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DISCOVERING SUBSTRUCTURE IN EXAMPLES

Lawrence Bruce Holder, Jr.. M.S.
Department of Computer Science

University of Illinois at Urbana-Champaign. 1988
Robert Earl Stepp Ill. Advisor

This thesis describes a method for discovering substructure concepts in examples. The method

involves a computationally constrained best-first search guided by four heuristics: cognitive

. -savings, compactness. connectivity and coverage. Each heuristic is described in detail along with its

role in evaluating an individual substructure concept. The SUBDUE system that implements the

method contains a substructure discovery module, a substructure specialization module and an

incremental substructure background knowledge module for applying previously discovwred

substructure concepts. The substructure background knowledge includes both user-defined and

SUBDUE-discovered substructures in a hierarchy that is used to determine which substructures are

present in the input examples. The system has performed well on a number of examples from

different domains and has discovered many interesting substructure concepts such as an aromatic

ring and a macro-operator for stacking blocks. The method and implementation of the SUBDUE

system are described, and an analysis of experimental results is presented.
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I.. CHAPTER 1.11

:" ~INTRODUCTION

At any given moment the amount of detailed information available from an environment is

, overwhelming. For example. close observation of a brick wall reveals not only the rows of

-, rectangular bricks, but also the mortar between the bricks, the pitted surface of the bricks and

mortar, small cracks in the bricks, etc. Yet, humans have the ability to ignore such detail and

- ,." extract information from the environment at a level of detail that is appropriate for the purpose of

S"U the observation. Even in an unfamiliar environment, humans ignore intricate detail and discern

more abstract patterns in the stimuli of the environment [Witkin83]. This thesis describes a

* .computational method for discovering abstract patterns, or substructure, in the descriptions of a

structured environment.

When observations at varying levels of detail are necessary, humans are capable of descending

into the more minute structure of the environmental stimuli and identifying patterns in terms of

these structural primitives. From the observations at different levels of detail, humans may

- construct a hierarchical description of the environment. For instance, the brick wall can be

, described as the rectangular bricks in the wall along with the interconnections between the bricks.

Furthermore, each brick can be described in terms of the pits. cracks and embedded grains in the

brick, and each interccnnection can be described by the components of the mortar that combine to

-, -_.form the interconnection. Thus. each level in the description hierarchy represents a different level

of detail for representing the environment.

Once such a hierarchy is constructed, similar primitive structures in different environments

may suggest the existence of more abstract features higher up in the hierarchy. This abstraction

7rovides a simpier description of the environment and thus allows the human to discover higher
5-
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level regularities in terms of these abstract features. This thesis also proposes a method for

maintaining such a hierarchy of substructure and utilizing this knowledge in subsequent

substructure identification and discovery tasks.

The existence of these human processes for perceiving substructure suggests that having a

computational method for the processes may improve the abilities of current machine learning

programs that operate in a detailed structural environment. Such a computational method for

substructure identification and discovery could abstract over unnecessary detail in the descriptions

of the examples given to a learning program. For instance, suppose the given examples are organic

molecules described by the types of atoms in the molecule and the types of bonds between the

atoms. For complex molecules the number of features describing the examples is overwhelming

* and may conceal more abstract substructure cuncepts such as an aromatic ring. By first discovering

the ring of .arbon atoms and connected hydrogen atoms as an interesting substructure. a

substructure discovery system can replace the group of atoms and bonds by a singie entity

representing the newly discovered substructure concept. Then, a learning program can discover

concepts in terms of this substructure concept instead of just atoms bonded to atoms. Other

machine learning programs can benefit from a system that discovers substructure concepts in

examples and retains the concepts for use in subsequent learning tasks.

The methodology underlying the proposed computational method for substructure discovery

- is presented in Chapter 2. The chapter begins by defining a substructure and presenting the

* language used to describe substructures. Next, the components involved in substructure discovery

are discussed. Two essential processes of a substructure discovery system are substructure

generation and substructure selection. Substructure generation is the process of constructing new.

* alternative substructures from an existing substructure. After generating the set of alternatie

substructures, the discovery system invokes the substructure selection process to choose the best

substructures from among the aternatves. Once an interesting substructure is discovered, the

Scccurrences of the substructure -/ithin the input examples are replaced. or instantiated. by a single

2
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entity representing the substructure; thus simplifying the original input examples. In addition. the

newly discovered substructure is specialized by appending additional structure. This specialized

substructure describes a larger, more specific portion of the current set of input examples. The

0 substructure background knowledge includes both user-defined and discovered substructure

definitions. These are used to identify instances of substructures that exist in a given set of input

t examples. Chapter 2 concludes by outlining a substructure discovery algorithm incorporating the

aforementioned components.

Chapter 3 describes the implementation of the substructure discovery methodology contained

in the SUBDUE system. In addition to the substructure discovery module. SUBDUE also includes a

substructure specialization module and a substructure background knowleage module. After a

substructure is discovered, the subst-ucture is specialized, and both the original and specialized

substructures are stored in the background knowledge. Within the background knowledge the

substructures are kept in a hierarchy that defines complex substructures in terms of more primitive

substructures. Uoon receiving a new set of input examples. the background knowledge module

determines which of the stored substructures are present in the examples. Thus. as the SUBDUE

s'stem runs, a hierarchical representation of selected structures found in the environment is

tonstructed within the background knowledge module.

Chapter 4 presents several experiments with the SUBDUE system. Experiments with the

S-substructure discovery module indicate that the substructure generation and substructure selection

processes perform well in guiding the search towards more interesting substructures. Other

experiments incorporating both the substructure background knowledge module and specialization

- module demonstrate the performance improvement obtained by using previously learned

substructures ;n subsequent discovery tasks. The input and output data for each experiment are

'isted in Appendix A.

Chapter 5 surveys previous work related to substructure discovery Tis work dates back to

:he earl- 1900's when gestalt psychologists began studying the underir.n2 process,:s invclved in

3
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human perception [Wertheimer391. More recent machine learning research on substructure

'discovery begins with Winston's work on learning from examples in the blocks world [Winston75].

From this point on. research on the various facets of substructure discovery has proposed several

interesting solutions to the problem.

Finally, Chapter 6 concludes with a summary of the research described in this thesis and

discusses directions for future research. Since the completion of the research described in this

% thesis. several extensions. improvements and applications of the substructure discovery method and

the SUBDUE system have been revealed. Improvements to the discovery method might be obtained

by generating alternative substructures more intelligently or by incorporating specialization into

the discovery process rather than as a separate process. Future potential applications of the

*substructure discovery system include detection of interesting image patterns or textures in a high

level vision system and constructive feature formation in other machine learning systems. These

S..and other directions for future research are discussed in Chapter 6.

5-.
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CHAPTER 2

SUBSTRUCTURE DISCOVERY

The major focus of this work is to investigate methods for discovering substructure concepts

in examples. Substructure discovery is the process of identifying concepts describing interesting

and repetitive "chunks* of structure within the individual elements of a set of structured examples.

Once such a substructure concept is discovered, the descriptions of the examples can be simplified

by replacing all occurrences of the substructure with a single form that represents the

substructure. The simplified descriptions may then be passed to other learning systems. In

addition, the discovery process may be applied repetitively to further simplify the descriptions or

to build a hierarchical interpretation of the examples in terms of their subparts.

This chapter presents the components involved in a computational method for substructure

discovery. Secti-n 2.1 discusses the motivations for developing such a method and the importance

of' substructure discovery in the field of artificial intelligence. Section 2.2 defines a substructure

along with the components comprising a substructure. Methods for generating alternative

- . substructures are presented in Section 2.3. and the techniques used for intelligently selecting among

these alternatives are discussed in Section 2.4. Once an appropriate substructure is discovered, the

substructure is instantiated for each occurrence of the substructure in the input examples. Section

2.5 discusses substructure instantiation. Newly discovered substructures can be specialized to

describe larger substructures in the input examples. Section 2.6 discusses substructure

i - specialization. Section 2.7 presents methods for using background knowledge in the substructure

discoverv process. Finally. Section 2.8 outlines a substructure discovery algorithm incorporating

the previouslv described techniques.

5
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2.1. Motivations

One motivation for substructure discovery is the overwhelming number of features availableiniatypcalrea oewemn ue avilbl
'S¢

in a typical real-world description of an environment. Unless features are preselected by the

human experimenter, artificial intelligence programs relying on environmental observations for

input would become bogged down in the complexity of processing the large amount of sensory

data. Therefore. a program for constructing features from the data and thereby introducing ways

to abstract over the unnecessary detail in the observations would improve the performance of other

learning programs. Having the new abstracted features can provide learning programs with a basis

for formulating concepts based on the more abstract. and possibly more pertinent features

%A [Stepp87].

0 A second motivation for substructure discovery originates from the hierarchical nature of a
..-

structured environment. In other words, given a level of detail with which to describe an

"A, environment, there almost always exists a more primitive description in terms of the components

of the current features. This fact suggests that an environment can be represented as a hierarchy,

where each level in the hierarchy represents a different level of detail with which to represent the

A. environment. By defining newly discovered substructures in terms of more primitive

substructures already known, a hierarchical substructure representation is constructed similar to

the natural hierarchy of the environment. Other programs may then use this hierarchy to find an

appropriate level of abstraction for processing the features of the environment.

* The reorganization and compression of knowledge bases provides a third motivation for

substructure discovery. The amount of data typically stored in real world knowledge bases is

immense. In order to combat the storage and processing limitations on current retrieval systems,

0 the substruct,-e discovery program can be applied to the data of the knowledge base. The

underlying substructures found in the data can be used to compress the data and impose a

hierarchical represenLation. The subsequent reorganized data requires less storage space and reduces

the retrieval -ime for aueries referencing data containing the same substructures.
At-,
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.

-" The human ability to perceive structural regularities in the environment provides the final

motivation for investigating substructure discovery [Palmer83]. This ability allows humans to

extract information from the environment at a level of detail that is appropriate for the purpose of

•. : the observation. By perceiving only the appropriate information, humans are better able to learn

the concepts implied by the environment.

Thus, the underlying motivations for investigating substructure discovery are the ubiquitous

hierarchical structure in the world and the ease with which humans can negotiate the hierarchy.

With an appropriate representation for substructures and the substructure hierarchy. a

substructure discovery system can perform the tasks just presented.

2.2. Substructure Representation

A substructure is both a portion of a collection of structurally-related objects and a

" "description of the concept represented by that portion. For example, the detailed structure
Z_.

composing the concept of a brick is a substructure of a brick wall. The collection of atoms and

bonds comprising the concept of an aromatic ring is a substructure of many organic compounds.

-,.' -However, substructure concepts are not always interesting. Upon encountering a brick wall, the

concept of a brick may not be as interesting as the concept of a doorway or window. The task of
substructure discovery is to find interesting substructure concepts in a given specification of

structurally-related objects. The representation of structured concepts should be conducive to the

task of discovering substructures. This section presents a graphical representation for structured

concepts and a language for describing the concepts.
.

A collection of structured objects can be represented by a graph. Using a graph

0 representation. a substructure is a collection of annotated nodes and edges comprising, a connected

subgraph of a larger graph. The nodes represent singie objects, values. or relations in the

'p substructure. and the edges represent the connec:ions between relations and their arguments. For

* example, the relation (on a b) is represented graphically by" three nodes, one annotated with a. one

annotated with b. and one annotated with on. The on node is connected to both the a node and the

•...................



-\" b node. As another example, consider the relation (shape a circle). The graph representation

consists of three nodes (shape, a and circle) along with an edge from shape to the object a and an

edge from shape to the value circle. However, substructures represent more than just a collection

of nodes and edges. The description of a substructure is a conjunctive concept. Substructure

discovery is concerned with identifying substructures that represent interesting concepts. not just

.34 interesting graphical structures. Thus. substructures, or equivalently substructure concepts.

should be interpreted as a unit of structure described by a conjunctive concept.

An appropriate language for describing substructures in terms of conjunctive concepts is an

extension to the first order logic called Variable-valued Logic system 2 (VL2 ) [Michalski80] - a

subset of the Annotated Predicate Calculus (APC) [Michalski83a]. The VL2 representation uses a

conjunction of relational units called selectors to describe a substructure. A selector relation is a

two-place relation between a function and the value or values in the range of the function.

Functions with only one argument are called attributes. For example. the selector relation

corresponding to the relation (shape a circle) is (shape(a) circle), where skape(a) is an attribute and

circle is a value in the range of the shape attribute. In VL 2 this selector relation is written as

[SHAPE(A)=CIRCLE]. Likewise. the VL 2 expression for the relation (on a b) is [ON(AB)=T]. VL,

also allows certain disjunctive concepts to be expressed as a single conjunct. For example, the

disjunctive concept (COLOR(C).RED] v [COLOR(C)=BLUE] can be expressed as the single equivalent

conjunct [COLOR!(C)-RED,BL UE.

* Using the VL, representation. a substructure is defined as a conjunction of connected selector

relations. A set of selector relations is connected if the equivalent graph representation of the

selector relations is connected. Objects correspond to single entities within the substructure and act

as the arguments to the functions of the selector relations. An object is a primitive element on

-hich selector relations and, ultimately, substructures are defined. Typically, the range of values

.f the function in a selector relation includes a "don't care" element. This element is used to denote

a functuon that must be present but whose value is immaterial. For example. if the "don't care"

8

0J Nresent
,A. ..
p..,.,. , -.-.-.-- " . - .. - - . . •.., -.- ,-.-.- .- , - ,,,,., . ,,,. . ,,.



"lement is represented by an asterisk, the substructure <[ON(A.B)-T] [SHAPE(A)-SQUARE]

[SHA.PE(B)='I> represents a square on top of some object that ho_ a shape attribute, but whose

shape value is arbitrary. Whereas, the substructure <[ON(A,B)-Tj [SHAPE(A)-SQUARE]>

represents a square on top of some object that may or may not have a shape attribute.

Figure 2.1b illustrates the substructure found in the example shown in Figure 2.1a. Both the

input example and the substructure are expressed in the VL 2 language. The expression for the

input example in Figure 2.1a is

< [SHAPE(Ti )=TRIANGLEI[SHAPE(T2)=TRIANGLEI[SHAPE(T3)=TRIANGLEI
[SHAPE(T4)=TRIANGLEI[SHAPE(Si)=SQUARE](SHAPE(S2)-SQUARE]
[SHAPE(S3 )=SQU ARE][SHAPE(S4 )SQUAREI(SHAPE(R1)-RECTANGLE]
[SHAPE(Cl )CIRCLEI[COLOR(T1 ). RED][COLOR(T2)-REDICOLOR(T3)-BLUE]
[COLOR(T4)-BLUEI[COLOR(Si)--GREEN][COLOR(S2)-BLUEI[COLOR(S3)=BLUE]
[COLOR(S4)-REDI[ON(TI,S1)-T][ON(S1.R1)=T][ON(C1,R1).T]
[ON(R1.T2)=T][ON(RI,T3)=T][ON(RI,T4)-T][ON(T2,S2)=T]
[ON(T3,S3)-T][ON(T4,S4)=T] >

red-A,

gren Si Cl
.e. (C . OBJECT-O000

RI1

red~2  -blue OBJECT-0002

blue- 1 S2 F43 [S4 1 -red

blue blue

(a) Input Example (b) Substructure

Figure 2.1. Example Substructure

9%-



After each object of the substructure is assigned an arbitrary symbolic name as shown in the Figure

2.1b. the expression for the substructure is

A,,.

<[SHAPE(OBJECT-O001 )mTRLNGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-OOO1,OBJECT-OOO2)=T] >

For subsequent discussions, some terminology is needed to describe important aspects of

substructures as they relate to a given set of input examples. An occurrence of a substructure in a

set of input examples is the set of objects and selector relations from the examples which match.

graph theoretically, to the graph representation of the substructure. All isomorphisms with the

same objects and selector relations are considered the same occurrence. For example. the

occurrences of the substructure in the input example of Figure 2.1a are

< [ON(T1.S1)=TI[SHAPE(Ti)=TRIANGLEISHAPE(S1)=SQUARE]>
< [ON(T2.S2)=T][SHAPE(T2)=TRIANGLE][SHAPE(S2)=SQUAREI >
< [ON(T3,S3)=T][SHAPE(T3)=TRIANGLE][SHAPE(S3).=SQUAREI >
< [ON(T4,S4 )=TI[SHAPE(T4 )=TRIANGLE][SHAPE(S4 )=SQUARE] >

A neighboring relation of an occurrence of a substructure is a selector relation in the input

example that is not contained in the occurrence, but has at least one object from the occurrence as

an argument. For example. the neighboring relations of the first occurrence listed above are

[COLOR (T1)=RED]. [COLOR(S1 )=GREEN] and [ON(S1.R1 )=T].

An attribute relation of an occurrence of a substructure is a neighboring relation whose only

argument is a single object contained in the occurrence. The attribute relations in the first

4~d  occurrence listed above are [COLOR(Ti)=RED] and [COLOR(S1)=GREEN].
-'S.

S... An external connection of an occurrence of a substructure is a neighboring relation of the

occurrence that has as an argument at least one object not contained in the occurrence. In other

words, an external connection of an occurrence of a substructure is a selector relation that relates

one or more objects in the occurrence to one or more objects not in the occurrence. For the first

occurrence listed above, there is only one external connection. [ON(SI,R1)=T).

10
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2.3. Substructure Generation

An essential function of any substructure discovery system is the generation of alternative

substructures. The substructure generation process constructs new substructures from the objects

V .and relations in the input examples. There are two basic approaches to the generation problem:

.q bottom-up and top-down.

The bottom-up approach to substructure generation begins with the smallest substructures in

- the input examples and iteratively expands each substructure. The expansion may be accomplished

bv two different methods. The first method, minimal expansion. adds one neighboring relation to

the substructure. For example, according to the three neighboring relations (presented in Section

. 2.2) of the occurrence. <[ON(T1,S1)=T][SHAPE(T1)-TRIANGLE][SHAPE(S1)-SQUAREI>. the

substructure in Figure 2.1b would be expanded to generate the following three substructures

< [SHAPE(OBJECT-0O1 )=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-O001,OBJECT-0002 )=T][COLOR(OBJECT-0001 )=RED]>

< [SHAPE(OBJECT-0001 )=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]3[ON(OBJECT-O001,OBJECT-0002)=T][COLOR(OBJECT-0002)=GREENI>
< [SHAPE(OBJECT-0001 )=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]

[ON(OBJECT-O001,OBJECT-0002 )=T][ON(OBJECT-0002,OBJECT-0003 ).T] >
A "

The second method, combination expansion. is a generalization of minimal expansion in which two

substructures, having at least one object in common, are combined into one substructure. For

example. the substructure in Figure 2.1b could be generated by combining the following two

substructures

.

< [SHAPE(OBJECT-O001 )=TRIANGLE][ON(OBJECT-O001,0_BJECT-0002)=T] >
< [ON(OBJECT-000I,OBJECT-0002)=T][SHAPE( OBJECT-0002)=SQUARE]>

The top-down approach to substructure generation begins with the largest possible

substructures. one for each input example, and iteratively disconnects the substructure into two

smaller substructures. As with the expansion approach. substructure disconnection may be

accom'iished by two different methods. The first method, minimal disconnection, removes one

relation from a substructure while preserving the resulting substructure's connectivity. For

11
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example. the substructure in Figure 2.1b can be generated by removing the [COLOR(OBJECT-

0001 )-RED] relation from the following substructure

< [SHAPE(OBJECT-OO1 )-TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
(ON (OBJECT-0 1,OBJECT-0002 )-T[COLOR(OBJECT-O001 )=RED] >

The second method, cut disconnection. cuts a substructure into two unconnected substructures by

removing one relation. Cut disconnection is actually a special case of minimal disconnection;

however, a substructure does not always contain a suitable relation on which to perform cut

disconnection. Performing cut disconnection on the substructure in Figure 2.1b would generate the

following two simple substructures

S< [SHAPE(OBJECT-0001 )=TRIANGLE] >
< [SHAPE(OBJECT-OO02).=SQUARE] >

As an example of a substructure having no suitable cut disconnection relation, consider the

substructure representing three objects connected in a ring

< [CON NECTED( OBJECT-0 1,OBJECT-0002 )=T][CONNECTED(OBJECT-0002,OBJECT-0003 )=T]
[CONNECTED( OBJECT-0001,OBJECT-0003)-T] >

There does not exist a relation in this substructure that when removed yields two unconnected

substructures.

* Each method typically has several applications within a given substructure. Therefore, the

method must either exhaustively generate all possible resulting substructures or intelligently

choose the more promising applications. Intelligent application of the minimal expansion method

* for generating new substructures considers the occurrences of the substructure being expanded. If

each occurrence of the substructure has the same type of neighboring relation, application of the

method to this relation would be better than an application to a less repetitive neighboring relation.

* Combination expansion can be applied more intelligently by combining only those substructures

'p.,-
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that have a large number of relations and objects in common. Exhaustive appi, ation of minimal

disconnection can be avoided by removing only those relations that occur the least in the input

examples, yielding substructures with perhaps an increased number of occurrences. Lastly. cut

disconnection can be applied more intelligently by removing relations that yield highly connected

substructures. The techniques of finding articudaion points [Reingold77l and cut points [Zahn7i]

are applicable here.

Regardless of how the methods are applied, each method has advantages and disadvantages.

Although the top-down approaches allow quicker identification of isolated substructures, they

suffer from high computation costs due to frequent comparisons of larger substructures. Both the

combination expansion and cut disconnection methods are appropriate for quickly arriving at a

larger substructure. but a smaller, more desirable substructure may be overlooked in the process.

, Also. in the context of building a substructure hierarchy, beginning with smaller substructures is

preferred, because the larger substructures can then be expressed in terms of the smaller ones.

UMinimal expansion begins with smaller substructures, expands substructures along one relation

-, and, thus, is more likely to discover smaller substructures within the computational resource

limits of the system.

2.4. Substructure Selection

-. After using the methods of the previous section to construct a set of alternative
* .p.'

substructures, the substructure discovery algorithm must choose which of these substructures to

* consider the best hypothetical substructure. This is the task of substructure selection. The

proposed method of selection employs a heuristic evaluation function to order the set of alternative

, .. substructures based on their heuristic quality. This section presents the major heuristics that are

S.." applicable to substructure evaluation.

The first heuristic, cognitive savings, is the underlying idea behind several utility and data

:cmpression heuristics employed in machine learning [.linton87, Whitehall87. Wolff82I. Cognitive

savings measures the amount of data compression obtained by applying the substructure to the

13
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input examples. The cognitive savings of a substructure represents the net reduction in the

complexity of the input examples provided by the substructure. Replacing each occurrence of the

substructure by a single conceptual entity reduces the complexity of the input examples. However,

there is a gain in complexity associated with the conceptual definition of the new substructure. The

net reduction in complexity is determined from the difference between these two measures of

complexity. The reduction in complexity of the input examples can be computed as the number of

occurrences of the substructure multiplied by the complexity of the substructure. Thus. the

cognitive savings of a substructure. S. for a set of input examples. E. is computed as

..N cognitivesavings(S,E) = complexityreduction(S,E) - complexity(S)= [numberofoccurrences(S,E) * complexity(S)] - complexity(S)

= complexity(S) * [number-ofoccurrences(SE) - 1]

*. In the above computation of cognitive savings the complexity of the substructure is typically

a function of the number of objects. the number of relations, and the arity of the relations in the

substructure. The complexity of the substructure represents the cost of retaining the description of

the substructure. If portions of the substructure have already been defined, the substructure

complexity should reflect the reduced cost of retaining only the previously unknown parts of the

substructure.

The number of occurrences of the substructure is more complicated to measure. because

." occurrences may overlap in the input examples. For instance. Figure 2.2 shows three input

examples along with the substructure found by the discovery process; here. the circles represent

"Z objects and the lines represent relations. In Figure 2.2a the number of occurrences of the

substructure in the example is obviously four. At first glance, the number of occurrences of the

substructure in Figure 2.2b may appear to be four; however, the number of non-overlapping

occurrences is less than four. Figure 2.2b illustrates the problem of object overlap: likewise. Figure

2.2c illustrates the problem of relation overlap. In view of the overlap problem. computation of

:he number of occurrences must reflect the number of unique occurrences.

14
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Input Example Substructure

(a) Disjoint Substructure

(b) Object Overlapping Substructure

(c) Object and Relation Overlapping Substructure

Figure 2.2. Disjoint and Overlapping Substructures

Other substructure evaluation heuristics are adaptations of the cognitive savings to reflect

special qualities of a substructure. One such heuristic is compactness. Compactness measures the

"density" of a substructure. This is not density in the physical sense. but the density based on the

number of relations per number of objects in a substructure. The compactness heuristic is a

15
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generalization of Wertheimer's Factor of Closure. which states that human attention is drawn to

closed structures (Wertheimer39]. A similar heuristic, also called compactness. is used in the vision

literature to describe the density of a region in a visual image [Fu87]. Graphically. a closed

substructure has at least as many relations as objects, whereas a non-closed substructure has fewer

relations than objects [Prather76]. Thus. closed substructures have a higher compactness value.

Another heuristic that modifies the cognitive savings of a substructure is connectivity. This

heuristic measures the amount of external connection in the occurrences of the substructure. The

connectivity heuristic is a variant of Wertheimer's Factor of Proximity [Wertheimer39]. and is

-... related to earlier numerical clustering techniques [Zahn7ll. These works demonstrate the human

preference for "isolated" substructures: that is. substructures that are minimally related to

* adjoining structure. One method for computing the connectivity measures the "isolation" of a

substructure by computing the average number of external connections over all the occurrences of

the subsiructure in the input examples. The number of external connections is to be minimized:

therefore, the connectivity value is computed as the inverse of the average to arrive at a value that

*. increases as the number of external connections decreases.

The final heuristic modifying the cognitive savings is coverage. The coverage heuristic

measures the amount of structure in the input examples described by the substructure. The

coverage heuristic is motivated from research in inductive learning and provides that concept

descriptions describing more input examples are considered better [Michalski83b]. Multiplying

• cognitive savings by coverage decreases the original cognitive savings only when the substructure

describes a smaller amount of the input examples.

Other heuristics exist for evaluating and selecting substructures. One heuristic involves the

use of background knowledge to recognize more promising substructures (see Section 2.7). Also. in

the context of specialized substructures, other heuristics could measure the amount of

specialization involved and incorporate this measure into the cognitive savings. In addition to the

gestalt motivation for the previouslv discussed heuristics, gestalt theory suggests many additional
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factors identified in human perception that may apply to substructure evaluation [Kohler47,

Wertheimer39]. The SUBDUE system described in Chapter 3 discovers substructures by using the

four heuristics presented in this section along with background knowledge to suggest promising

substructures and substructure specialization to attach contextual information to newly discovered

substructures.

2.5. Substructure Instantiation

Once an interesting substructure is discovered, the input examples can be recast by replacing

r- the objects and relations of each occurrence of the substructure with a single entity representing

the abstract substructure. This replacement is termed substructure instantiation. After

performing one substructure instantiation, a substructure discovery system may continue to

discover more abstract substructures in terms of those already instantiated in the input examples.

This section considers two methods of substructure instantiation.

One method of substructure instantiation replaces each occurrence by a single object.

Difficulties in using this method arise from representation problems. Although all the objects and

relations of the occurrence are replaced by a single object. the neighboring relations are not

replaced. Therefore. some recollection of the objects involved in the neighboring relations must be

maintained. Also. the possibility of overlapping occurrences, as described in Section 2.4. only

confounds the instantiation problem. In the case of object overlap, each instantiation of the

S"'- overlapping occurrences must remember the overlapping components. Similarly. in the case of

,. - relation overlap, not only must the overlapping objects be retained, but the overlapping relations as

well. Retaining the extra object information is inconsistent with the idea of substructure

instantiation using a single new object. Although single cbject substructure instantiation seems

'itu-itivelv promising. the accompanying representation problems are difficult to overcome.

An alternative approach to substructure instantiation involves replacing each occurrence of

the substructure with a new relation. The arguments to this relation are all the objects in the

substructure occurrence. During instantiation. all relations n the occurrence are removed from the

17
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input example and replaced by the new relation. Other neighboring r-.a.ions containing arguments

that refer to objects in the occurrence are left unchanged. In this way the symbol equality between

relation arguments preserves the original input example structure that is not directly described by

the substructure. Unfortunately. by retaining all the objects in the occurrence as arguments to the

new relation, the relation instantiation method loses the data compression gained by abstracting

over the objects in the occurrences of the substructure.

I". To clarify the single relation substructure instantiation procedure. consider again the input

example and substructure of Figure 2.2c redrawn in Figure 2.3a with appropriate object symbol

" assignments. Figure 2.3b shows the four new relations representing the four occurrences of the

. substructure in the input example. The relation name is chosen arbitrarily and is the same for each

NIP. Input Example Substructure

NO N1 N2 N3 N4

2 N5 N6 N7 N8 N9

(a) Example

[SUB-OOO5(NO.N 1.N5.N6 )=T][SUB-0005(N 1.N2.N6.N7)-T]

SUB-0005(N2 ,N3.N 7.N8)=TJ[SUB-0005(N3,N8.N.N9)=T]

(b) Instantiation

Figure 2.3. Substructure Instantiation Using New Relations
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occurrence. From the common object symbols within the relations. the overlapping objects and

relations of the original occurrences may be reconstructed.

Thus. single relation substructure instantiation remains the more accurate approach for

ew . replacing substructure occurrences with a single. more abstract entity representing the original

objects and relations in the occurrence. Replacing objects and relations through substructure

instantiation reduces the complexity of the input examples and allows subsequent discovery of

' e 'concepts defined in terms of the instantiated substructures.

*" 2.6. Substructure Specialization

Specializing substructures is an essential capability of a substructure discovery system. For

instance, suppose the system finds six occurrences of an aromatic ring substructure within a set of

" .. input examples. Three of the occurrences have an attached chlorine atom. and three occurrences

have an attached bromine atom. The discovery system may benefit by retaining not only the

aromatic ring substructure, but also a more specific aromatic ring substructure with an attached

atom whose type is described by the disjunction "chlorine or bromine". Performing this

* specialization step allows the substructure discovery system to take advantage of additional

information in the input examples. avoid learning overly general substructure concepts. and more

- raoidlv discover a specific disjunctive substructure concept. This section presents an approach to

substructure specialization.

- One technique for specializing a substructure is to perform inductive inference on theI

extended occurrences of the slbstructure. An extended occurrence of a substructure is the

substructure generated by adding one neighboring relation to the occurrence. The set of extended

occurrences consists of the substructures obtained by expanding each occurrence with each

- -neighboring relation of the occurrence. Once the set of extended occurrences is constructed.

:nductwve inference generalization techniques [Michalski83a] can be applied to the newly added

neighboring relations and their corresponding values. The resulting generalized neighboring

relations are then appended to the original substructure to produce new, specialized substructures.
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Despite the generalization step in the previous technique, the substructures produced are

structurally more specific than the original substructure. Appending a new relation to a

substructure (whether or not the relation is generalized) adds a conjunct to the conjunctive

description. Thus. the extended conjunctive description describes fewer occurrences over the space

of possible input examples.

As an example of the substructure specialization technique, suppose the substructure

discovery system discovers the substructure <[ON(A,B)=T]>, and several of the occurrences of this

substructure have [SHAPE(A)=SQUARE] and [SHAPE(A)=CIRCLE] as neighboring relations. In this

case, the specialization process produces the substructure <[ON(A,B)=T] [SHAPE(A)-

CIRCLE,SQUAREI>.

* After the originally discovered substructure undergoes the specialization process. both the

.. original and specialized substructures are retained in the background knowledge of the

substructure discovery system. The background knowledge may then identify known

substructures in subsequent input examples. For instance, suppose the substructure resulting from
a previous specialization. <[ON(AB)-T1[SHAPE(A)=SQUARECIRCLE]>, is identified by the

.1..

% background knowledge in the given input examples. Furthermore. suppose the neighboring

relations of the occurrences of this substructure include the relations [COLORA)=RED],

[COLOR(A)=BLUE and [COLOR(A)=RED]. Then one possible specialization of the original

substructure is <[ON(A,B]=T[SHAPE(A)-SQUARE,CIRCLE][COLOR A)-REDBLUE]>. With the

* possibility of repeated specialization, the substructure discovery system can learn increasingly

specific disjunctive substructure concepts.

By specializing newly discovered substructures. the substructure discovery system learns

* both general and specific substructure concepts. Retaining these substructures in a background

knowledge hierarchy allows the discovery system to identify previously learned substructure

concepts in subsequent input examples and provides a more robust set of primitive substruc'ures

* from which subsequent discovered substructures can be defined.

