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DISCOVERING SUBSTRUCTURE IN EXAMPLES

Lawrence Bruce Holder, Jr.. M.S.
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Robert Earl Stepp I, Advisor

This thesis describes a method for discovering substructure concepts in examples. The method
involves a computationally constrained best-first search guided by four heuristics: cognitive
savings, compactness. connectivity and coverage. Each heuristic is described in detail along with its
role in evaluating an individual substructure concept. The SUBDUE system that implements the
method contains a substructure discovery module, a substructure specialization module and an
incremental substructure background knowledge module for applying previously discovered
substructure concepts. The substructure background knowledge includes both user-defined and
SUBDUE-discovered substructures in a hierarchy that is used to determine which substructures are
present in the input examples. The system has performed well on a number of examples from
different domains and has discovered many interesting substructure concepts such as an aromatic
ring and a macro-operator for stacking blocks. The method and implementation of the SUBDUE

svstem are described. and an analysis of experimental results is presented.
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CHAPTER 1

INTRODUCTION

At any given moment the amount of detailed information available from an environment is
overwhelming. For example. close observation of a brick wall reveals not only the rows of
rectangular bricks, but also the mortar between the bricks. the pitted surface of the bricks and
mortar, small cracks in the bricks. etc. Yet, humans have the ability tc ignore such detail and
extract information from the environment at a level of detail that is appropriate for the purpose of
the observation. Even in an unfamiliar environment, humans ignore intricate detail and discern
more abstract patterns in the stimuli of the environment [Witkin83]. This thesis describes a
computational method for discovering abstract patterns. or substructure, in the descriptions of a

structured environment.

When observations at varying levels of detail are necessary. humans are capable of descending
into the more minute structure of the environmental stimuli and identif ying patterns in terms of
these structural primitives. From the observations at different levels of detail. humans mayv
construct a hierarchical description of the environment. For instance. the brick wall can be
described as the rectangular bricks in the wall along with the interconnections between the bricks.
Furthermore, each brick can be described in terms of the pits. cracks and embedded grains in the
brick. and each interccnnection can be described by the components of the mortar that combine to
form the interconnection. Thus. each level in the description hierarchyv represents a different level

of detai! for representing the environment.

Once such a hierarchy is constructed. similar primitive structures in different environments
may suggest the existence of more abstract features higher up in the hierarchy. This abstraction

rrovides a simpier description of the environment and thus allows the human to discover higher

-y o W
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level regularities in terms of these abstract features. This thesis also proposes a method for

N X
x’&xs&i"‘.‘.

maintaining such a hierarchy of substructure and utilizing this knowledge in subsequent

L I -

! ::-. substructure identification and discovery tasks.

A

[} ::\

} . P .
NN The existence of these human processes for perceiving substructure suggests that having a
1N

computational method for the processes may improve the abilities of current machine learning

’

A,

Lo . . N

> programs that operate in a detailed structural environment. Such a computational method for
1

. substructure identification and discovery could abstract over unnecessary detail in the descriptions
A

of the examples given 10 a learning program. For instance, suppose the given examples are organic

o~

I-).
L

1

molecules described by the types of atoms in the molecule and the types of bonds between the

0
N
PR
S

Y

(R I B}

atoms. For complex molecules the number of features describing the examples is overwhelming

[}
LR
o §
1t

° and may conceal more abstract substructure concepts such as an aromatic ring. By first discovering
L
the ring of carbon atoms and connected hydrogen atoms as an interesting substructure. a
.:'._‘.
::'-:,' substructure discovery system can replace the group of atoms and bonds by a singie entity
-‘.-d

representing the newly discovered substructure concept. Then, a learning program can discover
5
-~ concepts in terms of this substructure concept instead of just atoms bonded to atoms. Otker
-/4
N . . . :
Aot machine learning programs can benefit from a system that discovers substructure concepts in
h \"

examples and retains the concepts for use in subsequent learning tasks.

™

2
~

L7 The methodology underlving the proposed computational method for substructure discovery
N , . _ .

" is presented in Chapter 2. The chapter begins by defining a substructure and presenting the
o language used to describe substructures. Next, the components involved in substructure discovery

are discussed. Two essential processes of a substructure discovery system are substruciure

generation and substructure selection. Substructure generation is the process of constructing new,

alternative substructures from an existing substructure. After generating the set of aliernative

.

