
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MLG’10, July 25–28, 2010 Washington, DC, USA
Copyright @2010 ACM I978-1-4503-0214-2/10/07…$10.00.

Frequent Subgraph Mining on a Single Large Graph Using
Sampling Techniques

Ruoyu Zou
Washington State University

Pullman, WA

rzou@eecs.wsu.edu

Lawrence B. Holder
Washington State University

Pullman, WA
holder@wsu.edu

ABSTRACT
Frequent subgraph mining has always been an important issue in
data mining. Several frequent graph mining methods have been
developed for mining graph transactions. However, these methods
become less usable when the dataset is a single large graph. Also,
when the graph is too large to fit in main memory, alternative
techniques are necessary to efficiently find frequent subgraphs.
We investigate the task of frequent subgraph mining on a single
large graph using sampling approaches and find that sampling is a
feasible approach for this task. We evaluate different sampling
methods and provide a novel sampling method called 'random
areas selection sampling', which produces better results than all
the current graph sampling approaches with customized
parameters.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms, Sampling Algorithms

General Terms
Theory, Experimentation, Performance

Keywords
Graph Mining, Sampling, Large Graph.

1. INTRODUCTION
Frequent pattern mining has attracted a lot of research in recent
years. Many efficient algorithms have been developed for mining
frequent itemsets [3, 6, 26, 37], sequential patterns [1, 29], and
trees [33, 38]. However, we may be required to find more
complicated structures like graphs in some applications. Most
works being done on frequent subgraph mining are focused on
graph transactions. Examples include gSpan [35], FSG [22].
FFSM [8], MolFea [21], MoSS [5] and Gaston [27]. Holder et al.
proposed SUBDUE [12] to discover the best compressing
structures. Inokuchi et al. [14] proposed an Apriori based
algorithm to discover all frequent substructures. Coatney et al. [7]
developed MotifMiner to discover common substructures in
Biochemical Molecules. Cong et al. [8] applied frequent
substructures discovery in Hierarchical semi-structured data.
Bordino et al. introduced large networks mining with subgraph
counting in [4]. In many applications, we need to find frequent
subgraphs in a single large graph, for instance, discovering
structural regularities or anomalies in social network or web
structures, which are single graphs and we do not want to split
them into parts. However, the algorithms for mining graph
transactions cannot be directly used to mine in a single graph even
though finding frequent subgraphs in a single graph is more

general and applicable [23]. Jiang et al. in [18] try to find
globally frequent subgraphs on a single labeled graph. The
method that they use is to split the single graph into a set of
smaller graphs, and then perform frequent subgraph mining on the
smaller graphs. As a result, they are still doing traditional frequent
subgraph mining on graph transactions. One drawback of their
approach is that they only count once even if more than one
instance exists in one smaller graph. Therefore their algorithm
will miss some true frequent subgraphs that have many instances
in one smaller graph.

One fundamental difficulty in frequent subgraph mining on a
single large graph is the size of the graph. Sometimes, the size of
a graph can be too large to load into the memory. As a result, can
we just use a sample of the single large graph and then perform
frequent subgraph mining on the sample graph? Sampling on
graphs has been used for some tasks, but not subgraph mining.
Leskovec and Faloutsos compared different sampling methods for
a single large graph in [25]. They compared the properties of the
sample graphs with the original large graph, such as the degree
distribution. Jensen et al. analyzed correlation and sampling in
relational datasets in [16]. Kashtan et al. proposed an efficient
sampling method for estimating subgraph concentration and
detecting network motifs in [19]. Kivinen discussed the power of
sampling in knowledge discovery in [20]. Lee et al. [24] gave a
case in the maintenance of discovered association rules to
illustrate the usefulness of sampling in data mining. Toivonen [31]
investigated sampling approaches in large datasets for association
rules. Zaki [36] evaluated sampling techniques for association
rules discovery. However, none of the previous work on graph
sampling is related with subgraph mining.

In order to evaluate different sampling approaches, we perform
frequent subgraph mining on both the sample graphs and the
original large graph, and then compare the results between them.
Based on the results, we evaluate the accuracies of different
sampling approaches. Beyond that, we also developed a novel
sampling method called ‘random areas selection’, which is found
to have the highest accuracy among all the current graph sampling
methods. We will give more detail on these sampling approaches
later. Our main contributions in this paper are as follows:

1. We initiate the work of frequent subgraph mining on a
single large graph using sampling approaches.

2. We compare different sampling approaches for
frequent subgraph mining on a single large graph.

3. We develop a novel sampling approach for frequent
subgraph mining, which is currently the overall best
sampling method for the task.

mailto:rzou@eecs.wsu.edu�
mailto:holder@wsu.edu�

 Input graph G Subgraph s1 Subgraph s2

B

B B A

B

B B

A

B B

A

B

4. We perform frequent subgraph mining in several
domains datasets: Citation Graph, Amazon Graph, and
WWW Graph; which are all exceedingly large single
graphs.