20
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2.7. Background Knowledge

Although the substructure discovery techniques described in the previous sections work

without prior knowledge of the domain, the application of background knowledge can direct the

discovery process along more promising paths through the space of alternative substructures. This

section considers background knowledge in the form of substructure definitions; that is. candidate

substructures that are more likely to exist in the current application domain.

The two major functions of the substructure background knowledge are to maintain both

user-defined and discovered substructures and to determine which of these substructures exist in a

given set of input examples. In order to take maximum advantage of the hierarchical nature of

substructures, the background knowledge is arranged in a hierarchy in which complex

substructures are defined in terms of more primitive substructures. This arrangement suggests an

architecture similar to that of a truth maintenance system (TMS) [Doyle79]. Primitive

substructures serve as the justifications for more complex substructures at a higher level in the

hierarchy. When a new substructure is added to the background knowledge. primitive

substructures are justified by the objects and relations in the new substructure. These primitive
5°

substructures provide partial justification for the new substructure. Furthermore. the T.IS

architecture provides a simple process for determining which background knowledge substructures

ex:st in a given set of input examples. This determination can be accomplished by first justifying

a-i ons at the leaves of the background knowledge hierarchy with the relations in the input

e.. .aple- Then, initiate the normal TNIS propagation operation to indicate which substructures are
-. o

ultimately justified by the relations in the input examples. The substructure discovery process

may then use these background knowledge substructures as a starting point for generating

alternative substructures.

Other forms of background knowledge apply to the task of substructure discovery.

Whitehall's PLAND system [Whitehall87] for discovering substructure in sequences of actions uses

three levels of background knowledge to guide the discovery process. PLAND's high le, e!
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background knowledge is used to determine the level of abstraction that is appropriate for

processing the input sequence. PLAND's medium level background knowledge determines which

groups of substructures within a given level of abstraction to process next. The low level

background knowledge controls the type of substructures considered. Other details of the PLAND
'S

system can be found in Section 5.4.

Currently, only declarative substructure background knowledge is considered for retention in

the hierarchy. Yet, there is an equally important and hierarchically organized body of knowledge

involved in the retention and determination of substructure function. Chapter 6 discusses future

efforts that will attempt to incorporate substructure function into the declarative background

5- *.knowledge hierarchy.

2.8. Substructure Discovery Algorithm

This section presents a substructure discovery algorithm utilizing the techniques from

previous sections. The algorithm is a computationally constrained best-first search guided by the

substructure generation and selection techniques presented in sections 2.2 and 2.3. Figure 2.4

outlines the substructure discovery algorithm.

Initially, the algorithm is given one or more input examples and a limit. L. on the amount of

5:. computation performed. The algorithm begins by forming the set, S. of base substructures. In the

situation where no background knowledge is present. the set of base substructures has only one

element, the substructure corresponding to all single objects. with as many occurrences as there are

objects in the input examples.' When background knowledge is present. this set of base

substructures. S. may contain applicable background knowledge substructures in addition to the

object substructure. As the algorithm progresses, the discovered substructures will be kept in the

-- - set. D. that is initially empty.

'In -he VL 2 language for expressing these substructures, objects are represen'ted as variables. However. a variable alone
does not constitule a well-formed VL2 expression. Aithough expressed as an arbi:rary obiect name :.e. OBJECT-0001 ). the
singte obiect substrucTure should be interpreted as an impiicit reia:ion expressmn "he existence 0: the object :.e.
OB1ET(OBECT-0O)l )-TI).
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L - limit on computation time
S - {base suostructures)': D - {)

while (amountofcomputation < L) and (S {) do
BEST-SUB - best substructure selected from S

i p S = S - (BEST-SUB)
D = D U {BEST-SUB)
E = (alternative substructures generated from BEST-SUB)
for each e in E do

if (not (member e D))
S SU {e)

return D.

Figure 2.4. Substructure Discovery Algorithm

The next step in the algorithm is a loop that continuously generates new substructures from

the substructures in S until either the computational limit, L. is exceeded or the set of candidate

substructures. S. is exhausted. The loop begins by selecting the best substructure in S. Here. the

heuristics of Section 2.4 are employed to choose the best substructure from the alternatives in S.

The actual computation performed to compute the heuristic evaluation function depends on the

implementation. Section 3.2.2 describes the computation used in SUBDUE: although. other

methods may be used. For instance, the heuristics could be weighted, selected by the user. or

selected by the background knowledge. However, any substructure selection method should

involve the four heuristics described in Section 2.4. Once selected. the best substructure is stored in

BEST-SUB and removed from S .Next. if BEST-SUB does not already reside in the set D of

discovered substructures, then BEST-SUB is added to D. The substructure generation methods of

Section 2.3 are then used to construct a set of new substructures that are stored in E. Those

substructures in E that have not already been considered by the algorithm are added to S. and the

loop repeats. When the loop terminates, D contains the set of discovered substructures.
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Thus. the discovery algorithm is a straightforward implementation of the best-first search

paradigm with a computational constraint. The power of the algorithm lies in the substructure

generation methods and selection heuristics for choosing among alternative substructures. As

subsequent examples will demonstrate, these heuristics perform well in guiding the search toward

more promising substructures.

The next chapter describes the SUBDUE system. The SUBDUE system utilizes the

substructure discovery algorithm along with substructure specialization and substructure

background knowledge to form a robust substructure discovery system.

.-...-

a.-
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CHAPTER 3

THE SUBDUE SYSTEM

An implementation of the substructure discovery methodology described in the previous

chapter is contained in the SUBDUE system. Written in Common Lisp on a Texas Instruments

Explorer. the SUBDUE program facilitates the use of the discovery algorithm both as a

substructure concept discoverer and as a module in a more robust machine learning system. In

addition to the heuristic-based substructure discovery module. SUBDUE also includes a

substructure specialization module and a substructure background knowledge module for utilizing

previously discovered substructures in subsequent discovery tasks. The substructure background

knowledge holds both user-defined and discovered substructures in a hierarchy and determines

I which of these substructures are present in the input examples.

' { Substructure

User-Supplied
" Background Knowledge Background Knowledge

Substructure
Specializer

User-Supplied J Heuristic-Based
Input Examples Substructure Discovery

Figure 3.1. The SUBDUE System
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Figure 3.1 illustrates the interaction of the three modules. First, the user provides one or

more input examples and optional background knowledge describing substructures that may apply

to the examples. Next, the heuristic-based substructure discovery module asks the substructure

background knowledge module for any known substructures that apply to the input examples.

The discovery module uses the background knowledge substructures, if any. to find interesting

substructures in the input examples. Upon exhausting the computational resources, SUBDUE

passes the best substructure found to the substructure specialization module. This module appends

additional attribute relations to the description of the discovered substructure. Finally,. both the

N% original and specialized substructure concepts are added to the substructure background

%e% knowledge. The user may then run the system on a new set of input examples, add additional

background knowledge, or run the system again on the same examples, perhaps altering the

computational limit. SUBDUE has options to deactivate one or more of the modules to investigate

the operation of individual modules.

This chapter discusses the substructure representation used in SUBDUE and describes each of

,he three modules along with examples of their operation.

3.1. Substructure Representation

The SUBDUE system uses the substructure description language of Section 2.2 to

communicate with the user. The internal representation of a substructure closely resembles a

directed graph. Consider the substructure shown in Figure 3.2a. Figure 3.2b shows the external

expression for this substructure, and Figure 3.2c shows the internal representation.

Internally, SUBDUE represents a substructure by the set of relations that comprise the

substructure. Each relation contains the name of the relation, the value of the relation, the list of

object arguments to the relation and the order-relevancy of the arguments. Objects are represented

:nternally by the literal names used to specify the objects in the external representation. This

substructure representation is expressed as a directed graph. as in Figure 3.2c, and facilitates a

;ra-h-theoretc comoarison between substructures.
F.J.
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(a) Substructure

. [SHAPE(T1)-TRIANGLE][SHAPE(S1)=SQUAREI[SHAPE(Cl)=CIRCLE]

[ON(Tl.S1)=Ti[ON(S1.C1)-T]

(b) External Representation

-' "'" SUBSTRUCTURE

SHAPE( )-TRIANGLE SHA1PE( )-SQUARE] SHAPE( )-CIRCLE

iS

(c) Internal Representation
I

Figure 3.2. Substructure Representation
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Accompanying each internal substructure representation are the heuristic value of the

substructure and a list of the occurrences of the substructure in the current set of input examples.

Although not essential, keeping the occurrences together with the substructure greatly increases the

efficiency of substructure generation. selection and specialization processes.

The dual substructure representations provide a convenient external substructure

representation and an efficient internal representation. The external representation allows the

user-supplied input examples. the user-supplied substructure background knowledge, and the

substructures discovered by SUBDUE to be communicated in the same form. Converting this

external representation into an internal, directed graph representation permits increased efficiency

in many of the major operations performed by the SUBDUE system.

- 3.2. Heuristic-Based Substructure Discovery

The heuristic-based substructure discovery module in SUBDUE is an implementation of the

substructure discovery algorithm presented in Section 2.8. This implementation uses the

exhaustive minimal expansion technique discussed in Section 2.3 for generating alternative

substructures. Selection from among the alternative substructures is accomplished by evaluating

the substructures using the four heuristics described in Section 2.4: cognitive savings, compactness.

connectivity, and coverage. Section 3.2.1 outlines SUBDUEs implementation of the minimal

expansion technique for substructure generation. and Section 3.2.2 describes the computations

performed during the evaluation of a substructure. A sample execution of the heuristic-based

0
substructure discovery module is presented in Section 3.2.3.

3.2.1. Generation

The heuristic-based substructure discovery module uses the exhaustive minimal expansion

technique from Section 2.3 for generating alternative expanded substructures from a single

substructure. Recall from Section 2.3 that the minimal expansion technique expands a substructure

* by adding )ne neighboring relation.
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SUB - description of substructure to be expanded
NEWSUBS - 1)
N - {neighboring relations of the occurrences of SUB)
foreach n in N do

NSUB = new substructure formed by adding n to SUB
NEWSUBS - NEWSUBS U INSUB)

return NEWSUBS.

Figure 3.3. Substructure Expansion Algorithm

Figure 3.3 shows the substructure expansion algorithm. The new, expanded substructures are

stored in NEWSUBS. initially an empty set. First, the set of neighboring relations of SUB are

stored in N. For each neighboring relation, a new substructure is formed by adding the neighboring

relation to the original substructure description, SUB. The newly formed substructure is added to

the set of expanded substructures. NEWSUBS. After all possible neighboring relations have been

considered. the expansion algorithm returns NEWSUBS as the set of all possible substructures

expanded from the original substructure.

" .3.2.2. Selection

The heuristic-based substructure discovery module selects for consideration those

substructures that score highest on the four heuristics introduced in Section 2.4: cognitive savings,

compactness, connectivity and coverage. These four heuristics are used to order the set of

alternative substructures based on their heuristic value in the context of the current set of input

examples. With the substructures ordered from best to worst, substructure selection reduces to

selecting the first substructure from the ordered list. This section describes the computations

involved in the calculation of each heuristic, and how these results are combined to yield the

heuristic value of a substruc.ture.

,.
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As defined in Section 2.4. the cognitive savings of a substructure. S. for a set of input

examples. E. is computed as

cognitive-savings(S,E) - complexity reducion(S,E) - complexity(S)
- [numberofoccurrences(S,E) * complexity(S)l - complexity(S)
= complexity(S) * [number-of occurrences(S,E) - I1

The complexity(S) is defined as the size of the substructure, S. where the size is computed as the

sum of the number of objects and relations in the substructure. As discussed in Section 2.4. the
V(

* number-ofoccurrences(SE) is more complicated to compute, because the occurrences may overlap

in the input examples. Simply counting all objects and relations in the overlapping occurrences

would incorrectly state the true cognitive savings of the substructure. Therefore, the

complexity-reduction(SE) is defined to be the number of objects and relations in the occurrences of

the substructure. where overlapping objects and relations are counted only once. The number of

such objects is referred to as #unique objects. and the number of such relations is referred to as

#uniawte_relations. Thus. the cognitive savings of a substructure S with occurrences OCC in the set

of input examples E is computed as

cognitive-savings(S,E) - complexityreduction(S,E) - complexity(S)
- [#uniqueobjects(OCC) + #unique-relations(OCC)] - complexity(S)
- [#unique objects(OCC) + #unique relations(OCC)] - size(S)
- [#unique objects(OCC) - #unique relations(OCC)] - [#objects(S) - #relations(S)]

As an example of the cognitive savings calculation, consider the input examples and

corresponding substructures in Figure 2.2. If each circle is considered an object and each line a

relation, then for each of the three substructures. #objects(S) = 4. #relations(S) - 4 and there are

four occurrences of the substructure in the input example. In Figure 2.2a, #unique-objects(OCC) =

0 16 and #unique relations(OCC) = 16: thus. cognitive-savings = [16 + 16] - [4 - 4] = 24. In Figure

2.2b. *unique-objects(OCC) - 13 and #unique relations(OCC) - 16: thus. cognitive-savings = [13
161 - - - 4. = 21. In Figure 2.2c, #uniqueobjects(OCC) = 10 and #uniaue_ relations(OCC) = 13:

thus. .ognitive savings - [10 - 13] - [4 -- 1= 15. Therefore. although the substructure is the same.
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the cognitive savings value depends on the overlap of the occurrences of the substructure in the

Icurrent set of input examples.

The second heuristic, compactness. measures the density of the substructure. Compactness is

defined as the ratio of the number of relations in the substructure to the number of objects in the

substructure. Unlike cognitive savings, the compactness of a substructure is independent of the

input examples.

• -' #relations(S)compactness(S) =

#objects(S)
'N

For each of the substructures in Figure 2-2. #relations(S) = 4 and #objects(S) = 4: thus.

compactness - 4/4 = 1.

The third heuristic, connectivity, measures the amount of external connection in the

occurrences of the substructure. Connectivity is defined as the inverse of the average number of

j external connections found in all occurrences of the substructure in the input examples. Thus. the

connectivity of a substructure S with occurrences OCC in the set of input examples E is computed

as

• ,t ySE externalconnections(i) -
connectivity(S,E) = c

Again. consider Figure 2.2. Each substructure has four occurrences in the input example. In

Figure 2.2a. each occurrence has one external connection: thus, connectivity = (4/4)- l = 1. In Figure

2.2b and Figure 2.2c. the two innermost occurrences both have 4 external connections and the two

outermost occurrences both have 2 external connections, for a total of 12 external connections.

Thus. connectivitv = (12/4) -l 
= 1/3.

The 'inal heuristic, coverage, measures the amount of structure in the input examples

descrhed by the substructure. Coverage :s defined as the number of unique obiects and relations "n
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-%.," the occurrences of the substructure divided by the total number of objects and relations in the

input examples. Thus, the coverage of a substructure S with occurrences OCC in the set of input

examples E is computed as

coverage(S,E) = #unique objects(OCC) + #uniquerelations(OCC)

*objecls(E) + #relations(E)

In Figure 2.2a there are 32 unique objects and relations in the occurrences of the substructure.

and a total of 49 objects and relations in the entire example. Thus, coverage = 32/49. In both

Figure 2.2b and Figure 2.2c the occurrences of the substructure describe every object and relation

in the input example; thus, coverage = 1.

Ultimately. the value of a substructure S for a set of input examples E is computed as the

[ •product of the four heuristics.

value(S,E) = cognitivesavings(S,E) * compactness(S) * connectivity(S,E) * coverage(SE)

In this way the compactness. connectivity and coverage heuristics adapt the cognitive savings value

to reflect specific qualities of the substructure. The values of the substructures in Figure 2.2 are

Figure 2.2a: value = 24 * I * 1 * 32/49 = 15.7
Figure 2.2b: value =21* 1*1/3 1 =7.0
Figure 2.2c: value = 15* 1*1/3* 1=5.0

3.2.3. Example

"4, In order to clarify the different operations of the heuristic-based substructure d:scoverv

4.' module, this section traces a sample execution of the process. The execution proceeds according to

the substructure discovery algorithm (Figure 2.4) utilizing the generation algorithm (Figure 3.3)

and the heuristic evaluation function described in the previous section. Figure 3.4 shows the input

example and the substructure that will eventually emerge. The input exampie is given to the

* s',stem as:
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<[SHAPE(T) = TRIANGLE][SHAPE(T2) TRIANGLE](SHAPE(T3) = TRIANGLE]
[SHAPE(T4) = TRIANGLE][SHAPE(Si) SQUAREI[SHAPE(S2) - SQUAREJ
[SHAPE(S3) = SQUAREI[SHAPE(S4) - SQUAREI(SHAPE(RI) - RECTANGLE]
[SHAPE(C1) , CIRCLE][ON(T1,SI) = TI[ON(T2,S2) = T][ON(T3,S3) = TI
[ON(T4,S4) = T][ON(S1,RI) = T][ON(CI,RI) = TI[ON(RI,T2) - T!
[ON(R1,T3) - T][ON(R1,T4) TI>

First, the algorithm forms the set S of base substructures. Initially. S has only one element.

the substructure denoted by <1.1 OBJECT-0001>. This substructure has as many occurrences as

there are objects in the input example. The number before a substructure is the value of the

substructure, as defined in Section 3.2.2. The object names within the substructures are arbitrary

symbols generated by the system for each newly constructed substructure.

S = {<1.1 OBJECT-O001 >}

Next. we enter the loop, where the best substructure in S is stored in BEST-SUB. removed from S

and inserted in the set D of discovered substructures. Next, BEST-SUB is minimally expanded by

adding one neighboring relation to BEST-SUB in all possible ways. The newly created substructures

- are stored in E.

Input Example Substructure

Si Ri (ci

Figure 3.4. Simple Example
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E = 1<0.9 [SHAPE(OBJECT-0002) , TRIANGLE]> < 1.3 [SHAPE(OBJECT-002) , SQUARE]>
< 0.0 [SHAPE(OBJECT-0002) - RECTANGLE]> < 1.0 (ON(OBJECT-O003,OBJECT-O002) - TI >
< 0.0 [SHAPE(OBJECT-O002) , CIRCLE]> I

Each substructure in E is added to S in order of decreasing ,alue. and the loop repeats.

S = { < 1.3 [SHAPE(OBJECT-0002) - SQUARE]> < 1.0 [ON(OBJECT-OOO3,OBJECT-0002) - T] >
< 0.9 (SHAPE(OBJECT-0002) - TRIANGLE] > < 0.0 [SHAPE(OBJECT-O02) - RECTANGLE] >
< 0.0 [SHAPE(OBJECT-OO02) - CIRCLE]>

In the second iteration of the loop, < 1.3 [SHAPE(OBJET-0002) = SQUARE]> is stored in BEST-SUB.

removed from S and added to D. E is set to the minimal expansion of BEST-SUB.

E = 1<0.0 [ON(OBJECT-0002,OBJECT-0005) = T](SHAPE(OBJECT-0002) = SQUARE]>
<3.3 [ON(OBJECT-0004,OBJECT-OOO2) = T][SHAPE(OBJECT-OOO2) = SQUARE]>

.Neither substructure in E has occurred before. Thus, both are added to S. and the loop repeats.

S = < 3.3 [ON(OBJECT-004.OBJECT-0002) = T][SHAPE(OBJECT-0002) = SQUARE]>
< 1.3 [SHAPE(OBJECT-0002) - SQUARE]> < 1.0 [ON(OBJECT-0003,OBJECT-0002) = TI>
<0.9 [SHAPE(OBJECT-0002) - TRIANGLE] > <0.0 [ON(OBJECT-0002,OBJECT-OO05) = TI
[SHAPE(OBJECT-0002) = SQUARE] > < 0.0 [SHAPE(OBJECT-0002) - RECTANGLE] >
< 0.0 [SHAPE(OBJECT-O002) - CIRCLE]>

In the third iteration of the loop, <3.3 [ON(OBJECT-0004,OBJECT-0002) - T] [SHAPE(OBJECT-0002) =

SQUARE]> is stored in BEST-SUB. removed from S and added to D. E is set to the minimal

expansion of BEST-SUB.

E = 1 <0.0 [ON(OBJECT-0002,OBJECT-0007) = T][ON(OBJECT-0004,OBJECT-0002) - TI
[SHAPE(OBJECT-O002) - SQUARE]> < 15.5 [SHAPE(OBJECT-O004) = TRIANGLE]
[ON(OBJECT-OO4.OBJECT-0002) . TISHAPE(OBJECT-0002) = SQUARE]>
< 0.9 [ON(OBJECT-0006,OBJECT-0004) = T][ON(OBJECT-0004.OBJECT-0002) = T]
[SHAPE(OBJECT-0002) = SQUARE]>

Again. none of the substructures in E have occurred previously: therefore, each substructure is

added to S. The loop continues until the computational limit is exceeded or S becomes empty.

4 h.)
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In this example the next substructure to be considered. < 15.5 [SHAPE(OBJECT-0004)

TRIANGLE] [ON(OBJECT-0OO4,OBJECT-0002) - T] [SHAPE(OBJECT-0002) = SQUARE]>. will emerge as

the best substructure. Regardless of the amount of additional computation, this substructure (the

substructure in Figure 3.4) will be the best element in the set of discovered substructures returned

by the z1g:rithm.

3.3. Substructure Specialization

The substructure specialization module in SUBDUE employs a simple technique for

specializing a substructure. This technique is based on the method described in Section 2.6.

SUBDUE specializes a substructure by conjoining one attribute relation. The value of the added

attribute relation is a disjunction of the values observed in the attribute relations connected to the

occurrences of the substructure. To avoid over-specialization the substructure is conjoined with

the disjunctive attribute relation representing the minimal amount of specialization among the

possible disjunctive attribute relations of the substructure. More specific substructures will

eventually be considered after less specific substructures have been stored in the background

knowledge, found in subsequent examples. and further specialized. Section 3.3.1 describes the

substructure specialization algorithm, and Section 3.3.2 illustrates an example of the specialization

.1 process.

-.." :3.3.1. Specialization Algorithm

4l The substructure specialization algorithm used by SUBDUE is shown in Figure 3.5. The

algorithm returns all possible specializations for a given substructure in the current set of input

examples.

I The algorithm proceeds as follows. Given a substructure S with occurrences OCC in the set of

input examples E the substructure specialization algorithm in Figure 3.5 returns the set of all

possibie specializations of S. These specializations will be collected in SPECSUBS. that is initially

empty. The algorithm begins by storing in ATTRIBUTES all the attribute relations in the
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E - current set of input examples
S = description of substructure to be specialized
OCC - {occurrences of S in E)

,,,," SPECSUBS = (I
ATTRIBUTES - iattribute relations of OCCI
foreach REL in ATTRIBUTES do
S" - S A [REL(OBJ)-*]
OCC* - (occurrences of S" in E)
UNIQUEVALUES - (unique values of all REL(OBJ) in OCC'}
Se - S A [REL(OBJ)-UNIQUE.VALUES]
SPECSUBS = SPECSUBS U Ss,

return SPECSUBS.

Figure 3.5. Substructure Specialization Algorithm

e. '. occurrences of S. Recall from Section 2.2 that an attribute relation of an occurrence is a

S.P,. neighboring relation of the occurrence whose only argument is an object contained in the

occurrence. For each attribute relation. REL. in ATTRIBUTES. a new substructure, S'. is

constructed by adding a new attribute relation to the original substructure S. This new relation.

[REL(OBJ)=*], is the same as REL except that the value slot of the relation is changed to a don t

'. care" value that matches any value. For example. if REL is [COLOR(Tl),RED]. and TI

corresponds to object OBJECT-O001. then the attribute relation [COLOR(OBJECT-OOO1)*,] will be

added to S and will match any other COLOR attribute. i.e.. [COLOR(T2)-RED] or

O [COLOR(Sl)=GREEN]. etc.

After S' is constructed, the occurrences of S' in E are stored in OCC'. Next. from the set of
V!

occurrences in OCC'. the actual values of the REL attribute relation are uniquely collected in
O

UNIQUEVALUES. Then, the specialized substructure. S.pe. is constructed by adding to the

original substructure S an attribute relation having the same name as REL and UNIQUEVALUES

as tne disjunctive list of relation values. Finally, if not already in SPECSUBS. S,, is added to

- SPECSUBS.

36
6



After considering each attribute relation in ATTRIBUTES, the algorithm terminates and

returns the set of specialized substructures stored in SPECSUBS. However. only the minimally

specialized substructure is eventually stored in the substructure background knowledge.

Therefore, for a substructure. S . with newly added attribute relation

[REL(OBJ)=UNIQUEVALUES] and occurrences OCC the following formula is used to measure the

amount of specialization in SSpec

M I
UNIQUEVALUES

amountof specia1ization(S,,,)-

,p.

The substructure with the smallest amount of specialization will then be stored in the substructure

rbackground knowledge along with the originally discovered substructure.

3.3.2. Example

As an example of the substructure specialization process. consider Figure 3.6. Figure 3.6a

U illustrates the same input example of Figure 3.4 with the addition of several color attribute

relations. After running the heuristic-based substructure discovery algorithm on this example. the

same substructure emerges as in Figure 3.4.

p
S = <[SHAPE(OBJECT-0002)=TRIANGLEI[SHAPE(OBJECT-0OO 1)=SQUARE]

[ON(OBJECT-0002,OBJECT-O001 )=T]>

Next. the newly discovered substructure is sent to the substructure specialization module.

First, all the attribute relations of the occurrences of the substructure are stored in ATTRIBUTES:

ATTRIBUTES = {[COLOR(T1 )=REDI, [COLOR(T2)=RED], [COLOR(T3)=BLUE].
[COLOR(T4)=BLUE], [COLOR(SI)=GREEN], [COLOR(S2)=BLUE],
[COLOR(S3)=BLUE], [COLOR(S4)=RED]}

Next. the first attribute relation in ATTRIBUTES is given a value * and added to the original

substructure. The name of the object argument to the attribute relation is changed from T1 to

OBJECT-0002. because OBJECT-0002 is the name of the object in the description of the
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Input Example Substructure

red-

green- Si C1

red- blue

blue- S2 S4 -red

blue blue

N, (a)

Specialized Substructure

red v blue

(b)

Figure 3.6. Substructure Specialization Example

substructure S that corresponds to the object Ti in the occurrences of the substructure.

WIN s* = <[COLOR(OBJECT-0002)=*[SHAPE(OBJECT-0002)=TRIANGLEI
[SHAPE( OBJECT-COO1 )=SQUAREION(OBJECT-0002,OBJECT-OOO1 )-T] >

The four occurrences of S" are stored in OCC*. and the unique values of their color relations are

collected in UNIQUEVALUES.

UN-IQUE VALUES = {RED.BLUEt
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Thus, the following specialized substructure is added to SPECSUBS:

S'PX= <[COLOR(OBJECT-0002)=BLUE,REDI[SHAPE(OBJECT-0002)=TRIANGLEI
[SHAPE(OBJECT-0001 )=SQUAREI[ON(OBJECT-0002,OBJECT-001 )T] >

S.P, has 4 occurrences and 2 unique values in the newly added attribute relation: thus,

amountofspecialization(S ) = 2/4 1/2. The only other specialized substructure added to
spft

SPECSUBS in this example is

S = <[COLOR(OBJECT-O001 )=BLUE,GREEN,RED][SHAPE(OBJECT-0002)=TRIANGLE]
[SHAPE(OBJECT-OOO I)=SQUARE][ON(OBJECT-0002,OBJECT-OOO1 )=T]>

This specialized substructure also has 4 occurrences, but 3 unique values: thus.

amountof-specialization(S p) = 3/4. The first specialized substructure has a smaller amount of

specialization. Therefore, only the first substructure, shown in Figure 3.6b, is added to the

* substructure background knowledge along with the originally discovered substructure.

Specializing the substructures discovered by SUBDUE adds to the substructures information

*. about the context in which the substructures are likely to be found. By minimally specializing the

substructure. SUBDUE avoids adding contextual information that is too specific. If the desired

substructure concept is more specific than that obtained through minimal specialization, specializing

similar substructures in subsequent examples will transform the under-constrained substructure

into the desired concept. There is the possibility that even the minimal amount of specialization
F

" may over-constrain a substructure. SUBDUE can recover from this problem, because both the

original and specialized substructures are retained in the background knowledge. The unspecialized

* substructure will always be available for application to subsequent discovery tasks.

3.4. Substructure Background Knowledge
5-.

The substructure background knowledge module in SUBDUE has two major functions:

storing both user-defined and discovered substructures and determining which of these
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,,d, substructures occur in a given set of input examples. The substructures are stored in a hierarchy.

where complex substructures are defined in terms of their more primitive subparts. By storing

user-defined substructures. the background knowledge allows the user to contribute prior

knowledge of the application domain. Storing discovered substructures makes SUBDUE a closed-

loop system in which the knowledge grows incrementally and hierarchically as new substructures

.' are discovered. Each execution of the heuristic-based discovery module queries the background
"p.

knowledge for substructures occurring in the current set of input examples. Section 3.4.1 describes

the architecture of the substructure background knowledge, and Section 3.4.2 outlines the method

for identifying background knowledge substructures in a given set of input examples.

3.4.1. Architecture

S As suggested in Section 2.7, the architecture of SUBDUE's substructure background

knowledge is modeled after a variant of the truth maintenance system called the assumption-based

truth maintenance system (ATMS) [de Kleer86I. There are two reasons for choosing the ATMS to

model the substructure background knowledge. First, the justification network in an ATMS

captures the hierarchical representation inherent in substructures. Second. the maintenance of

several environments in which a node is supported allows not only the determination of

substructure existence, but provides the occurrences as well. This will become clear in the next

- -section.

'N" In the AT.MS used by SUBDUE. there are two types of nodes: base nodes and substructure

nodes. The base nodes are the leaves of the hierarchical background knowledge tree. A base node

represents a single relation with a unique values list. Thus. [ON(X,Y)=T]. [COLOR(X)=RED] and

[COLOR(X)=RED.BLUE] would be different base nodes in the hierarchy. At the lowest level in the

hierarchy, these base nodes serve as justifications for the higher level substructure ncdes. Each

-" . base node may support any number of substructure nodes at any level in the hierarchy. A

substrucrure node represents a substructure formed by adding one base node relation to either a

mcre primiuve substructure node or another base node relation. Thus, each substruclure node has
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NA

ON=T SHAPE=TRIANGLE SHAPE=SQUARE

Figure 3.7. Substructure Background Knowledge Example

exactly two justifications. When both justifica'tions are supported, the substructure node is also

supported.

a As an example, recall the substructure shown in Figure 3.6a. The background knowledge
"p

hierarchy for this substructure is shown in Figure 3.7. The question mark appearing in the

hierarchy represents an object. Thus. the substructure containing the question mark is

. [SHAPE(X)=TRIANGLE][ON(X,Y)-T], where the question mark corresponds to the object argument Y.

Other objects in the hierarchy are represented by the pictorial equivalent of their shape attribute.

Next. suppose either the user or SUBDUE wants to add the substructure from Figure 3.2a to

the substructure background knowledge hierarchy in Figure 3.7. The resulting hierarchy is shown

in Figure 3.8. This hierarchy is obtained by first treating the new substructure as an example and

finding the highest level substructure already in the background knowledge hierarchy that occurs

in the new substructure. In this case, the entire hierarchy of Figure 3.7 is justified by the new
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:44

-a

I SHAPE-CIRGLE] ON= SHAPE-TRIANGLE] SHAPE--SQUAREI

Figure 3.8. Two Background Knowledge Substructures !

substructure and is used as support for the new substructure. Again, a question mark is used to

* represent the object argument to the on relation, because the object does not have a shape attribute

a-at that level of the hierarchy. .

l:':' .s a final example. Figure 3.9 shows the resulting hierarchy after adding the specialized

'*substructure 
from Figure 3.6b to the hierarchy of Figure 3.8..-As new substructures are added by

-4°
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A - red v blue

SHAPE=CIRCLE ON=T SHAPE=TRIANGLE SHAPE=SQUARE COLOR=RED.BLUE

Figure 3.9. Three Background Knowledge Substructures

the user or by SUBDUE. the substructure background knowledge grows incrementally to define the

new substructures in terms of the substructures already known.

3.4.2. Identifying Substructures in Examples

As described in Section 2.8, the substructure discovery algorithm includes, in the set of initial

substructures, any background knowledge substructures occurring in the set of input examples.
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The identification process described in this section determ~nes which background knowledge

substructures occur in the input examples. Furthermore, the identification process also finds each

occurrence of the identified substructures. The method of identification used by SUBDUE is

illustrated in this section by identifying the substructures in a simple example.