.«

o 2 a
[ I

substructures, the discovery svstem invokes the substructure selection process to choose the best

P

substructures from among the aiternatives. Once an inleresting substructure is discovered. the

»
R A ]

TREAERY

cccurrences of the substructure within the irput examples are replaced. or instantiazted. by a single
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\
::; entity representing the substructure: thus simplifying the original input examples. In addition. the
; E newly discovered substructure is specialized by appending additional structure. This specialized
T substructure describes a larger, more specific portion of the current set of input examples. The
“. substructure background knowledge includes both user-defined and discovered substructure
definitions. These are used to identify instances of substructures that exist in a given set of input
‘:: examples. Chapter 2 concludes by outlining a substructure discovery algorithm incorporating the
\,. aforementioned components.
S
‘ Chapter 3 describes the implementation of the substructure discovery methodology contained
‘- , in the SUBDUE system. In addition to the substructure discovery module, SUBDUE also includes a
. g substructure specialization module and a substructure background knowleage module. After a
g
- 2 substructure is discovered, the subst-ucture is specialized. and both the original and spec:alized
\ : substructures are stored in the background knowledge. Within the background xnowledge the
\J

- subsiructures are kept in a hierarchy that defines complex substructures in terms of more primitive

substructures. Upon receiving a new set of input examples, the background knowledge module

BN

determines which of the stored substructures are present in the examples. Thus. as the SUBDUE

£

svstem runs. a hierarchical representation of selected structures found in the environment 1s

<
v

constructed within the background knowledge module.

A Chapter 4 presents several experiments with the SUBDUE svstem. Experiments with the
. Zj" substructure discovery module indicate that the substructure generation and substructure selection
processes perform well in guiding the search towards more interesting substructures. Other
L experiments incorporating both the substructure background knowledge module and specialization
<. module demonstrate the performance improvement obtained by using previously learned
subsiructures in subsequent discovery tasks. The tnput and output data for each experiment are

.isted 1n Appendix A.

. Chapter 5 surveys previous work related 10 substructure discovery. Tais work Jates back to

the earlv 1900’s when gestalt psychologists began studving the underiving processes invelved n

At A LA 4%’ e T A I P N g B P L M DI e e WAL TGN o P A
NN e e e e N L ‘- ‘\"'\( " ‘- 'Ip J\' \‘. ~r 'I\ AL L R R ('\f‘ v, d"’(--"(."¢‘ J ..,-:J",_ o .'.(‘"{.-. R ) . "-.\.‘-\‘ . N
. ol e3 L) . » Re £) * - ) L ! L (] Ll - - v .



P

.
r li‘

4

s
: }
"v"'v{"{"(f' "
- rl-.. -

8
A

|

.
W
AR

e
2

»

~
®

r

e ar:
.I

Pt )
LY N L
R

» -, e .
L PR R

A
x

1
l.).

Pl
[y

P

e
‘|.‘v.‘l'l LA
VRSl
[T R AN

”~
*

=
2

555335

buman perception (Wertheimer39]. More recent machine learning research on substructure
discovery begins with Winston's work on learning from examples in the blocks world [Winston75].
From this point on. research on the various facets of substructure discovery has proposed several

interesting solutions to the problem.

Finally, Chapter 6 concludes with a summary of the research described in this thesis and
discusses directions for future research. Since the completion of the research described in this
tbesis. several extensions. improvements and applications of the substructure discovery method and
the SUBDUE system have been revealed. Improvements to the discovery method might be obtained
by generaling alternative substructures more intelliger:itly or by incorporating specialization into
the discovery process rather than as a separate process. Future potential applications of the
substructure discovery system include detection of interesting image patterns or textures in a high
level vision system and constructive feature formation in other machine learning systems. These

and other directions for future research are discussed in Chapter 6.
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- CHAPTER 2
“ SUBSTRUCTURE DISCOVERY

The major focus of this work is to investigate methods for discovering substructure concepts

(v

R in examples. Substructure discovery is the process of identifying concepts describing interesting
e and repetitive "chunks” of structure within the individual elements of a set of structured examples.
o~

” Ornce such a substructure concept is discovered, the descriptions of the examples can be simplified
‘ by replacing all occurrences of the substructure with a single form that represents the
. substructure. The simplified descriptions may then be passed to other learning systems. In
:::I addition, the discovery process may be applied repetitively to further simplify the descriptions or
& to build a hierarchical interpretation of the examples in terms of their subparts.