The rest of the paper is organized as follows. Section 2 describes
our formulation of the problem of frequent subgraph mining on a
single large graph. Section 3 discusses different sampling
approaches for single large graphs and provides more detail on the
‘random areas selection’ sampling approach. Section 4 describes
the experimental evaluation on the Citation Graph, Amazon
Graph and WWW Graph. Section 5 presents conclusions and
future work.

2. PROBLEM DEFINITION
In this paper, we use labeled graphs. To make the description of
this paper clearer, we give the following definitions.

DEFINITION 1: Labeled Graph: A labeled graph can be
represented by a 4-tuple, G = (V, E, L, l), where

V is a set of vertices (or nodes)

E ⊆ V × V is a set of edges, they can be directed or undirected

L is a set of labels

l: V ∪ E → L, l is a function assigning labels to the vertices and the
edges

There can be multiple edges between two vertices, however no
self-edge is allowed in our experiment.

2.1 How to define the support of a subgraph
A fundamental issue that needs to be addressed for subgraph
mining is the counting method used for occurrence frequency.
When the input is a database of graphs, the support (or frequency)
of a subgraph is the number of graphs in the given database that
contain the subgraph. However, if the input is a single labeled
graph, the definition needs to be changed. In general, there are
two possible counting methods. In the first method, two
occurrences are different as long as they have at least one
different edge. Therefore, overlaps of occurrences of the same
subgraphs are allowed. In the second method, two occurrences are
considered different if they do not share any edges, which means
that no overlap is allowed. However, sharing nodes is allowed.
This is illustrated in figure 1. If we allow overlaps, s1 and s2 can
be counted as two occurrences of the same subgraph, while s1 and
s2 can be counted as only one occurrence if we do not allow
overlaps.

The above two ways of counting frequency methods make the
mining problem with dramatically different characteristics. If we
are using methods one that allows overlaps, the downward closure
property that is extensively used to prune the search space in
frequent subgraph mining is not applicable on a single graph any
more. For example, given the two subgraphs s1 and s2 in figure 2,
while s2 is a super set of s1 (s1 ⊆ s2), s2 has a higher frequency
than that of s1 in the input graph G. This indicates that the
downward closure property no longer exists. As a result, the
Figure 1: Two overlapping instances of the subgraph B-A-B.

One important property for frequent subgraph mining is the
downward closure property, which is extensively used to prune
the search space. If we use the first method for support definition,
the downward closure property no longer holds. For example, in
figure 2, while s2 is a super graph of s1 (s1 ⊆ s2), s2 has a higher
frequency than that of s1 in the input graph G. Therefore, a
subgraph mining algorithm cannot utilize this property to prune
the search space, and it needs to search the whole candidate space
to find all the frequent subgraphs. This makes the discovery
process extremely time consuming. On the other hand, if we are
using the second method that does not allow overlaps, then the
frequency counting is downward closed, and we can use this
property to prune candidate space. There is another definition of
support proposed by M. Fiedler and C. Borgelt in [10], in which
the definition can maintain the downward closure property while
still allowing some kinds of overlaps. However, their definition
for support only counts once if two subgraphs are extended from
the same ancestor, which in some cases we need to count it as
twice.

Figure 2: Scenario in which s1 is more frequent without
overlap, but s2 is more frequent with overlap.

In order to utilize the downward closure property for the mining
process, we adopt the second method for frequency counting in
this paper. Given this definition, we formulate the frequent
subgraph mining problem as follows:
DEFINITION 2: Graph Isomorphism: An isomorphism is a
bijective function f: V(G) → V(G′), such that
∀ u ∈ V(G), lG(u) = lG′(f(u))

∀ (u, v) ∈ E(G), �f(u), f(v)� ∈ E(G′) and
lG(u, v) = lG′(𝑓(𝑢), 𝑓(𝑣))

There is a subgraph isomorphism from G to 𝐺′ if there is a
subgraph of 𝐺′ that is isomorphic to G.

DEFINITION 3: Frequent Subgraph Mining on a Single Large
Graph: Given a graph G, and a minimum support minSup, let
σ(g, G) denote the occurrence frequency of g in G, i.e, the number
of non-overlapping subgraph isomorphisms of g in G. Frequent
subgraph mining on a single large graph is to find every subgraph
g of G, such that σ(g, G) is greater than or equal to minSup.

DEFINITION 4: Induced Subgraph: A subgraph g is said
to be an induced subgraph of G if, for any pair of vertices
vi and vj of g, vivj is an edge of g if and only if vivj is an
edge of G.

This definition will be used in random nodes sampling. The
sample graph is the induced graph from the sample nodes.

 Subgraph s1 Subgraph s2

B

B B A

B

B B

B

B B A

B

B B

DEFINITION 5: Sample: Given a labeled graph G = (V,
E, L, l), a graph S = (V′, E′, L′, l′) is a sample from G, where

V′ ⊆ V, E′ ⊆ E, L′ ⊆ L and l′ ⊆ l.

One sample of a big graph is different from one subgraph of a big
graph. One sample of a big graph is a representative of the big
graph and it can be disconnected, while one subgraph of a big
graph is not necessarily a representative of a big graph and is
typically connected.