Suppose the current state of the background knowledge is as shown in Figure 3.7. and the

background knowledge substructures occurring in the input example of Figure 3.4 are to be

identified. First. all the relations in the input example are used as support for the corresponding

base node relations in the background knowledge hierarchy. For example, each

- [SHAPE(X)=TRIANGLE] supports the SHAPE-TRIANGLE base node. Relations having no

corresponding base node (e.g., [SHAPE(C1)=CIRCLE]) are ignored. The base node supports resulting

from the current example are shown in Figure 3.10.

* ,'-, After the base node supports are constructed, an ATMS-like propagation begins. The only

difference between the normal ATMS propagation and that used by SUBDUE's background

knowledge is that instead of assigning the entire cross product of the two justifications to the

supported substructure node, only the combinations resulting in a valid. connected substructure for

that substructure node are retained. For instance, the "triangle on top of something" substructure

node in Figure 3.10 is not assigned [ON(C1,Rl)=T][SHAPE(T1)=TRIANGLE]. because the resulting

substructure is not connected. Similarly, the substructure node is not assigned

[ON(RI.T2)=T][SHAPE(T2)=TRIANGLE], because the resulting substructure is not a valid instance of

the substructure represented by this node. Once the propagation completes. the top level

substructure node will be assigned the set of occurrences identified in the input example. The final

substructure node assignments are also shown in Figure 3.10.

* The ATMS architecture of SUBDUE's substructure background knowledge provides a

h.herarchical representation and a simple propagation technique for identifying the occurrences of

the background knowiedge substructures in the current set of input examples. With tine

* substructure background knowledge module. not only can SUBDUE utilize user-supplied

° °-
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-. ~[ON( TI .S1)=T] [SHAPE(TI )=TRIANGLE] [SHAPE(Sl )-SQUAREI
[ON(T2.S2)=T] [SHAPE(T2)=TRIANGLE] [SHAPE(S2)-ISQUARE]

Ile ON( T3 .S3)=TI [SHAPE(T3)=TRIANGLE] [SHAPE(S3 )-SQUARE)
[QN(T4 .S4)-Til (SHAPE(T4)-TRIANGLEI [SHAPE(S4)=SQUARE] L

-: ~[ON(T1.Sl )=T] [SHAPE(T1 )=TRIANGLE] 7
[ON(T2 .S2 )=T] [SHAPE(T2 )TRIANGLE] A
[O.N(T3 .S3 )=T] [SHAPE(T3)-TRIANGLE]
[ON(T4.S4)-T] [SHAPE(T4)-TRIANGLE] ?

SHL P=TRIANE SHAPE=SQUARE

[NT.S1 )-T] [SHAPE(T1 )=TRIANGLE] [SHAPE(S1 )=SQUARE]
[ON(T2 .S2)-TI [SHAPE(T2 )-TRIA.NGLEJ [SHAPE(S2)=SQUARE]
[ON(T3 .S3 )=T] [SHAPE(T3 )-TRIANGLE] [SHAPE(S3 )=SQUARE]
[ON(T4.54 )=T] [SHAPE(T4 )=TRIANGLE] [SHAPE(S4)=SQUARE]

(ON(SI .Rl)-T]
I[ON(Cl.Rl)-TI

'LON(RlT2)-T]
[ON(RI.T3)=T] Base Node Support

I[ON(Rl.T4)-T)

L

Figure 3.10. Substructure Identification Example

I substructure background knowledge. but both specialized and unspecialized substructures

-~ discovered by SUBDUE can be retained for use in subsequent substructure discovery tasks.
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CHAPTER 4

EXPERIMENTS

- This chapter presents several experiments that demonstrate SUBDUEs ability to discover

"'p substructure in examples, specialize the substructure and utilize the substructure in subsequent

discovery tasks. In the experiments, the only user-variable parameter to the system is the

" computational limit mentioned in Section 2.8. The computational limit represents the maximum

number of substructures considered bv the heuristic-based discovery module. In other words. the

0. computational limit is the maximum number of iterations allowed for the while loop in the

substructure discovery algorithm of Figure 2.4. Unless explicitly stated, the computational limit is

assumed to be half the number of relations in the current set of input examples.

f Each experiment is run on a Texas Instruments Explorer. SUBDUE's input and output data

.for the experiments of this chapter are given in Appendix A.
I".

4.1. Experiment 1: Varying the Computational Limit

For a given set of examples. the number of substructures considered by the substructure

discovery algorithm depends on the computational limit imposed on the discovery process.

* Increasing the computational limit allows the algorithm to consider an increasing number of

alternative substructures and improves the chance that the heuristically best substructure is

generated. Experiment 1 demonstrates the effects of varying the computational limit. The results

0 obtained by the algorithm on two examples are presented.

Figure 4.1 and Figure 4.2 show the results of the two examples in Experiment 1 run with

our different values of the computational limit. As in the illustrations of the background

1. • new4.ledge ;n Section 3.4I.1. *he question marks in Figure 4.1 represent object ar-uments to the ont
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Input Example:

Cornputation Limit Three Best Substructures Discovered

El 6

Value(S)=3 .2 Value(S)-9.6 Value(S)=8 .8

I10
Value(S)=3 1.2 Value(S)=9.6

Value(S)=9.2

14 (~
Value(S)=31.2 Value(S)=9.6

Value{ S)=10.3

Figure 4.1. First Example of Experiment 1

relat~on. Thus, the second substructure in the first row of Figure 4.1 is <(SHAPENX)=SQULA REI

[oN(X.Y)=TI>, where the question mark corresponds to the object argument Y. Other objects in the

figure are represented by the pictormal equivalent of their shape attribute.
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Figures 4.1 and 4.2 indicate an important quality of the heuristic evaluation function that

applies to most of the examples processed by SUBDUE: the heuristics are well-behaved. The

heuristics prevent the best-first search from straying too far from the path towards the

substructure with the highest overall heuristic value. The best substructure discovered with a

computational limit of six in both Figure 4.1 and Figure 4.2 is the best substructure, according to

the heuristics, of all possible substructures in the input example.

:-7..

Input Example:

, - Computation Limit Three Best Substructures Discovered

4.- o------ 0---C -

Value(S)=3.0 Value(S)=2.8 Value(S)-2.6

"0I__O 6

- Value(S)=5.0 Value(S)=3.2 Value(S)=3.0

10 Ii ---

.% Value(S)=5.0 Value(S)=4.4 Value(S)=3.2

V
14

Value(S)=5.0 Value(S)=4.4 Value(S)=3.2

0

Figure 4.2. Second Example of Experiment 1
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The definition of computational limit given at the beginning of this chapter implies, in the

absence of background knowledge. that the best substructure returned by the discovery algorithm

cannot contain more relations than the computational limit. If a substructure of a certain size is

desired. the computational limit must be set higher than this size. However, the results of

Experiment 1 indicate that the limit need not be set much higher than the desired size. if the best

overall substructure is indeed of that size. The heuristics appropriately constrain the search to

consider substructures along a path of increasing heuristic value towards the best substructure in

the input examples.

4.2. Experiment 2. Specialization and Background Knowledge

The ability to retain newly discovered knowledge is beneficial to any learning system.

Applying this knowledge to similar tasks can greatly reduce the amount of processing required to

perform the task. SUBDUE takes advantage of this idea by specializing discovered substructures

and retaining both specialized and unspecialized substructures in the background knowledge.

During subsequent discovery tasks, SUBDUE applies the known substructures to the current task.

As more examples from similar domains are processed, increasingly complex substructures are

discovered in terms of more primitive substructures already known. Eventually, SUBDUE's

background knowledge becomes a hierarchical representation of the structure in the domain.

Experiment 2 demonstrates SUBDUE's ability to specialize and retain newly discovered

substructures and illustrates how these substructures might be applied to a similar discovery task.

The examples for this experiment are drawn from the domain of organic chemistry. Figure

4.3a shows the first example for Experiment 2. The example describes a derivative of the

compound Hexabenzobenzene. The best substructure discovered by SUBDUE for this example is

shown in Figure 4.3b. and the specialization of this substructure is in Figure 4 .3c. Both of these

" ubstructures are added to the background knowledge. The resulting background knowledge

hierarchv is shown in Figure 4.4. The dashed arrows in Figure 4.4 represent the background

-.nowledge hierarchy dehning the discovered substructure of Figure 4.3b.

I.
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I Cl

C C \
H-C C C-Hi II I

C C C (Br v Cl v 1)
HC C C C-Brc

H C
Br-C C C C-H C C-H C C-H[i\ / /  /I II I I

C C C C C C C

H-C C C-H C C

* I I
Cl I

(a) Input Example (b) Discovered (c) Specialized
* Substructure Substructure

.ell Figure 4.3. First Example for Experiment 2

( v Clv v )

C

C C-H
C~C~C

C C
C C-H

C I I
iC C

I C

ATOM-TYPE-Br v C1 v I

., Figure 4.4. Background Knowledge Hierarchy After First Example

The second example is shown in Figure 4.5a. The example describes a derivative of the

compound Tripbenylene. The substructure background knowledge finds occurrences of both
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previously retained substructures in this input example. The previously discovered substructure

of Figure 4.3b has six occurrences in the example. and the previously specialized substructure of

Figure 4.3c has three occurrences. Each of these substructures is added to the list of base

substructures used by the substructure discovery algorithm (see Section 2.8). The previously

discovered substructure of Figure 4.3b evaluates to a higher value than the previously specialized

substructure: thus, the algorithm begins by considering extensions from the unspecialized

substructure. After running the algorithm with a computational limit of 10, SUBDUE produces

the substructure in Figure 4.5b as the best discovered substructure. The resulting specialized

substructure is shown in Figure 4.5c. Again, both of these substructures are added to the

background knowledge. However, SUBDUE takes advantage of the substructures already stored to

define the new substructures in terms of the substructures already known. As a result, the

background knowledge is extended hierarchically upward to incorporate the new substructures.

H

C

H-C C-H C1Ii I

I -C C C (Br v Clv 1)

C C C-H C C

C C C-H C C-H C C-H/\\ / "ci1H II ,
Br-C C C C C-H C C-H

H-C C-H H C C

C H H

H

(a) Input Example (b) Discovered (c) Specialized
Substructure Substructure

Figure 4.5. Second Example for Experiment 2

S
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The background knowledge hierarchy containing the four substructures of this experiment is

shown in Figure 4.6. As in Figure 4.4. the dashed arrows in Figure 4.6 represent the background

knowledge hierarchy defining the discovered substructure of Figure 4.3b.

This experiment demonstrates SUBDUE's ability to utilize previously discovered

substructures in subsequent discovery tasks. Without background knowledge. SUBDUE discovers

the substructure of Figure 4.5b in the second example after considering 29 substructures. With the

background knowledge. SUBDUE discovers the same substructure after considering only 5

substructures As knowledge of a domain increases. SUBDUE can discover more complex

.substructures in terms of the substructures already known. For each new example. SUBDUE

applies the known substructures to the example and -ncorporate the resulting discovered

substructures into the background knowledge hierarchy.

(Br v C1 v i)

C

C C-H
I I I
C C-H c

(BrvClvI) C C C-H

C HC C-H

C C-H C

C C H

*C "C // C -H?

C C

C

. ATO.M-TYPE=Br v Cl I ATOI-TPE=H

Figure 4.6. Background Knowledge Hierarchy After Second Exampie
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4.3. Experiment 3: Discovering Classifying Attributes in Multiple Examples

Most machine learning systems assume that the description of the input examples incorporates

attributes that are relevant to the learning task. This assumption frequently does not hold, and the

best classifying attributes may be those that are synthesized from a combination or a reformulation

of the given attributes. A recent approach to conceptual clustering, called goal-oriented conceptual

clustering [Stepp86]. uses a Goal-Dependency Network (GDN) to suggest relevant attributes on

which to focus the attention of the conceptual clustering process.

A GDN directs the conceptual clustering technique implemented in the CLUSTER/CA

program [Mogensen87]. In CLUSTER/CA the GDN is provided by the user. However, the user

may not always know which attributes or combination of attributes are relevant to a specific

problem. In this case. the best substructure discovered by SUBDUE in the given examples can be

added to the GDN. The substructure attributes added to the GDN suggest problem-specific features

to help focus the conceptual clustering process. Experiment 3 demonstrates how SUBDUE and

3 CLUSTER/CA work together to discover conceptual clusterings based on newly discovered

substructure attributes.

Thus far, the operation of SUBDUE has been examined in the context of one input example.

-U SUBDUE operates on multiple input examples in exactly the same manner. SUBDUE always

represents the input examples as a graph with single input examples represented as a single

9., connected graph. and multiple input examples represented as a disconnected graph with a connected

subgraph component for each example. Because substructures are connected graphs. the

substructures discovered in the context of multiple input examples cannot contain structure

- ~spanning more than one example.

The examples for this experiment consist of ten trains first introduced by Larson [Larson77]

and later used for psychological testing [Medin87]. These same trains are used to demonstrate the

operation of CLUSTER/CA [.Nogensen87]. The ten trains used in Experiment 3 are shown in Figure

- 7Cars within a train are connected with an in-front relation. Each car is described by the
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• Figure 4.7. Example Trains for Experiment 3

2.0.

-'.'."follow ing attributes: car-shape, car-length, wheei-color, Zoad-shape and load-nurnber. See Appendix. A for the actual input specification for this experiment.
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In CLUSTER/CA the "goodness" of a clustering is measured by a Lexicographical Evaluation

Function (LEF) [Michalski80]. The LEF used for this experiment biases CLUSTER/CA toward

clusterings with an equal number of examples per cluster, clusterings covering the maximum

number of examples, and clusterings having the simplest descriptions. Using this LEF and the GDN

described in [Mogensen87]. the two best clusterings discovered are

Number of cars is "Three" I "Four" I "Five"

Color of engine wheels is "Black" I "White"

JWhen the examples are given to SUBDUE. the best substructure found by the heuristic-based

substructure discovery module is

< [CAR-LENGTH(OBJECT-O001 )=SHORTI[LOAD-NUMBER(OBJECT-0001 )=ONE]
[WHEEL-COLOR(OBJECT-OOO1)=WHITEI>

b.

In other words, the best substructure found is a short car with white wheels and one load. By

adding this substructure to the original GDN and running CLUSTER/CA again on the same

'/ examples. the two best clusterings discovered are

Number of cars is "Three" I "Four" 1 "Five"

Number of short cars with white wheels and one load
is "Zero" I "One" I "Two to Four"

The best clustering discovered by CLUSTER/CA is the same as the best clustering discovered

without SUBDUE. However, the second best clustering uses the SUBDUE-discovered substructure

attribute to cluster the input examples. Thus, according to the LEF, this new clustering is better

than the clustering based on the color of the engine wheels. Without the suggestion from SUBDUE,

CLUSTER, CA would not have discovered this conceptual clustering.

That CLUSTER/CA was unable to discover the clustering based on the substructure attribute

suggested by SUBDUE is mostly due to CLUSTER'CA's bias tcwards the attributes given in the
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GDN. If CLUSTER/CA were able to use a heuristic like cognitive savings to augment the GDN

with problem-specific attributes, discovering such clusterings would be easier and perhaps more

*. efficient than the combination of the two systems. Using SUBDUE to focus a conceptual clustering

*, system like CLUSTER/CA can produce better results than a system with less direction towards

relevant attributes.

Substructure discovery in SUBDUE represents a method for suggesting new attributes on

which to focus the conceptual clustering process. In this way, SUBDUE allows other machine

learning classification systems to discover novel concepts based on attributes that may not have

been considered by the learning system alone.

4.4. Experiment 4: Discovering Macro-Operators in Proof Trees

4
Experiment 4 illustrates one possible application of SUBDUE to other work in machine

learning and planning. The application demonstrated by Experiment 4 is related to the task of

discovering macro-operators in plans.

There is much related research on learning macro-operators from plans. In the STRIPS

program (Fikes72], once a plan is constructed to perform a given task. the plan is retained as a

macro-operator for use in future planning. By storing the macro-operator in a triangle table.

subsequences within the original plan are also available as macro-operators. The chunking

mechanism of SOAR (LairdS6] offers another method for learning macro-operators. After a

problem is solved, the proof tree used to solve the problem is retained, or chunked for use in future
4

problem solving. If the proof tree involves previously learned chunks, the new chunk is defined

hierarchically in terms of the old chunks. Explanation-based learning (EBL) [DeJong86.

lMitche!186] provides a third example of research related to learning macro-operators. In EBL. a
4

proof tree is generated that proves an example is an instance of the goal concept to be learned. This

"roof tree is generalized and retained as a macro-operator. or schema for use in future learning. As

" in SOAR. schemas can be defined hierarchically in terms of other schemas.
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In each of these learning paradigms the entire proof tree is considered the macro-operator.

Although STRIPS learns subsequences of the plan as macro-operators, the subsequences are chosen

arbitrarily. SUBDUE offers a method for discovering "interesting" macro-operators within the

structure of the proof tree. Another system that works with the internal structure of a proof tree

is the BAGGER system [Shavlik88]. BAGGER generalizes to N by finding loops in the proof tree

that can be collapsed into one macro-operator representing an iterative instance of the operators

within the loop. The PLAND system [Whitehall87] uses a method similar to SUBDUE's to discover

macro-operators involving loops and conditionals in observed sequences of plan steps. Section 5.4

discusses similarities and differences between SUBDUE and PLAND.

Experiment 4 shows how SUBDUE can be used to find a macro-operator within the structure

of a proof tree. The example for this experiment is drawn from the "blocks world" domain. The

operators for this domain are taken from [Nilsson8O] and are repeated below:

PICKUPW
Preconditions: ONTABLE(x). CLEAR(x). HANDEMPTY
Add: HOLDING(x)
Delete: ONTABLE(x), CLEAR(x), HANDEMPTY

PUTDOWN(x)
Preconditions: HOLDING(x)

ImJ Add: ONTABLE(x). CLEAR(x). HANDEMPTY
Delete: HC DiTNG(x)

STACK(x.y)
Preconditions: HOLDING(x). CLEAR(y)
Add: HANDEMPTY. ON(x.y), CLEAR(x)
Delete: HOLDING(x), CLEAR(y)

"" UNSTACK(x.y)
Preconditions: HANDEMPTY. CLEAR(x). ON(xv)

Add: HOLDING(x). CLEAR(y)
Delete: HANDEMPTY, CLEAR(x). ON(x,y)

For this example. suppose the initial world state is as shown in Figure 4.8a, and the desired

2oal is in Figure 4.8b. The proof tree of operators to achieve the goal is shown in Figure 4.8c. With

this proof tree as input. SUBDUE discovers the substructure shown in Figure 4.9. The
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"..

F L7

(a) Initial World State

[ON(A,C)][ON(DG)]

(b) Goal

GOAL

STACK(DG) STACK(AC)

UNSTACK(FG) PICKUP(D) UNSTACK(BC) PICKUP(A)

- *UNSTACK(E.F) PUTDOWN(E) PUTDOWN(F) PUTDOWN(B)

(c) Proof Tree

Figure 4.8. Proof Tree Example for Experiment 4
. ,-

0

substructure represents a macro-operator for accomplishing a subgoal to stack a block X on another

block Z when a block Y is already on top of block Z.

The macro-operators discovered by SUBDUE can be used in several ways. Replacing the

occurrences of the macro-operator in the original proof tree by instantiations of the macro-operator

can reduce the storage requirements of the schema constructed from the entire proof tree.

Retaining 'he macro-operators might improve the performance of the explanation process in an EBL
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S IAUCK(X.Z-)

q UNSTACK(Y.Z) PICKCP(X

PUTDOWN(Y)

Figure 4.9. Discovered Macro-Operator

--.

svstem, because the macro-operators may occur in subsequent examples. If the discovered macro-

operators are added to SUBDUE's background knowledge, a hierarchy of macro-operators can be

constructed. This hierarchy might serve as an initial domain theory for an EBL system.

4.5. Experiment 5: Data Abstraction and Feature Formation

=.7

'4' Experiment 5 combines SUBDUE with the INDUCE system [Hoff83I to demonstrate the

3 improvement gained in both processing time and quality of results when the examples contain a

large amount of structure. A Common Lisp version of INDUCE was used for this example running

on the same Texas Instruments Explorer as the SUBDUE system.

Figure 4.l1Oa shows a pictorial representation of the three positive and three negative examples

given to INDUCE. Each of the symbolic benzene rings in the examples of Figure 4.10a corresponds

to the detailed description of the atomic structure of the benzene ring. similar to the one shown in

the left side of Figure 4.10c. The actual input specification for the six examples contains a total of

I'S relations of the form [SINGLE -BOND(Ci.C2)=TI or [DOU:BLE-BOND(C1.C2)=TI. After 160

seconds oif processing time. INDUCE produces the concept shown in Figure 4.10b.
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All six examples were given to SUBDUE using the same 178 relations. After considering

seven alternative substructures for 15 seconds of processing time. SUBDUE discovers the

substructure concept of a benzene ring as shown on the left side of Figure 4.10c. The newly

discovered substructure concept is then used to reduce the complexity of the original examples by

replacing each occurrence of the benzene ring with a single relation. i.e.. [BENZENE-

RING(C1.C2.C3,C4,C5,C6)=T]. Using the reduced set of positive and negative examples. INDUCE

then produces the concept on the right side of Figure 4.10c in 38 seconds of processing time. In

Figure 4.1Oc the symbolic benzene rings represent the BENZENE-RING relation, not the complex

structural representation used in the original descriptions of the examples.

By abstracting over the structure representing the benzene ring, SUBDUE allows INDUCE to

discover the desired concept distinguishing the positive and negative examples: benzene rings are

paired across one carbon atom in the positive examples, but not in the negative examples. INDUCE

represents this concept in terms of the high-level benzene ring feature provided by SUBDUE.

Furthermore, the processing time of SUBDUE and INDUCE combined (53 seconds) represents a

is0 C0 0 0  c 
cs c-c-c c-c-c-c c-c-c-c-c /

C/. 2 \c c CS c
N , _______ _ /c\

E" c-c-c-c c- c-c- c c-c-c-c-c-c
G I I I I I i I I 160sec. 15sec. 3 8sec.

c c c c c c c c c

(a) Pictor:al Representation of Examples (b) INDUCE (c) SUBDUE- INDUCE

Figure 4.10. SUBDUE.INDUCE Example
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speedup of 3 over INDUCE alone. This experiment demonstrates how the substructures discovered

by SUBDUE can improve the results of other learning systems by abstracting over detailed

structure in the input and providing new features.

,-

'.
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CHAPTER 5

RELATED WORK

V!

This chapter pre;ents related work on discovering substructure in examples. Describing
examples in terms of their subparts suggests a gestalt approach to substructure discovery. Gestalt

theory motivates several of the ideas behind the substructure discovery algorithm. In the area of

machine learning, Winston's ARCH program contains mechanisms for discovering groups of objects

Ve in examples. More recent work in machine learning related to substructure discovery includes

. ~Wolff's SNPR program for language acquisition and Whitehall's PLAND system for discovering

substructure in action sequences.

5.1. Gestalt Psychology

Many of the ideas in this thesis originated from work in gestalt psychology [Kohler47].

Gestalt theory identifies several underlying cognitive processes that humans use to perceive

structure in a visual scene. In particular, two of the heuristics used for substructure evaluation

(see Section 2.4) are derived from Wertheimer's Principles of Organization (Wertheimer39l. The

compactness heuristic is a generalization of Wertheimer's Factor of Closure, and the connectivity

heuristic is derived from Wertheimer's Factor of Proximity. Other research has shown that gestalt

theory, particularly Wertheimer's principles, applies successfully to problems in the visual domain.

For instance. Narasimhan proposes a Syntactic Model that applies gestalt phenomena to the analysis

0 and description of pictures [Narasimhan63]. The model is used to detect alphabetic characters in

pictures and linear elements in bubble chamber negatives. Also. Tuceryan and Ahuja apply results

frm :he gestalt theory to the problem of finding perceptual structure in dot patterns

*Tucer'yan87]. Other psychological theories elaborate on the gestalt theory to arrive at more

detailed explanations for the perceptual grouping abilities exhibited by humans [Treisman82]. The
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implications of these gestalt theories guided the development of the substructure discovery

algorithm.

5.2. Discovering Groups of Objects in Winston's ARCH Program

Winston's ARCH program [Winston7S] discovers substructure in order to deepen the

hierarchical description of a scene and describe groups of objects as individual concepts. The ARCH

program searches for two types of substructure in the blocks world domain. The first type

* .' involves a sequence of objects connected by a chain of similar relations. The second type involves a

- set of objects each having a similar relationship to some "grouping" object. The approach used by

the ARCH program begins with a conjecture process that searches for occurrences of the two types

V of substructure. Next. the revision process excludes from the group those occurrences that fall

below a given threshold of the group's average. This section discusses the method by which the

ARCH program discovers both types of substructure and how the method compares to that of

SUBDUE.

When searching for sequences of objects, the ARCH program considers chains of objects

connected by SUPPORTED-BY or IN-FRONT-OF relations. All such chains with three or more

objects qualify as a sequence. However, as illustrated in Figure 5.1. not all objects in a sequence

EAD
B
C A B ICD E G

D jLy I

(a) (b)

Figure 5. 1. Sequence Termination Conditions
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belong in the sequence. The revision process removes such objects according to three rules:

terminate chains at junction points, break chains at size differences, and break chains at

nonlinearities. As an example of the first rule, consider Figure 5.1a. Two sequences of

SUPPORTED-BY relations are conjectured: A-B-C-D and A-B-C-E. However. the junction point at

C causes the program to remove D and E from the sequences, resulting in one final sequence, A-B-C.

Figure 5.1b demonstrates the applicability of the last two rules. The sequence of seven objects. A-

B-C-D-E-F-G. connected by LN-FRONT-OF relations is broken into two sequences, A-B-C and E-

F-G. because the objects of the original sequence are not collinear and differ in size. Upon

completion of the revision process. the ARCH program uses the remaining sequences to describe the

groups of objects as single concepts.

When searching for groups of objects with a common relation to another object, the ARCH

program generates groups based on one common relation and then removes objects from the group

to maintain a homogeneous set of objects. As an example of the procedure. consider Figure 5.2.

The procedure begins by forming the comnwn-relationships-list, a list of all relations possessed by

_- more than half of the objects in the group. Objects A through E are considered as a possible group

because they all possess a SUPPORTED-BY relation to object F. The relations of the candidate

objects are:

.f-- lB D E

F

0

Figure 5.2. Common Relations Example

64

%- %

?%

-/V.,; ".



A. B. C:
1 SUPPORTED-BY relation to F
2 MARRIES relation to F
3 A-KIND-OF relation to BRICK
4 HAS-PROPERTY-OF relation to MEDIUM

D:
1 SUPPORTED-BY relation to F
2 MARRIES relation to F
3 A-KIND-OF relation to BRICK
4 HAS-PROPERTY-OF relation to SMALL

E:
1 SUPPORTED-BY relation to F
2 MARRIES relation to F
3 A-KIND-OF relation to WEDGE
4 HAS-PROPERTY-OF relation to SMALL

The comnwn-relationships-list contains the four relations possessed by more than half the

candidates:

Common-Relationships-List:
1 SUPPORTED-BY relation to F
2 MARRIES relation to F
3 A-KIND-OF relation to BRICK
4 HAS-PROPERTY-OF relation to MEDIUM

Next, the procedure measures how typical each candidate is in comparison to the relations in the

common-relationships-list. The measure is computed as

Number of properties in intersection

Number of properties in union

where the intersection and union are of the candidate's relations list and the common-relationships-

!ist. Tae results of using this measure to compare each candidate are:

A compared to common-relationships-list: 4/4 1
B compared to comnw-relationships-list: 4/4 = 1
C compared to common-relationships-list: 4/,4 =1

D compared to common-relationships-list: 3/4 - .75
E compared to common-relationships-list: 2 4 = .5
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Next, the procedure removes those objects having a comparison measure less than 80 percent
VSI

of the highest value. Thus, D and E are removed from the set of candidates. Object D is removed

because of its uncommon size. and object E is removed because of its uncommon size and shape.

The evaluation procedure repeats until none of the objects are eliminated from the candidate set.

In the example of Figure 5.2. the resulting set contains objects A. B and C.

*, The substructure discovery procedure used by the ARCH program differs from SUBDUE in

several ways. First, the methods employed by the ARCH program are designed specifically for the

blocks world domain. For instance, the sequence discovery method looks for SUPPORTED-BY and

IN-FRONT-OF relations only, and the sequence termination conditions depend on discrepancies in

particular relations such as size and shape. SUBDUE's substructure discovery method is domain

• independent (assuming the domain is representable in first order predicate calculus).

=4.1s Second. the ARCH program's method for discovering objects with common relations to

another object represents a different approach to discovering such substructure. The ARCH

program begins with a prototype object whose relations are kept on the common-relationships-ist.

The prototype object is modified as some objects are eliminated from consideration, while relations

from other objects become more common in the remaining candidate objects. Hcwever, this

procedure is somewhat arbitrary due to the more than half and 80 percent threshold criteria used to

add relations and drop objects. respectively. Alternatively, SUBDUE relies solely on the heuristic

value of a substructure as the measure of "interestingness." Maintaining a prototype substructure

* is a more intelligent method for discovering an appropriate substructure: however, domain

knowledge must be present to suggest such prototypes. SUBDUE simulates the use of prototypes

by suggesting background knowledge substructures, but more work is needed to incorporate other

O "types of domain knowledge for suggesting appropriate substructure prototypes.

Third. the ARCH program discovers substructures containing only one type of object. The

objects in a sequence must all have the same size or shape. Although the objects in a grouping are

:., not constrained to be the same type. the ARCH program prefers groupings whose objects are the
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same type. In SUBDUE. the type of an object is an attribute relation, and attribute relations are

treated as any other relation during the discovery process. SUBDUE does not constrain the

discovered substructures according to the types of the objects in the substructure. Extending the

ARCH program to more easily discover substructures with different object types does not seem

difficult. Running both the sequence and common relation discovery processes more than once

might encourage the ARCH program to build substructure concepts containing objects with

different types. However, the new process would still remain dependent upon the blocks world

domain.

.- The final comparison of the two systems involves the representation used to store the

discovered substructures. The ARCH program utilizes the semantic network formalism. Here. the

substructure node has a TYPICAL-MEMBER link to a general description of the prototype

substructure, and each occurrence is linked to the same substructure node with a GROUP-

MEMBER. Also, a FORM link notes the substructure type of the node: sequence or common

property. In SUBDUE, only the substructure description is retained in the background knowledge.

Furthermore, the background knowledge maintains the substructures in a hierarchy that defines

complex substructures in terms of previously learned, more primitive substructures. Although the

3semantic network formalism of the ARCH program can represent hierarchical structures. Winston

does not mention this ability explicitly [Winston75. The substructure representation used by

SUBDUE's background knowledge is overly rigid. Eventually. SUBDUE must be able to represent

background knowledge other than substructures. For this reason. SUBDUE would benefit from a

more general representation such as the semantic network used by the ARCH program.

5.3. Cognitive Optimization in Wolff's SNPR Program

Research toward a comprehensive theory of cognitive development has led Wolff to postulate

that optimization is a major underlying goal in building and refining a knowledge structure

[Wclff.81. The resulting knowledge structures are optimally efficient for the required tasks.

Fur~hermore. Wolff presents six data compression principles for impiementing tne ortimizaton
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process: (1) formation of AND groupings, (2) formation of OR groupings. (3) choosing among

, I groupings according to frequency and size, (4) recursion, (5) generalization, and (6) schema plus

correction. Wolff's SNPR program [Wolff82] embodies all but the sixth principle. The third data

compression principle plays a central role in SNPR by selecting the conjunctions. disjunctions,

recursive structures and generalized structures that form a knowledge structure having maximum

data compression capacity. Maximizing data compression is the same idea behind the cognitive

savings heuristic employed by SUBDUE. This section briefly describes the SNPR program and

compares the heuristic approaches of SNPR and SUBDUE.

The SNPR program utilizes the first five data compression principles to learn grammars from

input texts. SNPR forms conjunctive (AND) groupings. or chunks, by detecting frequently used

* substrings within the input text. For example, the text, ABPQRABABPQRAB. may be reduced to

'.5 xvxxvx, where <x -- AB> and <y - PQR>. Likewise, SNPR learns grammars with disjunctive

(OR) groupings. such as <x -- JOHNyMARY> and <y -" LOVES I HATES> (where "I" means

exclusive OR). These groupings are chosen according to their size and frequency within current and

previous input texts. SNPR is capable of learning recursive grammars, such as <x - ABx>.

Generalization is accomplished by replacing the elements of an OR grouping with a disjunction of

the elements. For example, the OR grouping <THE i ONE> would replace instances of <THE>

and <ONE> in previously formed structures. Overgeneralizations are corrected through a process

called rebuilding that removes elements from disjunctive structures when the particular instance

* was never seen. For instance, if the substring ABRCD was never seen in the input text. then the

structure <ABxCD>. <x -- P I Q I R> is reconstructed as <ABvCD>. < - P I Q>.

