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ABSTRACT 
Frequent subgraph mining has always been an important issue in 
data mining. Several frequent graph mining methods have been 
developed for mining graph transactions. However, these methods 
become less usable when the dataset is a single large graph. Also, 
when the graph is too large to fit in main memory, alternative 
techniques are necessary to efficiently find frequent subgraphs. 
We investigate the task of frequent subgraph mining on a single 
large graph using sampling approaches and find that sampling is a 
feasible approach for this task. We evaluate different sampling 
methods and provide a novel sampling method called 'random 
areas selection sampling', which produces better results than all 
the current graph sampling approaches with customized 
parameters.  

Categories and Subject Descriptors 
G.2.2 [Graph Theory]: Graph Algorithms, Sampling Algorithms 

General Terms 
Theory, Experimentation, Performance 

Keywords 
Graph Mining, Sampling, Large Graph. 

1. INTRODUCTION 
Frequent pattern mining has attracted a lot of research in recent 
years. Many efficient algorithms have been developed for mining 
frequent itemsets [3, 6, 26, 37], sequential patterns [1, 29], and 
trees [33, 38]. However, we may be required to find more 
complicated structures like graphs in some applications. Most 
works being done on frequent subgraph mining are focused on 
graph transactions. Examples include gSpan [35], FSG [22].  
FFSM [8], MolFea [21], MoSS [5] and Gaston [27]. Holder et al. 
proposed SUBDUE [12] to discover the best compressing 
structures. Inokuchi et al. [14] proposed an Apriori based 
algorithm to discover all frequent substructures. Coatney et al. [7] 
developed MotifMiner to discover common substructures in 
Biochemical Molecules. Cong et al. [8] applied frequent 
substructures discovery in Hierarchical semi-structured data. 
Bordino et al. introduced large networks mining with subgraph 
counting in [4]. In many applications, we need to find frequent 
subgraphs in a single large graph, for instance, discovering 
structural regularities or anomalies  in social network or web 
structures, which are single graphs and we do not want to split 
them into parts. However, the algorithms for mining graph 
transactions cannot be directly used to mine in a single graph even 
though finding frequent subgraphs in a single graph is more 

general and applicable [23].  Jiang et al. in [18] try to find 
globally frequent subgraphs on a single labeled graph. The 
method that they use is to split the single graph into a set of 
smaller graphs, and then perform frequent subgraph mining on the 
smaller graphs. As a result, they are still doing traditional frequent 
subgraph mining on graph transactions. One drawback of their 
approach is that they only count once even if more than one 
instance exists in one smaller graph. Therefore their algorithm 
will miss some true frequent subgraphs that have many instances 
in one smaller graph.  

One fundamental difficulty in frequent subgraph mining on a 
single large graph is the size of the graph. Sometimes, the size of 
a graph can be too large to load into the memory. As a result, can 
we just use a sample of the single large graph and then perform 
frequent subgraph mining on the sample graph? Sampling on 
graphs has been used for some tasks, but not subgraph mining. 
Leskovec and Faloutsos compared different sampling methods for 
a single large graph in [25]. They compared the properties of the 
sample graphs with the original large graph, such as the degree 
distribution. Jensen et al. analyzed correlation and sampling in 
relational datasets in [16]. Kashtan et al. proposed an efficient 
sampling method for estimating subgraph concentration and 
detecting network motifs in [19]. Kivinen discussed the power of 
sampling in knowledge discovery in [20]. Lee et al. [24] gave a 
case in the maintenance of discovered association rules to 
illustrate the usefulness of sampling in data mining. Toivonen [31] 
investigated sampling approaches in large datasets for association 
rules. Zaki [36] evaluated sampling techniques for association 
rules discovery. However, none of the previous work on graph 
sampling is related with subgraph mining. 