3. DIFFERENT SAMPLING METHODS
In graph sampling, given a large target graph, our task is to extract
a smaller graph possessing certain properties of interest that are
representative of the target graph. Traditional techniques for
evaluating a sampling method compare global metrics of the
sample to the same global metrics of the target graph (e.g.,
average degree). In contrast we are interested in comparing the
frequent subgraphs found in the sample graph to those found in
the target graph.
We investigate four different sampling methods for the frequent
subgraph mining task: random nodes selection sampling, random
edges selection sampling, random walk sampling, and random
areas selection sampling. Pseudo code for each approach is given
with their descriptions. We evaluate these sampling algorithms
using three real world datasets. Descriptions of the datasets will
be given later. We will see in section 4 that random areas
selection sampling produces the overall best performance.

3.1 Random Nodes Selection Sampling
One way to create a sample graph is to randomly select a set of
nodes N with uniform probabilities, and then the sample graph is
the subgraph induced by the nodes in N. We call this sampling
method random nodes selection sampling. Algorithm 1 shows the
pseudocode for this sampling method.

Algorithm 1: Random nodes selection sampling

Input: Graph G, sample size S (number of nodes)
SG: Sample graph
N: number of nodes currently in SG
V(G) : All of the vertices in G
SG = {}
N = 0
While (N < S)

Randomly select one vertex n from V(G)
If (n is not in SG)

Insert n to SG
N = N + 1

For each pair of nodes (u, v) in SG
If (there is an edge between u and v in G)

Add an edge for these two vertices in SG
Return SG

Stumpf et al. in [30] showed that the random nodes selection
sampling approach does not preserve the power law distribution
property. Leskovec et al. in [25] investigated the degree
distribution of sample graphs using random nodes selection
sampling. They showed that the random nodes selection sampling
method is good at preserving degree distributions. Here we are
interested in whether the frequent subgraphs in the target graph
are still frequent in the sample graph. One variant to the random

nodes selection sampling method is to use a non-uniform
probability distribution over the nodes in the target graph. A
common way for doing this is to set the probability of a node
being selected for the sample graph to be proportional to its
degree [25]. This method prefers high degree nodes, and hence
produces too dense graphs.

3.2 Random Edges Selection Sampling
Random edges selection sampling randomly selects a set of edges
from the target graph according to a uniform probability
distribution over the edges. The sample graph consists of the set
of edges and the vertices incident to these edges. Algorithm 2
shows the pseudocode for this sampling method.

Algorithm 2: Random edges selection sampling

Input: graph G, sample size S (number of edges)
SG: Sample graph
N: number of edges currently in SG
E(G): All of the edges in G
SG = {}
N = 0
While (N < S)

Randomly select one edge e from E(G)
If (e is not in SG)

Insert e into SG
N = N + 1

Return SG

There are some problems with this algorithm. First, the sampled
graph may be sparsely connected (even disconnected) and will
have large diameters. Therefore it is not good at finding small
diameter subgraphs. Second, this sampling method is not good at
preserving structure information. This is shown in the experiments
that the sampled graphs are not preserving frequent subgraphs. A
variation of this approach is the following. First, randomly pick a
node with uniform probability, and then randomly pick an edge
incident to that node with uniform probability. This method can
avoid generating sparse graphs; however it is biased to high
degree nodes because they have more edges connecting to them.

3.3 Random Walk Sampling
For random walk sampling, given the number of nodes S to be in
the sample graph, we first randomly pick a starting node and then
perform a random walk on the graph. At every step, we randomly
choose one node adjacent to the previously chosen node. To avoid
selecting duplicate nodes, we do not allow returning to the most
recent previous node. If the process gets stuck during the walking
process, we randomly select another starting node which is
different from the current set of selected nodes. Continuing from
the new starting node, we perform random walk again until the
number of nodes reaches sample size S. The sample graph is the
induced subgraph from the set of sampled nodes. For a highly-
connected graph, this method will likely produce a small number
of disconnected graphs, which will put it at a disadvantage for
frequent subgraph mining if the subgraph size is large. Algorithm
3 shows the pseudocode for this sampling method.

S1

Sample size: 14

Sample areas: 2 S2

Sampled graphs: S1+S2

B

B B A

B

B B

B

B B A

B

B B

A

B

B B A

B

B B

B

B B A

B

B B

Algorithm 3: Random walk sampling

Input: graph G, sample size S
SG: Sample graph
N: number of nodes currently in SG
N = 1
SG = {v | v is a random vertex from G}
While (N < S)

Neighbors = vertices adjacent to v not in SG
If (Neighbors empty)

v=random vertex from G
Else

v=random selected vertex from Neighbors
If v not in SG

Add v to SG
N = N +1

For each pair of nodes (u, v) in SG
If (there is an edge between u and v in G)

Add an edge for these two vertices into SG
Return SG

3.4 Random Areas Selection Sampling
Unlike all of the above sampling approaches that select one node
(one edge) at a time, the random areas selection sampling method
picks one area of the graph each time. Given a sample size S, N is
the set of nodes in the sample and A is the number of areas in the
sample. Initially, N is empty. We first randomly select A starting
nodes and add them to N. Then we find all the nodes in G
adjacent to nodes in N and add them into N. We repeat this
process until the sample size reaches S. Algorithm 4 shows the
pseudocode for this sampling method.