The goal of the SNPR program is to find a grammar that generates the input text and provides

* • the maximum amount of data compression. Wolff measures the data compression provided by a

'P - •grammar by considering the amount of data compression provided by each production rule. or

element, in the grammar. This measure is called the compression vaiue (CV) of the element and is

'" "defined as
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=f * (S - s)

S

where f is the frequency of the element in the input text, S is the size of the element and s is the

size of the pointer used to replace. or instantiate, the element in the input text. Thus, f(S-s)

4, represents the reduction in size of the input text after replacing each occurrence of the element by a

pointer to the element. Dividing this term by the cost S of storing the element yields a value that

increases as the amount of data compression provided by the element increases. Therefore. SNPR

J 'seeks a grammar whose elements maximize CVI.

SNPR's compression value is similar to SUBDUE's cognitive savings. Recall from Section

* 3.2.2 that SUBDUE computes the cognitive savings of a substructure as a function of the number

of occurrences (frequency) of the substructure and the size of the substructure. If the number of

4
occurrences of the substructure is f. and the size of the substructure is S. then the cognitive savings

of the substructure can be expressed as

*,44

cognitive-savings - S * (f - 1) = Sf - S

There are two differences between this expression for cognitive savings and the expression for

* compression value. First, the size of the pointer replacing the substructure occurrences is not

' considered in the cognitive savings value. Second, the size of the substructure is subtracted from

-- . the reduction term in the cognitive savings value; whereas, the size of the element is divided into

the reduction term in the compression value. These differences suggest possible future

" ~.improvements to the cognitive savings measure.

.. 5.4. Substructure Discovery in Whitehall's PLAND System

The PLAND system [Whitehall87] discovers substructure in an observed sequence of actions.

, -These substructures are termed macro-operators or macrops. PLAND incorporates generalization

*. -- with different levels of background knowledge to discover three types of macrops: sequences, loops

and conditionais. SUBDUE is similar to PLAND in that both systems use the cognitive savings
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heuristic to select among alternative substructures. and both systems utilize previously discovered

substructures in subsequent discovery tasks. This section discusses the PLAND system and

analyzes these similarities in more detail.

Input to the PLAND system consists of a sequence of primitive actions. Each action is related

to the next action by a folows relation. The input sequences can be a list of complex actions, such

as MOVE. PICKUP. PUTDOWN. or simply a list of letters similar to the input of Wolff's SNPR

program described in the previous section. As mentioned above, PLAND searches the input for

three types of substructure: sequences, loops and conditionals. Sequences are blocks of actions that

appear repetitively throughout the input sequence. PLAND maintains sequences as partial macrops

and promotes them to complete macrops only upon recommendation from background knowledge.

Loops are sequences of actions appearing consecutively in the input sequence. Loops are expressed

in a formal grammar syntax. For example, the loop in the input sequence, ABCBCEBCBCBCF. is
at,

expressed as (BC)*. Conditionals allow a choice of actions within a macrop. For example. within

the input sequence. ABDCBECFBECBDCBDCG, PLAND discovers the macrop (B(D+E)C)*. Once

primitive macrops are discovered, PLAND can discover more complex macrops in terms of these

primitive macrops and construct a hierarchical representation of the input sequence.

PLAND processes the input sequence at different levels of abstraction (generalization), called

contexts. For instance, the original input sequence is a context. After PLAND discovers macrops in

the original input sequence. the sequence of actions described by the best macrops are replaced by

single forms representing the macrops. These macrops act as single actions in another. more

abstract context. Within a context PLAND considers alternative macrops according to agendas. An

agenda contains information about where to look for a macrop within the input sequence.

.At each level of processing, PLAND uses background knowledge to guide the search for

macrops. High level background knowledge is used to determine which context to process next.

Medium level background knowledge determines which agenda to process next. Low\ level

-ackground knowledge controls the type of macrops considered by PLAND. These background
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knowledge rules are typically domain dependent, although PLAND also functions in the absence of

this knowledge.

The PLAND system uses the cognitive savings heuristic to evaluate macrop substructures.

The cognitive savings used by PLAND is computed as

cognitivesavings = (number of macrop occurrences - 1) * length of macrop

The only difference between this definition and SUBDUEs is the modification in SUBDUEs

definition to allow for overlapping substructures. PLAND does not allow macrops in an agenda to

overlap. Using the cognitive savings heuristic allows PLAND to select among competing partial

% macrop agendas and to select complete macrops for instantiation in the input sequence.

Observed Action Sequence:
ABYXXXYXXZYXXYXXXXZ

* CONTEXTI
cogsav macrops
10.0 M =(X)*
11.25 M 12 - (Y M. 1 *)*

8.5 M1 .3 =(M1.2 Z)*

Instantiated Action Sequence:

A B M12 Z M1, Z

CONTEXT 2
cogsav macrops

2.0 M2 1 = (M 1.2s Z)*

Instantiated Action Sequence:
A B

All interesting macrops discovered.
End.

Figure 5.3. PLAND Example
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Figure 5.3 demonstrates the results obtained by PLAND on a simple action sequence. In this

example PLAND is run without background knowledge. The naming convention for the macrops.

,,N, M, indicates that the macrop is the nth macrop discovered in context c. Within the first context.

PLAND discovers three loop macrops: MI.1 - (X)*. M 1.2 L (Y MH.1)*, and M. 3 = (M12 Z)*..Notice

how PLAND builds a hierarchical structure by discovering new macrops in terms of recently

discovered macrops. Along with each macrop is its cognitive savings value. PLAND replaces all

occurrences of the best macrop with an atomic form, M in this example. PLAND then creates a

second context with the instantiated input sequence. In this context PLAND discovers only one

.. v-macrop: M,. = (M 2 * Z)*. After instantiating this macrop in the input sequence. PLAND finds no

- more interesting macrops in the sequence.

PLAND demonstrates the applicability of the cognitive savings heuristic to substructures

different from those discovered by SUBDUE. Although PLAND is unable to retain the discovered

substructures for use in subsequent action sequences, retention of the macrops as rules in the

existing background knowledge does not seem difficult co implement. Instead. PLAND uses

discovered macrops in subsequent discovery tasks within the same input sequence. Retention and

instantiation of substructures not only across examples, but also across iterations of the discovery

algorithm might improve SUBDUE's performance.
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CHAPTER 6

14

CONCLUSION

Complex hierarchies of substructure are ubiquitous in the real world and, as the experiments

of Chapter 4 demonstrate, in less realistic domains as well. In order for an intelligent entity to

11R: learn about such an environment, the entity must abstract over uninteresting detail and discover

substructure concepts that allow an efficient and useful representation of the environment. ThL,

* ~- thesis presents a computational method for discovering substructure in examples from structured

domains. Section 6.1 summarizes the substructure discovery theory and methodology discussed in

* . this thesis, and Section 6.2 discusses directions for future work in substructure discovery.

6.1. Summary

The purpose of substructure discovery is to identify interesting and repetitive structural

* - concepts within a structural representation of the environment. Such a discovery system is

5 motivated by the needs to abstract over detail, to maintain a hierarchical description of the

environment and to take advantage of substructure within other knowledge-bases to reduce storage

requirements and retrieval times. This thesis presents the important processes and methodoiogical

alternatives involved in a computational method for discovering substructure.

A substructure discovery system must generate alternative substructures to be considered by

the discovery process. Four methods of substructure generation are discussed: minimal exp~ansion.

combination expansion. minimal disconnection, and cut disconnection. These methods differ along

two dimensions. The expansion methods generate larger substructures by adding structure to

smaller ones, while the disconnection methods generate smaller substructures by removing

structure from larger ones. The minimal methods add or remove only ;rmall amounts of structure
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to generate new substructures, while the combination and cut methods add or remove large

amounts of substructure to generate new substructures. A third dimension along which these

methods may differ is the knowledge available for constraining the type and number of

substructures generated. Background knowledge pertaining to the types of expansions or

disconnections performed may improve the performance of the substructure generation methods.

Once the alternative substructures are generated. the substructure discovery system must

select the more interesting substructures from among the alternatives. The proposed method of

substructure selection chooses the best substructures according to four heuristics: cognitive savings,

compactness. connectivity, and coverage. Several experiments demonstrate the applicability of

these heuristics to the task of identifying interesting substructures.

The substructure generation and substructure selection processes form the nucleus of the

substructure discovery algorithm. The algorithm performs a computationally-constrained best- -r

first search through the generated substructures. The search is guided by the four heuristics. The

result of the substructure discovery algorithm is the best substructure found within the amount of

computation allotted to the algorithm. The discovery system can then perform several operations

with this substructure. First, the substructure can be specialized by appending additional

structure. Specialization serves to annotate the substructure with additional information about the

context in which the substructure may be applicable. Second. the discovery system may retain

both the original and specialized substructures for use in subsequent discovery tasks. The

4 substructures are maintained in a hierarchy to preserve the hierarchical structure of the

environment and to exploit previously learned substructures in the representation of newly

dscovered. more complex substructures. Third, the substructure can be used to simplify the

4 original input examples by instantiating each occurrence of the substructure with a single form.

The simplified description of the examples may then be passed to other learning systems. In

addit:on. the substructure discovery process may be appiied eutivelv to further simplify the

examvles or to build a hierarchical interpretation of the examples in -er-s of their subparts.
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The SUBDUE system is an implementation of the processes involved in substructure

discovery. SUBDUE contains three modules: the heuristic-based substructure discovery module,

the substructure specialization module, and the substructure background knowledge module. The

heuristic-based discovery module utilizes the substructure generation and selection processes and

optional background knowledge to identify interesting substructures in the given input examples.

The specialization module modifies the substructure to apply in a more constrained environment.

The background knowledge module retains both the discovered and specialized substructures in a

hierarchy and suggests to the heuristic-based discovery module which of the known substructures

." apply to the current set of input examples. Experiments with SUBDUE demonstrate the utility of

the gui Iance provided by the heuristics to direct the search towards more interesting substructures

and the possible applications of the SUBDUE substructure discovery system in a variety of

domains.

The ability to discover substructure in a structured environment is important to the task of

learning about the environment. For this reason, substructure discovery represents an important

class of problems in the area of machine learning. Operation in real-world domains demands of

:earning programs the ability to abstract over unnecessary detail by identifying interesting patterns

5 in the environment. Empirical evidence from the SUBDUE system demonstrates the applicability

of the concepts presented in this thesis to the task of discovering substructure in examples.

Expanding upon these underlying concepts may provide more insight into the development of a

4 substructure discovery system capable of interacting with a real-world environment.

6.2. Future Research

.. Several extensions and applications of the substructure discovery method and the SUBDUE

. system require further investigation. Interesting extensions to the substructure discovery method

iude the incorporation of new heuristics and background knowledge into the discovery process

and the ability to discover other types of substructure. Improved methods of substructure

ristantuation are needed to better capture the abstraction -rovided by a substructure. The
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substructure background knowledge must be extended to accommodate other forms of background

knowledge and to allow flexible application of this knowledge. Promising future applications of

the substructure discovery system include visual image processing, database organization and

* ." constructive feature formation.

6.2.1. Substructure Discovery and Instantiation

Currently, the substructure discovery algorithm relies solely on the four heuristics for

directing the search toward interesting substructures. Although background knowledge may

suggest substructures from which to begin the discovery process. this knowledge does not affect the

operations performed by the algorithm. One potential improvement to the discovery algorithm is

the utilization of background knowledge to intelligently constrain the substructure generation

• .process. When expanding a substructure to gencrate new substructures, some expansions may be

better than others. Background knowledge rules that prefer certain expansions to others may

significantly reduce the number of substructures generated by the current exhaustive substructure

generation process. Furthermore, these rules can be learned by monitoring the contributions of

certain expansions to the discovery of interesting substructures.

Just as the substructure generation process can be constrained, the substructure selection

process can also be constrained through the use of appropriate background knowledge and the

application of new heuristics. Although the cognitive savings heuristic should play a central role in

any substructure heuristic evaluation function, it and other heuristics by no means represent the

only dimensions along which to measure the goodness of a substructure. For instance, by

incororating the substructure specialization module into the discovery process. the measure of the

amount of spec:alization provided by a substructure could be intergrated into the heuristic

evaluation function. This new discovery process may improve the quality of the discovered

substructures over those resulting from the separate module approach. A better approach to the

-intreduction of new heuristics is through background knowledge. Previously learned rules could

0
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suggest heuristics to apply during the discovery process according to the current domain and the

previous success of similar rule applications.

In addition to increasing the intelligence of the substructure discovery process, further

research is needed to increase the scope of the process. Currently. there are several types of

substructures that cannot be discovered. For instance, the current discovery algorithm cannot

discover recursive substructures, substructures with negation (e.g.. < [ON(X.Y)-T]

(COLOR(X);eREDI>), or substructures with constraints on the type of structure to which they can

be connected. The ability to discover these types of substructures will require major modifications

in both the background knowledge architecture and the operations performed by the discovery

algorithm.

'S

Improvements in both the scope and the performance of the substructure discovery process

may arise from a better method of substructure instantiation. Current methods do not

satisfactorily represent the full amount of abstraction provided by a substructure. Instantiation

by a single object retains no information about the way in which the substructure was connected

with the rest of the input example. Contrastingly, instantiation by a single relation preserves

external connection information for each object in the substructure. An instantiation method that

3 combines both approaches may be more appropriate. Better substructure instantiation methods

would allow abstraction to take place automatically within the discovery process. The discovery

process could work at several levels of abstraction by instantiating intermediate substructures into

the current set of input examples. In this way several hierarchically defined substructures may be

discovered with a single application of the discovery algorithm.

Many of the suggested improvements to the substructure discovery process represent

extensive modifications to the current methodology. However. most of the improvements involve

the use of alternative forms of background knowledge. The proposed extensions to the discovery

process may be simplified by appropriate extensions to the substructure background knowledge

7,7
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6.2.2. Background Knowledge

The substructure background knowledge in SUBDUE plays only a minor role in the discovery

process. Currently. the background knowledge maintains discovered substructures. as well as

user-supplied substructures and identifies which of these substructures occur in the input

examples. The discovery process uses these substructures as starting points. The idea behind most

of the proposed extensions to the substructure background knowledge is for the background

knowledge to play an active role in the discovery process.

As mentioned in the previous section, the background knowledge should recommend not only

exact substructures from which to begin the discovery process, but should also suggest heuristics.

substructure generation constraints, and other substructures similar to the exact substructures.

* One possible method for incorporating such knowledge into the existing substructure hierarchy is

to attach the knowledge to the node representing the substructure. When a substructure is

identified by the discovery process. the attached knowledge augments the discovery algorithm with

new heuristics, generation constraints, and alternative substructures. Thus. the background

knowledge becomes a hierarchically arranged set of rules with the substructure definitions as the

antecedents and the attached procedural knowledge as the consequents.

Along with the knowledge for directing the discovery process. the substructure nodes may

~.- .. "also contain knowledge indicating the function of the substructure. This can be thought of as a

separate plane of the background knowledge hierarchy. On one plane is the declarative

0. substructure hierarchy, while a second plane contains the functional hierarchy. As in the

- . declarative hierarchy, the functional hierarchy defines the function of a substructure in terms of

more primitive substructure functionality already defined. However, in order for SUBDUE to

earn functionality, the input examples must be recast to inuidate the primitive function of their

components. Such information may be difficult to add to the declarative definition of the examples.

Another proposed extension to the background knowledge is to perform only a partial

" - ~ ,uzz'v) match instead of the exact match. WXithout partial matching. the knowledge contamed at
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each node of the substructure hierarchy could be used only after identifying the exact substructure

to which this knowledge is attached. Developing methods for incorporating "fuzziness" in the

match would improve the flexibility of the background knowledge.

One of the major limiting factors in SUBDUE's performance is the sparse amount of

knowledge applicable during the discovery process. The proposed extensions to the background

knowledge will significantly improve SUBDUE's ability to learn substructure concepts.

6.2.3. Applications

Several applications appear promising for the SUBDUE substructure discovery system.

SUBDUE might be used to detect texture primitives and subimages in a visual image, organize and

compress large databases. or discover interesting features in the input to other machine learning

systems.

One of the goals of visual processing is to construct a high-level interpretation of an image

i composed only of pixels. In this context, SUBDUE could be used to detect repetitive patterns in the

regions of a visual image. Instantiating the patterns to abstract over their detailed representation

simplifies the image and allows other vision processing systems to work at a higher level of

abstraction.

The need to access information from large databases has become commonplace in most

computing environments. Unfortunately, as the amount of knowledge in a database increases, so

do the storage requirements and access times. Using the database as input. SUBDUE may discover

repetitive substructure in the data. The substructures can be used to compress the database and

impose a hierarchical representation. This reorganization reduces the storage requirements of the

database and decreases retrieval time for queries referencing data with similar substructure.

An important future application of SUBDUE involves integration with other machine learning

systems. Most current systems are unable to process the large number of features available in a

*real-world environment. SUBDUE could preprocess the input features and abstract over
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unnecessary detail. By instantiating both previously known and discovered substructures in the

input. SUBDUE reduces the complexity of the input to a level that is tolerable to the other learning

systems. Also, many current learning systems either do not add new features to the input

examples or add only predeined features. SUBDUE offers a method for discovering interesting

features within the input examples. These features can be added to the input examples so that the

other system may learn concepts in terms of features not present in the original input. The results

of experiments in Chapter 4 indicate that integrating SUBDUE into other learning systems may

improve the overall performance of the learning method.

With the extensions discussed in the previous section, the SUBDUE system and the

substructure discovery methodology will provide a powerful tool to aid other machine learning

* systems, as well as become a general method for discovering concepts in a richly structured

environment.
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APPENDIX A

EXPERIMENT DATA

This appendix contains the input data and output traces for tht experiments in Chapter 4.

The experiments were run on a Texas Instruments Explorer. Input examples are given to SUBDUE

through calls to the DefExample function:
4%

4%

(DefExample '(objects relation-definitions relations))

The objects argument ;s a list of all the object names referred to in the relations of the example.

The relacion-definitions argument is a list of relation definitions, where each definition is a list with

two elements. The first element is the name of the relation, and the second element is T. if the

order of the arguments to the relation is relevant, and NIL otherwise. Finally, the relations

argument is a list of relations, where each relation is a list with three elements. The first element is

the relation name. The second element is a list of object arguments to the relation, and the third

element is the value of the relation. Multiple examples are defined through multiple calls to the

DefExample function.

Once the input examples are defined, a call to the subdue function generates the output traces

shown in this appendix. The subdue function has several keyword arguments:

:limit The computational limit on the substructure discovery algorithm. Default is NIL,
which sets the computational limit to half the number of relations in the current
set of input examples. A nonzero. positive integer may be specified. The
computational limit is the number of substructures considered by the algorithm.

;connectivitv A boolean value indicating whether or not SUBDUE should apply the connectivity
heuristic to the cognitive savings, while evaluating a substructure. Default is T.

:compactness A boolean value indicating whether or not SUBDUE should apply the compactness
heuristic to the cognitive savings, while evaluating a substructure. Default is T.
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:coverage A boolean value indicating whether or not SUBDUE should apply the coverage
heuristic to the cognitive savings, while evaluating a substructure. Default is T.

:use-bk A boolean value indicating whether or not SUBDUE should consult the background
- knowledge module for substructures applying to the current set of input examples.

Default is NIL.

:discover A boolean value indicating whether or not SUBDUE should perform the
substructure discovery algorithm on the current set of input examples. Default is
T.

:specialize A boolean value indicating whether or not SUBDUE should specialize the best
substructure found by the substructure discovery module. Default is NIL.

:inc-bk A boolean value indicating whether or not SUBDUE should incrementally add the
best discovered substructure and the specialized substructure, if requested via the
previous keyword, to the background knowledge. Default is NIL.

S.:trace A boolean flag for toggling the output of trace information during SUBDUE's
- iexecution. Default is T.

The result of a call to the subdue function is a list of the substructures discovered in order

from best to worst. Each substructure is accompanied by the occurrences of the substructure in the

I input examples. The substructures in the subsequent output traces appear in the following form:

{Substructure#n :value v relations)
WITH OCCURRENCES:
{relations)I
{relations)

The substructure number n indicates that this substructure was the nih substructure discovered.

The value v is the result of the value(S) computation from Section 3.2.2 for this substructure.

Relations is the list of relations defining the substructure or occurrence.

In all the experiments, the default values are used for the connectivity, compactness, coverage.

discover and trace keywords. Also, to conserve space, only the three best substructures discovered

by SUBDUE are shown in the output traces, regardless of the computational limit.

6
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A.1. Experiment 1

The purpose of Experiment 1 is to show how varying the computational limit affects the

results of SUBDUE's beuristic-based discovery module. The experiment involves two examples.

each run for four different values of the computational limit. The DefExample calls for the two

examples and the output traces for each of the eight runs are shown below.

A..1. Input for First Example of Experiment I

(DefExample
l'(C t2 t3 t4 sl s2 s3 s4 cl c2 c3 c4 c5 rl)

((on t) (shape nil))
((shape (11) triangle) (shape (t2) triangle) (shape (13) triangle) (shape (t4) triangle) (shape (sI) square)
(shape (s2) square) (shape (s3) square) (shape (s4) square) (shape (cl) circle) (shzne (c2) circle) (shape (c3) circle)
(shape (c4) circle) (shape (ci) circle) (shape (ri) rectangle) (on (tl si) t) (on (sl ci) t) (on < r1 )
,on (ri t2) t) (on (rl t3) t) (on (r1 4) t) (on (2 s2) t) (on (t3 s3) ) (on (14 s4) t) (on (s2 c2) 1) (on (s1 L:;" v.

. (on (s4 c4) 1) (on (c5 rl) I))))

A.1.2. Output for First Example of Experiment 1: Limit 4

> (subdue :limit 4)

Begin trace...

Parameters: limit - 4 connectivity - t compactness - i coverage I
use-bk = nil discover = t specialize = nil inc-bk - nil

.: Running substructure discovery...

4. Disccvered the following 4 substructures in 0.23333333 seconds:

'Subs tucture 4 :value 8.780488 [shape(objec-I001)=sauarej [shape( obiect-0002)-circlej (on~object-O001 ,object-0002)=D)
WITH OCCURRENCES:
([shape(s1 )=square] [shape(cl)-circlel [on(slcl )=t)}

- ([shape(s2 )=squarel [shape(c2)--circiej [on(s2.c2)=t) }
(shape( s3 J=squarej [shape(c3)=circle] [on(s3.c3)=tj)}
([shape s4)fsquare] [shape(c4)-circle] [on(s4,c4)-t])}

"Substructure#3 :value Z.0813007 ([shape(objeci-0002' )circlel [on(object-O001 ,objeci-0002)ft])}
* WITH OCCURRENCES:

([shape( ci )=circle] [on(sl .cl )=13)}
i(shape(c2)=circle1 [on(s2.c2)-t])}
-([shape(c3)=circle [on(s3.c3)=t])}

,'.-'_ ,[(rshape c4'=c:cle [on~s4.c4)-t])

'Substructure#2 :value 1.66963 ([on(obiect-0001, zject-0002)=tl])
WITH OCCURRENCES:
(i[on(US l~s))

"on. rl.t2Jft])}
([on(t2.s2)=-t)1

- , on, i tj)':....~(cn !3 o ,:.s3 =fl)l
,m r 1.-

• :[~ onmsl.cl=t)
"" a s2.c2 -=,

r>.n s3.c3-tj)}

866~""
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I(Qon(s4.c4)-11)}

End trace.

A. 1.3. Output for First Example of Experiment 1: Limit =6

> (subdue :limit 6)

Begin trace...

Parameters: limit - 6 connectivity - I compactness - t coverage -
use-bk - nil discover - T specialize - nil inc-bk -nil

Running substructure discovery...

Discovered the following 6 substructures in~ 0.23333333 seconds:

A Subslruclure#6 :value 31.219513 ([shape(object-0008)-trianglel [on(object-0008,object-0001 )=tl
[shapeaobjecl-0001 )=square] (shape(object-0002)-circle] [on(object-0001 object-0002)-t])}

WITH OCCURRENCES:
([shape( ti =triarsglej (on(t1 .sl)=t] £shsape(s I )-square] [shape(cl )-circle I [on(s I,cl )_t]))
(Eshape(12)-triangle] [on0t2.s2)=t1 !shapeWs)=square] [shape(c2)-circiel [on(s2.c2)=tJ)l

'iae't3)=triangle] [on(t3.s3)=t] [shsape(s3)-square] (shape(c3)-circle] [on(s3,c3)=t])
(tshape(14)-triangici ;n T4 s4)-tI (shape(s4)-square] [shape(c4)=circlel [on(s4.c4)=t])}

Subsirtscture#5 :value 9.560976 ([on(object-0008,objecL-C0O~! )=ti [shape(object-0001 )-square] [shape( object -0002)=cirCle]
[on(object-0001,object-OWV02)-D

WITH OCCURRENCES:
QEon(ti .si)-t1 fshape(sl1 )-square] I[shape(cl )=circle] [on(s1 ,cl )-t])
([on( t2.s2)=- [shape(s2)=squareI [shape(c2)-circil [on(s2.cZ)=tl)
([on(13,0):tl [shape(s3)-square] [shape(c-3)-circil [on(s3,c3)-tj)A

* I' ~Subsirctr4 :ac8.848[saebet-0001 )squarel [shape(ob Ject-0002) =circle] [on(object-0001 .object-0002 )=t])

WITH OCCURRENCES:
([shape~s I )=square I [shape(cl )-circil (on(sl .c1 )=tD})
'([shapes2)=square] (shaoe(c2)=circil tonWs,cV1))
(fshapei s3)=square] (shape(c3)-circlel [on(s3,c3)=1M)
([shapeis4)=squarel [shape(c4)=circlel [on(s;4.c4)=])}

End trace.

I *A.l1.4. Output for First Example of Experiment 1: Limit =10

>fsubdue :limnit 10)

-: B~egin :ae.

Parameters: limit =10 connectivity t compactness I coverage t
use-bkL = nil discover - T specialize =nil inc-bk =nil

* Running substruct, re discovery...

Discove-ed *.he 'ollov. ng 10 substructures in 0.6666667 seconds:

S. bst~uciure#6 :value 31.219513 ([shape(objec!-O008 =triangle' (onkobiect-0008 .oblec-000I
srnanet oiect-0001 =so iare] sae oec-0002,........ Iontoolect-uuu, jbiect-0002).,'

WITH OCCURRENCES:
shape t I=riangle;' 'an( t.s1 )=tJ (sha:pe~s1)=squarej ;sna;oe(cU =c~rclel'onnsl.cl 1=t ,:
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J((Ishane(12)=trianglc] [on(t2,s2)-T] [shape(s2)=squarel (shiape(cZ)=circlel tonWs2c2)=t])}
([shape( U )=triangle] [on( t3.s3)-t] [shape(s3)-square] fshape(c3)-circlel ~on(s3.c3)=:,I)'
([shape(14)-trianglel [on(t4,s4)=t [shape(s4)=square] [shape(c4)-circle] [ors(s4,c4)=tM)

Subsiruciure#5 :value 9.560976 (Eon(object-0008.object-0001 )=t] [shape(o bjeci-0001 )-square] [shape(objecl-0002 )-circlel
[ont objeci-0001,object-0002)=tJ)}

WITH OCCURRENCES:
KIon(tl .sl)=t] (shape(sl )=square] [shape(cl)-circle] [on(si .c1)-ID)
~((on( t2,s2)-11 shape(s2)-squarel [shape(c2)-circle] [on(s2,c2)-1M)
([on(t3,s3)=t] [shape(s3-square] [shape(c3)-circlel [on(s3.c3)-1]))

{d[on(t4.s4)-t] (shape(s4)-squarel (shapc(c4)-circlej [on(s4,c4)-t))

Stsstructure* 10 :value 9.219512 (tskiape(object-0O106-circle] !on(object-001 6.object-0012)=tl
[shape(object-0012)-rectangle] [on~object-O0i 2,object-0008 )-f] [shape(objeci-0008)-trianglej

[on(object-0008;objecl-0001)-tl (shape(object-0001)-square) [shape(object-0002)=circl

WITH OCCURRENCES:
~([hap~c)=crcl] on~l~I)=] [hae~r)~recange](onrl~2)tJ shpe~2)=ringi] on(T2,s2)-=: [shapeksZ)=square)

([shape(cl)-circle] (on(cl.rl )=t] [shape(rl )-rec tangie] I on(rI ,t2)=tj [shapc(12)=triangile [nts)=]shpeks)sqae
[shape(c2)=circiel [on(s2,c2)_1]))

J(tshape(cl5)=circie] [on(cl,rl)=t] [shape(rl )-rectanglc] [on(rI ,t3)=t] [stsape(13)-triangle] [on(13.s2)=t] [shape(s2)-squarel
[ shape(c3>=-circle I [on(s3,c3)=t])A

'Q([shape(o5)-circle] [or(cl.ri)=t] [shape(rl)=rectangle] [on(rlt3)=t] [shape(t3)=triangle) [onWt.s3)=t] [shapes3>..squarel
(shape(c3)=circlej [on(s3.c3)-t))

Y(s haoe(c) )-circle] ton(cl .rl )=t] (shape(rl)-rectanglej [on(ri .t4)=t1 [shape(t4)-triangle] [on(t4.s4)=t] [shape( s)-square]

O [shape(c4)-circlel [on(s4.c4)=t]))
{(tshaoe(cS)=circle] [on(cS,r1)=t] [shapc(rI'= rectangle] [on(rl ,t4)_t] [shape(14)=Tr angle] [on(T4,W4-t] [shape s4)=squarej

[shape([c4J-circ'e] Lon(s4.c4)-t]))

End trace.

A. 1.5. Output for First Example of Experiment 1: Limit 14

> (subdue :limit 14)

Bq,!n !,ace...

Parameters: limit =14 connectivity compactness - t coverage -1
use-bk = nil discover - t specialize =nil inc-bk =nil

Runni:ng substructure discovery...

Discovered *.he foilowing 14 substructures in 1.6166667 seconds:

Suostruczure#6 :value 31.219513 ([shape(object-0008 )=Trianglel [,on(object-00O8,objct-0001 )=t)
* Lshape(ob~ect-0000 )square tshape(object-0002)-circle) [on', abject-OQ0l .object-0002J-tj)[

WITH OCCURRENCES:
s.aoe(* I)-triangle] [on(tl ,s 0-t] I[shape(s )=squarej [shape(c I )-circle I [on(s lc 0=tD l

- .,,. "s,-anet U =triangle (on( t3.s3}= ti shapcs~s3)=sacuarel (sliape(c3 )=circlel[ on~s.3.c3.)-tP)
,snaoe(*,4 )=triang, el [on( t4.s4)=t' [shapek s4)=sq uare] tshape(c4)-circle! [ons4.c4)-' 1):

Suibst-uct!re#I4 :vaiue 13 327526 '[shape(obiecl-0027 )=square] [on(object-0027.object.0016)=t[ [shape(obec-0"2'-c:-c~e
c'st obiect-0022.object-0012=t], lshapekobiect-00l6)=circle] on(object-0016.obiect,-00 12 =t[I shapet obiject-OOU_) =rec*.angie]
on objeci001' o'1ject-0008=-t] [shape~obiect-0008)-Trianglej [onobject- 0008 object 0001)=tI [shape( obiect-'001sa,'e
s.iape( obect 000' '=c:rcle[ on~obtcct-0001 .oblect.0002=tD()

WJ ITH OCCU RRENCES:
( srape- sI )=square' [onk s ci ,-t! Lsh-,aoec5=circle[ on(c5.r1 =tlsha =cl crcle] roi(cl. I'=,I *'sh ~c rI-cin

0o11( ".: l 1 ' sravet t2,'=triangiej OM~ 12.52)=11 [shape(Q s' suare] snapet c' c cljo'(s2x20=*
%' s,7apei s I ;=soa* a ej Ion, si ,c I-! snape( ci)=circle] [onc5.rlI shaoesc I )-circie! [on c1 l.1 t r=I Sha Oek r =7CCtar~

*Cn -l. 3j= rsiaoe !3)=tr:anglej ant3,s3)t (shapeis3)-scuarej snapet U-crcle] "ons3 c3) t[
.vtaoe, si l a. [,-nsl,c:l =t;'saoe c5=crle['onici5.:1 =:,] ,s.aoelc I Crc e; Lontcl I =,, ='ecta n':

:i rl 4, sa' t4; - ar.2je; aont 4.AJ=t, 'snajvf,. 1d scuare, snapekc4-circle] on' s4.c4)=,

88

%



L2--W- V-?n 0,TSCOVERING SUSTRUCTURE IN EXNAPLES(U) ILLZ-IS vl- .2
AT URBANA COORDINATED SCIENCE LAB L B HOLDER AY 81 212
UILX-ENG-88-2223 NBO814-82-K-iB6

UNCLASSFIED F/G 12/5 ML

EIIIIEEEEE



1.

mm ~ 2.2
~ ~ 140 t 2.2

1 .2 LAI~ 1.6

MiCROCOPY REJ3OLUTION TEST CHART

NATICONAL BUFA I nf 7 A OD J9 A

w w w.