This chapter presents the components involved in a computational method for substructure

discovery. Sectinn 2.1 discusses the motivations for developing such a method and the importance
of substructure discovery in the field of artificial intelligence. Section 2.2 defines a substructure

- along with the components comprising a substructure. Methods for generating alternative
substructures are presented in Section 2.3, and the techniques used for intelligently selecting among
these alternatives are discussed in Section 2.4. Once an appropriate substructure is discovered. the
substructure is instantiated for each occurrence of the substructure in the input examples. Section
2.5 discusses substructure instantiation. Newly discovered substructures can be specialized to
= describe larger substructures in the input examples. Section 2.6 discusses substructure
. specialization. Section 2.7 presents methods for using background knowledge in the substructure
discovery process. Finally, Section 2.8 outlines a substructure discovery algorithm incorporating

- the previously described techniques.
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2.1. Motivations

One motivation {or substructure discovery is the overwhelming number of features available
in a typical real-world description of an environmen'. Unless features are preselected by the
human experimenter. artificial intelligence programs relying on environmental observations for
input would become bogged down in the complexity of processing the large amount of sensory
data. Therefore. a program for constructing features from the data and thereby introducing ways
to abstract over the unnecessary detail in the observations would improve the performance of other
learning programs. Having the new abstracted features can provide learning programs with a basis
for formulating concepts based on the more abstract. and possibly more pertinent features

(Stepp87].

A second motivation for substructure discovery originates from the hierarchical nature of a
structured environment. In other words., given a level of detail with which to describe an
environmert, there almost always exisis a2 more primitive description in terms of the components
of the current features. This fact suggests that an environment can be represented as a hierarchy,
where each level in the hierarchy represents a different level of detail with which to represent the
environment. By defining newly discovered substructures in terms of more primitive
substructures already known, a hierarchical substructure representation is constructed similar to
the natural hierarchy of the environment. Other programs may then use this hierarchy to find an

appropriate level of abstraction for processing the features of the environment.

The reorganization and compression of knowledge dases provides a third motivation for
substructure discovery. The amount of data typically stored in real world kncwledge bases is
:mmense. In order to combat the storage and processing limitations on current retrieval systems,
the substructuce discovery program can be applied to the data of the knowledge base. The
underlying substructures found in the data can be used to compress the data and impose a

hierarchical representation. The subseguent reorganized data requires less storage space and reduces

the retrieval :ime for quertes referencing data containing the same substructures.
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The human ability to perceive structural regularities in the environment provides the final
motivation for investigating substructure discovery [Palmer83]. This ability allows humans to
extract information from the environment at a level of detail that is appropriate for the purpose of
the observation. By perceiving only the appropriate information. humans are better able to learn

the concepts implied by the environment.

Thus. the underlying motivations for investigating substructure discovery are the ubiquitous
hierarchical structure in the world and the ease with which humans can negotiate the hierarchy.
With an appropriate representation for substructures and the substructure hierarchy. a

substructure discovery system can perform the tasks just presented.

2.2. Substructure Representation

A substructure is both a portion of a collection of structurally-related objects and a

‘e L]
e '_n“.rv

ll

»
B

description of the concept represented by that portion. For example, the detailed structure

o
v

composing the concept of a brick is a substructure of a brick wall. The collection of atoms and
bonds comprising the concept of an aromatic ring is a substructure of many organic compounds.
However, substructure concepts are not always interesting. Upon encountering a brick wall, the
concept of a brick may not be as interesting as the concept of a doorway or window. The task of

substructure discovery is to find interesring substructure concepts in a given specification of

P d

s

structurally-related objects. The representation of structured concepts should be conducive to the

I ]

task of discovering substructures. This section presents a graphical representation for structured

A

concepts and a language for describing the concepts.

SLWA

A collection of structured objects can be represented by a graph. Using a graph

HaSs

A

representation. a substructure is a collection of annotated nodes and edges comprising a connected

-,"l.» o

E S S A

subgraph of a larger graph. The nodes represent singie objects. values. or relations in the

oY

substructure. and the edges represent the conneclions bet'ween relations and their arguments. Fer

A

example, the relation fon a b) is represented graphically by three nodes. one annotated with a. one

annotated with b. and one annotated with on. The on node 1s connected 1o both the @ node and the
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b node. As another example. consider the relation (shape a circle). The graph representation
consists of three nodes (shape. a and circle) along with an edge from shape to the object a and an
edge from shape to the value circle. However, substructures represent more than just a collection
of nodes and edges. The description of a substructure is a conjunctive concept. Substructure
discovery is concerned with identif ying substructures that represent interesting concepts. not just
interesting graphical structures. Thus. substructures, or equivalently substructure concepts.

should be interpreted as a unit of structure described by a conjunctive concept.