Algorithm 4: Random areas selection sampling

Input: graph G, sample size S, number of areas A
SG: Sample graph
N: Number of nodes currently in SG
VS: set of nodes currently in SG
SG = {}
VS = {}
Randomly select unique nodes n0,n1 … nN as the starting nodes

VS = {n0, n1 … nN}
N= A
While (N < S)

Neighbors = all nodes adjacent to nodes in VS
VS = VS + Neighbors

 N = N + |Neighbors|
SG = graph induced by VS from G
Return SG

Since the last set of neighbors adding to the sample is very large,
we will stop adding nodes into the sample after N reaches the
sample size S. Therefore it is possible that only part of the
neighbors in the last set will be added to the sample.

Figure 3 is an example of the random areas selection sampling
method. Given the sample size 14 and number of areas 2, we can
generate sampled graphs s1 and s2 in the circles. From the figure,
we can see that the random areas selection sampling method is
better at preserving structure information. Note that the
performance of this method is sensitive to the number of areas. If
the frequent subgraph sizes are small, choosing a larger number of
areas can help to capture more frequent subgraphs in the sample
graph. On the other hand, if the frequent subgraph sizes are
relatively large, choosing a smaller number of areas can help to
preserve better structure information, because each area has a
larger size and hence more likely to contain large subgraphs. Also,
increasing the sample size can help finding large subgraphs.

4. EXPERIMENTAL EVALUATION
In this section we present experimental results on three real graph
datasets to evaluate the performance of the different sampling
methods for the task of frequent subgraph mining on single large
graphs.

Figure 3: Random Areas Selection Sampling

4.1 Datasets Description
We experimented on three different datasets: Citation Graph,
Amazon Transaction Graph, and WWW Graph. These datasets are
available at www.cs.yale.edu/homes/mmahoney/NetworkData.
We developed a frequent subgraph discovery on a single large
graph system (FSGS) based on SUBDUE [12] for the
experimental evaluation. We use FSGS to get the 10 most
frequent subgraphs for each dataset. Here we choose the 10 most
frequent subgraphs for two reasons. First, frequent subgraph
mining on a single graph is substantially more time consuming
than frequent subgraph mining on graph transactions. Second, the
datasets that we are using are very large. As a result, in order to
allow the experiments to complete in reasonable time, we choose
the 10 most frequent subgraphs. Additionally, to make the
frequent subgraphs that we find more applicable, we set the
minimal size of frequent subgraphs to be 4 so that we can find
larger frequent subgraphs. Since the original sizes for Amazon
graph and WWW graph are extremely large, we reduced the size
of Amazon Graph and the WWW graph in order to find the true
frequent subgraphs in a reasonable amount of time. The method

we use to truncate the datasets is to randomly delete some nodes
and edges with equal probabilities in order to avoid human bias
for the deletion process. Nonetheless, these reduced graphs are
still very large. The only reason that we want to reduce the size of
the graphs is to make them smaller. The reducing size process will
not affect the performance of different sampling methods. The
number of nodes and number edges for each dataset are given in
Table 1. Note that all the nodes and edges have the same label in
the three graphs (i.e., unlabeled).

Table 1: Datasets description
Dataset Number of Nodes Number of Edges

Citation Graph 27400 352021

Amazon Graph 38750 490320
WWW Graph 39200 503208

The citation graph comes from the 2003 KDD Cup. The vertices
of the graph are different papers. The edges of the graph are the
citation relationships between different papers. An edge will be
added between two paper vertices if one paper cites the other
paper.
The Amazon graph is collected using transactions data from the
Amazon website in 2003. The vertices represent different
transaction parties. If one party has a transaction with another
party, an edge is added between the two parties.
The WWW graph comes from different web pages and the links
between them on the internet. Each vertex represents one web
page. The edges represent the links between different web pages.

4.2 Experimental Setup
We first run FSGS on the original three datasets to get the 10 most
frequent subgraphs for each dataset. The frequent subgraphs that
we get on this step are the true frequent subgraphs. Then we run
the different sampling methods to get sampled graphs from the
target graphs. To reduce sampling bias, we run each sampling
algorithm N times to get N sample graphs instead of one sample
graph for each sampling algorithm. In our experiment, we set the
N to be 15 in order to make the experiment finish in reasonable
time. After that, FSGS performs frequent subgraph mining on the
sample graphs. Next we compare the frequent subgraphs from the
sample graphs and frequent subgraphs from the original graphs.
The next section describes our approach for comparing the sets of
frequent subgraphs from the original and sample graphs.

