
Seamlessly Engineering a Smart Environment ∗

Michael Youngblood, Diane J. Cook, Lawrence B. Holder
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX 76019

{youngbld,cook,holder}@cse.uta.edu

Abstract

Developing technologies and systems for automated
control of home and workplace environments is a
challenging problem. We present a complete agent
architecture for learning to automate a smart en-
vironment and discuss integration of AI and mid-
dleware technologies necessary to achieve the goals
of this project. Results are demonstrated using the
MavPad and MavLab intelligent environments.

1 Introduction

Since the beginning, people have lived in places that
provide shelter and basic comfort and support, but
as society and technology advance there is a growing
interest in improving the intelligence of the environ-
ments in which we live and work. The MavHome
Project (Managing and Adaptive Versatile Home) is
focused on providing such an environment. We define
a smart environment as one that is able to acquire
and apply knowledge about the environment and its
inhabitants in order to improve their experience in
that environment. We take the viewpoint of treating
an environment as an intelligent agent [1], which per-
ceives the state of the environment using sensors and
acts upon the environment using device controllers.
The MavHome project goal is to develop and inte-
grate components that will enable these intelligent
environments to maximize the comfort of the inhab-
itants, minimize the consumption of resources, and
maintain safety and security of the environment and
its inhabitants.

Our work goes beyond just home and office en-
vironments to encompass all environments in which
sensors can perceive the state of the environment,
the system can reason about those observations, and
actions can be taken to automate features of that en-

∗This work is supported by National Science Foundation
grants MRI-0115885 and IIS-0121297.

vironment. We conduct research in the MavLab, our
workplace automated environment at UTA, and in
an on-campus apartment called the MavPad which
hosts a full-time student resident.

There are many intelligent environment projects
producing valuable research with similar goals to our
own. The Georgia Tech Aware Home is working
on aspects of inhabitant localization, context-aware
computing, and many HCI applications [5]. In a
conference room setting, the Interactive Workspaces
Project is exploring work collaboration technologies
in technology-rich environments [2].

In a project similar to ours, the Adaptive Home at
UC-Boulder utilizes a neural network to control the
lighting, HVAC, and water temperature in a manner
that minimizes operating cost [6]. The field of intel-
ligent environment research has many niches. The
MavHome Project is unique in that it focuses on the
entire environment management and not just a sin-
gle area of control, it strengthens AI techniques by
using them in combination (e.g., data mining results
improve prediction and automation), and is designed
for long term usage and growth with the inhabitants.

Work in intelligent environments is an important
step in the forward progress of technology. As com-
puting becomes more pervasive and people’s lives
become busier, advances in intelligent environments
can aid by automating the simple things (e.g., light-
ing and HVAC control), work to actively conserve
resources (reducing cost), and improve safety and
security. Environments that sense their own well-
being and can request repair or notify inhabitants
of emergencies can save property and lives. Homes
that can increase their own self-sufficiency over time
can augment busy or aging inhabitants. This in turn
will allow people to live in their homes longer and
free time to allow people to focus on other aspects of
their lives.



Figure 1: MavHome concrete architecture.

2 Software Architecture

The MavHome architecture is designed of modular
components and open source software. Modularity
is chosen over a monolithic system to promote ease
of maintenance and replacement. The architecture
is designed to allow components to be swappable, in
order to create a robust and adaptive system.

The MavHome architecture shown in Figure 1 con-
sists of cooperating layers. Perception is a bottom-
up process. Sensors monitor the environment using
physical components (e.g., sensors) and make infor-
mation available through the interface layers. The
database stores this information while other infor-
mation components process the raw information into
more useful knowledge (e.g., patterns, predictions).
New information is presented to the decision making
applications (top layer) upon request or by prior ar-
rangement. Action execution flows top-down. The
decision action is communicated to the services layer
which records the action and communicates it to the
physical components. The physical layer performs
the action using powerline control, and other auto-

mated hardware, thus changing the state of the world
and triggering a new perception.

All of the MavHome components are implemented
and are being tested in two physical environments,
the MavLab working environment and MavPad home
environment. Powerline control automates all lights
and appliances, as well as HVAC, fans, and minib-
linds. Perception of light, humidity, temperature,
smoke, gas, motion, and switch settings is performed
through a sensor network developed in-house.