An appropriate language for describing substructures in terms of conjunctive concepts is an
extension to the first order logic called Variable-valued Logic system 2 (VL,) (Michalski80] — a
subset of the Annotated Predicate Calculus (APC) [Michalski83a]. The VL, representation uses a
conjunction of relational units called selectors to describe a substructure. A selector relation is a
two-place relation between a function and the value or values in the range of the function.
Functions with only one argument are called artributes. For example. the selector reiation
corresponding to the relation (shape a circle) is (shape(a/ circle), where shapela) is an attribute and
circle is a value in the range of the shape attribute. In VL, this selector relation is written as
(SHAPE(A)=CIRCLE]. Likewise, the VL, expression for the relation (on a b) is [ON(A.B)=T]. VL,
also allows certain disjunctive concepts to be expressed as a single conjunct. For example. the
disjunctive concept [COLOR(C)=RED} v [COLOR(C)=BLUE] can be expressed as the single equivalent

conjunct [COLOR(C)=RED,BLUE].

Using the VL, representation. a substructure is defined as a conjunction of connected selector

relations. A set of selector relations is connecred if the equivalent graph representation of the
selector relations is connected. Objects correspond to single entities within the substructure and act
as the arguments to the functions of the selector relations. An object is a primitive element on
which selector relations and. ultimatelv, substructures are defined. Typically, the range of values
of the function in a selector relation includes a "don’t care” element. This element is used to denote

a function that must be present but whose value is immaterial. For example. if the "don't care’
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o clement is represented by an asterisk. the substructure <[ON(A,B)=T] {SHAPE(A)=SQUARE]

. [SHAPE(B)=*]> represents a square on top of some obiect that has a shape attribute. but whose

- shape value is arbitrary. Whereas, the substructure <[ON(A,B)=T] [SHAPE(A)=SQUARE]>

:'.E represents a square on top of some object that may or may not have a shape attribute.

0 Figure 2.1b illustrates the substructure found in the example shown in Figure 2.1a. Both the

C-" input example and the substructure are expressed in the VL, language. The expression for the

'.:: input example in Figure 2.1a is

.\.

frad

N <[SHAPE(T1)=TRIANGLE]J[SHAPE(T2)=TRIANGLE]J[SHAPE(T3)=TRIANGLE]

- [SHAPE(T4)=TRIANGLE][SHAPE(S1)=SQUARE][SHAPE(S2)=SQUARE]
{SHAPE(S3)=SQUARE][SHAPE(S4)=SQUARE][SHAPE(R1)=RECTANGLE]

ey (SHAPE(C1)=CIRCLEJ[COLOR(T1)=RED][COLOR(T2)=RED}{COLOR(T3)=BLUE]

o [COLOR(T4)=BLUEJ[COLOR(S1)=GREEN][COLOR(S2)=BLUE]ICOLOR(S3)=BLUE]

[COLOR(S4)=RED]{ON(T1,51)=T][ON(S1,R1)=T][ON(C1,R1)=T]
[ON(R1.T2)=T][ON(R1,T3)=TJON(R1.T4)=T][ON(T2,52)=T]
[ON(T3,83)=TI[ON(T4.54)=T]>

W

i::f
h red —ﬁ
1 green—| 1 ©)
) r OBJECT-0001
| R1 _—
rod — x T biue —— OBJECT-0002
o [y AR
blue —S2| ||S3 —} S4 '~ red
o blue  blue
':: (a) Input Example (b) Substructure
f:- Figure 2.1. Example Substructure
9
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After each object of the substructure is assigned an arbitrary symbolic name as shown in the Figure
2.1b, the expression for the substructure is

<[SHAPE(OBJECT-0001 )=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-0001,0BJECT-0002)=T]>

For subsequent discussions, some terminology is needed to describe important aspects of
substructures as they relate to a given set of input examples. An occurrence of a substructure in a
set of input examples is the set of objects and selector relations from the examples which match,
graph theoretically, to the graph representation of the substructure. All isomorphisms with the
same objects and selector relations are considered the same occurrence. For example. the
occurrences of the substructure in the input example of Figure 2.1a are

<[ON(T1.51)=T][SHAPE(T1)=TRIANGLE][SHAPE(S1)=SQUARE]>
<[ON(T2.52)=TYSHAPE(T2)=TRIANGLE][SHAPE(S2)=SQUARE]>

<{ON(T3,53)=T][SHAPE(T3)=TRIANGLE}{SHAPE(S3)=SQUARE]>
<[ON(T4,54)=T][SHAPE(T4)=TRIANGLE][SHAPE(S4)=SQUARE]>

A neighboring relation of an occurrence of a substructure is a selector relation in the input
example that is not contained in the occurrence, but has at least one object from the occurrence as
an argument. For example. the neighboring relations of the first occurrence listed above are

[COLOR(T1)=RED). [COLOR(S1)=GREEN] and [ON(S1.R1)=T].