4.3 Evaluation Metric
First, we give an example for how to evaluate different sampling
approaches. FSGS can output the frequent subgraphs and number
of instances for each frequent subgraph. For example, after
performing frequent subgraph mining on the citation graph G,
FSGS gets the 10 most frequent subgraphs 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10.
The numbers of instances for 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10 are 𝑁1, 𝑁2,
𝑁3 …, 𝑁10 respectively. Note that 𝐺1, 𝐺2, 𝐺3 …, and 𝐺10 here are
the true frequent subgraphs for the citation graph G. To get the
sample graphs from the citation graph G, we run one of the
sampling methods on G to get 15 different sample graphs 𝑆1, 𝑆2,
𝑆3 …, and 𝑆15. Then we perform frequent subgraph mining on 𝑆1,
𝑆2, 𝑆3 …, and 𝑆15 to get the 10 most frequent subgraphs and their
corresponding numbers of instances for each of the 15 sample

graphs. Below are the frequent subgraphs and their corresponding
instance numbers for each sampled graph,

 𝑆1: <𝐺𝑠11 ,𝑁𝑠11 >,< 𝐺𝑠12 ,𝑁𝑠12 >
< 𝐺𝑠13 ,𝑁𝑠13 >,< 𝐺𝑠14 ,𝑁𝑠14 >
< 𝐺𝑠15 ,𝑁𝑠15 >,< 𝐺𝑠16 ,𝑁𝑠16 >
< 𝐺𝑠17 ,𝑁𝑠17 >,< 𝐺𝑠18 ,𝑁𝑠18 >
< 𝐺𝑠19 ,𝑁𝑠19 >,< 𝐺𝑠110,𝑁𝑠110 >

 𝑆2: <𝐺𝑠21 ,𝑁𝑠21 >,< 𝐺𝑠22 ,𝑁𝑠22 >

< 𝐺𝑠23 ,𝑁𝑠23 >,< 𝐺𝑠24 ,𝑁𝑠24 >
< 𝐺𝑠25 ,𝑁𝑠25 >,< 𝐺𝑠26 ,𝑁𝑠26 >
< 𝐺𝑠27 ,𝑁𝑠27 >,< 𝐺𝑠28 ,𝑁𝑠28 >
< 𝐺𝑠29 ,𝑁𝑠29 >,< 𝐺𝑠210,𝑁𝑠210 >

...

...

...
 𝑆15: <𝐺𝑠151 ,𝑁𝑠151 >,< 𝐺𝑠152 ,𝑁𝑠152 >

< 𝐺𝑠153 ,𝑁𝑠153 >,< 𝐺𝑠154 ,𝑁𝑠154 >
< 𝐺𝑠155 ,𝑁𝑠155 >,< 𝐺𝑠156 ,𝑁𝑠156 >
< 𝐺𝑠157 ,𝑁𝑠157 >,< 𝐺𝑠158 ,𝑁𝑠158 >
< 𝐺𝑠159 ,𝑁𝑠159 >,< 𝐺𝑠1510 ,𝑁𝑠1510 >

𝐺𝑠𝑖
𝑗 is the jth most frequent subgraph in sample 𝑆𝑖

𝑁𝑠𝑖
𝑗 is the corresponding number of instances for 𝐺𝑠𝑖

𝑗

We compare, using graph isomorphism, the frequent subgraphs 𝐺1,
𝐺2 , 𝐺3 …, and 𝐺10 from the original graph G and the frequent
subgraphs <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 , 𝐺𝑠14 , 𝐺𝑠15 , 𝐺𝑠16 , 𝐺𝑠17 , 𝐺𝑠18 , 𝐺𝑠19 , 𝐺𝑠110>, <𝐺𝑠21 ,
𝐺𝑠22 , 𝐺𝑠23 , 𝐺𝑠24 , 𝐺𝑠25 , 𝐺𝑠26 , 𝐺𝑠27 , 𝐺𝑠28 , 𝐺𝑠29 , 𝐺𝑠210> …, and <𝐺𝑠151 , 𝐺𝑠152 ,
𝐺𝑠153 , 𝐺𝑠154 , 𝐺𝑠155 , 𝐺𝑠156 , 𝐺𝑠157 , 𝐺𝑠158 , 𝐺𝑠159 , 𝐺𝑠1510 > from the 15
sample graphs to get the common frequent subgraphs set between
them. For example, if <𝐺1, 𝐺3, 𝐺7 > is the same as <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 >
between <𝐺1, 𝐺2, 𝐺3 …, and 𝐺10> and <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 ... and 𝐺𝑠110>,
the common frequent subgraphs set between G and S1 is <𝐺1, 𝐺3,
𝐺7 >.
The accuracy of the sampling method is defined as:

Accuracy =
1
T ∗� Instances(Ci)

i=T,

i=1

/�Nk

k=F

k=1

This matrix is used to represent the percentage of frequent
subgraphs in the original big graph that are also frequent in the
small sample graph.
T is the number of samples, i.e., how many samples we extract
from the input graph. We set it to 15 for our experiments.
F is the number of frequent subgraphs that we extract from each
graph. In our experiments, we extract the 10 most frequent
subgraphs. Nk is the number of instances of the kth frequent
subgraph in the original graph G.