Communication between high-level components is
performed using CORBA, and each component reg-
isters its presence using zero configuration (Zero-
Conf) technologies [4]. Implemented services in-
clude a PostgreSQL database that stores sensor read-
ings, prediction and data mining software, and logi-
cal proxy aggregators. Resource utilization services
monitor current utility consumption rates and pro-
vide usage estimates and consumption queries.

3 Learning to Automate the
Smart Environment

To automate the environment, we collect observa-
tions of manual inhabitant activities and interactions
with the environment. We then mine sequential pat-
terns from this data using a sequence mining algo-
rithm. Next, we predict the inhabitant’s upcoming
actions using observed historical data. Finally, a hi-
erarchical Markov model is created using low-level
state information and high-level sequential patterns,
and is used to learn an action policy for the environ-
ment. Figure 2 shows how these components work
together to improve the overall performance of the
smart environment.

3.1 Mining Patterns Using ED

Our data mining algorithm, ED, is based on the
idea of mining sequential patterns from time-ordered
transactions. Typically, each inhabitant-home inter-
action event is characterized as a triple consisting
of the device manipulated, the resulting change that
occurred in that device, and the time of interaction.
We move a window in a single pass through the
history of events or inhabitant actions, looking for
episodes (sequences) within the window that merit
attention. The input sequence is partitioned into
candidate episodes by moving a fixed-sized window
over the input sequence and collecting episode de-
scriptions as well as frequency information for each
candidate. Candidate episodes are evaluated and
the episodes with values above a minimum accept-



Figure 2: Integration of AI techniques into MavHome architecture.

able compression amount are reported. The window
size is determined automatically according to the size
that achieves the best compression performance over
a sample of the input data.

To evaluate candidate episodes, ED uses the Min-
imum Description Length principle. The MDL prin-
ciple targets patterns that can be used to minimize
the description length of a database by replacing each
instance of the pattern with a pointer to the pat-
tern definition. Our MDL-based evaluation measure
thus identifies patterns that balance frequency and
length. Periodicity (daily, every other day, weekly
occurrence) of episodes is detected using autocorre-
lation and included in the episode description. If the
instances of a pattern are highly periodic (occur at
predictable intervals), the exact timings do not need
to be encoded and the resulting pattern yields even
greater compression value.

In this way, ED identifies patterns of events that
can be used to better understand the nature of inhab-
itant activity in the environment. As the following
sections show, the results can also be used to enhance
performance of predictors and decision makers that
automate the environment.

3.2 Predicting Activities Using ALZ

To predict inhabitant activities, we borrow ideas
from text compression, in this case the LZ78 com-
pression algorithm [9]. By predicting inhabitant ac-
tions, the home can automate or improve upon antic-

ipated events that inhabitants would normally per-
form in the home. Well-investigated text compres-
sion methods have established that good compression
algorithms also make good predictors. According to
information theory, a predictor with an order (size
of history used) that grows at a rate approximating
the entropy rate of the source is an optimal predic-
tor. LZ78 incrementally parses the input sequence
into phrases and stores them in a trie.

In our work, the input sequence consists of ob-
served inhabitant actions. Our Active LeZi (ALZ)
algorithm [3] enhances the LZ78 algorithm by re-
capturing information lost across phrase boundaries.
Frequency of symbols is stored along with phrase in-
formation in a trie, and information from multiple
context sizes are combined to provide the probabil-
ity for each potential symbol, or inhabitant action, as
being the next one to occur. As a result, ALZ grad-
ually changes the order of the corresponding model
that is used to predict the next symbol in the se-
quence.

In our experiments, ALZ proved to be a very accu-
rate sequential predictor. However, accuracy is fur-
ther improved when the task is restricted to only per-
form predictions when the current activity is part of
a sequential pattern identified by ED. These patterns
are more regular and predictable. Using one month
of MavLab data collected with 6 student inhabitants,
ALZ performance increased 14% when enhanced by
ED mined results.



3.3 Decision Making Using ProPHeT

Work in decision-making under uncertainty has pop-
ularized the use of Partially Observable Markov De-
cision Processes. Recently, there have been many
published hierarchical extensions that allow for the
partitioning of large domains into a tree of man-
ageable POMDPs [7, 8]. Although the Hierarchical
POMDP is appropriate for an intelligent environ-
ment domain, current approaches generally require
a priori construction of the HPOMDP. Given the
large size of our domain, we need to seed our model
with structure automatically derived from observed
inhabitant activity data.