An artribute relation of an occurrence of a substructure is a neighboring relation whose only
argument is a single object contained in the occurrence. The attribute relations in the first

occurrence listed above are [COLOR(T1)=RED] and [COLOR(S1)=GREEN].

An external connection of an occurrence of a substructure is a neighboring relation of the
occurrence that has as an argument at least one object not contained in the occurrence. In other
words. an external connection of an occurrence of a substructure is a selector relation that relates
one or more objects in the occurrence to one or more objects not in the occurrence. For the first

occurrence listed above, there is onlyv one external connection, [ON(S1,R1)=T).
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2.3. Substructure Generation

An essential function of any substructure discovery system is the generation of alternative
substructures. The substructure generation process constructs new substructures from the objects
and relations in the input examples. There are two basic approaches to the generation problem:

bottom-up and top-down.

The bottom-up approach to substructure generation begins with the smallest substructures in
the input exaraples and iteratively expands each substructure. The expansion may be accomplished
by two different methods. The first method. minimal expansion. adds one neighboring relation to
the substructure. For example, according to the three neighboring relations (presented in Section
2.2) of the occurrence. <[ON(T1,51)=TJSHAPE(T1)=TRIANGLE][SHAPE(51)=SQUARE]>. the
substructure in Figure 2.1b would be expanded to generate the following three substructures

< [SHAPE(OBJECT-0001)=TRIANGLE][SHAPE(OBIECT-0002)=SQUARE]
(ON(OBJECT-0001,0BJECT-0002)=T}{COLOR(OBJECT-0001)=RED]>

<[SHAPE(OBJECT-0001)=TRIANGLE][SHA PE(OBJECT-0002)=SQUARE]
{ON(OBJECT-0001,0BJECT-0002)=T]J[COLOR(OBJECT-0002)=GREEN]>

< [SHAPE(OBJECT-0001)=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-0001,0BJECT-0002)=T][ON(OBJECT-0002,0BJECT-0003)=T}>

The second method, combination expansion, is a generalization of minimal expansion in which two
substructures, having at least one object in common, are combined into one substructure. For
example, the substructure in Figure 2.1b could be generated by combining the following two
substructures

<[SHAPE(OBJECT-0001)=TRIANGLE)ON(OBJECT-0001,0BJECT-0002)=T]>
<[ON{(OBJECT-0001,0BJECT-0002)=TI[SHAPE(OBJECT-0002 )=SQUARE]>

The top-down approach to substructure generation begins with the largest possible
substructures. one for each input example, and iteratively disconnects the substructure into two
smaller substructures. As with the expansion approach. subsiructure disconnection may be
acccmpiished by two different methods. The first method, minimal disconnection, removes one

relation from a substructure while preserving the resulting substructure’'s connectivity. For
11
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example. the substructure in Figure 2.1b can be generated by removing the [COLOR(OBJECT-

0001)=RED] relation from the following substructure

<[SHAPE(OBJECT-0001)=TRIANGLE][SHAPE(OBJECT-0002)=SQUARE]
[ON(OBJECT-0001,0BJECT-0002)=T|[COLOR(OBJECT-0001)=RED]} >

The second method, cut disconnection, cuts a substructure into two unconnected substructures by
removing one relation. Cut disconnection is actually a special case of minimal disconnection:
however, a substructure does not always contain a suitable relation on which to perform cut
disconnection. Performing cut disconnection on the substructure in Figure 2.1b would generate the
following two simple substructures

<{SHAPE(OBJECT-0001)=TRIANGLE]>
<[SHAPE(OBJECT-0002)=SQUARE]>

As an example of a substructure having no suitable cut disconnection relation, consider the
substructure representing three objects connected in a ring

< [CONNECTED(OBJECT-0001,0BJECT-0002)=T|[CONNECTED(OBJECT-0002,0BJECT-0003)=T]
[CONNECTED(OBJECT-0001,0BJECT-0003)=T]>

There does not exist a relation in this substructure that when removed yields two unconnectad

substructures.

Each method typically has several applications within a given substructure. Therefore, the
method must either exhaustively generate all possible resulting substructures or intelligently
choose the more promising applications. Intelligent application of the minimal expansion method
for generating new substructures considers the occurrences of the substructure being expanded. If
each occurrence of the substructure has the same type of neighboring relation. application of the
method to0 this relation would be better than an application to a less repetitive neighboring relation.