𝐶𝑖 are the common frequent subgraphs between 𝐺𝑖 and 𝐺𝑠𝑖
𝑗 . For

example, if <𝐺1, 𝐺2, 𝐺4, 𝐺5, 𝐺7, 𝐺8, 𝐺10> exist in both <𝐺1, 𝐺2,
𝐺3, 𝐺4, 𝐺5, 𝐺6, 𝐺7, 𝐺8, 𝐺9, 𝐺10> and <𝐺𝑠11 , 𝐺𝑠12 , 𝐺𝑠13 , 𝐺𝑠14 , 𝐺𝑠15 , 𝐺𝑠16 ,
𝐺𝑠17 , 𝐺𝑠18 , 𝐺𝑠19 , 𝐺𝑠110>, the value of 𝐶1 is <𝐺1 , 𝐺2 , 𝐺4 , 𝐺5 , 𝐺7 , 𝐺8 ,
𝐺10>, which is the set of common subgraphs between G and 𝑆1.

Instances (𝐶𝑖) is the sum of all the numbers of instances of graphs
in 𝐶𝑖 in sample graph i. For example, if 𝐶1 is <𝐺1, 𝐺2, 𝐺4, 𝐺5, 𝐺7,
𝐺8 , 𝐺10> and the corresponding numbers of instances for 𝐶1 is
<𝑁1 , 𝑁2 , 𝑁4 , 𝑁5 , 𝑁7 , 𝑁8 , 𝑁10>, the value of Instances(𝐶𝑖) is
𝑁1 + 𝑁2 + 𝑁4 + 𝑁5 + 𝑁7 + 𝑁8 + 𝑁10.

4.4 Results
We compare the accuracies of the different sampling methods
based on the three datasets: Citation Graph, Amazon Transaction
Graph and WWW Graph. The results are shown in figure 3, figure
4 and figure 5. Here we vary the sample size as a percentage of
the size of the entire graph. For the random areas selection
sampling approach, the number of areas is set to be 10. We can
see that the random areas selection sampling method gives the
best overall performance for all of the three datasets.

Figure 3: Citation Graph

Figure 4: Amazon Transaction Graph

Figure 5: WWW Graph

The random nodes sampling and random edges sampling methods
tend to find small subgraphs. The random walk sampling method
has a strong bias toward chains. For more complex substructures,
the random areas selection sampling method works better than all
of the above methods. Unfortunately, we can see that the accuracy
does not plateau before the sample size reaches the size of the
entire original graph for all the sample methods, which indicates
that sampling approach is not capable of finding all the true
frequents subgraphs. One reason for this is because our evaluation
matrix takes the sizes of subgraphs into account. Subgraphs are
assigned more weights if their sizes are larger. Therefore, when
the sample size is small, it is difficult to capture large size
subgraphs and resulting in smaller evaluation matrix value.
However, if we want an approximation of frequent subgraphs,
sampling is still a viable method. Another way we will do in the
future is using inexact matches and corresponding weights for
each inexact match, which might improve the accuracy measure.
One important property that we find for the random areas
sampling method is that the number of areas that we choose plays
a key role in the performance. We illustrate this property on the
three datasets by varying the number of areas. The sample size is
10 percent of the original graph. The results are shown in figure 6,
figure 7 and figure 8.

Figure 6: Different number of areas for Citation Graph

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
r
a
c
y

Sample size

Random
Nodes

Random
Edges

Random
Walk

Random
Areas

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
r
a
c
y

Sample Size

Random
nodes
Random
Edges
Random
Walk
Random
Areas

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
r
a
c
y
 Sample size

Random
Nodes
Random
Edges
Random
Walk
Random
Areas

0
0.1
0.2
0.3
0.4
0.5
0.6

0 10 20 30 40 50 60 70 80 90 100 110 120

A
c
c
u
r
a
c
y
 Number of areas

Citation Graph

Figure 7: Different number of areas from Amazon Graph

Figure 8: Different number of areas for WWW Graph

From Figures 6, 7 and 8, we can see that there are many local
maxima accuracy values based on different numbers of areas.
Therefore, it is difficult to determine how many areas to choose in
order to get a global maximum for the accuracy. Based on our
experiments, this number is greatly dependent on the properties of
the original large graph that we need to sample from.

5. Boundary Analysis
For the random areas selection sampling method, a question to ask
is how many nodes we need to select so that we can guarantee the
frequent subgraphs from the sample are the frequent subgraphs
from the original graph. If we are performing frequent subgraph
discovery on graph transactions, the sample size can be
determined by applying Chernoff Bounds. Zaki et al. addressed
this problem in [36].
Let τ denote the support of subgraph I. We want to select n
sample transactions out of a total of N transactions in dataset D.
The variable X gives the number of transactions in the sample
containing I. For any positive constant, 0 ≤ ε ≤ 1, the Chernoff
Bounds state that

P(X ≤ (1 − ε)nτ) ≤ e−ε2nτ/2 (1)

P(X ≥ (1 + ε)nτ) ≤ e−ϵ2nτ/3 (2)