.r,%
%

0%
3,.



Substructure#5 :value 9.560976 ([on(object-0008 .objec-t-OO0l )-t] Ishape(object-000l )=square] [shape(objeci-0002)-circle]
(on(object-000l .object-0002)-tDl

WITH OCCURRENCES:
{([on~tl 51)-ti [sh~ape(, 1)-square] [shapc(cl )-circle] [on(sl .cl )-tl))
([on(12.s2 )=t] [shapeWs2-squarej [shape(c2)-circle] f on(s2.c2)-1]))

K[on( t3,s3)=t] [shape(s3)square] (shapcec.)-circle] (on(s3.c.3)=tD}
I (on~4 s4)t][shape(s4)-square] Eshape(c4)-circle] [on(s4.c4-tD)

End trace.

A.1.6. Input for Second Example of Experiment 1

(DefExample
'((nOl n02 n03 n04 n05 n06 n07 n08 n09 n1O)
((connected nil))
((connected (n01 n06) t) (connected (nOl n02) t) (connected (n02 n07) t) (connected (n02 n03) 1) (connected (nO.3 nO8) t)( (connected (n03 n04) t) (connected (n04 n09) t) (connected (n04 n05) t) (connected (nO5 nlO) t) (connected (n06 n07) t)

* . (connected (n07 nO8) t) (connected (n08 n09) t) (connected (n09 nlo) t))))

A.l1.7. Output for Second Example of Experiment 1: Limit =4

> (subdue :limit 4)

Bes in trace...

Parameters: limit - 4 connectivity - t compactness - t coverage -t
use-bk = nil discover =tspecialize - nil inc-bk - nil

Running substructure discovery...

Discovered the following 4 substructures in 0.98333335 seconds:

'Substructure#2 :value 2.9545455 ((cornnected(object-0001 .object-0002)-tD)
WITH OCCURRENCES:
([connected(nOl .n06)-tD})
K(connected(n01 .n02)-t])}
((connected(n02.n07)_t0))
'qconnected( n02.n03)-tD I
(Kconnected( n03.n08)=t]))
',(connected( n03.n04)-t])
([connected( n04.n09)=t]))
((connected( n04.n05)=t)
'([connected(-i05.nI0)-t)
1(connected n06.n07)_t]))
"(connected( n07,nOB)=t])I

* f(]connected(nO8.n09)-t)}
* . 'connected(nO9,nl0)=t)

Substruclure#3 :value 2.8085105 ([connected(object-0002.objcct-0003)=t] (connected(object-O0l .obiect-0002 =tD)
WITH OCCURRENCES:

(, connected( n~l.n02)=t] [connect-d( n~l.n06)=tIM
([onectdn67)]t [connected(n~l .n06=t])I
;, [connected(n02.n07)=t] (connected(n01,02)t]IN

[connected( n02.n03)-t] [connecled(n~l .n02=t])I
I(connected~ n02.n03)-t1 [connecled(n02.n07)-Ij)l
, [connected( n06.n07)-t] I connectedCn02,n07 )=t ) I
([co,-nected( n07.n08 J-t] [connec'ed(n02,n07 )=tDI

Lconnected n03.n08 )=t] [connected(n02.nO3 )=t1)
[con nected( n03,n04)=,,] [connected(n02.n03)=t])
" connected( n03.n04)-t1 [connected(nO.3nOB =tl
6 con neced( nO7. O8)=t~ 1 connected( n03,nM-)=
cc-.nec~ed( n0b .n09)=t] [connected( nO.,n08=t] D
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i[connected( n04.n09)-i] [connected(n03.nW-):tD

([connecled(nW4.nO5)-fl !connected(nOA,nW09)h
i([connected(n04.n09)-f] [connected(n04,n09)-t)
J([corxncced(n089 .lt [conncctcd(n04,n09)-%D)

{(~connected(n05.n10)-1i [connecled(n04,n05)-D)
(Econnecced(n09.nl 0)-ti [connectcd(n0S.nl0)-1)A
([connecied(n07,nOS)-f] [connected(n06.n07)-1))
W(connecied(nO.09)-1] (connected(07.nW08)tD
([connected(n09.rnlO)-t] [connected(n08.n09)=ID)

Substructure#4 :value 2.590909 ([conntcted(object-.0003,object-0004)-t] [connected(object-0002,obect-0003)-tJ
fconnected(object-O001 .object-0002)-tD)

WITH OCCURRENCES:
([corsnected(n06.n07)-ti (comnectcd(n0l ,nOZ)-t] [connected(n01 .n0-0D

'p* (~~4connecied(n02.n07)-t) [connected(n~l n02)=tl [corsnecied(nO ,00-tD)
(Iconnected(n02.n03)-t] [connected(x0I,n02)-t] [connecled( n0l,n0-fl))
C(connecied(n02.n07)-t] [connectcd(n06,n07)-i] (connectcd(n~l .006)-D

([connected(n07 .n05 -t] (connected(n06,n07)-t] [connected(n01 ,n00)D
I (rconnected(n06,n07)-ti (connected(n02,n07)-t] [connected( n0l n02)-ti)}
I(Qconnected(n0'7,n08)-%1 [connected(0OZ,07)-ti (connected(n~l ,n0)-tD)
([connected(n03.n08 )-tj (connccted( n02.n03)=Ti (connctcd(n~l .02)-0i1
([connected(n03 n04-ti (connected(n02.n03)=t] [connecled(n~l ,nOZ)-tJ))
(~connecied(n06.n07)-t] [connected(n02,0z3)-fl [connectcd( n02.nO7)-1I)
(Qconnecied(n07 ,nM8-Ti connecied(n02,n03)-t] (corinected(02O,07)-tD)
G(connected(n03,n08)-T] [coinnected(n02.n03)-ti [connectcd(n02,n07)-Z)

* (~~Kconnected(n03.n04-fl [connected(n02,n03)-1] [connected( nO2.n07)-t)
(tconnected( nW3,n08)-t] (connecled(n07.OS-1] [conriected( nOZ07)-t]))
(tconnected(nO8 .n09)=ti 'connected(n07.n08)-tI (connected( n02.n07)-tl)

'* ([connected( nO7,n08 )=tj [connected(n03,nO8)-tj [connected( n02.n03)-t]))

% K[connecied(n08 .n09)=T] [connected(nOSn08)-t] [conniected(n02.n03)-0)}
(tconnecied( n04,.n09)=t) tconxiected(n0i ,n04)=t] [connectcd( n02.n03)=t]))
(,'connected(n04.nO5)-fl [connected(n03.n04)-t] [connected(n02.n03)-D}
iUconnected(nO7 .n08 )=t] rconnected(0i3,nW4-f] [connected( nO3,noa )-,D)
('connected( n08 .n09)-ti (connected(n03,n04)=t] (connected(n03,n08)-01~
(tconnected( n04n09)t] [connected(n03.04-t] (connccted(n03.n08)-D}
(rconneciednn0n5)-ti [connected(n03.04)-t] [connected~ nO3.nO8)-%D)
(tconnected(n06.07)=tl [connected(n07.n08 )-t1 (connected(n03.n08)-t])
(connecied(n04.n09)'sti fonnected(n08nW9-1I [connectedl n03n0s)-t])

(Cconnected(n09.n 10)-ti (connccted(nOS .n09)-t] [connected(n03,nOS)-t)
( connecied(n08 n09-1i [connected(n04,n09)-fl [connected( n03.nW04)
CQconnecied(n09 .n 0)-ti [connectcd(n04n09)-1] [connectedl n03.n04)-t)
JUconnecied(n05,n 10)-ti [conneeted( n04,n05)=ti [connected( n0.3,nO4)-ti))
(connected( nOS,n09)til [connected( n04.nOS)=t] [connected~ n04.n09)-t j))

V(connected( n09.n 10)-ti [connected( nO4nOS)-ti [connected( n04,n09 )-tD)
J(connecied(n05.n10)=ti (connected( nOAn05)=t] [connec-ted( n04.n09)-Ti))

* (~~~connecied( n07.n08 )=t [connected( nOS n09)= [connected( n04.n09)-t])
(tconnected( n05,n 10)-ti (connected(n09nI 0)-ti [connected(nri4.n09)=t)
(connecied( n09.r. 0)=1i [connected( nOSnlO)-ti [connected~ n04,nOS)-tDI)

6 - r:(conflected( n08 n09)-ti Econnected(n09.nlO)=ti [connected1( nOSnI)-ti)
(jcannected( n08.nM-)=t (connected(n07.n08)=t] [connected( n06,n07)=t)
(con necied( n09.n Il 0)=fl [corinecled( n08n09)= [connected( n07.n08)=tj))

* *, Et~d :a

A.M.. Output for Second Example of Experiment 1: Limit =6

> subdue :nit 6)

* ararric'ers: !im:*t - 6 conneclivitv t compactness =t coverage =

-use-bk =i discover =specialize =nil inc-bk m!
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- Running substruclure discovery...

Discovered the following 6 subsruures in 3.2 seconds-

iSubs1TUCture$5 :value 5.0 ([connected(object-OOO1 .object-0004)=t] (connected(objeci-0003,object-0004 )-t]

[connected(object-OOO2.object-0OO3)-t] [connected(object-OO1 .object-0OO2)-t])

{(conneced(ri02,n07)-tl [connected(n06n07)-11 [connecled(n~l .n02)=t] [connected( n0l n06)-1D)I ~ ~ ([connected(n03,n08)-f] [connected(n07,08O)-tl [connected(nOZ,n03)=t] [connected(n02.n07)-i])
M(connected(n04.n09)-t] (connected(n08.n09-1] [conneCted(n03,n04)-t] [connccted(n03jnW08)
(Econnected(nOS.n10)-1) (connecied(n09,niO)-fl [coimeeied(n04.nOS)-%] [connecied(n04,n09)-ID)

i Substructure*6 :value 3.25 ([connected(object-0OO8,object-O003)-t] [connected(object-OOil object-004)-t]
Lconnected(object-0003.object-0004)-t] [connected(object-0002,object-0003)-t] [connected(object-OOWl.object-0002)-tJ))

WITH OCCURRENCES:
(connected(nO2.n03)-t] [connecied(n02,n07)=tJ [connected(n06.n07)=t] [connected(n0l .n02)-1] [connected(n~l .n06)=tJ)

6 [connected(n07,n08)-t] [connected( n02.n07)-t] [connected(n06,n07)-f] [connected(n0l .n02)-1] [connecled n~l .n06)-fl))
([connected(n~l .n02)-tl [connected(nOS.n08)-tJ rconnectec(n07.n08)=rl [connected(rz02.n03)=t] [connected( n02.n07)-tM)
([connected(n06.n07)-t] [connecled(n03.n08-1l [connecled(n07,nOB)-t] [connected( n02.n03)=tl [connected( nO? q0'7)=tM
(tcannected(n03.n04 )=t] (connecled(n03.n08)=t] [connected(n07,n08 )-t] [connecTec1(n02.n03)=4, [connected',n02.n07 )-t])}

* (~~[connected(n08 .n09)=t] [connected(n03.n08 )= [connected(n07.n08-f] [connected(n02,nV-11t (connected( n02.n07)-f]))
-- {([connected(n02,n03)-t] [connected(n04 .n09)-T] (connccied(n08,n09)=t] [connected(n03.n04)-f] (connected( n03.n08 )-Tl)

(tconnected(n07,n08)-t] [connected(n04.n09)=T] tconnecied(n08,n09)=t] [connected(nOS,n04)-f] [connecTed( n03,nOS )-T]))
([connected(n04.nOS)-t] Econnected(n04.n09)-il [connecied(n08 .n09)-i] [connectedC n03.n04)-tI [connected( n03n08 )tl

{([connected(n09nlO)=tl (connected(n04 n09)=t] [connected( n08 n09)= [conneclted( n03.x4-11 [connected( n03.n08)=t11))
([connected(n03.n04)=t] (connected(n05.n 10)-Ti (connected(n09.nI10)-1] [connected(n04,nOS)-tl [connec~ed (n0An09)=t])

S { (K[connected(nOS .n09)-t] [connected(nOSnIO)=t] [connected(n09,nlO)-1] (connected(nG4,n05)-1] [connected( n04.n09 )-t]))

* - SubslT icture#2 :value 2.9545455 (Icon nected(objecl-0001 .o bjeci-0002) =t)
- WITH- OCCURRENCES:

;({connected(n~l .n06)=tM)
(tconnected(nnO fl0)]
([con nec-.ed(a02.n07)=.t ))
([connected(n02,n03)=t))

((~conncctcd(n03 .n08)-t])
([connected(n03,n04)=T])
([connected(n04.n09)-f]))
([connected(n04nO5)=t)
([connected(n05,n 10)=t])
i (connected(n06n07)-f])
([connected(n07.n08)-t]) i

l([connected(n08,n09)-tD)I
i [connected(nI09.nl 0)=tDI

End .race.

A. 1.9. Output for Second Example of Experiment 1: Limit =10

- > (subdue :l mit 10)

p Begin trace...

Parameters: limit = 10 connectivity I compactness = i coverage=

0use-bk = nil discover =t specialize =nil inc-bk =nil

Running substructure discovery...

Discovered tefollowing 10 substructures in 30.45 seconds:

Subst-ucture#5 :value 5.0 [ [con-nectedo object -000 l.o bject-0004)= I[con nectedi object -0003. .bject -o004)st
corinected(obiect-0002.obiect-0003)=t [connected( obiect-0001 ,object -0002,=sI)

* ~WITH OCCU.RRENCES:
t~tnec~ed( nc2.nnec-ed~n06.n07 )=s)[connectedi rl ,n021=-] [connecied nOl .n06 )=ti):

cc -nec*.ed(r,03.n08,-I] connected& n0- ,n08 =t] j connecled(n02,nO03: jcorinected(n02.n07, '-I
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([connected(n04 .n09 )_f] [connected(n08 .09)-Il fconnerted(n03.n04-11 [connected(n03nOS)-D}
([connecied( nOS,nl1 )_t] (connected(n09.n 10)-ti [connected(n04.nOS)-fl [connecied(n04.n09)-t])j

Substructure*3 :value 4.375 (Iconnected(object-0004.object-0009)-tJ [connected(object-0009 .object-0008 )-t]
[connected(object-0008 .object-0003)-t] (connected(object-000l ,object-0004)-t] [connected(object-0003 ,objct-0004 )-t]
[connected(object-00O2.object-003)-tI [connected(object-0001 .object-002)-tD)

WITH OCCURRENCES:
V.. (t Qconnecled(n07.n08)-t] [cozsneced(n03,n08)=t [connectcd(z02.03)-t] [connected(n02.n07)-t] [connecied(n06,n07)_t]

(connec'.ed(n01,nrs2)-t] [conrsecled(n~l .n06-ID)
{(connecied(nOS .ri9)-t] [connecled(04.09)-1l [cossneeted(n03,n04)-t] (connected(n03,n08).t] [cozsnected(n07.n08)-t]

[connected(n02.n03)=t] [connecied~no2.n07)-1D)
W(connectecl(n09nI 0)-t) [connecied(n05.x10)-I) [connected(n 0O5)-tJ [connecied(n04n09-t] [connecTed(n08,n09)-t)

[connected(ni03.n04)-t] [connecicd(n03zxos)-tD)

{Substructisre*6 :value 3.25 (Econnected(object-008 .object-0003)-t] (connected(object-0001 .object-0004)=tI
.~ V'[connecied(object.0003,object-0004)-tI (connectedGjbject-OO02.object-0003)-tI [connected(object-O001 .object-0002)-tl)M

WITH OCCURRENCES:
i([connected(nOZn03)-t] [connec-ted(n02.n07).Tl [connected(n06.n07).t] (connected(n0 ,n02)-f] [connected(n~l .n06)-t])

P ([connected( n07,nOS)_f] [connected(nOZ,n07)-t] [connected( n06.n07)-t] [connected(n01 .n02)-t] [connected(n0l ,n06)-t1D)
(c~rcte(~0 .nO>~t [cnaeted~03.05)ti connccted(n07,n0g)-tj [conneciedtn02,n03).t] [connected(n02.n07.J-tj)

{([connected(n06 .n07)_t] (connected(n03.n08)-t] [connsected( n07,n08)-t] (connectcd(n02.n03)-t] [connected(n02.n07 )-t])
((connecied(n03.n04)_t] [connected(n03.n08)_t] Econnecied(n07.nOS)-t] [connectcd(n02.n03)-%1 [connected(n02.n07J-tDj
((Iconnectcd(n08 n09)t] [connected(n03,n08)-t) [connecled(n07.n08-1] [connecTed(n02.n03)-1] [connected(n02.n07 )-t]))
([connected(n02.n03)_t] (conaecied(n04nM9-1] [connected(n08 .a09)-t] (connected(nO.3.n04)-t] [connected(n03.a08 )-T])

([connected(n07,nOSf j(] connected(n04,n09)-t] [connected~n08.n09)-t] [corinectecd(n03.n04)-tJ (connected(n03.n08 )-t]))
~~ ~. ([connected(n04.n05)_f] tconnected( n04,n09)-t] [corsnected(nOS .n09)-Tl [connected(n03,n04)=t] [connected(n03,n08 )-t1))
*~ ~ ([cornected(n09 .nlO)-T] [connecled(n04.n09)-i] (connected(nOS,n09)-t] (connected(n03.n04)-t] [connected(a03.n)8 j-t])

([connected( n03.n04)_t] (connectcd(nOSnlO)-t] [connected(nro9.nio)-t] [connected(n04riOS)=t] [connecied(n04.n09)-tN
(tconnected( n08.n09)-t] rconnected( nO.nio)=tl [connecied(n09,nlO)-t] Econnected(n04,nOS)-t] (connected(n04,n09 )=t])

End trace.

A. 1 10. Output for Second Example of Experiment 1: Limit =14

> isubdue :limit 14)

Begin trace...

Parameiers: limit 14 connect jvitv I compactness I coverage -I

ulse-bk - ail discover - I specialize =nil inc-bk -nil

Running substructure discovery...

Discovered the following 14 substructures in 120.71667 seconds:

Substructure*S :value 5.0 ([connected(object-0001 ,object -0004)=t] (connected(object-0003,object-0004 )=tII
* [connectd( ob~iect-0002,obiect-0003 )=tI [connected(obiect-000l .object-0002)-D}

WITH OCCURRENCES:
([connected(ni02,n07)_t] [connected(n06.n07)-tl [connected( n~l,.02)=t] (connected(n~l .n06-tD}
([cornected(.-.03 .n08 ;_t] [connectedl( 07.nM-1 )=] connectedi n02,n03)-st] [connected( n02.n07 )-ti)
(, ,conneciedi(n04.n09 =5]l [connected(nOS.n09)=t! (connectedi n03.n04)-tJ [connected(n03.n08)=tD)

* ~[conr.ected( nOS,nlO),t] [connected(n09.nlW-)=t [connected(n04nOS)-tI fconnectedl(n04.nM9-fl)I

Substructure#8 :value 4.375 (tcon nected(o obect -0004, object-0009)- tl [connected(object-0009,object-0008 =1I
* ~connecled(obiect-0008,obiect-0003 )-tI [connected~obiect-r0OOl object-0004J-tI [connected(object-0003,objeei-0004 )=s)

'connected( obiect-0002,obiect-0003)=tl [connected(object-000l .object-0002)-t])
WITH OCCURRENCES:

2 cornec*.ed(r.,07,n08,)=t] (connected(n03.n08)=t] [connected(n02.n03)-tj [connected(nO' n07)-tj [connecied(n06.n07 '=5]

cornec'.ed.nO1 .ri2 !.s] 'connected( n~l n06 )-tI)l
_connecied'aW _t08 .n9isconnected( n04.n09)=t] [connected~ n03.n04)=T] [connected( n03.n08 ).s] [connectedi n07.n08;=t,
cornecteci( nO2.a03 j-- connected; n02.n07)=t])

*~t conneced( n09.nl 0,-ti [connectedl nOSnlO)=t] [connectedf n04.nOS)-tj [connected( n04.n09 )=t] [connectedl nOS .n09-
corinec~edl. i03.nO4,;=:J [conncctedl n03.ni08)-tI)
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A )Substructurec#6 :value 3.25 ([connected(object-OO8 .object-0003)=t] (connected(object-OOOl .object-0004)-TJ
[connected(objeci-0003,object-0004)=tI [connecied(object-0002,object-0003)-t] [connected(object-OOOI .object-0002)-t])

WITH OCCURRENCES:
([connected( n02.n03)-t] [conniected( n02,n07)=t] [connecled(n06.n07)-t] [connected(0n1,.02)-t] [connected(nOi .n6)-])
([connected(n07.n08 )=t] [connected(n02.n07)=t] [connected( n06,n07)-t1 [connected(nOl ,n02)-t] tconnected(nOi .n06)-t]))
I Qconnecled~n~l~nO2)=tl (connected(nO3,nO8)-=t] [connected(nO7.08)-1] [connected(nO2,nO3)=t3 [connected~nO2.n07)_tl)j

i~conectedno6n07-%1[conectcl(3,0)4 conectd(0,08)tl conecld(0,03-11[connected(n02,n07)-t)
([connected(n08 ,n09)-t] (connected(n03,nOS)-f] [connecied(n07,n08)-t] [connected(n02,n03)-1] [connected(n02.n07)-J)
([connected(nOZn03)=t [connected(n03,n08)-I] [connected(n08 n09-1] [connected(n0.n04)-1] [connected(n03,n07)4t)
M(connected(n07 ,n08)=t] [connecled(n04.n09)4t [connecled(n08 n09-1J [corsnecled(n03.n04)=t [connected(n03.n08)-t)}

(connected( n04,n05)=tl (connecied(n04,n09)-il [connected(nOS.n09)-t [corsnected(n03,n04)-t] (connecied(n03.n05)-t)

PIP([connected(n09,nio)=t] [connected(n04.n09)-i] [connected(08.n09)=t] [corsnected(n03.n04)=t] (connected(n03,n08)-tD)
([connected(n03.n04)=t] [connccted(nOSn1O)-tj [connected(n09.n1O)=1] [connected(n04,nOS)-1] (connected(nO4,n9)-tTM
(1connected(n08 ,09)=t] [connected(nOSnl0)=t] [connected(n09,nlO)-t] [connected(04.noS)=tr (connecled(n04.n09)=t]))

r ~ End trace.

A.2. Experiment 2

.Y Experiment 2 illustrates the use of SUBDUE's substructure specialization module and

substructure background knowledge module. Two examples from the chemical domain are

presented. The resulting output shows the performance improvement obtained by applying

previously discovered substructures to subsequent discovery tasks.

A.2. 1. Input for First Example of Experiment 2

Def Example
"(hi h2? h.3 it4 i5 h6 cli 612 bri br2 ili 2 c~l. cO2 cO.3 c04 cO5 c06 c07 c08 c09 clO cl c12 c13 c14 ci5 c16 c17 ciS ci9 c20

c21 c22 c23 c24)
(single-bond nil) (double-bond nil) '(atom-type nil))

(:atomntype 'hl) hvdrogen) (atom-tvipe (h2) hydrogen) (aiom-type (h3) hydrogen) (atom-type (h4) hydrogen)
atom-Type h5) hydrogen) (atom-type (W6 hydrogen) (atom-type (cii) chlorine) (atom-tvpe (ci?) chlurine)
atom-Type fbri) bromine' (atom-type (br2) bromine) (atom-type (il) iodine) (atom-type (W2 iodine)
atom-Type (cot) carbon) )alom-type (c02) carbon) (atomn-type (c03) carbon) (atom-type (c04) carbon)
atom-type c05) carbon) (atom-type (c06) carbon) (atom-type (c07) carbon) (atom-type (c08) carbon)
atom-type (c09) carbon) (atom-type (dlO) carbon) (atom-type (cil) carbon) (atom-type (ci?) carbon)
atom-type kc13) carbon) (atom-type (c14) carbon) (atom-type (ci5) carbon) (atom-type (ci6) carbon)
atom-type ci7) carbon) (atom-type (ciS) carbon) (atom-type (ci9) carbon) (atom-type (c20) carbon)
atomn-tvpe c~li) carbon) (atom-type (c22) carbon) (atom-type (c23) carbon) (atom-type (c24) carbon)
single-bond (cOl ii) t) (single-bond (cO2 cl) t) (single-bond (cO5 hi) t0 (single-bond (il br2) t)
single-bond (c16 h2) 0) (single-bond (c22 h3) 0) (single-bond (c24 i2) t) (single-bond (c23 c12) t)
single-bond (c2O h4) t) (single-bond (c13 brl) 0) (single-bond (c09 hW t) (single-bond (c03 h6) t)
single-bond (cOl c04) t) (single-bond (c02 c04) t) (single-bond (c03 c06) 1) (single-bond (cO5 c08) t)
single-bond (c06 c09) ') (single-bond (c07 c1O) t) (single-bond (c07 cl) tV (single-bond (c08 c12) t)
single-bond (clO c14) t) (single-bond (clI c1 5) t0 (single-bond (c13 c17) t) (single-bond (c14 ciS8) t)
single-bond (ciS c18) t) (single-bond (cl6 c19) t) (single-bond (cl7 c20) v (single-bond (c69 c22) t)/
single-bond (c2i c23) 1) (single-bond )c21 c24)1t) (double-bond (cot c03) t) (double-bond (c022 cO5) t)
doubie-bond (c04 c07) V (double-bond (c06 cdO) t) (double-bond (cO8 cl 1) 0)(double-bond (c09 c13) t)
doubie-hond (ci? c16) T) double-bond 'c14 c17) t) (double-bond (cl5 c19) t0 (double-bond (ci8 c21) t)
double-bond (c2O c23) T ,doubie-bond (c22 c24) t)
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A.2.2. Output for First Example of Experiment 2

> subdue :specialize I :inc-bk t)

Begin trace...

Parameters: limit - 39 connectivity - t compactness - t coverage -
use-bk - nil discover . specialize -tinc-bk -

Running substructure discovery...

Discovered the following .39 substructures in 406.93332 seconds:

(Subst-tcture#37 :value 30.197369 (Esizgle-bond(object-0058,object-0200)-ti [atom-type(object-01701-carbon]
[double-bond(object-0176.object.0171)-tI [atom-type(object-0176)-carbon] [single-bond(objci-001 3,object-0l 76)-tI
[single-bond(object-0l 71 ,object-0058)=tI [atom- type(o bjec-001 1)-hydrogen] ( atom- typeo bject-0058)-carbon I
[double-bond(object-0OS8 .objec:-0005)tiI [atom- type(object-001 3)-carbonI (double-bond(object.OOI3,object-oO0l )-t]
[sing le-bond(object-0005.o bject-001 1)-ti [atom-type(object-0005)-carbon] ( single- bond(object-OO05o bject-000 1 )-t]
[atom-type(object-0001 )-carbon]))

WITH OCCURRENCES:
R(single-bond( c~l il )=t] (atorn-1vpe(cO4)=carbon] [double- bond(c04 .c07)_t] [atom- type(c07)-car1c n'

[single-bond(c07,cl 0)-fl [single-bond(c0l .c04)-t] [ atom-type(h6)-hydrogen I [aiom-type(cOl )-carbon]
[double-bond(c~l~ic03)-t] [ atom- -ype(c1 0)-carboni I double-bond(c06,clO)-t] [sing k-bond(c03.h6)-t]
(atom- tvpec06)-carbon]I [single-bond(cOSc06)-t] ( atom- type(c03)-carbon D)

([Qsing le-lbond(c02,cll 0-t] [ atom- type(c04)-car bon 1 (double-bond(c04.c07)-fl ( atom- type(c07)-carboni
(singile-bond(c07,cl 1)-ti [single-bond(c02,c04)-ti (atom-type(hl )-hydrogenl [atom-Type(cO2)-carbon]
[double-bond(c02.cOS)-t] (atom-type(cl 1)-carbon] (double-bond(c08,cl 1)-ti [sing Ie-bond(cOS.hl )-t]
ratom- type(c0) )-carbon]I [5ingle-bond(c05.c08ti [atom-type(cO5)-carbon)

I (singie-bo nd(cl.3 bri )-t] [atom-type(c17)-carbon] [double-bond(c14.cl7)-t] [atom- type(ci1 4)-carbon]
(sing le-bond(c 1 .c 14)-t] (single-bond(cl 3,cI7)-t] [atom-type( hS)=hydrogen] [atom-type(c1 3)-carbon]
[double-bond(c09,cl 3)=t] [atom-type(cl0)-carbon] [double-bond(c06.clo)-t] [sing le-bond(c09.h5)-t]

.d. ~ atorn-1Vpe(cO9)=carbon] (single-bond(c06.c09)-t] [atom-type(cO6)-carbon])
i(,single -bondi(cl I2.br2)-t]I Laiom-type(c08)-carboril [double-bond(c08,cI 1)-ti [atom- type(cl 1)-carbon]I

sirngie-bondcl 15 ' )-ti [single-bond(c08,cl 2)-ti [atom-type(h2)-hydogenj Itatom- rype(c 12) -carbon]I
,Ldouble-bond(c12,c16)=t] [atom-tyoe~cW5-carboni [double-bond(c15.c19)-t] [single-bond(c16.h2)-t]
,alom-typLac19)-carbon] (single-bond(c16,c19)-t] [atomn-type(c1.6)-cabonD)

(~singie-bond(c23 .c2)-t] (atom-type(c21 )-carbon] [double-bond(ci 8.c2l)-t] [atom-type(ci 8-carbon]
Lsingle-bond(c14,c1 8)-ti [single-bond(c21 ,c23)-t] [ atom- type(h4) -hydrogen ] [atom-type(c23)=carbon]
[double-bond(c20.c23)-tJ [ atom- type(c 14)-carboni I double-bond(c14,cl7)_t] [single-bonc20,h4)-ti
atom- type c20)=carbon] 'Lsingle-bond(c17,c20)-tj (atom- type(c1 7)-carbon D)

((singie-bond(c:24.iZ=1i (atom-type(c21 )-carboni (double-bond(c18.c21)-1] tatom-type(c18)-carbon]
~sing ie-bond(cl 5.c1I8)-ti [si-igli-bond(c21 .c24)_t] [atom-tvpe(h3)-hydrogen] [atorn-type( c24)-carbori]
!Couble-bond(c22.cZ4)-t] (atom-tyoe(cIS)-carbon] [double- bond(cl 5,c19)-t] E single-bond(cZ22h3)-t]
atomn-type~ c22)=carbon] [sing le-bond(cl 9,c22)-ti (atom-type(c19)=carbon)

* Subst-ucture#36 :value 25.263159 (Qatom-tvpe(obiec1-0171 l)-carbon] Edouble-bond(object-0176.object-0171 )-t]

*atom-tvpe( ooject-0176)=carbonI [sing le-bond(o bjct-0013,objeci-0176)til [single-bond(object-017 1.object-0058)-t]
[atomn-ty pe(object-001 I)-hydrogen] [aiom-type(object-0058)-carbon] [double-bond(object-0058 .object-0005)=t]I

* [atom- tvpe(object-00l 3)-carbon] (double-bond(object-0013,object-000l )-ti [single-bond(object-0005object-001 1)-ti
[atom -tvpe( object-0OOS )-carbon]I [single-bond(object-0OOSobject-0001 )-tI tatom-tvpe( object-0001 )-carbon])

W ITH OCCURRENCES:
I atom -t'pe(c04 =carbon] (double-bond(c04.c07)=t] [atom-type(c07)-carbon] tsingle-bond(c07.clO)-ti
rS'ng1e bond(c~l .c04 ;=!] [atorn-tvpe(h6-_hydrogeni [atom -type(cOI )-car bon ' ( dou ble- bond(cOl .cO3)=t]
atcm-typet clO)-carbonj (ciouble-bond(c06,clO)=t] [sing le-bond(c03Jt6)til (atom -type(c06)-carbon]
L s ng ie-bond(c03,c06)-=tI a tom -tvpe(c03) -carbon JA