Combtnation expansion can be applied more intelligently by combining only those substructures

12
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that have a large number of relations and objects in common. Exhaustive appl. ation of minima)
‘ disconnection can be avoided by removing only those relations that occur the least in the input

examples, vielding substructures with perhaps an increased number of occurrences. Lastly. cut

disconnection can be applied more intelligently by removing relations that yield highly connected

substructures. The techniques of finding articulation points [Reingold77] and cut points [Zahn7i]

E <

are applicable here.

Regardless of how the methods are applied. each method has advantages and disadvantages.

Although the top-down approaches allow quicker identification of isolated substructures. they

5" _‘1‘"

suffer from high computation costs due to frequent comparisons of larger substructures. Both the
combination expansion and cut disconnection methods are appropriate for quickly arriving at a
larger substructure, but a smaller, more desirable substructure may be overlooked in the process.
Also. in the context of building a substructure hierarchy, beginning with smaller substructures is
preferred, because the larger substructures can then be expressed in terms of the smaller ones.
n Minimal expansion begins with smaller subsiructures. expands substructures along one relation
and. thus, is more likely to discover smaller substructures within the computational resource

limits of the system.

. 2.4. Substructure Selection

After using the methods of the previous section to construct a set of alternative
substructures. the substructure discovery algorithm must choose which of these substructures to
consider the best hypothetical substructure. This is the task of substructure selection. The
propesed method of selection employs a heuristic evaluation function to order the set of alternative
substructures based on their heuristic quality. This section presents the major heuristics that are

applicable to substructure evaluation.

The first heuristic, cognitive savings. is the underlving idea behind several utility and data
cempression heuristics employed in machine learning {Minton87, Whitehall87. Wolff82). Cognitive

savings measures the amount of data compression obtained by applving the substructure to the

13

" ‘o AW h = ' R el
e e % ) e e e :'\.. [ 4 4 ‘
B o R O RN L - e - RSN GNS e



W T LT T LT ww‘wwwxﬂwmwmmmﬂ

® Trrrd

» A
[ A N )
RO

» :4 l.i

input examples. The cognitive savings of a subsiructure represents the net reduction in the

7

complexity of the input examples provided by the substructure. Replacing each occurrence of the

substructure by a single conceptual entity reduces the complexity of the input examples. However,

O La [ X W R WD
»

555

there is a gain in complexity associated with the conceptual definition of the new substructure. The

l!l'

net reduction in complexity is determined from the difference between these two measures of

-

'

) p'}(' ' complexity. The reduction in complexity of the input examples can be computed as the number of
o,
: \',: occurrences of the substructure multiplied by the complexity of the substructure. Thus, the
'O
) cognitive savings of a substructure. S. for a set of input examples, E, is computed as
st
ol
:\: cognitive_savings(S,E) = complexity_reduction(S,E) - complexity(S)
N = [number_of _occurrences(S,E) * complexity(S)} - complexitv(S)
No'e = complexity(S) * {[number_of_occurrences(S,E) - 1]
o
S
-:\i In the above computation of cognitive savings the complexity of the substructure is typically
RS
"
: a function of the number of objects. the number of relations, and the arity of the relations in the
Sy
L suestructure. The complexity of the substructure represents the cost of retaining the description of
{

e oy

; }'\'j the substructure. If portions of the substructure have already been defined, the substructure
NN . - .
o complexity should reflect the reduced cost of retaining only the previously unknown parts of the
'ﬁ.;-d
‘o substructure.
)
::\. The number of occurrences of the substructure is more complicated t0 measure. because
ey
~
.";-.: occurrences may overlap in the input examples. For instance. Figure 2.2 shows three input
>
L.
“ al - .
." . examples along with the substructure found by the discovery process: here, the circles represent
bt
»* - .
i3 objects and the lines represent relations. In Figure 2.2a the number of occurrences of the
7
-
M substructure in the example is obviously four. At first glance, the number of occurrences of the
DA

-
e
4
e
»

substructure in Figure 2.2b may appear to be four; however, the number of non-overlapping

occurrences is less than four. Figure 2.2b illustrates the problem of object overlap: likewise, Figure

2.2¢ illustrates the problem of relation overlap. In view of the overlap problem. computation of

LR R R

~he number of occurrences must reflect the number of unique occurrences.
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Input Example Substructure

@gj E ° go — O
(a) Disjoint Substructure

—

(b) Object Overlapping Substructure

— []

(c) Object and Relation Overlapping Substructure

Figure 2.2. Disjoint and Overlapping Substructures

Other substructure evaluation heuristics are adaptations of the cognitive savings to reflect
special qualities of a substructure. One such heuristic is compaczness. Compactness measures the
“density” of a substructure. This is not density in the physical sense, but the density based on the

number of relations per number of objects in a substructure. The compactness heuristic is a
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generalization of Wertheimer's Factor of Closure, which states that human attenticn is drawn to
closed structures {Wertheimer39]. A similar heuristic. also called compactness. is used in the vision
literature to describe the density of a region in a visual image (Fu87]. Graphically. a closed
substructure has at least as many relations as objects, whereas a non-closed substructure has fewer

relations than objects [Prather76]. Thus. closed substructures have a higher compactness value.