The Chernoff Bounds provide the accuracy of the sample, which
is given by 1-ϵ. It also gives us the confidence value that the
sample size n will have a given accuracy. Equation (1) gives the
lower bound of the confidence value and equation (2) gives the
upper bound of the confidence value.
From equation (1) and (2), we can determine the sample size n for
accuracy 1 − ε and confidence 1-c. The sample size is
n = −2 ln(c) /(τε2) (3)
The above formulas are used for sampling on graph transaction.
To apply them for random areas selection sampling on a single
graph, we can view different areas as independent graph
transactions since different areas are not overlapping with each
other. As a result, we can model the problem as follows.
Let 𝑆′ denote the size of the sample graph, and A is the number of
areas in the sample graph, and the size for each area is 𝑆𝐴. S is the
size of the original graph. As a result, the total number of areas in
the original graph is /𝑆𝐴 . Let τ denote the support of subgraph I.
We want to select A number of areas out of 𝑆𝐴/𝑆′ number of
areas. The variable X gives the number of instances of I in the
sample graph. For any positive constant, 0 ≤ ε ≤ 1, the Chernoff
Bounds state that

P(X ≤ (1 − ε)Aτ) ≤ e−ε2Aτ/2 (4)

P(X ≥ (1 + ε)Aτ) ≤ e−ϵ2Aτ/3 (5)

From (4) and (5), we can determine the number of areas A in the
sample graph in order to get accuracy 1 − ε and confidence 1-c.
A = −2 ln(c) /(τε2) (6)
Since the size for each area is 𝑆𝐴, the size 𝑆′ of the sample graph
is
𝑆′ = −2𝑆𝐴 ln(𝑐) /(τε2) (7)

To apply formula (7) on the citation graph, we set the size for
each area as one percent of the original graph. Therefore, 𝑆𝐴 =
 1% ∗ 27400 = 274. Let accuracy 1 − ε = 0.9 and confidence 1-
c = 0.9, i.e., ε = 0.1 and c = 0.1. The support τ is 10. The size 𝑆′
of the sample graph is

𝑆′ = −2 ∗ 274 ∗ ln(0.1)
10∗0.12

= 12618

According to this analysis, the sample size should be almost half
the size of the original graph. Clearly, our sampling scenario
violates the assumptions underlying the Chernoff bounds, but the
results provide an estimate of the sample size needed to guarantee
success under the above assumptions. We will pursue a more
appropriate bounds model in future work.

6. CONCLUSION AND FUTURE WORK
We have presented an experimental evaluation of different
sampling approaches in order to perform efficient and accurate
frequent subgraph mining on a single large graph. The
experimental results indicate that the “random areas selection”
method that we propose provides the overall best performance.
For future work we intend to develop a more accurate framework
for deriving a bound on the sample size of the “random areas
selection” approach necessary to find the frequent subgraphs with
some level of confidence. We will also work on how to

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 10 20 30 40 50 60 70 80 90 100 110 120

A
c
c
u
r
a
c
y

Number of Areas

Amazon Graph

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 10 20 30 40 50 60 70 80 90 100 110 120 130

A
c
c
u
r
a
c
y
 Number of Areas

WWW Graph

automatically decide the number of areas for the "random areas
selection" sampling approach. The datasets we are using now
contain same label information. We will run our method on
graphs with more diversity of labels, which will likely decrease
the running time.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Mining Sequential Patterns. In

ICDE, pp: 3-14, 1995.
[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H.Satamoto, and S.

Arkiwa. Efficient Substructure Discovery from Large Semi-
Structured Data. In SIAM, 2002.

[3] R. J. Bayardo. Efficiently Mining Long Patterns from
Databases. In ACM SIGMOD, pp:85-93, 1998.

[4] I. Bordino, D. Donato, A. Gionis, S. Leonardi. Mining Large
Networks with Subgraph Counting. ICDM, pp: 737-742,
2008.

[5] C. Borgelt and M.R. Berthold. Mining Molecular Fragments:
Finding Relevant Substructures of Molecules. In ICDM, pp:
51-58, 2002.

[6] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal
Frequent Itemset Algorithm for Transactional Databases. In
ICDE, pp: 443-452, 2001.

[7] M. Coatney, S. Parthasarathy. MotifMiner: Efficient
Discovery of Common Substructures in Biochemical
Molecules. Knowledge and Information Systems, 7(2) pp:
202-223, 2005.

[8] C. Cong, L. Yi, B. Liu and K. Wang. Discovering Frequent
Substructures from Hierarchical Semi-structured Data In
SDM, pp: 175-192, 2002.

[9] The D Statistic. http://mste.illinois.edu/patel/chisquare/dstat.
html.

[10] M. Fiedler and C. Borgelt. Support Computation for Mining
Frequent Subgraphs in a Single Graph. http:
//mlg07.dsi.unifi.it/pdf/40_Borgelt.pdf.

[11] P. Hintsanen and H. Toivonen. Finding reliable subgraphs
from large probabilistic graphs. In DMKD, 17(1) pp: 3–23,
2008.