Iatom-type4~cO4)-carbon I double -bond(c04,c07)-t] I[atom- tpe(c07)-carbon] [single-bond(c07.c I 1).ti
0 s~ngie-bond(c02.c04)_t] (atom-type(hi1)-hydrogeni [atom-tyvpet c02)-carbon] [doubie-bond(c02.cOS )=tI

atom -tvpe~cl 1)-carbon] [double -bond(c08,cl 11,1-1] [single-bond(c05.hl )-i] (atom-1-ype(c08 )_carbon]
s.inglebond( cOS,c08i =t aiom-type(c05)=carbonj)I

'atom-1vpekcl7)=carbon' [double-bond(c14,c17.;=t] [atom-type(c14-carbon] [single-bond(clO.c14)-tj
1sir'g e-bondtcl3.cl7 -t atom -!ype(hi5)=hydrogen] t atom-typetcl3)=carbon] (double-bornd c09.c13)=:j
a*or" -tvpe(c1OJcarbon] [double-bond(c06.cl0J.tl [smngle-bond(c09,h3)-ti [atom-tvpeticO9 i-carbon]

s:geon~c06.c09 =*,] ]atom-tyne(c06)-carbon])l
* ~atornr v-etc08 J=car 'On, doubie-!)ond(cO8.cll1;-t] ]atomn-tvr'e-tcllI,=carbon] [single-bond( cli .c1')tI

s irg'.e 'cnd(c08,c 12;=~ aiorn-tvpe01h2)-htydrogeni (atom - i vc 12-carbon' [dotible-bhondc I12.c 16
d*Or -''-e )c-onjcobe ad 5c9-J[ige'od(clb~h)-t,~aton-tve~cI9=carbonj
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[single-bond(cl6,c19)-t] [atom -typec c1 6-car bon])
R([atom-type(c21 )-carbon] [double-bond(cl 8,c2l )-t] [atom- type(c1I8)=carbon] [ single-bond(c14.cI 8)-Ti

(single-bondc2l ,cn.)-t] E atom- type(h4)-hydrogen]I (atom-ty ec23)-carbon] [Ldouble-bond(c20,c23)-t]
(atorn-tvpec14)-carbon] [double-bond(c1 4,cl 7)-ti (sing l-bond(c20.h)-t] (atiom-.type(c20) -carbon]I
I sing le-bo nd(c l7.cZO)-T1 Eatorn-type( ci7-carbon]))

([ atom-tvpe(c21) )-carbon]I (double-bond(cl 8,c21 )-t] [atom-type(clO8-carbon] (sing le-bond(c IS,cl 8)-ti
[single-bond(c21 .c24)-t] [atom-type(h3)-hydrogen] [atom-type(c24)-carbon] [ double- bond(c2.c24)=t]
[atom-type(c15)-carbon] (double- bond(c 1 ,cl 9)-t ) [single-bond(c22,h3)_t] (atom-type(c22)-carbon]

~ (single-bond(c1 9,c22)-1] [atom-type(c19)-carbonD)

iSubstructure# 38 :value 22.780703 ([single-bond~objct-0058 ,object-0195)-t] [double-bond(object-0176,object-01 71)-ti
[atotn-type(object-01 76)-carbon] [single-bond(objecl-001.3.object-0176)-tI (singlec-boi4(object-0171 .objec-0058)-t]
[atom-type(objct-001 1)-hydrogen] [atom-type(objcct-0058)-carbon] [double-bond(objec t-005B ,object-0OOS).t]
(atom-type(object-0013)-carbonJ [double-bond(objcct-0013,object-0001)-t] Esingle-bond(object-005,object-001 1)-ti
[atom-type(object-0005)-,carbon] [single-bond(object-0005.object-0001)-t] [atom-type(object-0001)-carbon]))

WITH OCCURRENCES:
([single-bond(cOl Il -tl [doublc-bond(c04,c07)-t] (atom -type(c07)-carbon] I[single-bond(cO707,)-tl
[single-bond(c~l ,c04-1] (atom-type(h6-hydrogen] [atomn-tvpe(c 1) )-carbon) [double- bond(cOl ,c03)-t]
[atom-type(ci 0)-carbon] [double-bond(c06,clO)=t] [sing le-bond(c03.h6-ti [atom-type(cW6-carbon]
[single-bond(c03.cG6)-t1 Eatom-type(c03)=carbon]))

* { ([single-bond(c02,cll )-fl [ double- bond(c04.c07)=t] (atom-tYpe(c07)-carbon] [single-bond(c07,clO1
( single-bond(c02.c04)-t] [atom -type(hlI )=hydrogen] I atom- type(c02)-car bon]I [double-bond(c02,cOS)-t]
[atom-type(cil1)-carbon] [dlouble-bond(c08cl I )=t] [singie-bond(cOShl)=t] (atom-type(c08)-carbon]
[sing 1e-bond(cOSc08)=t] [atom-type(cOS)-carbon)

f (single- bond(c I 3.brl )-t] [double-bond(cI 4,cI 7)-t] [atom- type(cl 4)=carbon) [single-bond(cI O.cI4)_t]
(single-bond(c1.3 ,cl7)_fl [atom- type(h5)-hydrogen] I[atom-type(c13)-carbon] [double-bond(c09,c1 3)=t]

* [atom-t'vpe(ci 0)-carbon] (double-bond(cO606. )-t] [single-bond(c09.hS)-1] [atom-type(c09)-carbon]
[single-bond(c06.c09)-t] [atom-type(c06)-car bon]) )

([single-bond(c12.br2)?-t] (double-bond(c08,cl )=t] [atom-type(cl 1)=carbon] [single-bond(cl 1 .cl5)-t]
single-bond(c08 c12-t] (atomn-type(h2)-h ydrogen]I (atom-typv 2-carbon] [double-bond(cl 2,cl06=11
[atom-type(cl 5)-carbon] [diouble-bond(cI 5.cW11t [sing le-bond(c 1 6.h2)=t[atom-type(c1 9) -carbon]I
(single-bond(cl6,c19)=T1 [ atom- type(c1I6)-carbon 1)}

(Qrsingle-bond(c23,c12)-t] [double-bondcl 8x,21)-t] [atom-tvpe(clV8)carbon]l [single-bond(c14,cl 8)-t]
I ,single-bond(c21 .c23)-tJ (atom-Type(h4)-hydrogenl [atom- type(c23)=carbon ] Edouble-bondi(c20,c2.)-t]
Latom-type(c1 4)-carbon] (double-bond(c1 4,cl 7)=t] tsingle-bondl(c20.h)-Tj (a tom-type(cMO-car bon!
Lrsingle-bond(cl 7,c20)-tJ [atom -type~cl1 7)-carbon]1))

r ([single-bond(c24,i2)-t] (double-bond(cl 8.c~l )=t) (atom-type(cl 8)-carbon] [single-bond(cl 5Scd 8)-1i
I' single-bond(c2l .c24)=t] ( atom- Typeh3) =hydrogen I [atom-type(.c24)-carbon] [double-bond(c22.c24)-t]

r atom-tvpe(c1S)-carbon1 [double-bond(c15.cl9)=t] [single-bond(c22.h.3)-t] [atom- type(c22) =carbon]
Ls~gle-bond(c194c2)-t] [atom-tvpe(c19)-carbon]))

Specializing substructure...

* Specialized the substructure:

Substructure937 :value 30.197369 ([singile-bond(o bjeci-0058.object-0200)=.t] [atom- type(o bject-01 71)-carbon]
:double-bond(object-01 76,object-01 71 )=t] [atom -type(object-01 76)-carbon] [single-bond(object-001 .3.object-0 1 76)=s]
single-bond( object-Ol 71 ,object-0058)=t] I[atom-tyoe (object-001 1)-hydrogen] (atom- type(ob ject-0058) -carbon I
iouble-bond(object-0058,objeci-0005)-t] Eatom-tyvpe(object-001.3)-carbon]lEdouble-bon," obiect-001 3,object-00 l)=t]

.. *.s ngle-bond(object-0005,obect-0O1 1 )=t] [atom -ty pc object-0005) -carbon] I single-bond(ooject-0005.object-ooo1iIs
Latrnm-tvpe~object-0001)-carbon])l

to the following substructures:

Substructureff0 :value 1/2 Q[atom- type(o biec'.-0200)=bromine~ch lorine.iodine ] [single-bond(object-0058.object-0200 )=t]
atom-tvpe~ object-Ol 71 )=carbon] [double-bond object-Ol 76,object,-01 71)-I [atom- type(object-0 I76)-carbon I

* . single-bond(object-001 3,object-01 76)-tI [single-bond(object-0l 71 .object-0058)=t] [atom-tvpe(object-00 1 )=hvdrogen]
* .atom -tpet ob ject-0058 )carbon I [double-bond(object-0058 .object-0005)=t] [atom- type(o bjec -001 3)-carbon]I
*i dot;ble-bond( object-O01 3,object-O001 )=] [ single-bond( obiect-0005 .object-001 1 =t] [atom-tvpe(obiect-0005 )=carb)On]

s~f~le3On( oiec-00S~o~ec-00l )r](atomn-type(object-0001 )=carbonl)

% -%~~dd;:g substiuc*,res to BK...

Ader~ !ie lcilow:ng substructures to BK:
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Discovered: iSubstructure #37 :value 30.197369 ([sing le-bond(object-0058 ,object-0200)-t] [atom-type(objecl-01 7 1)-carbon]
(double-bond( object-Ol 76.o bect-0l 71)-tI ' atom- type(object-0l 76)-carbon]I [single- bond(o bject-66I 3.o bject-01 76)-t?1
[sing le-bond(object-0171 Lobieci-0058)-Ij ( atom- type(o bject -00 1)0-hydrogen] (atom- lvpe~o bjeci-00s8) )-carbon]
[double-bond(obiect-O0058.object-000S)-tI [atom- type(object-O0l 3)-carbon]I [double-bond~object-O0l 3,ohjeci4l-0l)-t]
[sing le-bond(objecl-0005 ,object-001 1)-ti [atom-type(object-0005)-carbonJ [single-bond(object-0005,object-000l )-t]

[atom-t-vpe(object-0001)=carbonj)}

Specialized: (Substructure#O :value 1/2 Q atom-trype(o bject-0200)-bOMinechlorineiodine]
[single-bond( object-0058,objecct-0200)-t] [aiom-type(objecl-Ol 71)-carbon] [double-bond(object-Ol 76,object-Ol 71)-tI
[atom-type(object-1 76)-carbon] (sing le-bond(o bject-O0 I 3.o bject-0 176)-1] [single-bond(object-017 1 object-00S8)-t]
(atom- type(object -00 1 1)-hydrogen) (atom-Typcobject-0058)-carbon] Edouble-bond(object-0058.object-0005)-i]
[atom- type( object-Ql 13)-carbon] [double-bond(object-0O1 3.object-OO1 )-tI [single-bond(object-00OS.objec-ool i)-tI

* (atom-type(object4000)-carbon] (single- bond(object-OO5,object-OO1 )-T] [atom-type(object-OOOl )-carb-on1)

End trace.

A.2-3. Input for Second Example of Experiment 2

(DefExampie
',(h02 h03 h04 hO5 h08 h09 hlO hil h12 cl br i cOl c02 cO.3 c04 c05 c06 c07 c08 c09 cdO cl 1 c12 013 c14 c15 c16 c17 c18)
((single-bond nil) (double-bond nil) (atomn-type nil))
((atomn-type kcl) chlorine) (atom-type (h02) hydrogen) (atom-type (h03) hydrogen) (atom-type (h04) hydrogen)

atom-type (hO5) hydrogen) (atomn-type Wi iodine) (atomn-type (h08) hydrogen) (atom-type (br) bromine)
'atom-type 'h09) hydrogen) (atom-type (MIO) hydrogen) (atom-type (hll) hydrogen) (atom-type (h12) hydrogen)

* atom-type (cOl) ca-bon) (atom-tvpe (c02) carbon) (atom-type (c03) carbon) (atomn-type (c04) carbon)
~atom-type (c05) carbon) (atom- type (c06) carbon) (atomn-type (c07) carbon) (atom-typ (cOS)carbon)
atom-type (c09) carbon) (atomn-type (clO) carbon) (atom-type (cil) carbon) (atom-type (c12) carbon)

(atom-t pe t c1) carbon) (atom-type (cl4) carbon) (atom-type (cIS) carbon) (atom-type (c16) carbon)
\katom-type (cl7) carbon) (atom-type (clS) carbon) (single-bond (cOl cI) t) (single-bond (c02 hO2) t0
single-bond (c03 h03) t) (single-bond (c04 h04) t) (single-bond (ciS hO5) t) (single-bond (c18 i) t)

ksingle-bond (dll br) t) (single-bond (c12 h08) t) (single-bond (cl3 h09) t) (single-bond (c14 h1O) t)
single-bond (c16 hil) t) (single-bond (cl17 h12) t) (single-bond (cOl c06) t) (single-bond (c02 c03) t)
single-bond (c04 c05) 1) (single-bond (c06 c07) t) (single-bond (cO5 c1O) t) (single-bond (c08 c09) 1)
single-bond (c07 cl) t) (single-bond (c12 c13) t) (single-bond (c08 c14) t) (single-bond (dlO c15) T)

(single-bond (c16 c17) t) (sit..gle-bond (c09 c18) 0) (double-bond (cOl cO2) 0) (double-bond (c03 c04)dul-odcOc0) (ubeon(07c)t)dul-od(09O))(obebnddlc2 t)

'double-bond (i c14) t) (double-bond (cIS c16) t) (double-bond (c17t c18) t))))

A.2.4. Output for Second Example of Experiment 2

> ,subdue :limit 10 :use-bk t :specialize t :inc-bk :

Begin -.race...

Parameters: limit = 10 connectivity t compactness I coverage t
*use-bk =t discover =t' specialize =t inc-bk t

Cnecking BK for relevant substructures...

F~trnd *:he foiiowing BK substructures:

T'Suos~ruciure90:value 22.451612 ([sing le-bond( obiec'-00 I 2.o becl-0009)=t] [aiom-tvpe( objec1l-OI1)=carbon]
r ~ou bIe -bo n d o b ect -00 10. o biec t-00 11 )t, (atorn-t vpeo ob ect1-00 10) -ca rbon] s ingIe -bo nd(o biect -O00i 3.aob ect -00 10)=t
singie-bond( object 0011.obiect-0012)-t] [atom -type(object-001 4 )-hyrdrogen] atom- type. objecl-0Ol 2 )=carbon]
do,-ble-bond(obiect 001) obiect-0O15)=tI [atom -'-,pe(o biect-0013)-carloonI [(double-bond(obiec:-0Ol3.obiec:.-0016,=tI
single-bo-md( object-0015.obiect-001 4)-t] [atom - vype(objecl-00 I5 (-ca-ban]I [sinigle-bond(object-0Ol 5.obiect-00l 6;t

\klT HOCCURRENCES:
cc ie-boDc)c8- obiondndcclc6'' ]dul-bond(c09 clO;-t"j single-bond(c09.cl 8)-tl

stng e-,ond(cl6.cl7 - .si-ige-bond(cl0.cl5 =1 'single-bond(c17.hil1tl fsingie-bond(dl8., '=tl,

atom ,ecl,=carno,-"(a-tc- -vre~cl7 =ca~bonl,,atom.-tvpe~clb)= carbon [atom-tvpeicV5)=car~onj
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* .. d { (double-bond(c17,cl8)-tl (double-boud(cl.cl.)=t] (double-bond(c09 .cIO)-ti (single-bond(c09.cl 8)-ti
(sing le-bond(cl 6.cl 7)-t ] (single-bond(clO,cl 5-1] [single-bond(cl6.hl 1)-ti (sing le-bond(c 1 ,h05).I]
(atom-type( cIS)-carbon] [atom-type(cl 7)-carbon] (atom- Iype(clI 6)-carbon]I (atorn-lype(c1 5)-carbon]
[atom-type(clO)-carbon] (atom-Type(c09)-carbou] [atom-tvpc(hI 1)-hydrogen])))

([double-bond( ci7.cl 8)_ti (double-bond(cl 5.c16)_ti (double-bond(c09,cl 0)-I] [sing le-bond(c09.c 18)-1]
[sirgle-bond(c1 6.cl 7)-ti [single-bond(cI 0,cI5)-i] [single-bond(cI 6.hl )-t) [single-bond(cl 5,hO5)-t)
[atom-Type(c1 S)=carbonj [atom-type(cl 7)...cai bon] [atom-type(c16)=carbon" ( [atom-ty pe(c 15) -carbon]
[atom-type(clO)-carbon] (atom- type(cO9Y.carbon] [atom-type(h05)-hydrogen]l))

([double-bond(c1 3,ci4)-t] (double.-bond(cl 1 I.c1 2)-1] [double-bond(cO7,cG1#)-t] [single-bond(cOS .cl 4)-t]
* [singlet-bond(cl 24c 3)-t] [single-bond(c07401t (single-bond(cl 4.hIO)-t] (sing le-bond(clI 3.h09)-t]I

(atom- type(cl 4)-carbon] [atom- rype(cl 3)-carbon] [atom- type(cl 2)-carbon] I atomr- type(cl 1)-carbon]I
[ atom- type(c08)-carbon I [atom-type(c07)_carbon] (Eatom- typc(h I 0)-hydrogen 1))

07 {([double-bond(c13.c14)-t] [double-band(cl 1 .cl2)-t] [double- bond(c07.c08)-I] [single-bond(c08.cl 4)-ti
[single-bond(c1.2,cl.3)=t] [sing le-bond(c07,cI 0-I] (single-bond(c14,hlO)-t] Esingle-bond(cl 3.h09-1l
[atom-type(cl4)-carbon] tatom-type(ci 3)-carbon] (atom- type(c 12)-carbon] IEatom-Type(cl 1)-carbon]I
[ atorn-type(cO8)-car bonJ j aiom- type(c07)-,car bon]I fatom- type(h09)=h ydrogen])I

f([double-bond(c13.c14)_t] [double-bond(cl 1.c12)-t] (double-bond(c07,c08)-t] (single-bond(c08,cI 4)-i]
[single-bond(c12.c13)-t] (single-bond(c07,cl 1)-t] [sngle-bond(c12.hO8)=t] (sizngle-bond(cl 1 .br)-t]
[atom-lype(cM4-carbon] [atom-type(c1)-carbonj [Eatom- tvpe(c 1 2-carbon] I atorn-type(cl 1)-carbon]

* .[atom -tvp(cOS)-carbon]I (atom-iype(c07)=carboni [atom- type(h08)-hydrogenJ1))
([double-bond(c05.c06)=t] [double-bond(c03,c04)=I] [double-bond(c01,c02)-t] [single-bond(c04,c05)=t]

[siglebon~c0.c0)-t (sngl-bond(cOl ,c06)-t] [single-bond(c04,h04)-t] [single-bond(c0h0)t
[atom-type(cW6-carbonl [atom-type(cO5)=carbon1 (atom-typec04)-carbon) [atom -Type(c03)-carbon]
i atom- type(c02)-carbon) [atom -type(co 1 )-carbon] I atom-type(h04)-hydrogen]l))

([double-bond(c05.c6)=i [double-bond(c03,c04)=t] [double-bond(cOl .c02)-t1 [single-bond(c04,cO5)st]
L single-bond(c02.cO3).t] (single-bond(cOl .c06)-t1 [sing le-bond(c04,h04)_t ] (single-bond(c03,h03)-T]
I Latom-type(c06) -carbon] I atom-tvpe(c05)=carbon] (atom-type(c04)-carbon] [ atorn-type(c03) =carbon]

L~aomypecO2-cabon [aom-ypeco)=carbon] (atom- type(h03)-hydrogenD)

S sing~R~oule-bond(oc0004l.[obe-bond01 3,)4-t] [aon-yeobet-0003)-carbon] L'sinl-bond(cb4c-02o5 bec=fl3-t
L~at-o dp(ci-0O0)-carsngbon [sinlc-bd(bge-0b5odec02,02)-t ] [single- bond(oleci-00,bjc-O0)=
[atom-typc( oc-0006)=hydog-ye] )atom-tvpe(o-typO4)4= c arbon] [datm-tvnd(oec00.ron1c-00)t

.snl-odojc-00,bet00)t atom-type(object-000)-carbon] (double-bond(object-OOSojei008=]isnl-bn(object-000 3c:0O)=t]

.atom- tvpe( objeci-0007)-carbon] Itsingle-bond(object-0007,object-0008)=tI [atorn-type(o bject-0008) =~carbon]))
WIT4 CrCURRENCES:
l(Qdouble-bond(c05,i:06)-1] [double-bond(c03,cO4)=t] tdouble-bond(c01 .c02)=st] [sing le-bondc04.cO5)=ti

,s-.ng_'e-bond(c02,cO3)-tj fsingle-bond(c01 .c06)t] [,sing le- bond(c02,hO2 It [single-bond(cOI .cl)-tlU *atom-tv~e(c06)=carbon] [aIozn-tvpe(c05)=carbon1 [atom-Tvoe(c04)=carbon1 [atom-tvpe(cOJ3)=carbon1
* atom-type(c02-=carbon1 [atom-vpe(cOl )-carbon] [atorn-tvpe(h02)=hydrogen] [aiom-type(cl=chiiorine])

l(,double-bond(c13xlc4)tx (double-bond(cl 1 .c12)=tl [doubie-bond(c07,c08)-t] (single-bond(c08.cl4)=tj
*7smngle-bond(c1 -' cl3)-t], [single -bond(c07 ci )=i'] jsingle-bond~c1' hOS )-i] [single-bond(cllI br)-i]

~acm~-vte(,lI -cabonj [atom-vpe{ ci3)=carbon1 (Latorn-tvpe(c12)-carbon]j (atom-type(cl I )=carbon]
~atom-ty pe(cOS8=carbon] [atom--,vpec07,)=carbon-, [atorn---%,pe(br) ,~~itc ,,-e~O. hdogn)
cdouble-bond(cl 7 .cl 8)-tli double-bond(c15.cl6 )-t] [double-bond(c09,clO)-t] [single- bond(c09.c I 8)=t]
tsingle-bond( c16,c17)-t] L'single-bond(cl0.cl 5)tIj [single-bond ci 7.h12)-tl [single-bondkcl 8.D)-11
Latom-tvpc(cl 8)-carbon] (atomn-type(ci 7)-carbonj [atom-tvpe(c16b)=carbon] (atorn-type(cl 5)=carbon)
atorr- tvpe{ ci)-carbon] [atom --tvpe c09)-carbon I [atom-ty;pe(hl ')-hydrogen] [atom-typeki)=iodine)

Running subs',ruc'..re discovery...

Discovered *he following 10 suosttuctures in 241.381667 seconds:

Sbructure*5 :value 34.36344 (Ks~ngle-bond( object-Q01 3,objecl-0030)=tl [atom-type(object-0009)=. *dT gen]
aton -vpe( ob eci-00l 8 j-hydrogen] 1,single-bond( ob~ect-O01 6.oblect-001 8 )-*J ][sing le-oond( objec:-001 2,ob iec* -0009 )=t
atiom- ,vpe~ ob ieci-001 li)-carbon j [double -bondi object-O01 0.object-001 1 )-1i [atom -type(object-O01 0)=ca-bonl
s. ngie- :ond(obiec,,-00 13,obiec'.-0010)=Tl (single-bond~object-0011I.oblect-0012)=t] [atom-tvpe(obieci-0014 i=',vd-ogenI

atcmtvpeobjei-002=cabon~idoule ond(obiect-0012.object-00151=t aomtiOlet0l =abn
qo,..bie-bondlobiecl-0013.object-0016)=1. [sing le-bond( ob'ecl -00 15,o biect-001 4)=t I [atom-,vpe ooiecl-0O15 J=car*,onj
s tngle,ondi obiec:-00 5,obiect-0016,l=tI (atomn -!vpe(o bieci -00 1 6)=carbon1))

W IT H OCCU:RRENCES:
s.ngle-bn tc 8if ro-t ~~05)=hvdrogenj atorn-tvpei hli' -vdrogenj isingle-bond(c172.l2.'=i]
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Ldouble-bond(cl 7.c18)-Ti (double-bond(cl 5.cW16)t (double-bond(c09.cIO)-11] [single-bond(c09.cl 8)-ti
[single-bond~c16,cI7)_ti [single-bond(cl 0.l 5-ti (single-bond(c16,hlI1)-t1 (sing le-bond(c I 5,h05)=t]I
[atom-type(cW8-carboni [atom- iype(c I7)-carbon] I[atom- type(c 16)-carbon] I[atom-type(c15)-carbon]

S [atom-type(cl 0)-carbon] [atom- type(c09)-carbon] [atom-1ype(hl11)-hydrogen])i
([single-bond(cll1 br)-t] [atom-Iype(hIO)-hydrogeni [atom-rype(h08)-hydrogen] [single-bond(c1 2,h08 )-ij
[double-bond(c13.cW4-t] (double-bond(cl 1 .c12)=t] (double-bond(c07.c08).fl [single-bond(c08cW14)t
[singie-bondlcI2.cl3)-ti (single-bond(c07.cl 1)=I] (single-bond(cl4.hlO)-t] [sing le-bond(cl 3.h09)-1i
[ atom- type(c1I4)-carboni [ atom-type(c13)-carboni (atom-type(clZ)-carboni (atom- type(cl 1)0-car bon]I
[atom -type(c08-carbon] Itatom -iype(c07) -carbon I [atom-Typc(h09)-hydrogeni)

V ([sing le-bond(cOI .cl-t] (atom-type(h04)-hydrogen] [atom-type(h02)-hydrogen] [single-bond(c02.h02)-1]
Ldouble-bond(cWOS-)t] [double-bond(c03.c04)-1] fdouble-.bond(c0l ,c02)-t] (single-bond(c04,cOS)-t]
Esingle-bond( c02.c03)-ti (sing le- bond(cO l .c6)-1 flsingle-13ond(c04,h04)-t1 (sing le- bo nd(cO3, ."03)-1]
[atom-t'ype(c06)-carbon] [atom-type(cOS)-carboni [atom -type(c04)-carbon] [atom-type(c03)-.carbon]
[atom-ry pe(cO2) -carbon I [atom-type(c01)-carboni [atom-type(h03)-hydrogen]))

Substructure#4 :value 31.35484 QEatom- type(object-0009)-h ydrogen]I [atom- type(object-0O1 8 )-hydrogen
[single-bond(object-0016.objct-0O1 8)-tI (single-bond(object-001 2,objcct-0009)-t] [atom-type(object-0O1 1 )-carbon i
[double-boond(object-010objct-O 0)-ti (atom-type(object-0O10)-carbon] [single-bondobjec-0O1 3.object-001O)-t]
[singie-bond(objeci-001 I .objecl-OO1 2)-ti (atom-type(object-0Ol 4)-hydrogenj (atom -type(o bJet-00I 2)-carbon]U[double-bond(object-0012,object-0015)-t] [ atom- type(a bject-00 13) -carbo n I double-bond(objcct-O01 3,object-001 6)-ti
[sing le-bond(object-0O1 5.object-001 4)-ti [atom-typL~.object-0O1 5)-carbon) [sing le-bor dbject-00 1 5,o bject-00 1 6)_ I
[atom-tvpeobjct-0016)-carbon])

WITH OCCURRENCES:
(tatom.-type(hOS)-hydrogen] (atom- type(h I2)-hydrogen]' (single-bond(c1 7,hl2)-t] [double-bond(c1 7,cl8)_fl
[double-boad(cl 5.c16)-t] [double-bond(c09,clO)-t] Esingle-bond(c09.cl 8-ti (single-bond(c16,cl7)-t1
[single-bond(clOxcl5)-ti (single-bond(cl6.hl 1)-1i [singlc-bond(cl 5.h05)-t1 (alam- type(clI 8)-carbon]I

* atom-type(c1 ")-carbon] [atom- type(cl 6)-carboni I atom- type(c135)-carbon I [atom- tvpe(clO)-carboni
atom-tvpec09-carbon] (atom-type(hl 1)-hydr ogen])

([atom-y-pe(hlO).hvdrogen] (atom-type(h08)_hydrogeni (single-bond(cl 2,1h08)-t] (double-bond(cl 3.cl4)-t]
'doubie-bond(cl 1 .c2)-t] [double-bbond(c07,c085-ti (single-bond(c08,c1 4)-t1 (single-bond(c1 ,cl3)-tj
~sing-bond(c7,cI I /'-1] [single-bond(c14,h10)_t] [single-bcnd(cI3,hG9)_t] [atom-type( ci 4)-carboni

1 om-tyqe(cl3)-carbon1 [atom-typ c2-carbon] (atom-type(cl 1)-carbon] (atom-tvpe O -abn
~atom- type(cO7 ).carboni [a tom-1Tpe( h09)-hydrogen])I

(latom-typeh04-hydrogen] [atoin-type(h02)-hydrogen] [sing le-bond(c02,h02)-t]I [double-bond(cOS,c06)=t]
dou ble-bond(c03.c04)-tl [double-bond(c0l ,c025-fl [sing le-boncl(c04.cW5)=t I[sing le-bon d(cOZ. c3) -1)
ingle-bond(c01 ,c06-t] [single-bond(cO,h04)-ti [sing le-bond(c03.hO.3).ti I[atorn-Iype(c06)-carboni

*a om-type(cO5).carbonl (atom.-type(c04)-carbon] [atom-Type(c03)-carbon) [ atom- type c02)-carboni
:atom -t ype(col )-carbon j taiom-type(h:03)=hydrogeni)i

Subst-ucture#10 :value 26.034458 (Eatom-type(object-0034)-carbon] [single-bond(obiect-0010.object-0034)=ti1
~sing le-bond(objeci-0O1 .3.objecl-0030)-ti [atom- type(object-0009)-hydrogen I [itm-tvpe( obiect-0018S)=hvdrogenI
singlc-bond(object-0O16.object-001 8)-tI [single-bond(object-0012.objecl-0009 )-t] [atom- Iype(o bject-001 11 -carbon1
~double-bond(obiect-0010,objec-001 1)-ti Iatom- type(obJecl -001O0)=carbonj [single-bond(object-0O1.3.objec'-001 O)=t]
~singie-bond(object-001 1 .object-0O1 2)-ti (atom -typet oojct-0O1I 4)-hydrogen]I [atorn-type(object-001 2)-carbon

% double- wnd.(obiect-001 2,object-0015)-t] 'atom-tvpe(object-0013)-carbonI (doubie-bond(obiect-0O1 3.obiect-001 6 =t
r singie..bond( object-001 5.objci-001 4)-tI, [atom-!ypei object-0015)-carbon] (single-bond(obiect-001 5,obiect-0016 )-It

1 atom-type(obiect-0016)-carbon Di
WITH OCCURRENCES:
Qatom-type(cM8-carboni (single-bond(cG8.cO9'-T1 [single-bond( c! 8 0-t] [atom-tvpe( hO5-hydrogen)
L aom--ype(hl2)-hvdrogen) (sing lc-bond(cl 'ji 2)-t j [double-bond~c1 7.cl 8).ti Cdouble-bond(cl cI 6)-ti!
(double-Dond(c09,ciO)-t] [single-bond(cO9.cl 8)-ti [single-bond(cl6.cl7)-t] (single-bond( clO.cl5)-*,I
rsingle-bondtc66.hl 1)-ti (single-bond(clS.h05 ')-tj (atom- type(c 18)=carbon I [aiom-type(cl ')-.carbon
L atom- tvpe(c1I6)-carbon] I atom-type(cl.5)-carbonji Iatom -Typekcl 0j-carbon) [aiom-type c09 -carbonl
.atom-type(hl l -hydrogenD)

( aiorn-type~ c06-carbon] [single-bond( c06.cO7 )-fl [single-bond( cli .br)=1] [atom-tvpe( hi0)=1hvdrogen1
Ia o -typc(h08,-hvdogen] [single- bondc I 2,i08 )-tII [double-bond(cl 3.cl 4)-ti (double-bondi cl I,c I2)=t
:diouble-bond(c0 7.cM8-ti I singlc-bond(c08.cl 4)-ti ( single-bond(c I 2,cl 3)-t I [sing le-bond(c07.c 1-_t]
singie-bond( c14.hlO)-t) [single-bond(cl3,h09)-t) [atomn-type(c 14) -carbon] [atom-tvp4,ci 3)-carbon]

* atom-ty*ecI 2)=Carbonl [atom-tvpe(ci 1)-carbon] [atom- type(c08 -carbon] I atom-t'vpe c07 )-carbon]
* - ~'atom-type hW9-hydrogen]M
- - (Kaiom-tvpe c07)-cartionj [single-bond(cO6,c07)=ti !single-bond(cOI .cl)=t] fatorn--tpe( h04)=hvdrogen'
* -- aiom-tveh02)-hydrogenj (singlet-6ond( c02.h02)-t [ 'double-bond( cOS.c06)=t] ftdouble-bond(Mc3.C04 )-t

double-b)Ond(cO1 .c02)=t] tsingie-bond(c04.cOS,=t] is~ngle-bond(cO2.c03,-ti( ing le-bond( cO l c06 =! 1
* 'sing~e-bond~c04.h04)-tj [single-bond(c03.h03._t] [aiom-tvpe c06-.carbonj Latocn-type1cOS -carbon'

*a~oM-*,V)eCO4'.:carbon!i [atom-iypeic03)-carbon! ]atom-tvpetc02)-carbon] atom-typetcO1 ,=ca~bcrnj
azom-ype(ni03 -hydrogen]))
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Specializing substructure...