In order to evaluate different sampling approaches, we perform 
frequent subgraph mining on both the sample graphs and the 
original large graph, and then compare the results between them. 
Based on the results, we evaluate the accuracies of different 
sampling approaches. Beyond that, we also developed a novel 
sampling method called ‘random areas selection’, which is found 
to have the highest accuracy among all the current graph sampling 
methods. We will give more detail on these sampling approaches 
later. Our main contributions in this paper are as follows: 

1. We initiate the work of frequent subgraph mining on a 
single large graph using sampling approaches. 

2. We compare different sampling approaches for 
frequent subgraph mining on a single large graph. 

3. We develop a novel sampling approach for frequent 
subgraph mining, which is currently the overall best 
sampling method for the task. 
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4. We perform frequent subgraph mining in several 
domains datasets: Citation Graph, Amazon Graph, and 
WWW Graph; which are all exceedingly large single 
graphs.  

The rest of the paper is organized as follows. Section 2 describes 
our formulation of the problem of frequent subgraph mining on a 
single large graph. Section 3 discusses different sampling 
approaches for single large graphs and provides more detail on the 
‘random areas selection’ sampling approach. Section 4 describes 
the experimental evaluation on the Citation Graph, Amazon 
Graph and WWW Graph. Section 5 presents conclusions and 
future work.  

2. PROBLEM DEFINITION 
In this paper, we use labeled graphs. To make the description of 
this paper clearer, we give the following definitions. 

DEFINITION 1: Labeled Graph: A labeled graph can be 
represented by a 4-tuple, G = (V, E, L, l), where   

V is a set of vertices (or nodes) 

E ⊆ V × V is a set of edges, they can be directed or undirected 

L is a set of labels 

l: V ∪ E → L, l is a function assigning labels to the vertices and the 
edges 

There can be multiple edges between two vertices, however no 
self-edge is allowed in our experiment. 

2.1 How to define the support of a subgraph 
A fundamental issue that needs to be addressed for subgraph 
mining is the counting method used for occurrence frequency. 
When the input is a database of graphs, the support (or frequency) 
of a subgraph is the number of graphs in the given database that 
contain the subgraph. However, if the input is a single labeled 
graph, the definition needs to be changed. In general, there are 
two possible counting methods. In the first method, two 
occurrences are different as long as they have at least one 
different edge. Therefore, overlaps of occurrences of the same 
subgraphs are allowed. In the second method, two occurrences are 
considered different if they do not share any edges, which means 
that no overlap is allowed. However, sharing nodes is allowed. 
This is illustrated in figure 1. If we allow overlaps, s1 and s2 can 
be counted as two occurrences of the same subgraph, while s1 and 
s2 can be counted as only one occurrence if we do not allow 
overlaps. 
 
 
The above two ways of counting frequency methods make the 
mining problem with dramatically different characteristics. If we 
are using methods one that allows overlaps, the downward closure 
property that is extensively used to prune the search space in 
frequent subgraph mining is not applicable on a single graph any 
more. For example, given the two subgraphs s1 and s2 in figure 2, 
while s2 is a super set of s1 (s1 ⊆ s2), s2 has a higher frequency 
than that of s1 in the input graph G. This indicates that the 
downward closure property no longer exists. As a result, the  
Figure 1: Two overlapping instances of the subgraph B-A-B. 

One important property for frequent subgraph mining is the 
downward closure property, which is extensively used to prune 
the search space. If we use the first method for support definition, 
the downward closure property no longer holds. For example, in 
figure 2, while s2 is a super graph of s1 (s1 ⊆ s2), s2 has a higher 
frequency than that of s1 in the input graph G. Therefore, a 
subgraph mining algorithm cannot utilize this property to prune 
the search space, and it needs to search the whole candidate space 
to find all the frequent subgraphs. This makes the discovery 
process extremely time consuming.  On the other hand, if we are 
using the second method that does not allow overlaps, then the 
frequency counting is downward closed, and we can use this 
property to prune candidate space. There is another definition of 
support proposed by M. Fiedler and C. Borgelt in [10], in which 
the definition can maintain the downward closure property while 
still allowing some kinds of overlaps. However, their definition 
for support only counts once if two subgraphs are extended from 
the same ancestor, which in some cases we need to count it as 
twice. 

Figure 2: Scenario in which s1 is more frequent without 
overlap, but s2 is more frequent with overlap. 

