part-
nership between the inhabitant and the environment. We
see our approach becoming a part of a system that works
more closely with the inhabitant instead of just automat-
ing without regard. We are also learning how to better de-
sign sensor networks and environments to promote more
easily learned (more consistent) patterns–developing a set
of general design principles for building intelligent envi-
ronments.

9 Acknowledgements
This work was supported by National Science Foundation
grants IIS-0121297 and EIA-9820440.

References
[1] Accenture. Room of the Future, 2005. Website:

www.accenture.com/xd/xd.asp?it=enweb\
&xd=services/technology/research/i%hs/
room_future.xml.

[2] AHRI. [AHRI] - Aware Home Research Initiative, Oct
2003. Website: www.cc.gatech.edu/fce/ahri.

[3] AIRE Group. MIT Project AIRE, March 2005. Website:
aire.csail.mit.edu/projects.shtml.

[4] Ambient Intelligence research and Development Consor-
tium. Ambient Intelligence for the Networked Home En-
vironment, 2005. Website: www.amigo-project.
org.

[5] E. Batschelet. Circular Statistics in Biology. Academic
Press, 1981.

[6] A. Beresford. CUED: Laboratory for Communication En-
gineering, Oct 2003. Website: www-lce.eng.cam.
ac.uk/research/?view=2\&id=7.

[7] Telecare Overview, 2005. Website: www.
btexact.com/research/researchprojects/
currentresearch?doc=42834.

[8] CISCO. The Internet Home, 2005. Website: www.
cisco.com/warp/public/3/uk/ihome.

[9] D. J. Cook, M. Youngblood, E. Heierman, K. Gopalrat-
nam, S. Rao, A. Litvin, and F. Khawaja. MavHome:
An Agent-Based Smart Home. In Proceedings of the
IEEE International Conference on Pervasive Computing
and Communications, pages 521–524, 2003.

[10] S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman,
III, and T.-Y. Lin. The Role of Prediction Algorithms in
the MavHome Smart Home Architecture. IEEE Wireless
Communications Special Issue on Smart Homes, 9(6):77–
84, 2002.

[11] The Potential for ’Smart Home’ systems in meeting the
care needs of older persons and people with disabilities,
volume 10:1, 2000. Website: www.rgu.ac.uk/sss/
research/page.cfm?pge=2546.

[12] Equator. Equator Website, 2005. Website: www.
equator.ac.uk/index.php.

[13] S. Fine, Y. Singer, and N. Tishby. The Hierarchical Hid-
den Markov Model: Analysis and Applications. Machine
Learning, 32(1):41–62, 1998.

[14] K. Gopalratnam and D. J. Cook. Active LeZi: An Incre-
mental Parsing Algorithm for Device Usage Prediction in
the Smart Home. In Proceedings of the Florida Artifi-
cial Intelligence Research Symposium, pages 38–42, May
2003.

[15] Creating an Ambient-Intelligence Environment Using Em-
bedded Agents, 2004.

[16] E. Heierman and D. J. Cook. Improving Home Automa-
tion by Discovering Regularly Occurring Device Usage
Patterns. In Proceedings of the International Conference
on Data Mining, pages 537–540, 2003.

[17] E. O. Heierman. Using Information-theoretic Principles
to Discover Interesting Episodes in a Time-ordered Input
Sequence. PhD thesis, The University of Texas at Arling-
ton, 2004.

[18] The Gator Tech Smart House: A Programmable Pervasive
Space, March 2005.

[19] IETF Zeroconf Working Group. Zero Configuration Net-
working, 2005. Website: www.zeroconf.org.

[20] IIEG. Welcome to IIEG, 2005. Website: cswww.
essex.ac.uk/intelligent-buildings.

[21] INRIA. PRIMA Project, 2005. Website: www.inria.
fr/recherche/equipes_ur/prima.en.html.

[22] Intel Corporation. Digital Home Technologies for Ag-
ing in Place, 2005. Website: www.intel.com/
research/exploratory/digital_home.htm.

[23] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Plan-
ning and Acting in Partially Observable Stochastic Do-
mains. Technical Report CS-96-08, Brown University,
Providence, RI, 1996.

[24] MARC. Smart In-Home Monitoring System, 2005.
Website: marc.med.virginia.edu/projects_
smarthomemonitor.html.

[25] Microsoft Research Vision Group. Easy Living,
Oct 2003. Website: research.microsoft.com/
easyliving.

[26] H. H. R. G. MIT Dept of Architecture House n Research
Group. MIT House n, 2005. Website: architecture.
mit.edu/house_n.

[27] MIT Media Lab. MIT Media Lab: Projects List
Database, Oct 2003. Website: www.media.mit.edu/
research/index.html.

[28] M. Mozer. The adaptive house. Website: www.cs.
colorado.edu/˜mozer/house.

[29] M. Mozer. An Intelligent Environment must be Adap-
tive. IEEE Intelligent Systems, 14(2):11–13, March/April
1999.

[30] M. C. Mozer. Smart Environments: Technology, Proto-
cols, and Applications, chapter Lessons from an Adaptive
House, pages 273–294. J. Wiley & Sons, Hoboken, NJ,
2004.

[31] NiCT. The Ubiquitous Home, 2005. Website: www2.
nict.go.jp/jt/a135/eng.

[32] K. E. Peterson. Home Sweet Ambient Home, from
Philips, 2002. Website: www.10meters.com/
homelab1.html.

[33] J. Rissanen. Stochastic Complexity in Statistical inquiry.
World Scientific Publishing Company, 1989.

[34] S. J. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, Upper Saddle River, NJ,
1995.

[35] Siemens. Smart Homes, 2005. Website:
www.siemens-industry.co.uk/main/
business\%20groups/et/smart\%20homes.

[36] Stanford Interactivity Lab. Interactive Workspaces, Oct
2003. Website: iwork.stanford.edu.

[37] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, Massachusetts,
1998.

[38] G. Theocharous, K. Rohanimanesh, and S. Mahadevan.
Learning Hierarchical Partially Observable Markov Deci-
sion Processes for Robot Navigation, 2001. IEEE Confer-
ence on Robotics and Automation.

[39] UIUC Software Research Group. Gaia homepage, 2005.
Website: gaia.cs.uiuc.edu.

[40] C. A. York. IBM’s advanced PvC technology
laboratory, Oct 2003. Website:www-106.ibm.
com/developerworks/wireless/library/
wi-pvc.