Unlike other approaches to creating a hierarchi-
cal model, our decision learner, ProPHeT, actually
automates model creation by using the ED-mined se-
quences to represent the abstract nodes in the higher
levels of the hierarchy. Lowest-level nodes corre-
spond to an environment state representation to-
gether with an ALZ-supplied prediction of the next
inhabitant action. To learn an automation strategy,
the agent explores the effects of its decisions over
time and uses this experience within a temporal-
difference reinforcement learning framework to form
control policies which optimize the expected future
reward. The current version of MavHome receives
negative reinforcement when the inhabitant immedi-
ately reverses an automation decision (e.g., turns the
light back off) or an automation decision contradicts
Arbiter-supplied safety and comfort constraints.

Before an action is executed it is checked against
the policies in the policy engine, Arbiter. These
policies contain designed safety and security knowl-
edge and inhabitant standing rules. Through the
policy engine the system is prevented from engaging
in erroneous actions that may perform actions such
as turning the heater to 120oF or from violating the
inhabitant’s stated wishes (e.g., a standing rule to
never turn off the inhabitant’s night light).

The vertical transition vector values between lay-
ers of the hierarchical POMDP are assigned us-
ing episode occurrence information supplied by ED.
Horizontal transition matrix data between abstract
nodes on the same level is captured by repeating the
episode discovery process on the discovered episodes
on each level in order to learn the abstractions of the
next higher level. This can be repeated until no ab-
stractions for a level are found, in which case this is
the root level. Each abstract state is partially rep-
resented by the observation sequences it contains in
its child nodes. Due to overlap in these observation
sequences between parent abstract nodes, abstract
nodes can be grouped into hierarchies. After this

Figure 3: Hierarchical model built from MavHome
data.

process a n-tier hierarchical model is automatically
created from learned data. An example hierarchical
model constructed from MavHome test data is shown
on the left in Figure 3.

4 Methods for Evaluation

MavHome systems have the goal of maximizing the
comfort of the inhabitants, minimizing the consump-
tion of resources, and maintaining safety and secu-
rity. We have established metrics to measure the
accomplishment of these goals. Inhabitant comfort
is measured by the number of inhabitant interactions
performed with devices that can be automated. The
system should continually strive to reduce the num-
ber of inhabitant-initiated interactions. Resource
consumption is measured by the utility metering of
the environment. The utility consumption should de-
crease if the system is properly minimizing resource
consumption. Safety and security are measured by
the number of safety interventions from the policy
engine. The system should minimize the number of
policy engine interventions.

All of the algorithms described here are imple-
mented in MavHome and are being used to automate
two environments, shown in Figure 4. The MavLab
environment contains work areas, cubicles, a break



Figure 4: The MavLab (left) and MavPad (right)
environments.

area, a lounge, and a conference room. MavLab is
automated using 54 X-10 controllers and the cur-
rent state is determined using light, temperature,
humidity, motion, and door/seat status sensors. The
MavPad is an on-campus apartment hosting a full-
time student occupant. MavPad is automated us-
ing 25 controllers and provides sensing for light,
temperature, humidity, leak detection, vent posi-
tion, smoke detection, CO detection, motion, and
door/window/seat status sensors.

A ResiSim 3D simulator has been developed that
simulates the environment layout and inhabitant ac-
tivities. Many current paradigms do not lend them-
selves to simulation of dynamic physical environ-
ments. Changes in environments are usually pre-
planned. For our research, a simulator is useful be-
cause data can be generated from the simulator and
used to build models for automation. Similarly, col-
lected real data can be visualized in the simulator
and potential automation strategies can be viewed
and evaluated.

We simulate our environments as a discrete event
simulation with dozens of objects. Each object
should be a self-contained, accurate simulation of the
item it represents and be seamlessly replaceable by
the actual object, bridging the gap between reality
and virtual reality. As in the real-world environment,
objects can be introduced or removed at any time.

Using ResiSim, representative inhabitant scenar-
ios can be created and tested for automation perfor-
mance in order to improve the underlying MavHome
algorithms. The interface to the simulator is iden-
tical to the physical environment, so that either en-
vironment can be controlled by the learning algo-
rithms. Figure 5 shows a ResiSim version of MavLab,
and Figure 6 shows a ResiSim simulation of MavPad.
Each simulation object is modeled as a ZeroConf en-
tity. As a result, objects can notify the simulator
of changes in their status without interrupting the
execution flow.

Figure 5: MavLab composed of zeroconf objects.