In order to utilize the downward closure property for the mining 
process, we adopt the second method for frequency counting in 
this paper. Given this definition, we formulate the frequent 
subgraph mining problem as follows:       
DEFINITION 2: Graph Isomorphism:  An isomorphism is a 
bijective function f: V(G) → V(G′), such that  
∀ u ∈ V(G), lG(u) = lG′(f(u)) 

∀ (u, v) ∈ E(G), �f(u), f(v)� ∈ E(G′) and 
lG(u, v) = lG′(𝑓(𝑢), 𝑓(𝑣)) 

There is a subgraph isomorphism from G to 𝐺′ if there is a 
subgraph of 𝐺′  that is isomorphic to G. 

DEFINITION 3: Frequent Subgraph Mining on a Single Large 
Graph: Given a graph G, and a minimum support minSup, let 
σ(g, G) denote the occurrence frequency of g in G, i.e, the number 
of non-overlapping subgraph isomorphisms of g in G. Frequent 
subgraph mining on a single large graph is to find every subgraph 
g of G, such that σ(g, G) is greater than or equal to minSup. 

DEFINITION 4: Induced Subgraph: A subgraph g is said 
to be an induced subgraph of G if, for any pair of vertices 
vi  and vj of g, vivj is an edge of g if and only if vivj is an 
edge of G. 

This definition will be used in random nodes sampling. The 
sample graph is the induced graph from the sample nodes. 
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DEFINITION 5: Sample:  Given a labeled graph G = (V, 
E, L, l), a graph S = (V′, E′, L′, l′) is a sample from G, where 

V′ ⊆ V, E′ ⊆ E, L′ ⊆ L and l′ ⊆  l. 

One sample of a big graph is different from one subgraph of a big 
graph. One sample of a big graph is a representative of the big 
graph and it can be disconnected, while one subgraph of a big 
graph is not necessarily a representative of a big graph and is 
typically connected. 

3. DIFFERENT SAMPLING METHODS 
In graph sampling, given a large target graph, our task is to extract 
a smaller graph possessing certain properties of interest that are 
representative of the target graph. Traditional techniques for 
evaluating a sampling method compare global metrics of the 
sample to the same global metrics of the target graph (e.g., 
average degree). In contrast we are interested in comparing the 
frequent subgraphs found in the sample graph to those found in 
the target graph.  
We investigate four different sampling methods for the frequent 
subgraph mining task: random nodes selection sampling, random 
edges selection sampling, random walk sampling, and random 
areas selection sampling. Pseudo code for each approach is given 
with their descriptions. We evaluate these sampling algorithms 
using three real world datasets. Descriptions of the datasets will 
be given later. We will see in section 4 that random areas 
selection sampling produces the overall best performance. 

3.1 Random Nodes Selection Sampling 
One way to create a sample graph is to randomly select a set of 
nodes N with uniform probabilities, and then the sample graph is 
the subgraph induced by the nodes in N. We call this sampling 
method random nodes selection sampling. Algorithm 1 shows the 
pseudocode for this sampling method. 

Algorithm 1: Random nodes selection sampling 

Input: Graph G, sample size S (number of nodes) 
SG: Sample graph 
N: number of nodes currently in SG 
V(G) : All of the vertices in G 
SG = {} 
N = 0 
While (N < S) 

Randomly select one vertex n from V(G) 
If (n is not in SG) 

Insert n to SG 
N = N + 1 

For each pair of nodes (u, v) in SG 
If (there is an edge between u and v in G ) 

Add an edge for these two vertices in SG 
Return SG 
 

Stumpf et al. in [30] showed that the random nodes selection 
sampling approach does not preserve the power law distribution 
property. Leskovec et al. in [25] investigated the degree 
distribution of sample graphs using random nodes selection 
sampling. They showed that the random nodes selection sampling 
method is good at preserving degree distributions. Here we are 
interested in whether the frequent subgraphs in the target graph 
are still frequent in the sample graph. One variant to the random 

nodes selection sampling method is to use a non-uniform 
probability distribution over the nodes in the target graph. A 
common way for doing this is to set the probability of a node 
being selected for the sample graph to be proportional to its 
degree [25].  This method prefers high degree nodes, and hence 
produces too dense graphs.  

3.2 Random Edges Selection Sampling 
Random edges selection sampling randomly selects a set of edges 
from the target graph according to a uniform probability 
distribution over the edges. The sample graph consists of the set 
of edges and the vertices incident to these edges. Algorithm 2 
shows the pseudocode for this sampling method. 