Specialized .he substructure:

(Substructure#5 :value 34.36344 ([single- bond(object-00 3 ,object-0030)-t] (atom- type(a bjecl -0009)-h vdrogen]
X ]~atom-type~object-0O1 8)-hydrogen] [single-bond(object-0016,object-Q0 8 )-t] (single-bond(object-O1 2.obiect-0009 )-t]

[atom- type(objcct-O0l1 )=carbcn] (double-bond(object-OO10.object-0O1 1)-i] [atom-type(objec-O1O i-carbon]
(single-bond(obect-0O1 3.object-0O1O)-t] [single-bond(object-0O1 1 object-0O1 2)-ti [atorn-type(object-o0 4 )-hydrogen]
[atom-tvpe( object-0012)-carbon] [double-bond(object-0O1 2.object-001S)-t] [atom- type(o bject-00l 3)-carbon]
ldouble-bond(object-0013 ,object-0016)-t] [single-bond(object-0015,object-0014)-t] [atoin-type(object-00 15)-carbon]
[single-bond(object-0O1 5.object-0016)-t] [atom- type(o bject-0 1 6)-carbon])l

to the following substructures:

Substructure#0 :value I ([atom~ -type(o bject-0030)-bromine,chlorineiod ine 1 [sing le-bondo object-O0l13.objeci-0030)-t]I
atotn-type(object-0009)-hvdrogenI (atosn-type(objec-0O1 8)=hydrogenI [sing lc-bond(object-O0 16.object-O~ 8=t]
Isingle-bond(object-0012.object-0009)-t] [atom- type(obect-O1 1)-carbon] [double- borid(ob iect-001 .o b iect-00 1 1)=t]7 ,' .tom-tVpe(object-0010)-carbon] [sing le-bond(objec-0O1 3,object-0O1 W-1t] [single-borsd(object-001 1 object-001 2)-t]

.1 atom-typeobject-00l 4)-hydrogen] [atom-ly peobject-00l 2)-carbon I[(double- bond(object-001 2.objec:-001 I5)-ti
~atom- tvpe(object-OO1 3)-carbon] ) doubie-bond(object-0013.object-0016)=t] fsingle-bondi(obiect-0015,obiect-Ool 4)-t]
.atom-type~object-001 5)-carbon] r sing le-bond(object-0O1 5.object-001 6)-t I latom-tvpe(object-O01 6)-car' cn )

Adding substructures to BK...

Added *,he following substructures to BK:

Di~ Dscovered- iSubstructure*S :value 34.36344 ([sing le-bond(object-0013.object-0030)-t] [Latom-type(object-0009 )=r-ivdrogen]
~atom- Vvpe(obje-n-001 8) -hydrogen I [single-bond(object-0016,object-0O1 8.)-s [single-bond object-001 2.obiect-0009 )=t
~atom- tyve(object-001 1)-carbon] [double- bond(object-00 I0.object-001 I )-t] [atom-typebobjecl-O01 0)-carbon]
single-bond(obiect-0013.object-0010)-tI [single-bond(object-001 1 .object-001 2)-ti [atorrt-type(objec-O0 4 )=hvd rogen]
.atom- type(object-001 2)-carbon] Itdouble-bond(object-0012.object-00l 5)-t] (atom- tvpe(o b eci-001 3 i=carbon)
double- bond(object-0013,object-0016)-t] (sing le-bond(obiect-0l 5,o bject-001 4)-11 [atomf-tvpe(object-001S.,=carbonI

sm;gie-bond(object-0015,object-0016)-tI [atomi-type( object-001I6)-carbonlb]

Specialized: Substruclure#0 :v.lue 1 ([atons-type(object-0030)-brominechlorineiodineI
* szngle-bond(obiect-0013.obiect-003O)-tI (atom- -v pe(o obec -00O9)-hvdrogen] I atorn-tvpe(ob~ect-0Ol S -hydrogen]

a- sing le- bond(o b lci-o1I 6.object-00 I C-tl (single- bond(object-001 2.ob jeci-0009)-t (atoot-ivpek object-00l 1)-carbon]
double-bond(object-001 0.obiect-00l 01t [atom- tvpeo object-0010)-carbon] [single-bond(obiect-001 3,obiect-00l 0)=t]
single-ioond(ob~ect-0Ol 1 .obiect-012-iat-yp oec-0014-hdrge] [aom-typeobject-0012,=abn
doubie-bond( object-001 2.objec,-001 5)-tj [atom- typet objeci-0l 3)-carbon] [double-bond(object-001 3.object,-001 6 )-t
Single- hond(ob iect-00 I 5,obieci-00 I4).t I (atrm-type ob'ect-0Ol 5)=carbonl [single- bond(o biect-00 I 5,object-00 1 6, )t]
atom- tvpe{ object-00 16, -carbon]))

- - End t-ace.

* . A.3. Experiment 3

Experiment 3 demonstrates SUBDUE's ability to discover substructures that can be used as

- . high-level attributes for classifying multiple examples. The input examples consist of the

descriptions of torn trains. The DefExam plo calls for each example are shown, along with the

resuit~ng output.
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A.3.1. Input for Experiment 3

,DefExample ;Train A
((carl car2 car3 car4 car5)
((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
((car-shape (carl) engine) (wheel-color (carl) black) (car-shape (car2) open-rectangle) (car-length (car2) long)
(load-shape (car2) rectangle) (load-number (car2) three) (wheel-color (car2) black) (car-shape (car3) sloped)
(car-length (car3) short) (load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) black)
(car-shape (car4) open-rectangle) (car-length (car4) long) (load-shape (car4) hexagon) (load-number (car4) one)
(wheel-color (car4) black) (car-shape (carS) open-rwtangle) (car-length (carS) short) (load-shape (car5) circle)
(load-number (carS) one ) (wheel-color (car5) black) (infront (carl car2) t) (infront (car2 car3) t)
(inf ront (car3 car4) t) (inf ront (car4 carS) t))))

' (DefExample ;Train B
'((carl car2 car3 car4)
((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
((car-shape (carl) engine) (wheel-color (carl) black) (car-shape (car2) u-shape) (car-length (car2) short)
(load-shape (car2) triangle) (load-number (car2) one) (wheel-color (carZ) white) (car-shape (car3) open-trapezoid)
(car-length (car.3) short) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-color (car3) white)
(car-shape (car4) closed-rectangle) (car-length (car4) short) (load-shape (car4) circle) (load-number (car4) two)
(wheel-color (car4) white) (infront (carl car2) t) (infront (car2 :ar3) t) (infront (car3 car4) t))))

, Def Example ;Train C
- .. '"(carl car2 car3 car4)

" (car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
((car-shape (carl) engine) (wheel-color (carl) black) (car-shape (car2) open-rectangle) (car-length (car2) short)

* (load-shape (car2) circle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) hexagon)
"car-length (car3) short) (load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) white)
(car-shape (car4) closed-rectangle) (car-length (car4) long) (load-shape (car4) triangle) (load-number (car4) one)

*. .- (wheel-color (car4) white) (infront (carl car2) t) (infront (car2 car3) t) (infront (car3 car4) t))))

De:Example ;Train D
(carl car2 car3 car4 carS)
((car-snape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (inf ront t))
((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) open-trapezoid) (car-length (car2) short)
(load-shape (car2) triangle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) double)
(car-length (car.3) short) (load-shape (car.3) triangle) (load-number (car3) one) (wheel-color (car3) white)
(car-shape (car4) ellipse) (car-length (car4) short) (load-shape (car4) diamond) (load-number (car4) one)
(wheel-color (car4) white) (car-shape (carS) open-rectangle) (car-length (carS) short) (load-shape (carS) rectangle)
(load-number (carS) one ) (wneel-color (car5) white) (infront (carl car2) t) (infront (car2 car.3) t)
(:njront (car3 car4) t) (infront (car4 car5) t)))

Def Example :Train E
(carl car2 car3 car4)
(Icar-shae nil) (wheel-color nil) :car-length nil) (load-shape nil) (load-number nil) (infront t')
((car-shape (carl) engine) (wheel-color (carl) black) (car-shape (car2) double) (car-length (car2; short

load-shape (car2) triangle) (load-number (car2) one) (wheel-color (carZ) black) (car-shape (carS3 closed-rectangie)
(car-length (car3) long) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-color (car3) black)
tcar-shape (car4) closed-rectangle) (car-length (car4) short) (load-shape (car4) circle) (load-number (car4) one)
(wheel-color (car4) black) (infront (carl car2) t) (infront (car2 car3) t) (infront (car3 car4 tD)))

• -DefExample ;Train F
-(carl car2 car3)

' (zar-shaoe nil) : wheel-cotor nil) (car-length nil) (load-shape nil) (load-number nil) (infront v)r:.A, : car-shape (carl) engine) ( wheel-color (carl) black) (car-shape t car2) closed-rectangle) (car-length (car2) !ong)
:oad-shaoe (car2) circle) (load-number (car2) three) (wheel-color (car2) white) (car-shape (car3) open-recta tgle)

* (car-length (car3) short) (load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) white)
" nfront (carl car2) t) (infront 'car2 car3) t))))

' DefExample ;Train G
'(:arl car2 car3 car4)
(f car-shape nil): wheel-color nil) i car-length nil) (load-shape nil) load-number nil) (infron! t)
(, car-shape , carl ; engine)( wheel-color (carl) white) (car-shape (car2; double (car-length ,car2 snort
• oad-shape (car2) circle) (load-number (car2) one) (wheel-color, car2) black (car-shape car3) u-s-ape)
car-:ength (car3S short) (load-shape (car3) triangle) (load-number car-3 one) 'h weei-coior ( car3 wne.
car-shape car4) jagged) car-length car4 long) (,load-number (car4 J zero (wheel-color car) white

100

'p

5- -- --- -- %.

% %. %~ .0.*



(infront (carl car2) t) (infront (car2 car3) t) (infront (car3 car4) 1))))

(DefExample ;Train H
'((carl car2 car3)
((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront 1))
((cat-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) closed-rectangle) (car-length (car2) long)

load-shape (car2) rectangle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) u-shape)
*' (car-length (car3) short) (load-shape (car3) circle) (load-number (car3) one) (wheel-color (car3) white)
- (infront (carl car2) t) (in!ront (car2 car3) t))))

(DefExample ;Train I
'((carl car2 car3 car4 carS)
((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) open-trapezoid) (car-length (car2) short)
(load-shape (car?) circle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) jagged)
(car-length (car3) long) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-color (car3) while)
(car-shape (car4) open-rectangle) (car-length (car4) short) (load-shape (car4) rectangle) (load-number (car4) one)

Iq (wheel-color (car4) white) (car-shape (car5) open-trapezoid) (car-length (car5) short) (load-shape (carS) circle)
(load-number (car5) one) (wheel-color (carS) white) (infront (carl car2) t) (infront (car2 car3) i)

- (infront (car3 car4) t) (infront (car4 carS) t))))

(DefExample ;Train I
'((carl car2 car3)

((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) u-shape) (car-length (car2) short)
(load-shape (car2) rectangle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) open-rectangle)
car-length (car3) long) (load-shape (car3) rectangle) (load-number (car3) two) (wheel-color (car3) while)

,infront (carl car2) t) (infront (car2 car3) t)))))

A.3.2. Output for Experiment 3

5 > subdue :limit .30)

Begin trace...

Parameters: limit - 30 connectivitv = t compactness = t coverage =
use-bk - nil discover - t specialize - nil inc-bk - nil

Running substructure discovery...

Discovered the following 30 substructures in 21.383333 seconds:

SSubstructure*4 :value 11.297071 ([car-length(object-001)=short] [load-number(object-000l)-onel
w heel-colort object-O001 ;-white])I

WITH OCCURRENCES:
[car-length( car2)=short) [load-number(car2)=one [wheel-color(car2)-white1))
L car-length( car3 )=short [ load-number(car3)=one] [wheel-color(car3).whie])l
[car- length(car2)=shortj (load-number(car2)=one] [wheel-color(car2)-white])
L ((car-length(car3)=short] (load-number(car3)=one] (wheel-color(car3)-.white]))

o (([car-length(car2)=short] [load-number(car2) -one] (wheel-color(car2).white])
([car-iength(car3)=short] [load-number(car3)=onel [wheel-color(car3) white])!
[car-ength(car4)=shortj [load-number(car4)=onel [wheel-color(car4)=whtel)

. ([car-length(car5)=short] [load-number(car5)=one] [wheel-color(carS)=whitej)
([car-ieng(h(car3)=short] (load-number(car3)=one] [wheel-color(car3),white]);
([car-:ength(car3)-shortl [ioad-number(car3)-one] (wheel-color(car3)-white])
([car- leng*h(car3)-short] [load-number(car3)=one] [wheel-color(car3)-white]);
([car-iength(car?)=snort] [load-number(car2-one) [wheel-color(car2)-whitei)
[car-length(car4)-shcrtl (load-number(car4)=one] [wheel-color(car4)-white)
[fcar-length(car5)=short (load-number(car5)=one] [wheel-colort car5)= whiteJ)1

(car-ength(car2)=short (load-number car2 =one] [wheel-color(car?)=whitej)

Substructure#6 :vaIu 8.228033 ([wheel-color object-0008)=white] [,nfront(obiect-0008 .obiec-000 I-t]
:car length' object-0001 )=short] [load-numberv obiect-0001 )-one] [wheel-color obiect-0001 )=white]l)

WITH OCCURRENCES:
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Q wheel-co lortcar2)- white] [infront(car2,car3)_%j (car-lenglh(car3)-short] (load -num ber(car3)-oie]
[wheel-color(car3)-white))

V (K[whcel-colorkcar2)-white] t inf ront( carZ,cari)-1] [car-lenglh(car3)-shortl, [ load- num ber(car3 )-one]
[wheel -co lor(car3)- whie D)

([wheel-color~ carl )-whiie] [infront( carl .car2)-t] [ Car-leng th(car2) -short) (load- num bei~car2)-o ne]I
[wheel -co lo r(caT2)-w hile))

i([wheel-color(car2)_while) [infronT(car2.car3)-t] [car- length(car3)-short I [load -num bet car31one)
(wheel-co lo r(car3)- whiteM)

K[ wheecl-color(car3)- white]I [iafront(car3.caT4)-i] [car-lenglh(car4)-shortl (load-numnber(car4)_one]
(wheeI-color(caT4)-whieD1

([wheel-coloi~car4)-whitel [inf ronT(caT4.caxS)-f] [caT-ength(car5)-short] (load-number(ca-5)-one]
[wheel-color(car5)-whiteD)

\%c (twheel-color(car2)-white] (inf ront(caT2.caT3)=tJ ( car- lerigih(car3)-short] I load-number(car3)-oiel
(wheel -co lor(car3)-whied)

(Ewheel-color(car2)-while] [infronT(car2,car3)=t] (car-length(car3)-shortj [load -numbeT(car3)-o ne]
[wheel-color(car3)-whiteD)

([wheel-color(carl )=white] E infront(carl ,car2)=t] ( car- length(car2) -short I (load -num ber(car2) -oneJ
Ewheel-color(car2)-while]))

([wheel-color(car3)=while] (infront(car3.car4)-t] [car-length(car4)-shorfl [Eload- numbcr(car4)"-one]
(wheel-color(car4)-white))

([wheel-ca lor(car4)=white] (infront(car4,car5)-t] [car-lengthWcar5)-short) (load- number(carV)-oneJ
twheel -co lor(car5)-white)}

K[ wheel-color carl )-white] [infront(carl .car2)-t] [car- length(car2)-short] (load-numbercar).oie]
[wheel-color(caT2)=while))

SibstTUCIUeWS :value 7.4092503 (infront(abject-0008.object-0001)=t] [car- length(o bjec-t-000l1 )-shortJ
[ [load-number(objeci-000l, -one] Ewheel-color(object-O0Ol )-whiteD)

WITH OCCURRENCES:
W,~( %t ([nront(carl .ar2)-1J [car-lenigth(car2)-shorfl [load-number(car2 i-one] [whel -clo(car2)-w hite1)l
%( Qinfront( Car2.car3)-t] [car-length(car3)-shorfl [load-numbe~car3)-onej [wheel-color~car3)-white]))

% 41 % i Q infront(car 1 .ar2)-1] (car-length(car2)-short] [ load- num ber(car2)-one I [ whee 1-co lor(caT2)= white]))
% %: Q([infront(car2.cari-tl [car- lengthcar3)short [load -num ber(car3)-one] f[wheel-co lork car3)- while)))

',int ront( carl .car2)-11 [car-length(caW-)shorfl I load -num beT(car2)=one] I[wheel-color(car2)-wite)
([infront( car2.car3)-t] [car-length(car3)-shorf] [ load- number(car3)-one] [wheel-color cari-while])

4([infront(car3.car)-iIj (car- length(car4)-shorfl (ioad-number(car4)-onej I wheel -colorf car4)- whie}
P ([infron1(car4,car5)-1j [car-length(car5)-shorl] !load-number(carV)-onel (wheel-color(caWS-white)

(t :nf ront( car2.caW-)=t [ car- leng th(car3) -short I (load-number(car3)-oie] [whecl-color(car.3)-whiteMh
%J,. ([infront(car2.car3)-1l (car-! ength(car3)-short j f load- num ber(car3)=one]I (wheel-color(cari)-whitel)l

* (in rot(car.cri)t](car- length(car3'=short I [ load- numberk car3) =one I (wheel-color(car3)-whitej))
(binfronT( carl .car2)-1] (car- leng th(car2) =short] I load-number(car2)-one] (wheel-color(car2)-whie))
([nfront( car3.car4)=t [car-iength( car4-shorf] (load-number(car4-one] (wheel-color(car4)- white]))
(tint ront( car4.car5)-tl tcar-iength(car5)-short] ! load-numnbertcar5)-one] [wheel-color(car5)-white))

.4 - U mt rontt carl .car2-1l [car-length( carZ)-short] [load- num bertcar2)=anc] [wheel-color(car2)-while])

End trace.

* A.4. Experiment 4

Experiment 4 applies SUBDUE to the task of discovering macro-operators from a proof ti ee.

The example for this experiment is a proof tree from the blocks world. The DefExam ple call for

* this example is shown, along with the resulting output of discovered macro-operators.

* A.4.1 Input for Experiment 4

DefExarnie
* (gOO g~l g02 g03 g04 gO5 g06 gO7 g08 g09 glO arga argb iirgc argd arge argf argg.'

suo t) (before *) (op-type nil) Iarg-riane nil) (stack-argi I) sack -arg2 unstack-argi 1) (unstack-arg2 i
pcu-arg utonarg t
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'darg-narne (arga) a) (arg-name (argb) b) (arg-name (argC) c) (arg-name (argd) d) (arg-name (arge) e) (arg-name (argf) f)
(arg-name (argg) g)
(subop (gOO gOl) 0)(subop (gOO gO2) t) (before (g01 g02) t)
(op-type (g~i) slack) (stack-argi (gOl arga) t) (stack-arg2 (g0l argc) t) (subop (g01 g03) 0) (subop (g01 g04) t)
(before gO3 g04) t)
(op-type (gO3) unstack) (unstack-argi (g03 argb) 0) (unstack-arg2 (gO.3 argc) 0)
(op-type (g04) pickup) (pickup-arg (g04 arga) t) (subop (g04 gO5) t)

(op-type (gO5) putdown) (putdown-arg (gO5 argb) 0)
(op-type (g02) stack) (stack-argi (g02 argd) 1) (stack-arg2 (g02 argg) t) (subop (g02 gO6) t) (subop (g02 gO7) t)

(before (g06 g07) 1)
(op-type (g06) unstack) (unstack-argi (g06 argf) i) (unstack-arg2 (g06 argg) t) (subop (g06 g08) t) (subop (g06 g09) t)

* (before (g08 g09) 1)
(op-type (g08) unstack) (unstack-argi (g08 arge) 0) (unstack-arg2 (gO8 argf) t)

* (Op-type (g09) putdown) (putdown-arg (g09 arge) t)
(op-type (gO7 ) pickup) (pickup--arg (g07 argd) 1) (subop (gO7 glO) t)
(op-type LglO) putdown) (putdown-arg (glO argf) t))))

A.4.2. Output for Experiment 4

> subdue)

Begin trace...

Parameters: limit - 23 connectivity - T compactness =t coverage t
use-bk - nil discover - specialize - nil inc-bk - nil

* . Running substructure discovery...

Discovered the following 23 substructures in 12.566667 seconds:

* 4SubsITUCture# 19 :value 4.4621396 ([op-type(objecr-0006)-pickupl (pickup)- '.rg(object-OOO6,object-0OB4)-tl
tsubop4 object-OOO1 .object-0094)=t] [unstack-arg2(object-0094 .object-01 22)-ti [bef re(object-0094.object-0006)=tl

subop(object-OI 56.object-0OO1 )=t] (stack -arg2t object-0001 .object-0 122)til [op- type(o bject-0094)-uns tack]
'unstack-argl1(object-0094,objec-t-0064)=tI [stack-arg 1(object-OOO1 .object-0084).t]
:putdown-arg(object-0021 .object-0064)-t] [op-type(object-0020=)putdown] (op-type(objec-0-OO1)stack[
[subop~objec:-0OO6.object-0021)=t] [subop(objec-OO0i .object-0006)-t1))

WITH OCCURRENCES:
d(op-type(g04)-pickup] [pickup-arg(g04,arga)=t] [subop(g0l .gO3)=tl (unstack-arg2(g03,argc)_t] [befowe(g03.g04)-tl
:subopk gO.g~l )=t] [stack-arg2(g~l .argc)-t] [op-type(g03)-unstack] [unstack-argl(g03,argb).t) (stack-argl(g~l .arga)-t]

* putdown-arg(g05.argb)=tj [op-type(gOS)-putdown]I [op- type(gol )-stack] (subop~g04,gOS).tl [subop(g~l .gM4)tJ)}
I[op- type( gO7)-=pickup I [pickup-a rg~gO7,argd) -t 1 [subo;IKgO2,gO6)-t] [ uns lack -arg2(g06,argg) t I [before(gO6gO7)=t1
subopIgOOgO2-tl f[stack -arg2(g02,argg)=tj top- typegO6)unstack I [unstack-argl(g06,argf)=t1 [stack-arg ( g02.argd )=Tj,
puldown-arg(glO,argf)=tj (op-type(glO)=putdowni [op-type(gO2)=stack] [subopKgO7.glO)=t1 [subop(g02.g07 )=])

S ubstructure022 :value 3.2921875 ([op-type(object-0006 )=pickup) [pick up-arg(o bjec -0006,o b ect-00OB4)-Tj
~uns tack-arg2(o biec-O94,o bject-O1 22)-t]I [before(object-0094,object-0006)-t] [subop(object-01S6.objec-OO1 )=tI
~stack -arg2( biect-OO0l 1object-OlI 22)-t I [op-typel object-0094)-unstacki (unstack-argl(object-0094.object-0064 (-ti
stack-argl(object-0OO1 ,object-0084)=tl [putdown-arg(object-0021 ,object-0064)=t] [op-type(objecl-0021 )putdown]
~op-tyvpeobjec!-0001 )-stackl [subop(object-0006,object-0021 )-tl subop(objec -O1 ,object-OOO6)-t])

- WITH OCCURRENCES:
(jtop-!ype g04)=pickuD) [pickup-arg(g04,arga)-tj [ uns tack -arg2(g03,argc) II:t I before(g03,g04 =t] !subop(gOOg~l )=1

stack -arg2(g~l .argcj=t] [op-type(g03)-uns tack] I[uns tack -arg 1 (g03.argb)-=t I stack-argl(g~l .arga =t]

putdown-arg(g05,argb)-t! [op-tvpe( gO5)=putdown] [ op-type(gol1 )-stack] I[subop(gOAg05)-t] (subop(g0l .g04 )=t])}
'too-ve C0k pikp [ckup-args~g07argd).it uns tack -arg2(g06.argg)= t I[beforegO6.g07 (=tl [subop(gOO~g02 )=t]

stack -arg2( g02.argg)=t]I [ op-ty pe(gO6)-uns tack]I [unstack-argl( g06argf)=t[ [stack-argl~g02.argdj-tl
Lputdown-arg(g1 0,argf)=ti [op-type(gIO)=putdown] [op-tvpe(g02)-stackj [subop'g07.g1O)=t) [subop(g02gOV-1t)

Substructure#20 :value 3.2921875 ([op-type(obiect-0006 )=pickupI [subop(ob)iec-OO0l .object-0094)-t)
,istack-arg2( objecl,-0O94.objeci-01 22)iI [before(object-0094.obiect-0006).tI isubop(obiect-Ol 56,objec-OO0l g=t)

:stack-arg2f obieci-000 1 obiect-Ol 22)=tl [op-type ooject-0094 )=unistack] [unstack-argi (ohject-0094,object,-O0b4 it
s~ack-arg I ob ec!-QO0l .object-0084J=t] (putdow-i-ar-g obiect-0021 .object-0064 )=t] [op-type( obiect-002 1 )j=ou-,doUwn]
op-type o bjec'. -000 1 )=stack: [subopi object-0006.object-002 )=]!uo~bet00 jc-0006 =t1)

WITH OCCURRENCES:
"op -ype g04,piciupj sub.opo g0t.g03)-1I (unstack-ag2(gO3.argcJ=:,' [befo-v gO.3,g0 4 )_tj ['suboo gOO.gO1 =1]
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:stack-arg2(go .argc)-t] [cp-type(g03)=unstack] [uns-tck-arg 1 (g03,argb)-t] [siack-argl(gOl ,arga)-tl
:putdown-arg(g05.argb)-tj [op-type(g05)=putdown] [op-type(gOl )=stack] [subop(gO4,gO5)-] [subop(gO1,gO4)-t]))

([op-type(g07)-pickup] [subop(g02,gO6)=t] [unstack-arg2(gO6argg)-t] [before(g06,gO7)-1J [subop(gOO.g02)-t]
[stack-arg2(g02,argg)=t] [op-type(gO6)=unstack] [unstack-argl(gO6.argf)-1 [stack-argl(gO2.argd)-tj
[putdown-arg(gl Oargf)=t] [op-type(glO)-putdown] [op-type(g02)-siack] [subop(gOglO)=t] [subop(g02.gO7-Ij)}

End trace.

A.5. Experiment 5

Experiment 5 demonstrates how SUBDUE may improve the performance of other machine

learning programs. The examples for this experiment are taken from the organic chemistry

domain. The DefExampie calls for each example are shown, along with the resulting output.

A.5. 1. Input for Experiment 5

*DefExample ;compound I (positive)
'f(cl c2 c3 c4 c5 c6 c7 cS c9 dO cl c12 c3 cl4 c15)
((single nil) (double nil))
((single (cl c2) t) (double (cl c3) t) (double (c2 c4) t) (single (c3 c5) t) (single (c4 c6) ) (double (c5 c6) t)
(single (c6 c8) t) (single (c7 c8) t) (single (c8 c9) t) (single (cS clO) t) (double (dO cl 1) 0 (single (clO c12) t)
(singie (cl I c13) t) (double (c12 c14) 0 (double (c13 c15) t) (single (c14 c15) t))))

(DefExample :compound 2 (positive)
'(ccl c2 c3 c4 c6 c6 c7 c8 c9 cl c1 c12 c13 c14 c15 c16 c17 ciS c19 c20 c21 c22 c23 c24 c25 c26 c27 c28)

((single nil) (double nil))
((single (cl c2) x) (double (c c3) t) (double (c2 c4) t) (single (c3 c5) t) (single (c4 c6) t) (double (c. c6) 0
(single (c7 c8) t) (double (c7 c9) t) (double (c8 clO) ) (single (c9 c1l) t) (single (cO c12) 0 (double (cli c12) t)

(single (c6 c14) t) (single (c12 c15) 0 (single (c13 c14) t) (single (c14 c15) t) (single (c15 c16) t)
(single (c14 c17) t) (single (c15 c23) t) (double (c17 c!8) t) (single (c17 c19) t) (single (cS c20) t)
(double (c19 c21) 1) (double (c20 c22) .) (single (cZ1 c22) 1) (double (c23 c24) t) (single (c23 cZ,) T)
(single (c24 c26) t) (double (c25 c27) t) (double (c26 c28) 1) (single (c27 c28) t))))

SDefExample ;compound 3 (positive)

"(cl c2 c3 c4 cS c6 c7 cS c9 clO clI c12 c13 c14 cli c16 c7 c18 9c1 c2l c22 c23 c24 c23 c26 c27 c28 c29 c.3c3 c32

c33 c34 c35 c36 c37 c38 c39 c40 c41)
(single nil) (double nil))

((singie (cl c2) 0 (double (cl c3) t) (double (c2 c4) 0 (single (c3 c5) t) (single (c4 c6) 0 (double (ci c6) t)
(singie (c7 c8) ) (double (c7 c9) i) (double (c8 c1O) t) (single (c9 c1l) t) (single (cdO c12) t) (double (cl i cl2) t)
(singie (c3 c14) t) (double (c13 c15) t) (double (c14 c16) t) (single (ci5 c17) 0 (single (c16 C18) t)
(double (c17 ci) t) (single (c6 c20) ) (single (c12 c21) t) (single (c8 c22) t) (single (c19 c20) t)
(single (c20 c21) t) (single (c2i c22) t) (single (c22 c23) t) (single (c20 c24) t) (single (c21 c30) t)
(single (c22 c36) 0 (double (c24 c25) T) (single (c24 c26) 1) (single (c25 c27) t) (double (c26 c28) 1)
(double (c27 c29) ) (single (c28 c29) t) (double (c3O c31) T) (single (c30 c32) t) (single (c31 c33) ti
(double (c32 c34) t) (double (c33 c35) 0 (single (c34 c35) t) (double (c36 c37) *) (single (c36 c38) t)
(single (c37 c39) 0 (double (c38 c40) t) (double (c39 c41) 1) (single (c40 c41) t))))

SDefExample :compound 4 (negative)
'((cl c2 c3 c4 c5 c6 c7 c8 c9 clO cli c12 c13 c14 C5 C6 C17 c18)

.. ((single nil.) (double nil))
(single (cl c2) t) (double (cl c3 ) (double (c2 c4( t) (single (c3 c5) t) (single (c4 c6) ) (double (c5 c6) t)

S(sing e (c7 c8I4 t) I double (0 c9) ,'ouble (c8 cl0) t) (single (c9 cl) t) (single (ci( c12) sn (double (cl I c12)6)t
. nes e2(singee c c1 *) double (62 c4) ') (sinle (c1 cO) t) (single (c 1 05) t (single (c15 66) c

(s~ngie (cl4 cl"') t) single (c15 c18,t))1 )

DerExampie :compound 5 (negative)
,cl c2 c3 c4 c5 c6 c- cS c9 clO clI c12 c13 c14 c5 c6 c17 c8 c9 c20 c21 c.2 c23 c24 c25 c26)
S(sinmge nil) doubie nil))
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((single (cl c2) i) (double (ci c3) t) (double (c2 c4) t) (single (c3 c5) t) (single (c4 W6 i) (double (Sc6)W t)
(single (c7 c8) t) (double (c7 c9) 1) (double (c8 c1O) t) (single (c9 cl 1) t) (single (6O c12) t) (double (cl I c12) 0)
(single (c63 c14) t) (double (c63 ciS) t) (double (c1.4 c16) t) (single (c15 c17) 1) (single (c16 c18) t)
(double (c17 ciS) t) (single (c6 c20) 1) (single (c12 c21) t) (single (cI8 c22) 1) (single (c19 c20) i)
(single (c20 c21) 0) (single (c21 c22) 1) (single (c22 c23) t) (single (c20 c24) 0 (single (c2l c25) i
(single (c22 c26) t))))

(Def'Example ;compound 6 (negative)
'((ci c2 c3 c4 c5c6 c7 c8 c9 clO cl cl2 c13 c14 c5c16 c17 cI8 c19 c20c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 c.32

c33 c34)
((single nil) (double nil))
((single (ci c2) t) (double (ci c3) 1) (double (c2 c4) t) (single (c3 cS) t) (single (c4 c6) 0 (double (c5 cW t)
(single (c7 cS) t) (double (c7 c9) t) (double (c8 c1O) t) (single (c9 cii.) t) (single (6O c12) t) (double (cl c1.2) 0)
(single (6l3 c04) 0) (double (cl3 c15) t) (double (c14 c16) t) (single (cIS c17) 1) (single (c16 c18) t)

(double (c17 c18) t) (single (c19 c20) 0) (double (c19 c2l) t) (double (c20 c22) t) (single (c~l c23) 0)
.P (single (c22 c24) t) (double (c23 c24) t) (single (c6 c26) T) (single (c02 c27) 0) (single (c18 c28) 0

(single (c24 c29) t0 (single (c25 c26) t) (single (c26 c27) t) (sin~gle (c.17 c28) t) (single (c28 c29) 0)
(single (c29 c.30) 0 (single (c26 c31) t) (single (c27 c32) t) (single (c28 c3.3) 1) (single (c29 c34) t))

* A.5.2. Output for Experiment 5

> (subdue :limit 7)

Begin trace...