[12] L. Holder, D. Cook and S. Djoko. Substructure Discovery
in the Subdue System. In AAAI Workshop on Knowledge
Discovery in Databases, pp: 169–180, 1994.

[13] J. Huan, W. Wang, J. Prins. Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism. In ICDM, 2003.

[14] A. Inokuchi, T. Washio and H. Motoda. An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph
Data. In PKDD, pp: 13-23, 2000.

[15] S. Jacquemont, F. Jacquenet and M. Sebban. A Lower Bound
on the Sample Size Needed to Perform a Significant frequent
Pattern Mining Task. In Pattern Recognition Letters, 30(11)
pp: 960–967, 2009.

[16] D. Jensen and J. Neville. Correlation and Sampling in
Relational Data Mining. In Proceedings of the 33rd
Symposium on the Interface of Computing Science and
Statistics, 2001.

[17] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation. In SIGMOD, pp: 1-21, 2000.

[18] X. Jiang, H. Xiong, C. Wang, and A. Tan, Mining Globally
Distributed Frequent Subgraphs in a Single Labeled Graph,
In Data & Knowledge Discovery, 68(10), pp: 1034-1058.

[19] N. Kashtan, S. Itzkovitz, R. Milo and U. Alon. Efficient
Sampling algorithm for estimating subgraph concentrations
and detecting network motifs. In Bioinformatics, 20(11), pp:
1746-1758, 2004.

[20] J. Kivinen and H. Mannila. The power of Sampling in
Knowledge Discovery. Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pp: 77–85, 1994.

[21] S. Kramer, L. de Raedt, and C. Helma. Molecular Feature
Mining in HIV Data. In ACM SIGKDD, pp: 136-143, 2001.

[22] M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. In ICDM, pp: 313-320, 2001.

[23] M. Kuramochi and G. Karypis. Finding Frequent Patterns in
a Large Sparse Graph. In Data Mining and Knowledge
Discovery, 11(3) pp: 243-271, 2005.

[24] S.D. Lee, D. Cheung and B. Kao. Is Sampling Useful in Data
Mining? A Case in the Maintenance of Discovered
Association Rules. In Data Mining and Knowledge
Discovery, pp: 233-262, Sep, 1998.

[25] J. Leskovec and C. Faloutsos. Sampling from large Graphs.
In SIGKDD, PP: 631–636, 2006.

[26] H. Mannila, H. Toivonen, and A. I. VerKamo. Discovery of
Frequent Episodes in Event Sequences. In Data Mining and
Knowledge Discovery, pp: 259-289, 1997.

[27] S. Nijssen and J. N. Kok. The Gaston Tool for Frequent
Subgraph Mining. In GraBaTs, pp: 77–87, 2004.

[28] C. R. Palmer, P. B. Gibbons and C. Faloutsos. ANF: A Fast
and Scalable Tool for Data Mining in Massive Graphs. In
SIGKDD, pp: 81-90, 2002.

[29] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-projected Pattern Growth. In ICDE,
pp:215-224, 2001.

[30] M. P. H. Stumpf, C. Wiuf, and R. W. May. Subnets of scale
free networks are not scale free: Sampling properties of
networks. In PNAS, v 102, 2005.

[31] H. Toivonen. Sampling Large Databases for Association
Rules. Proceedings of the 22th International Conference on
Very Large Data Bases. pp: 134-145, 1996.

[32] C. Wang, W. Wang, J. Pei, Y. Zhu and B. Shi. Scalable
Mining of Large Disk-based Graph Databases. In ACM
SIGKDD, pp: 316-325, 2004.

[33] W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X. Yan and J.
Han. GraphMiner: A Structural Pattern-Mining System for
Large Disk-based Graph Databases and Its Applications. In
ACM SIGMOD on management of data, pp: 879-881, 2005.

[34] T. Washio and H. Motoda. State of the Art of Graph- Based
Data Mining. In ACM SIGKDD Explorations Newsletter,
5(1) pp: 59–68, 2003.

[35] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining, In ICDM, pp: 721–724, 2002.

[36] M. Zaki, S. Parthasarathy, W. Li and M. Ogihara. Evaluation
of Sampling for Data Mining of Association Rules. In RIDE,
page 42, 1997.

[37] M. Zaki and C. J. Hsiao. CHARM: An Efficient Algorithm
for Closed Itemset Mining. In SIAM, pp: 457-473, 2002.

[38] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. In
ACM SIGKDD, pp: 71-80, 2002.

	1. INTRODUCTION
	2. PROBLEM DEFINITION
	2.1 How to define the support of a subgraph

	3. DIFFERENT SAMPLING METHODS
	3.1 Random Nodes Selection Sampling
	3.2 Random Edges Selection Sampling
	3.3 Random Walk Sampling
	3.4 Random Areas Selection Sampling

	4. EXPERIMENTAL EVALUATION
	4.1 Datasets Description
	4.2 Experimental Setup
	4.3 Evaluation Metric
	4.4 Results

	5. Boundary Analysis
	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