Figure 6: MavPab composed of zeroconf objects.

ResiSim consists of three main parts: logical proxy
objects, core simulation objects, and user interface
objects. The logical proxies represent a physical ob-
ject in the real world (e.g., lamp or chair). The core
simulation objects include zeroconf-enabled virtual
inhabitant dynamic objects, simulation objects, in-
terface objects, and an observation object. A user
interface object provides an interactive environment
to the user as seen in Figures 5 and 6. The inter-
face can communicate with the ResiSim server over
the Internet, which requires minimal configuration
to locate the server.

5 Results from Case Study

As an illustration of these techniques, we have eval-
uated a week in an inhabitant’s life with the goal
of reducing the manual interactions in the MavLab.
The data was generated from a virtual inhabitant
based on captured data from the MavLab and was
restricted to just motion and lighting interactions
which account for an average of 1400 events per day.
We trained ALZ and ED on real data and then re-
peated a typical week in our ResiSim simulator to
determine if the system could automate the lights
throughout the day in real-time.



Figure 7: Interaction reduction.

ALZ processed the data and converged to 99.99%
accuracy after 10 iterations through the training
data, and accuracy was 54% on test data. When
automation decisions were made using ALZ alone,
interactions were reduced by 9.7% on average. Next,
ED processed the data and found 3 episodes to use
as abstract nodes in the HPOMDP. The hierarchical
Markov model with no abstract nodes reduced in-
teractions by 38.3%, and the combined-learning sys-
tem (ProPHeT bootstrapped using ED and ALZ)
was able to reduce interactions by 76%, as shown
in Figure 7.

Experimentation in the MavPad using real inhab-
itant data has yielded similar results. In this case,
ALZ alone reduced interactions from 18 to 17 events,
the HPOMDP with no abstract nodes reduced in-
teractions by 33.3% to 12 events, while the boot-
strapped HPOMDP reduced interactions by 72.2%
to 5 events.

The additional abstractions in the hierarchy cou-
pled with a next state produced by ALZ and a prob-
ability of membership from ED to provide input to
the belief state create a system that improves au-
tomation performance over a flat model or prediction
alone. Problems in the automation decisions appear
around interactions that occur within a short time-
frame and are currently under investigation.

6 Conclusions

In this research we have shown that with careful sys-
tems engineering, AI algorithms can work together

to accomplish a large task such as automating an
intelligent environment. We are currently enhanc-
ing our work to adapt to multiple inhabitants and
accommodate a greater range of environments and
automation tasks.

References

[1] S K Das, D J Cook, A Bhattacharya, E O Heier-
man, and T-Y Lin. The role of prediction al-
gorithms in the mavhome smart home architec-
ture. IEEE Wireless Communications, 9(6):77–
84, 2002.

[2] Armando Fox, Brad Johanson, Pat Hanrahan,
and Terry Winograd. Integrating information ap-
pliances into an interactive space. IEEE Com-
puter Graphics and Applications, 20(3):54–65,
2000.

[3] K Gopalratnam and D J Cook. Online sequential
prediction via incremental parsing: The Active
LeZi algorithm. IEEE Intelligent Systems, 2005.

[4] IETF Zeroconf Working Group. Zero configura-
tion networking, 2005. http://www.zeroconf.org.

[5] Cory D Kidd, Robert J Orr, Gregory D Abowd,
Christopher G Atkeson, Irfan A Essa, Blair Mac-
Intyre, Elizabeth Mynatt, Thad E Starner, and
Wendy Newstetter. The aware home: A living
laboratory for ubiquitous computing research. In
Proceedings of the Second International Work-
shop on Cooperative Buildings, 1999.

[6] Michael Mozer. An intelligent environment must
be adaptive. IEEE Intelligent Systems and their
Applications, 14(2):11–13, 1999.

[7] J. Pineau, N. Roy, and S. Thrun. A Hierarchical
Approach to POMDP Planning and Execution,
2001. Workshop on Hierarchy and Memory in
Reinforcement Learning (ICML).

[8] G. Theocharous, K. Rohanimanesh, and S. Ma-
hadevan. Learning Hierarchical Partially Observ-
able Markov Decision Processes for Robot Navi-
gation, 2001. IEEE Conference on Robotics and
Automation.

[9] J Ziv and A Lempel. Compression of individual
sequences via variable rate coding. IEEE Trans-
actions on Information Theory, IT-24:530–536,
1978.