Algorithm 2: Random edges selection sampling 

Input: graph G, sample size S (number of edges) 
SG: Sample graph 
N: number of edges currently in SG 
E(G): All of the edges in G 
SG = {} 
N = 0 
While (N < S) 

Randomly select one edge e from E(G) 
If (e is not in SG) 

Insert e into SG 
N = N + 1 

Return SG 

 

There are some problems with this algorithm. First, the sampled 
graph may be sparsely connected (even disconnected) and will 
have large diameters. Therefore it is not good at finding small 
diameter subgraphs. Second, this sampling method is not good at 
preserving structure information. This is shown in the experiments 
that the sampled graphs are not preserving frequent subgraphs. A 
variation of this approach is the following. First, randomly pick a 
node with uniform probability, and then randomly pick an edge 
incident to that node with uniform probability. This method can 
avoid generating sparse graphs; however it is biased to high 
degree nodes because they have more edges connecting to them.  

3.3 Random Walk Sampling 
For random walk sampling, given the number of nodes S to be in 
the sample graph, we first randomly pick a starting node and then 
perform a random walk on the graph. At every step, we randomly 
choose one node adjacent to the previously chosen node. To avoid 
selecting duplicate nodes, we do not allow returning to the most 
recent previous node. If the process gets stuck during the walking 
process, we randomly select another starting node which is 
different from the current set of selected nodes. Continuing from 
the new starting node, we perform random walk again until the 
number of nodes reaches sample size S. The sample graph is the 
induced subgraph from the set of sampled nodes. For a highly-
connected graph, this method will likely produce a small number 
of disconnected graphs, which will put it at a disadvantage for 
frequent subgraph mining if the subgraph size is large. Algorithm 
3 shows the pseudocode for this sampling method. 
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Algorithm 3: Random walk sampling 

Input: graph G, sample size S 
SG: Sample graph 
N: number of nodes currently in SG 
N = 1 
SG = {v | v is a random vertex from G} 
While (N < S) 

Neighbors = vertices adjacent to v not in SG 
If (Neighbors empty) 

v=random vertex from G 
Else 

v=random selected vertex from Neighbors 
If v not in SG 

Add v to SG 
N = N +1 

For each pair of nodes (u, v) in SG 
If (there is an edge between u and v in G) 

Add an edge for these two vertices into SG 
Return SG 

 
 

3.4 Random Areas Selection Sampling 
Unlike all of the above sampling approaches that select one node 
(one edge) at a time, the random areas selection sampling method 
picks one area of the graph each time. Given a sample size S, N is 
the set of nodes in the sample and A is the number of areas in the 
sample. Initially, N is empty. We first randomly select A starting 
nodes and add them to N. Then we find all the nodes in G 
adjacent to nodes in N and add them into N. We repeat this 
process until the sample size reaches S. Algorithm 4 shows the 
pseudocode for this sampling method. 

 

Algorithm 4: Random areas selection sampling 

Input: graph G, sample size S, number of areas A 
SG: Sample graph 
N: Number of nodes currently in SG 
VS: set of nodes currently in SG 
SG = {} 
VS = {} 
Randomly select unique nodes n0,n1 … nN as the starting nodes 
 
VS = {n0, n1 … nN} 
N= A 
While (N < S)  

Neighbors = all nodes adjacent to nodes in VS 
VS = VS + Neighbors 

    N  = N  + |Neighbors| 
SG = graph induced by VS from G 
Return SG 

Since the last set of neighbors adding to the sample is very large, 
we will stop adding nodes into the sample after N reaches the 
sample size S. Therefore it is possible that only part of the 
neighbors in the last set will be added to the sample. 

Figure 3 is an example of the random areas selection sampling 
method. Given the sample size 14 and number of areas 2, we can 
generate sampled graphs s1 and s2 in the circles. From the figure, 
we can see that the random areas selection sampling method is 
better at preserving structure information. Note that the 
performance of this method is sensitive to the number of areas. If 
the frequent subgraph sizes are small, choosing a larger number of 
areas can help to capture more frequent subgraphs in the sample 
graph. On the other hand, if the frequent subgraph sizes are 
relatively large, choosing a smaller number of areas can help to 
preserve better structure information, because each area has a 
larger size and hence more likely to contain large subgraphs. Also, 
increasing the sample size can help finding large subgraphs.  