Another heuristic that modifies the cognitive savings of a substructure is connectivity. This
heuristic measures the amount of external connection in the occurrences of the substructure. The
connectivity heuristic is a variant of Wertheimer's Factor of Proximity [Wertheimer39). and is
related to earlier numerical clustering techniques [Zahn71]. These works demonstrate the human
preference for “isolated” substructures; that is, substructures that are minimally related to
adjoining structure. One method for computing the connectivity measures the “isolation® of a
substructure by computing the average number of external connections over all the occurrences of
the substructure in the input examples. The number of external connections is to be minimized:
therefore, the connectivity value is computed as the inverse of the average to arrive at a value that

increases as the number of external connections decreases.

The final beuristic modifying the cognitive savings is coverage. The coverage heuristic
measures the amount of structure in the input examples described by the substructure. The
coverage heuristic is motivated from research in inductive learning and provides that concept
descriptions describing more input examples are considered better {[Michalski83b]. Multiplving
cognitive savings by coverage decreases the original cognitive savings only when the substructure

describes a smaller amount of the input examples.

Other beuristics exist for evaluating and selecting substructures. One heuristic involves the
use of background knowledge to recognize more promising substructures (see Section 2.7). Also. in
the context of specialized substructures, other heuristics could measure the amount of
specialization involved and incorporate this measure into the cognitive savings. In addition to the

gestait motivation for the previously discussed heuristics, gestalt theorv suggests many additicnal
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factors identified in human perception that may apply to substructure evaluation [Kohlerd7,
Wertheimer39]. The SUBDUE system described in Chapter 3 discovers substructures by using the
four heuristics presented in this section along with background knowledge to suggest promising
substructures and substructure specialization to attach contextual information to newly discovered

substructures.

2.5. Substructure Instantiation

Once an interesting substructure is discovered, the input examples can be recast by replacing
the objects and relations of each occurrence of the substructure with a single entity representing
the abstract substructure. This replacement is termed substructure instantiation. After
performing one substructure instantiation. a substructure discovery system may continue 10
discover more abstract substructures in terms of those already instantiated in the input examples.

This section considers two methods of substructure instantiation.

One method of substructure instantiation replaces each occurrence by a single object.
Difficulties in using this method arise from representation problems. Although all the objects and
relations of the occurrence are replaced by a single object. the neighboring relations are not
replaced. Therefore. some recollection of the objects involved in the neighboring relations must be
maintained. Also, the possibility of overlapping occurrences. as described in Section 2.4, only
confounds the instantiation problem. In the case of object overlap. each instantiation of the
cverlapping occurrences must remember the overlapping components. Similarly, in the case of
relation overlap. not only must the overlapping objects be retained, but the overlapping relations as
well. Retaining the extra object information is inconsistent with the idea of substructure
Instantiation using a single new object. Although single ckject substructure insiantiation seems

:ntuitively promising. the accompanying representation problems are difficult 10 overcome.

An alternative approach to substructure instantiation involves replacing each occurrence of
the substructure with a new relation. The arguments to this relation are all the objects in the

substructure occurrence. During instantiation. all relations in the occurrence are removed from the
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input example and replaced by the new relation. Other neighboring r-.a:ions containing arguments

that refer to objects in the occurrence are left unchanged. In this way the symbol equality between

relation arguments preserves the original input example structure that is not directly described by

NN

the substructure. Unfortunately. by retaining all the objects in the occurrence as arguments to the

new relation, the relation instantiation method loses the data compression gained by abstracting

) SALA

over the objects in the occurrences of the substructure.