Parameters: limit = 7 connectivity -t compactness =t cove-age t
use-bk - nil discover - I specialize = nil inc-bk =nil

Running substructure discovery...

Discovered the following 7 substructures in 15.183333 seconds:

Substructure#7 :value 178.40707 (Esingle(object-00i 1 objec--0l S)=t) [double(object-0Ol S,object-0009)=tI
,double( objec-t-0O1 1.object-0002)=t] [single(object-0OOSobject-0009)-t] (double(object-0005,object-O0l )-tl
tsingle(obiect-001.obiect-0002)-tJ))

WITH OCCURRENCES:
([sing Ie(c4.cbW-11 [double(c5,c6)-t1 [double(c2,c4)-t) [single(c.3.c5)-1] [doubIe(cl,c3)=t] fsingie(cI~c2)=tD}
1'[single(cI4.cI5)-1j (double(c13,cIS)-t] (double(c12.cI4)-t] [single(cl 1 ,c13)=ti Edouble(clO.cl 1 )=l [single(clOcl )=t])
S([tsing ie(c4.c6)=t] [double(c5.c6)-t] (double(c2.c4)=t] (single(c3.cS).tl (double(cl .c3)-1] [single( ci,c2)=t])U ~(Esinglr(clOxc12)t] [double(cII1 cI2)-t1 (double(c8,clO)=.t] [single(c9.cl 1 )=t] (doublec7,c9)=t] [sing le(c7.c ))
([singie(c21 .c2=-T] [doubie(c20,c22)=ti [double(c19c21)-t] [single(cl 8.c20)=tl [double(c17,c 8 )=t] Esingle(cl 7.c19)=t])
([singici c27.c28)=tJ [double( c26.c28)=t] [double(c2S,c27)=t) [single(c24.c26)=t] [double(c23.c24)=tj [singici c23.c2:!5Dj)
('[single(c4,c6)=tj Edouble(cS.c6)=t] [double(c2.c4 )=tl [sing le(c3.cS)-T ] [double(cl .c.)t] (single(cl .cZ)=t])A

s. ([Qsingle(clO.c12)-=t] [double(cll~c12)=t] [double(cS,clO)=tj [single(c9.cl 1)=tj [double(c7.c9)=tJ [single(c7.c8=t)

(([single( c28 ,c29)=t [double(c27.c29)-tl tdouble(c26,c28)-t) [sing le(c25.c27)=t) I double(c24.c25)=i] [single cZ4,c26)=t])}
<(single(c34.c35)-!1 [double(c.33,c)-t] [double(c32.c.34)=ti [singie(c3i .c3)=t] [double(c30,.1 )=TJ [single(c30.c32N=TJ)

C . ((single(c40,c41 ).t] [double(c39.c41 )-t] [double(c38.c40)=t] [sing le(c3',c39) t I [double(c36.c37)=t] [single c36.c38)=t])l
([single(c4,c6)-t] (double(c5,c6)=t] [double(c2,c4)=t] [single(c3.c5)-1] [double(cl .c3)=f] (single(cl .cZ)-tiDl

(([single( clOxIc11 [double(cl 1 ci2)-ti (double(c8.cl0)-t) (sing le(c9.c I D-=t] [double(c7.c9)=t] [single(c7.cS )=t])}
([rsingle(c4.c6)=t [doubie(c5,c6)=tl (double(c2.c4)-t] (single(c3.c5)=ti [double(cl .c)=t] [single(ci ,c2)=f])l
([rsingie(clOc1)=ti Idouble(cl 1 ci 2)-ti [double(cS8ciO)=tI [single(c9.cl I )=tj [doubie(c7.c9)=t] [single(c7.c8 =fl)

([single(c4.c6)=t] (dou'ble(c5,c6)=fl [double(c2,c4)-t] (singile(c.3.c5)-Tl (double(cl.c.3)=I] [single(c 1 .c2)=t]1
(1singie(cl O~c1 2)-i] [doublet cli .c12)=t] [double(c8,clO)-t] I single(c9,cl 1 )=t] [double(c7,c9)=t] [sing le(c7.cS )= tj)

([s ingie(c22.c24)-t] [double( c23,c24)-t] [double(c20,c22)=t] (single(c21 ,c23)- t] [dou biel c2 I 0)-Ti [ singlet c1 9.c20)=-1)(

Subsiructure#6 :value -,4.64602 ([doubie(ob iect-0Ol 5.object-00O9)-t I [double(object-00i1 l,obiec,,-0002 )=T~
[singlet objec*.-0005,objec, -0009)-t I[double(objec-0OOS.object-000l j-t] [sing le(object-000 l object-0002 )=t 1)1

WITH OCCURRENCES:
((clouble c5.c)-tl [double(c2.c4)=tj [single(cJ~cS)=t] [double(di .cJ)=t] [single(ci .c2)=Z]D(
(idcuble( c5.c6)-tl (double(cl.c3)=,j [single~c4.c6)=r] (doublekc2.c41=*t] [single(cl .c2)=T'D
([dou-)l6 c2.c4)-t] [double(cI .c3 -ii isingie(c4,c6)=tj [double~c5.c6,=t) (s~ngle(c3 c5)-t)
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* ([double(cl 3.clS)-t] (double(c12.c14)-t] Itsingie(ci I,C13)-1] (double(c IO.c I1)-ti [single(cI O,cl2)-tD))
([double(c13.cl3)-1l fdouble(clO~c I I).ti [single(c14.c05)-fl (double(c12.c I4)-t] fsingle(c IOxc1)-f])}

K([double(cI2cW14)t [double(c IO,c1 1)-fl (sing le(c I4.c I )-t] [double(c1I3,clS)=t] [single(cl ,c13)- I)

(rdouble(cS,c6)-ti [doublc(cl .c3)-ti [single(c4,c6)-Tj fdouble(c2,c4)-t1 [singlc(cl .c2)-tD)
i([double(cZc4)-t] (double(cl ,O.)-1J [single(c4.c6)-t] (double(cS,c6)=t (sing lc(c3.c5) -1D)

I. K([double(c1l1,cl.2)-t] [double(c8.clO)-t1 (sing le(c9.clI 1).ti [double(c7,c9)-f] [single(c7,W8-t)1
K[double(cl 1,c12)-ti (double(c7.c9)-ti (szngle(clO~c12)-tl [double(c8,clO)-t] [single(c7,c8)=i])

* ~([double(c8,cIO)-t1 [double(c7,c9)=t] (sing le(cl O,c 12)-t] (douible(cI 1,c1)-tl (single(c9,cl 1)-ti)
4 Ct (double(cZO,cZ2)-ti [double(cl 9,c2l)=t] [single(c1 8,c20)-t3 [double(cl 7,cl 8)-ti (singlc(cI7,c19)-t])}

{([double(c20.c22)-tl [dcublc(c1 7,cI 8)-ti [sirigle(c21 .c22)-t1 fdoublc(c19.c2D -fl [single(cl 7,cl 9)-tD}
(Edouble(c19,c-21 t [double(cl 7.cl 8)-ti fsingle(c2l.c22)-t] [double(c20.c22)-t] (single(cl 8,c20)-t))
([double(c26.c28)-1] fdouble(c2S,c27)-1] (sing lc(c274.c26)-t] [double(c23,cZ4)-ti (sing le(c23.c2S)-t]))
i ([double(c26.c2S)-t] (double(c23.c24)=tI (sing le(cZ7,c28)=t] [double(c2.,c27)-t] [single(c23.c25)-t)1
K [doubIe(c25,cZ7)-ti (double(c23,c24)-t] [single(c27,c28)=ti [double(c26.c28)-ti (single(cZ4,c26)-t)}
I([double(cS.c6)-t]j [double(c2.c4-t] [single(c3,c5)=t] [double(cl.c.3)-t] [single(cl.c2)-t0i
I([doubie(cS~c6)-t] (double(cI,c.)-11 (sing le(c4,c6)- t] (double(c2.c4)-ti [singlc(cl~c2)-tD)
([double(c2.c4)-1t] [double(clOc)-f] [sing le(c4.c6)=ti I double(cS.c6)=t] [singilc(c3,c)-D}
([double(cl 1 cl2)-ti (double(c8 ,clO)-t] (single(c9,cl 1) (double(c7,c9)=t] (single(c7,c8)-ti)i

% i(fdouble(cl l ,c1 2)-1j [double(c7,c9)-tj [singie(cIO.cI2)-t] [doubie(cs.cIO)-ti [single(c7,c8)-ti))
- I(tdoublc(c8.clO)-ti [double(c7.c9)-1i [single(clOc1)-fl [double(cl 1,c1)=t] (sing le(c9.cl 1)=t)}

K([double(c17,cW 8-11 (double(c14,c16)-tj [siiigle(c15.c17)-Tl [double(c13,cI5)=t] [single(c134c4)-l))
K(double(c174c8)-t] [doublc(c13,cl5)-1] (singie(cI6.cI 8)-t] (double(c14,016)-fl (sirigle(c13,c14).fl)i
([double(cl 4,cI6)-Tj [double(cl.3,cl,)-ti (sing le(c16.cI 8)-ti [double(c174c8)-tj [sing le(cl 5,cl 7)=ti))
K(double(c27 .c29)=t] fdoublc(c26,c28)-ti [single(c25.c27)=ti [double(c24.cZ5)-t] [single(c24,c26)-t)1
([doublc(c27 .c29)=tI (double(c24.c25)-t] (single(c28 .c29)-t] [doubie(c26.c28)-tl fsirigle(c24.c26)-tDi

* ([,doubic(c26,cW-1=t [double(c24,c25)-TJ [single(c28,c29)-1] (double(c27.c29)-1] (single(c25.c27)-1DI
- - (Edouble(c33,c35)-t] [double(c32,c4).fl [sing le(c31 ,c33)-t) (double(c30.0,1)-t] (sinlgle(c 10,c3 2). t))
%([double(3, c35).ti [double(c30.c31 =] single(c34.c-35)=tJ [double(c32.c34)-t] fsinglekc3O,cSZ)-ti))

(Edouble(c32,c34)-Ti [double(c30,c3 )-ti [sing le(c34.c35)-ti [ doubie(c.33.c5)-t) Esingle(c31 ,c33)-t]))
(tdoubie(c39c41 )=tl tdouble(c38 .c40)-t] [sing le(c37.c39)-ti [ doublc(c36,c37)-t] [sirigle(c36.c38)-fl))

-. (tdouble(c39,c41 )=t] [double(c36.c37>.ti (sirigle(c40.c4l)-t] (double(c38.c40)-fl (sing le(c36,c3 8). t1)
- {(tMdouble(c38 ,c40)-1] [double(c36,c37) 1] (sing le(c40,c4 1)-t] (double(c39.c41 )-t] Esingle(c37.c39)=t])1

{([double(c.,c6)=Ti [double(cZ,W4-fl tsingle(c3.c5)=t] [doublc(cl .c.3)=t] (single(cl .c2)-tD)
(([double(c5 .c6-t] (double(cl .c3)-ti [single(c4,c6)-t] [double(c2.c4)-f] (sing le(cI .c2)- tD)
K(double(c2,c4)=t] [doublc(cl ,c3)=ti (sing le(c4.c6)t] (double(c5,c6)-tI [single(c3.c5)=tD)
[double(cl 14c2)-11 [doub~e(c8.cl0)-ti sngl(c9cIi)-t] [doublc(c7,c9)-t] [single(c7.)-D

K([double(cl 1 ,c2)=t] 1double(c7,c9)-t] [single(clO.c12)-ti [double(c$.cIO)-t] [single(c7.c8)-Tj)i

([double(cS,c6)t] [double(c2.c4)=tJ (single(c3.c5)-f] fdouble(cl.)t] (single(cl.c2)-ID}
([double(cS,c6)-t], [double(cl,c.)-t] (single(c4,c6)-t! [double(c2,c4)-ti tsingle(cl~c2)=ti)}

'(Edouble(c2.c4)-t] [dioubic(cl,.c)-ti [sing le c4,c6)-t] I double(cS,c6-1] [sing IeW -0c)-0)
([double(cl 1 ,cl 2)-ti [double(c&,cIO)-tJ [single(c9,cIl .t double(C7,W9-f] (singlekc7Ac)-ti))
([double(cl 1 .ciZ)=tl [double(c7,c9)-t] [single(clOcl12t [doubie(cS,clO)=t) (sing le(c7.c8)-t1))
([doubie(c8.cI0)-t] tdoublc(0c.c9)-t] (single(clO.c12)=t] [double(cl 1 ,c1t [single(c9,cl 1 )ti)I
(Q[double(cI 7.cI 8)-11 [double(c1 4,cl6)-ti [single(cl 5,cl7)-ti Jdouble(c13,cI5)-t1 [sing le(c1I3,c 14)-1i)1

!((double(c17i,cl 8)-ti [double(cl 3,cI )-ti (single~c16.cl 8)-ti [doubie(c14,c16)-fi [sing le(cI.3,cI14). fl))

([o cc5c)Qdoubecsl t (oublc(c3,c5)-t (single(,cl [dul(dolc)c17sznclt [scZ)=tD} c7)-j

([double(c 1 c1)=t [doube(c,c0)t [sngl(c.c )-i [doube(c,c9)- [sing l(c c8)-)
([double( c5.,cW-ti doube(c,c)- [sing e(cO.c)-t I [double(ccO)- sinie(c .c ) ])i
(jdoubie( c8.c40 -ti (dube(c7.c)t] (single(c, lO1, [doublc 1.c2)- t] [single( 9,l )) i
(fdouble(cl l.cI 8)-tl fdouble(c14c)t] [single(clSxc )-t doublec3,c )-t [sing le(c .3.cl D)tD
(Qdoublec c12)-11 fdouble(c13cl)-] (single(c1.c1)='ci doube(c1.c6)-i [sing le(c13S.1))I

*( ,:L doublecl4,c1)-t1 [double(c1.c)-t [singie(cI ,c18)=ti (doublec ,c)-fl (single(cIcl17)-t)I

% (rdouble(c237,c24)-tj [double(c14,cIO -t) fsingle(c15.cI 7)-t] [doublec c20,c22)-t] (singie(ci 9 .cl )-tDI)
(1double( c20,cl8)-tj [double(c19,c21 )-t] lsingle( c22,c48)=: [double( cl.,cl)-ti (sing le(c22 .cl3)-t]))Li SubsITUCture#5 :value 60.33403 ([double(objeci-001 1 objeci-0002 )=il tsingle(obiect-000S,abject-0009 )-tI

double(ob'cct-0005.obiect-0001 )-t] [single~obiect-0O01.obiect-0002)-tl)
* WITH OCCURRENCES:

:coubli 4c.c6).t~ (sing ie~c3.c5) ti 1 double(c1 .c.3)mt] [sing ie c l.c2=t])
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j{([double(cl.c3)-T] [single(c4.c6-1I [double(c2.c4)-tJ (sing le(c I.c2)-I])M
F((double(c5.c6-tI (sing le(c4.c6)-tl (double(c2,c4)-t] (sing ie(cl ,c2)-i)F
(([double(cl .c3)_tJ [single(c4.c6)-T] fdouble(ci.c6)=t (single(03.c)=t)F
(Edouble(c2.c4)-t] [sing le(c4.c6)-t]I [doublc(c3.c6-t] tsingle(.c3,c5)=t]))

i([dbclu)-j[sn le1.i)t sn(ci .cJ)-t (doube(cO fl(inl)-J sgc3,c8.5)O)

J([double(clO.cI5-t Esingie(clI4,cI3l [double(cl2,cll)=t] [single(cOc1)-t]))
{([double(c12,cl4).t) (single(cl14l3)-tI [double(cl2,cll)-t] [singleWcO4c2)-t)F
i(Edouble(clO,cl 1)-tl [single~cl 4.cl3)-t] fdouble(c13.cll)=t] (single(cl 1 ,c13)t))
M(double(c12,c14)-ti [sing le(clI 4,cl 5)-t] (double(c13,cI4)_t] tsingle(cl 1 cI )-ti))
(Qdouble(cl3.cl)-t fsingl(c4,c5)-t [doubl(c c3)-t] sing.cl2)-IDFl)
(Qdouble(cl5,c6-t single(c.c5)-t [double(cl3,c5)t igltl ngc2)-tDFIl)
(Qdouble(cI .cl)tIj single(c4c)t (double(,c4)-t] (szningel 1434DF
(Qdouble(cSc4)=t] (singcIc4,c6)-t] [doublc(cl.c3)-t] [singlecIcl.c2)-T])
K([double(c cO-Ti [sing le(c,c6)-tI Edouble(cS~c6)-tJ (single(c3.cZ)-T])F
F([double(c2.c43)_t] (sing le(c4.c6)-t I double(c2,c6)-tJ (singlc(cI~c2)-t])F

F ([double(c5.cl)-t] sirgc(c,cI )-t [doubl(c7c)t] [sngle(c7.c81)tD
'Q(doubie(c 1 c1)t] [sing l(c,cl )-t [double(c7,c9)-t (single(c7.c)-t)F

- F (E(double(c7,c9)=ti (sing le(cl,c1-t] Ldoublc(c8cl)t] single .8)-t)
M(double(cl I,c1)-t] sing l(cl,c)t I duble(c,cO)-t single ,8)])F
F([double(c7,cl9)-t (single(cO,c12)-t] (doublc(cl 1,c1)] singl(c,cl )-t)
M(double(i:,clO)t sing l(cO,c 12)=t] [double(cI 1c1)-ti (sing(c,ci)-)
J([douole(c7,c9)-t] [single(c12.c15)=T] [double(cl 1,c1)t] (single(c9.cl 1)t))
{(Edouble(c20.cl2)-I] [single(ci 8.c2)=t] (double(c17c)-j [single(c1.cl)=T]D}
F fdouble(c2,c2)-t] sngle(c c2)=tl double(c3c)-t [sing e~clSc)fl)
{(tdoublc(c1,c)=tl (singl(c1,c2)t doubl(c17.c1)-I] single(c1c190=11))
{(Edouble(O2,&2)-tI single(cl 8,c2)-t] double(c1,cl )-ti (singe(cI 7 c19)t]
FKtdouble(c17.c22l 8fsingle(c21 ,c22)-t] [doublc(c19,cI1)_t] [single(c147,1)-f]))
F (double(c20.c22)-T] Esingic(c21 ,c22)=t] [doublc(c19.c21 )-t] [single(cl .c19)=t])

.F l(fdouble(cl7,cl8)tIj [single(c21 ,c22)=t] [double(c17,cl8)_t] [sing~e(c1 8,cZO)-t]) F
F (Edouble(c190,c2)=t] (single(c1 8,c22)=tl [double(cl0.c22)_t] (single(cl 8,c20).tD F
i([double(cI7.c27):t) (sirigle(c2l.c22)=tl (double(cl9,c4l)=tJ (single(cj3.c25).t]))
([double(c26,c22) 1] [sing le(c2 l.c22)=t] I doublc(c23,c24)-t] [single(c23 ,c25)=t]) F

J([double(c23,c24)-T] [single(c27 .c28)-tl [double(c25.c22)_Il (sinigle(c238,c20).t)
F([double(c26,c28)-Tl [single(c27.c28)-t] [doublc(c2S~c27 ).t] (singlc(cl3.c25).t)
f([doublc(c23.c24)-tj (single(c27 .c28)-tj [doublc(c23,c28 )-tl [single(c24.c26)=TI)
{([double(i:2S,c27)-t) Esingle(c27 .c28 )-t] [double(c26.c28)-t] [single(c24.c26)=tl))
F([double(c2.c4)=11 single(c27.c58)-T dull [du~~2,c 27 (sin iglc2] ) j3 F(double(c2,c2)t [single(c27.c8)-Ij doubc(cc2_ [singic~cic2])Ft
M(double(cl .c2) t1single(c2c6)tl double(c2c28 [sin ing .e4cZ)-t ) -t1
(tdouble(c,c2)t [sing le(c.c)-I double(c26.ct] tsinin ,cV2)-t])
f ([doub~le(cl .c4)-tl [sing le(c4.,c6)-t] [daouble(cSl6)-t] fsingleclc.,c2)_t)F
F (double(c5,c4)=t] [sirigle(c4.c5)=I] [double(c5.c6)-t] Esinglc(c.3,i:)-1])F
{([double(cl .c3)=t] (single(c4,2)-t] [double(c2.c6 )-f] single(c3c)t))
F([cdouble(cB.cI-tI [sngIe(cc1)-t] double(c7c)t] [sigec,c8 -1)F
F (double(cl 1 ,cl )t(single(c,cl 1)-i ouble(c7.9)- ] (sing e(cc)=tfl)F
F([double(c7,c9)_t] [single(c.c1)tl [double(ccl)-t [sing le(7,)ti)}

F([doubole(c7,c9)=t] [sing le(cl,c2)-t I duble(cl 1 c)=t [snglc( ,c 1)-t)F
M(double(cScIO)..tJ [single(c9 ,cl)-ti fdoubl(cl ,c)-tl [sing( c.cl =D
K[double(c7l,c)-tl single(c2.c )t [doubc(c I c1)-t] [singlet c.cl)t)F
((doulble(c14c1)t (single(cSc1)I] [doube(c3.c lS-t [single(c131)_ti)F

,"(rdouhle(cllcl8)=T] [singleclc1,cl2)-ti [double(c1,c16 tjl single(c1,c14)= i)F
F([double(c1,clS)=ti (singe(c.c1)=ti [double(c1.c2-t] [single(c15.c)t)F
f((double(c1,1)-( singe(c16cI)-t] [double(c17clS =-t] [single(c15c1)=tDF)
F([dcuble(c13c1)ti [singe~cl,c2-ti doube(c .c]8=t] [singlcS.cl)tDF

K[doub,1e(c27.c29)=t) (single cI5.cl7)_t] (double(c24.cI5 )=tj (single(c23.64-t])
([double(c.33.cl5)_t] (singlei 31 c3.)-ti (double~c14.cI6J=tl [single(cl3.cI0)=t1) F
K(double(c39.c41 )t] [singietc16,cl8 )=Il [doublec346.cfl=t [single(c" 34)-tD)

:'[doubIe(c26.c28)-t! [singiec25,c27)=t] (double~c24.c2S)=_t] [sing le(c24 c26)-=t)F
(rouble(c27,c29)-tj (singiecZ5.c27 It" ;idouble(c24.cZ.5=-t]ingle(c24.c26)=-t )X
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R(rdouble(c24.c29)-t] (sing le(c28,c29)-I] [doublc(c26.c28)-f] [sing~e(c24,c26)-t])j
I ([double(c27,c25)-T] (sinxgle(c28, c29)=i] I[double(c26.c28 )-i] [sirxgle(c24,c26)_T]) I
(t~doubIe(c24,c28)-t] (single(c28 ,c29)-t] [doublc(c27.c29)-f] [singlc(c25,c27)_t)}
{([double(c26,c2)-t] [single(618.c2)-T] [doubie(c27,c29-t] [single(c25,c2)=t]))
K(double(c.33,c34)-t] [single(cil.c.33)-iJ [double(c3O c31 )-f] (single(MOc.2)-1]))
W(double(c33,c3S)-1] [singlc(c31 ,c33)=t] (doublc(c30.c31 )-I] [sing Ic(c30,c3 2)- - )
((double(c30,c31 )=t] [single(c34,c.5)-t] [doubleWc2,cM4-1] [single(c3O0c2)-D}
([double(ciSc3l)=t] [single(c34,c35)-i] fdouble(c33,c34)-t] (single(c30.C33)-tD)

{(Qdouble(c32,c3l )=t] [sing le(c34.c.5)-t] [double(C33,0.5)-tJ [single(c3I,c33)=t])

(tdoublc(c35 .c40)-tI [sing le(c.7,c39)-il [doubleWc6,c.7)-t] [singic(c36.0.8)-l)
M(double(c39,c41 )=x] (singlc(c37.c39)-I] [doubIe(c36.c37)-I] [single(ecM8-ID}
j([double(c36,c37)-tJ (sing le(c40,c4 I )-il (double(c38,c40)-!1 [sing le(c6.c38)-tD I
f([double(c39,c41 )=T] [single(c40,c41)-t] [double(c38,c40)-t] [single(c36,c38)-D}

* {([doublc(c36,c37)_I] [singlc(c40.c41 )=t] [doublc(c39.c41 )_t] (sing Ie(c37,c39)-tD)
([doublc(c38 .c40)=t] [sing l(c40,c4 I )=t] (doublc(c39,c41 )=t] [sing IeWc7,c.39)-t])

i([double(c2.c4)=t] Esingle(c3.cS)=t] [double(cI ,W3-t] [sing le(cl ,c2)-t D
S([double(cS,c6)=t] (singlcecic)=%] [double(cl .c.-t] (sinig e(cl .c2)-I1)I
([doublc(c .c.3)-t] [single(c4,c6)=t] [doubleWc.c4)-t] [singlc(cl .c2)-iDI
([double(c5,c6)=tJ [singIe(c4,c6)-t] [double(c2.c4)-tJ (single(cl .c2)-T])I

-: - J([double(cl ,c3)=I] [single(c4,c6)t] double(c5,c6-t] [sing le(c3,c5)=, DI
K([double(c2.c4-T] (single(c4,c6)=t] [dlouble(c5.c6-t] [singleWc.,)-tDI
0{((double(c1,c3)=t] [single(c6.c14)=t] [double(c5,c6)=%] [simgle(c3.c5)-tD)

* I([double(ccO)=t] (singlc(c9cIl)-I] [double(c7,c9)-t] (sing le(c7.c8)_I D)
* ([double(cl 1,02l)-1] (single~c9.cl 011i [double(07,c)-t] (singlIe(c7.c8)-t1D

{([double(c7.c9)-t] (singic(c1O~cIZ)=t] (doublc(c8,c1O)=i] (single(O,.c8)D
* {~((double(cl1I,cI2)-t] (sing le(cl O.c 12V-1] (doublc(c8,clO-tJ [single(c7xvcS)D

J(Edotible(c7.c9)_t] (singlc(cIO.c12)-T] [double(cl.14c2)-T] [single(c9,cl 1))
(~double(cS.c1O)-t] [single(clO~c12)=fl (double(cl 1 .c2)-t] [singlecS,cl 'J-t])j

R([double(c7.c9)-I] [single(c12,cI5)-t1 [double(clI .c2)-i] [single(c9,cll )=])

4((double(c2.c6)=t] [sing le(c3.c5)-t] (double(cl~c3)-t] (sing le(cl~c2)-I1)I
(rdouble(cl .c3).=] [singile(c4,c6)-t] I[double(clc4)-t] (sing ic(ci ,4)-1]))

J([double(cI.c6)-I] [sing le(cA.c6)-t] [double(c2,c4)-tJ (sinig I(ci,c2)-1l) j
* {Ci(double(ci .c3)-tl [single(c4.c6)_Tl [doublc(c2,c4)_t] (sing~e(c.3.c2)-ID1

(Edouble(c2.c4)-I] (single(c4.6)-I] [double(c5,c6)=t] (single(c3.cS)-iD1

J([doub1lc(cI.c3)-I] (single(c6,c20)=t1 [double(c5,c6)-t] [sinigle(c3,c5)= ID)
i([double(cS .clO)=T1 [singic(c9,cl 0)-t] [double(c7,c9)=t] [singlc(c7,c8)-t]))
([double(cl 1 .clZ)=I] [singlc(c9.cl 01i [double(c7,c9)_f] (sing Ie(c7.c8)_t]))

w , ([doubIe(c7 .c9 )wtJ rLsinglerIO~clZ)=t] [double(c8.clO)=tI (single(c7,cS)tDI
[double(cl 1 ci 2)-t] (sirigle(clOxc12-ti (double(c8.cIO)-t] (singlc(c7.c8)=ID)

4([double(c'7.c)-I] (single(clO~c12)=t] [double(cl1I.c12)-%] fsingle(c9.cl 1)-t])I
([double(cS ,c1o)=st] [single(cl O~c12)-t] tdoublc(c][1 .c2J=tj [single(c9,cl1)-t])
([doublec7,c9)-i] [singie(c12.c21 )=t] [double(cl .cW11t (sirgle(C9,c l ))

([double(c14.cI6)-T,7 [single(cJS.17)=tJ [double(cl3,cl5)=t] [single(c13.cl4)-t])I
{([double(W ci 3 )tI (single( c16.c1 )-t] [double( c14.c16)-tJ [singlc(c13.cI4).tl)I
R('doublc( c13.cI5)-t] [single~c16cI8)-t] (double(c14,c][6)-fl (single(c13,c14)-fl))
4[!doubi(c17,cI8)-T] [sing lecl6,c I8).tj [double(cl.7,cWS-1] [sing le(cl .c174)-t 1)

0 ( [double~ cI,c )-Tj [sngle(c,c)t1 [double(c ,cItJ [snl(silcl2)=t])I
ffdouble( c14,cI)=t [sing l(c.c )-t] [double(c7,c4S tj [single(c.cI5,ID
(idouble~c c5)-I sing le(cIc)-1 (double(.c4)stt (srnglc~cl .c2)-t])l
ikdoubie ci .c3 -j~t [singleWc,c6)-t] (double(c1,c6)=t] [single(cIcZ)=i]))

* ~([dcublef c5,c ).=tl fsinglc(c4.c6)=tI [double(cl~c6)-t] [single(c3.c2)=f])}
VUdouble cI ,c3),-T1 (single(c6.c26)tI (doube(cc)=t] [sing le(c.c) 11)
J4 [doublv cc6.I dO-isingc,c1 )T] dubl(c.c)t fsinge~c7 c)-)I
((Erdoublei ci .c1)-I singe(c9c )- I] [dube~ c7)- [sngle ,8)=l)I

0([double~ c2,Wc f i-Isingle(c1,6c1)1 [double(c.c-lJ [single(c7d).S)t

4'double~c8.clO).t] [singlekciOc1)tI (doublec7di 1.1)] [single(c.c1)]D}

1( [dcubievc0c6)-T] (sing le~cI.cl2)'.f [doubie(cl l.c12)-1I [single~ c9.cl O-t])

(rdoubl.c4cl6-t' 1sing~vIeci5.c1-t 'doubic(cl3.cI5S ',1I rsmngle(c13.cI4).!D
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:(double(c13,cl8)-t] (sirigle(cl6.cl7)=t] fdouble(cl4.c16)=t] [single(cl3.c14)-T]M
(tdouble(6cl c)-t] [single(cl6,cl 8)-ti [double(c14.c6)=t] [single(c13,cl4)-tl>
(Ccdouble(6c.15-l [sirxgle(c16,cl 8)-ti (double(c17,cl 8)-t] (sinig e(c I ,cl 4)-t))
(Qdouble(c14.c16)-t] (sinigle(c16.c68)-Il [double(cl7.cl 8)-t] (single(c15,W1)-fl>~

(Jclouble( c14.66)-I] [sing e(c1 6,c238)-t) [double(cl9.c21 )-ti [sing le(c1 5,c 10)-T])}
([double(c2.3,c24)=ti [single(c21 .c2.3)-t] Edouble(cl9.cl)-t] (single(cl5,c2O)-t])

(fdouble(c19,c21 )-t] (single(c22.c24)-ti Edouble(c20.c22)-tl fsingle(c19,c20)-ID}
Q(double(cl3.c24)-t) [sing le(c22,c24)-% i [double(c20.c22)-lJ [single(c194c2)-tD)

K([dauble(c19.c21 )-tJ [single(c2.c24)-Ti [double(c23.c24)-tJ (single(c21 ,c3)-t])
(tdouble(c204c2)-t] (sing le(c22.c24)-t] [double(cZ.3.c24)-lJ (single(c21 .c23)-D}
([double(c19.~l )-t] (single(c24.c29-1] [double(c23,c24)-I] [single(c21 ,c23)-])>

End trace.
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