4. EXPERIMENTAL EVALUATION 
In this section we present experimental results on three real graph 
datasets to evaluate the performance of the different sampling 
methods for the task of frequent subgraph mining on single large 
graphs.  

Figure 3: Random Areas Selection Sampling 

4.1 Datasets Description 
We experimented on three different datasets: Citation Graph, 
Amazon Transaction Graph, and WWW Graph. These datasets are 
available at www.cs.yale.edu/homes/mmahoney/NetworkData. 
We developed a frequent subgraph discovery on a single large 
graph system (FSGS) based on SUBDUE [12] for the 
experimental evaluation. We use FSGS to get the 10 most 
frequent subgraphs for each dataset. Here we choose the 10 most 
frequent subgraphs for two reasons. First, frequent subgraph 
mining on a single graph is substantially more time consuming 
than frequent subgraph mining on graph transactions. Second, the 
datasets that we are using are very large. As a result, in order to 
allow the experiments to complete in reasonable time, we choose 
the 10 most frequent subgraphs. Additionally, to make the 
frequent subgraphs that we find more applicable, we set the 
minimal size of frequent subgraphs to be 4 so that we can find 
larger frequent subgraphs. Since the original sizes for Amazon 
graph and WWW graph are extremely large, we reduced the size 
of Amazon Graph and the WWW graph in order to find the true 
frequent subgraphs in a reasonable amount of time. The method 



we use to truncate the datasets is to randomly delete some nodes 
and edges with equal probabilities in order to avoid human bias 
for the deletion process. Nonetheless, these reduced graphs are 
still very large. The only reason that we want to reduce the size of 
the graphs is to make them smaller. The reducing size process will 
not affect the performance of different sampling methods. The 
number of nodes and number edges for each dataset are given in 
Table 1. Note that all the nodes and edges have the same label in 
the three graphs (i.e., unlabeled). 

Table 1: Datasets description 
Dataset Number of Nodes Number of Edges 

Citation Graph 27400 352021 

Amazon Graph 38750 490320 
WWW Graph 39200 503208 

 
The citation graph comes from the 2003 KDD Cup. The vertices 
of the graph are different papers. The edges of the graph are the 
citation relationships between different papers. An edge will be 
added between two paper vertices if one paper cites the other 
paper. 
The Amazon graph is collected using transactions data from the 
Amazon website in 2003. The vertices represent different 
transaction parties. If one party has a transaction with another 
party, an edge is added between the two parties. 
The WWW graph comes from different web pages and the links 
between them on the internet. Each vertex represents one web 
page. The edges represent the links between different web pages. 
 

4.2 Experimental Setup 
We first run FSGS on the original three datasets to get the 10 most 
frequent subgraphs for each dataset. The frequent subgraphs that 
we get on this step are the true frequent subgraphs. Then we run 
the different sampling methods to get sampled graphs from the 
target graphs. To reduce sampling bias, we run each sampling 
algorithm N times to get N sample graphs instead of one sample 
graph for each sampling algorithm. In our experiment, we set the 
N to be 15 in order to make the experiment finish in reasonable 
time. After that, FSGS performs frequent subgraph mining on the 
sample graphs. Next we compare the frequent subgraphs from the 
sample graphs and frequent subgraphs from the original graphs. 
The next section describes our approach for comparing the sets of 
frequent subgraphs from the original and sample graphs. 

4.3 Evaluation Metric 
First, we give an example for how to evaluate different sampling 
approaches. FSGS can output the frequent subgraphs and number 
of instances for each frequent subgraph. For example, after 
performing frequent subgraph mining on the citation graph G, 
FSGS gets the 10 most frequent subgraphs 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10. 
The numbers of instances for 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10 are 𝑁1, 𝑁2, 
𝑁3 …, 𝑁10 respectively. Note that 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10 here are 
the true frequent subgraphs for the citation graph G. To get the 
sample graphs from the citation graph G, we run one of the 
sampling methods on G to get 15 different sample graphs  𝑆1, 𝑆2, 
𝑆3 …, and 𝑆15. Then we perform frequent subgraph mining on  𝑆1, 
𝑆2, 𝑆3 …, and 𝑆15 to get the 10 most frequent subgraphs and their 
corresponding numbers of instances for each of the 15 sample 

graphs. Below are the frequent subgraphs and their corresponding 
instance numbers for each sampled graph, 

 𝑆1: <𝐺𝑠11 ,𝑁𝑠11  >,< 𝐺𝑠12 ,𝑁𝑠12  > 
< 𝐺𝑠13 ,𝑁𝑠13  >,< 𝐺𝑠14 ,𝑁𝑠14  > 
< 𝐺𝑠15 ,𝑁𝑠15  >,< 𝐺𝑠16 ,𝑁𝑠16  > 
< 𝐺𝑠17 ,𝑁𝑠17  >,< 𝐺𝑠18 ,𝑁𝑠18   > 
< 𝐺𝑠19 ,𝑁𝑠19   >,< 𝐺𝑠110,𝑁𝑠110 > 

 
 𝑆2: <𝐺𝑠21 ,𝑁𝑠21  >,< 𝐺𝑠22 ,𝑁𝑠22  > 

< 𝐺𝑠23 ,𝑁𝑠23  >,< 𝐺𝑠24 ,𝑁𝑠24  > 
< 𝐺𝑠25 ,𝑁𝑠25  >,< 𝐺𝑠26 ,𝑁𝑠26  > 
< 𝐺𝑠27 ,𝑁𝑠27  >,< 𝐺𝑠28 ,𝑁𝑠28   > 
< 𝐺𝑠29 ,𝑁𝑠29   >,< 𝐺𝑠210,𝑁𝑠210 > 

... 

... 

... 
 𝑆15: <𝐺𝑠151 ,𝑁𝑠151  >,< 𝐺𝑠152 ,𝑁𝑠152  > 

< 𝐺𝑠153 ,𝑁𝑠153  >,< 𝐺𝑠154 ,𝑁𝑠154  > 
< 𝐺𝑠155 ,𝑁𝑠155  >,< 𝐺𝑠156 ,𝑁𝑠156  > 
< 𝐺𝑠157 ,𝑁𝑠157  >,< 𝐺𝑠158 ,𝑁𝑠158   > 
< 𝐺𝑠159 ,𝑁𝑠159   >,< 𝐺𝑠1510 ,𝑁𝑠1510  > 

𝐺𝑠𝑖
𝑗  is the jth most frequent subgraph in sample 𝑆𝑖 

𝑁𝑠𝑖
𝑗  is the corresponding number of instances for 𝐺𝑠𝑖

𝑗  
 
We compare, using graph isomorphism, the frequent subgraphs 𝐺1, 
𝐺2 , 𝐺3  …, and 𝐺10  from the original graph G and the frequent 
subgraphs <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 , 𝐺𝑠14 , 𝐺𝑠15 , 𝐺𝑠16 , 𝐺𝑠17 , 𝐺𝑠18 , 𝐺𝑠19 , 𝐺𝑠110>, <𝐺𝑠21 , 
𝐺𝑠22 , 𝐺𝑠23 , 𝐺𝑠24 , 𝐺𝑠25 , 𝐺𝑠26 , 𝐺𝑠27 , 𝐺𝑠28 , 𝐺𝑠29 , 𝐺𝑠210> …, and <𝐺𝑠151 , 𝐺𝑠152 , 
𝐺𝑠153 , 𝐺𝑠154 , 𝐺𝑠155 , 𝐺𝑠156 , 𝐺𝑠157 , 𝐺𝑠158 , 𝐺𝑠159 , 𝐺𝑠1510 > from the 15 
sample graphs to get the common frequent subgraphs set between 
them. For example, if <𝐺1, 𝐺3, 𝐺7 > is the same as <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 > 
between <𝐺1, 𝐺2, 𝐺3 …, and 𝐺10> and <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13  ... and 𝐺𝑠110>, 
the common frequent subgraphs set between G and S1 is <𝐺1, 𝐺3, 
𝐺7 >. 
The accuracy of the sampling method is defined as: 

Accuracy =
1
T ∗� Instances(Ci)

i=T,

i=1

/�Nk

k=F

k=1

 

This matrix is used to represent the percentage of frequent 
subgraphs in the original big graph that are also frequent in the 
small sample graph.  
T is the number of samples, i.e., how many samples we extract 
from the input graph. We set it to 15 for our experiments. 
F is the number of frequent subgraphs that we extract from each 
graph. In our experiments, we extract the 10 most frequent 
subgraphs. Nk is the number of instances of the kth frequent 
subgraph in the original graph G. 

𝐶𝑖  are the common frequent subgraphs between 𝐺𝑖 and 𝐺𝑠𝑖
𝑗 . For 

example, if <𝐺1, 𝐺2, 𝐺4, 𝐺5, 𝐺7, 𝐺8, 𝐺10> exist in both <𝐺1, 𝐺2, 
𝐺3, 𝐺4, 𝐺5, 𝐺6, 𝐺7, 𝐺8, 𝐺9, 𝐺10> and <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 , 𝐺𝑠14 , 𝐺𝑠15 , 𝐺𝑠16 , 
𝐺𝑠17 , 𝐺𝑠18 , 𝐺𝑠19 , 𝐺𝑠110>, the value of 𝐶1  is <𝐺1 , 𝐺2 , 𝐺4 , 𝐺5 , 𝐺7 , 𝐺8 , 
𝐺10>, which is the set of common subgraphs between G and 𝑆1. 



Instances (𝐶𝑖) is the sum of all the numbers of instances of graphs 
in 𝐶𝑖 in sample graph i. For example, if 𝐶1 is <𝐺1, 𝐺2, 𝐺4, 𝐺5, 𝐺7, 
𝐺8 , 𝐺10> and the corresponding numbers of instances for 𝐶1  is 
<𝑁1 , 𝑁2 , 𝑁4 , 𝑁5 , 𝑁7 , 𝑁8 , 𝑁10>, the value of Instances(𝐶𝑖 ) is 
𝑁1 + 𝑁2 + 𝑁4 + 𝑁5 + 𝑁7 + 𝑁8 + 𝑁10. 
 

4.4 Results 
We compare the accuracies of the different sampling methods 
based on the three datasets: Citation Graph, Amazon Transaction 
Graph and WWW Graph. The results are shown in figure 3, figure 
4 and figure 5. Here we vary the sample size as a percentage of 
the size of the entire graph. For the random areas selection 
sampling approach, the number of areas is set to be 10. We can 
see that the random areas selection sampling method gives the 
best overall performance for all of the three datasets.  

 
Figure 3: Citation Graph 

 

 
Figure 4: Amazon Transaction Graph 

 

 
Figure 5: WWW Graph 

 
The random nodes sampling and random edges sampling methods 
tend to find small subgraphs. The random walk sampling method 
has a strong bias toward chains. For more complex substructures, 
the random areas selection sampling method works better than all 
of the above methods. Unfortunately, we can see that the accuracy 
does not plateau before the sample size reaches the size of the 
entire original graph for all the sample methods, which indicates 
that sampling approach is not capable of finding all the true 
frequents subgraphs. One reason for this is because our evaluation 
matrix takes the sizes of subgraphs into account. Subgraphs are 
assigned more weights if their sizes are larger. Therefore, when 
the sample size is small, it is difficult to capture large size 
subgraphs and resulting in smaller evaluation matrix value. 
However, if we want an approximation of frequent subgraphs, 
sampling is still a viable method. Another way we will do in the 
future is using inexact matches and corresponding weights for 
each inexact match, which might improve the accuracy measure.  
One important property that we find for the random areas 
sampling method is that the number of areas that we choose plays 
a key role in the performance. We illustrate this property on the 
three datasets by varying the number of areas. The sample size is 
10 percent of the original graph. The results are shown in figure 6, 
figure 7 and figure 8. 

 
Figure 6: Different number of areas for Citation Graph 
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Figure 7: Different number of areas from Amazon Graph 

 

 
Figure 8: Different number of areas for WWW Graph 

 
From Figures 6, 7 and 8, we can see that there are many local 
maxima accuracy values based on different numbers of areas. 
Therefore, it is difficult to determine how many areas to choose in 
order to get a global maximum for the accuracy. Based on our 
experiments, this number is greatly dependent on the properties of 
the original large graph that we need to sample from. 

5. Boundary Analysis 
For the random areas selection sampling method, a question to ask 
is how many nodes we need to select so that we can guarantee the 
frequent subgraphs from the sample are the frequent subgraphs 
from the original graph. If we are performing frequent subgraph 
discovery on graph transactions, the sample size can be 
determined by applying Chernoff Bounds. Zaki et al. addressed 
this problem in [36]. 
Let τ  denote the support of subgraph I. We want to select n 
sample transactions out of a total of N transactions in dataset D. 
The variable X gives the number of transactions in the sample 
containing I. For any positive constant, 0 ≤  ε ≤ 1,  the Chernoff 
Bounds state that 

P(X ≤ (1 − ε)nτ) ≤  e−ε2nτ/2                                     (1) 

P(X ≥ (1 + ε)nτ) ≤ e−ϵ2nτ/3                                      (2) 

The Chernoff Bounds provide the accuracy of the sample, which 
is given by 1-ϵ. It also gives us the confidence value that the 
sample size n will have a given accuracy. Equation (1) gives the 
lower bound of the confidence value and equation (2) gives the 
upper bound of the confidence value. 
From equation (1) and (2), we can determine the sample size n for 
accuracy 1 − ε and confidence 1-c. The sample size is 
n =  −2 ln(c) /(τε2)                                                     (3) 
The above formulas are used for sampling on graph transaction. 
To apply them for random areas selection sampling on a single 
graph, we can view different areas as independent graph 
transactions since different areas are not overlapping with each 
other. As a result, we can model the problem as follows. 
Let 𝑆′ denote the size of the sample graph, and A is the number of 
areas in the sample graph, and the size for each area is 𝑆𝐴. S is the 
size of the original graph. As a result, the total number of areas in 
the original graph is /𝑆𝐴 . Let τ denote the support of subgraph I. 
We want to select A number of areas out of 𝑆𝐴/𝑆′ number of 
areas. The variable X gives the number of instances of I in the 
sample graph. For any positive constant, 0 ≤  ε ≤ 1,  the Chernoff 
Bounds state that 

P(X ≤ (1 − ε)Aτ) ≤  e−ε2Aτ/2                                    (4) 

P(X ≥ (1 + ε)Aτ) ≤ e−ϵ2Aτ/3                                     (5) 
 
From (4) and (5), we can determine the number of areas A in the 
sample graph in order to get accuracy 1 − ε and confidence 1-c.  
A =  −2 ln(c) /(τε2)                                                   (6) 
Since the size for each area is 𝑆𝐴, the size 𝑆′ of the sample graph 
is 
𝑆′ =  −2𝑆𝐴 ln(𝑐) /(τε2)                                              (7) 
 
To apply formula (7) on the citation graph, we set the size for 
each area as one percent of the original graph. Therefore, 𝑆𝐴 =
  1% ∗ 27400 = 274. Let accuracy 1 − ε = 0.9 and confidence 1-
c = 0.9, i.e., ε = 0.1 and c = 0.1. The support τ is 10.  The size 𝑆′ 
of the sample graph is 

𝑆′ =  −2 ∗ 274 ∗ ln(0.1)
10∗0.12

= 12618 

According to this analysis, the sample size should be almost half 
the size of the original graph. Clearly, our sampling scenario 
violates the assumptions underlying the Chernoff bounds, but the 
results provide an estimate of the sample size needed to guarantee 
success under the above assumptions. We will pursue a more 
appropriate bounds model in future work. 
 

6. CONCLUSION AND FUTURE WORK 
We have presented an experimental evaluation of different 
sampling approaches in order to perform efficient and accurate 
frequent subgraph mining on a single large graph. The 
experimental results indicate that the “random areas selection” 
method that we propose provides the overall best performance. 
For future work we intend to develop a more accurate framework 
for deriving a bound on the sample size of the “random areas 
selection” approach necessary to find the frequent subgraphs with 
some level of confidence. We will also work on how to 
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automatically decide the number of areas for the "random areas 
selection" sampling approach. The datasets we are using now 
contain same label information. We will run our method on 
graphs with more diversity of labels, which will likely decrease 
the running time. 
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