To clarify the single relation substructure instantiation procedure. consider again the input
example and substructure of Figure 2.2¢ redrawn in Figure 2.3a with appropriate object svmbol
assignments. Figure 2.3b shows the four new relations representing the four occurrences of the

substructure in the input example. The relation name is chosen arbitrarily and is the same for each

Input Example Substructure

NO N N2 N3 N4

v1
O

N6 N7 N8 N9

(a) Example

[SUB-0005(NO.N1.N5.N6)=T][SUB-0005(N1.N2.N6.N7)=T]
[SUB-0005(N2.N3.N7.N8)=TJ[SUB-0005(N3,N4,N8.N9)=T]

(b) Instantiation

L

“l'

Figure 2.3. Substructure Instantiation Using New Relations
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: e occurrence. From the common object symbols within the relations. the overlapping objects and
198

'( " E relations of the original occurrences may be reconstructed.

> Thus. single relation substructure instantiation remains the more accurate approach for
*oe

l‘

2 . . . . . -
N replacing substructure occurrences with a single, more abstract entity representing the original
Le

J @ objects and relations in the occurrence. Replacing objects and relations through substructure
TN '

$ - instantiation reduces the complexity of the input examples and allows subsequent discovery of
'S

'Y o concepts defined in terms of the instantiated substructures.

s
. - 2.6. Substructure Specialization

AL

A~ s .

N Specializing substructures is an essential capability of a substructure discovery system. For
N r instance, suppose the system finds six occurrences of an aromatic ring substructure within a set of
¢

i3

input examples. Three of the occurrences have an attached chlorine atom. and three occurrences

[
.

7
« e »

- have an attached bromine atom. The discovery system may benefit by retaining not only the

e
L

. aromatic ring substructure, but also a more specific aromatic ring substructure with an attached

atom whose type is described by the disjunction "chlorine or bromine”. Performing this

I ¥ "--

B ‘:_ specialization step allows the substructure discovery syvstem to take advantage of additional

1 »

A

" . information in the input examples. avoid learning overly general substructure concepts. and more
VRS rapidly discover a specific disjunctive substructure concept. This section presents an approach to
v
Co substructure specialization.

; One technique for specializing a substructure is to perform inductive inference on the

. * v -

't T extended occurrences of the suhstructure. An extended occurrence of a substructure is the

B,

[ substructure generated by adding one neighboring relation to the occurrence. The set of extended

B~ ",

.' occurrences consists of the substructures obtained by expanding each occurrence with each
S neighboring relation of the occurrence. Once the set of extended coccurrences is constructed.
. :nductive inference generalization techniques [Michalski83a] can be applied to the newlyv added
.' W neighboring relations and their corresponding values. The resulting generalized neighboring
<
. relations are then appended to the original substructure to produce new, specialized substructures.

N
i -
.
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Despite the generalization step in the previous technique. the substructures produced are

( . structurally more specific than the original substructure. Appending a new relation to a '
:?} substructure (whether or not the relation is generalized) adds a conjunct to the conjunctive
:‘EA description. Thus. the extended conjunctive description describes fewer occurrences over the space
N” . of possible input examples.

e .

‘\_'_j As an example of the substructure specialization technique. suppose the substiructure
.r:' discovery system discovers the substructure <{ON(A,B)=T]>, and several of the occurrences of this
( . substructure have [SHAPE(A)=SQUARE] and [SHAPE(A)=CIRCLE] as neighboring relations. In this
\:E. case, the specialization process produces the substructure <[ON(A,B)=T] [SHAPE(A)=
i{»_ CIRCLE,SQUARE]>.

) >~

97 After the originally discovered subsiructure undergoes the specialization process. both the
original and specialized substructures are retained in the background knowledge of the
RO
j:.-'_':' substructure discovery system. The background knowledge may then identify known
i substructures in subsequent input examples. For instance, suppose the substructure resulting from
" a previous specialization, <{ON(A B)=T][SHAPE(A)=SQUARE.CIRCLE]>. is identified bv the
E: background knowledge in the given input examples. Furthermore. suppose the neighboring
Y

relations of the occurrences of this substructure include the relations [COLOR!{A)=RED],

~g
A

",

- [COLOR(A)=BLUE] and [COLOR(A)=RED]. Then one possible specialization of the original

-l substructure is <{ON(A,B]=TH[SHAPE(A)=SQUARE,CIRCLE][COLOR(A)=RED,BLUE]>. With the

® possibility of repeated specialization. the substructure discovery sysiem can learn increasingly
:::- specific disjunctive substructure concepts.
k- By specializing newly discovered substructures. the substructure discovery svstem learns

." both general and specific substructure concepts. Retaining these substructures in a background

i

0

‘o knowledge hierarchy allows the discovery system to identify previously learned substructure

;' concepts in subsequent input examples and provides a more robust set of primitive substruciures 1
.‘ from which subsequent discovered substructures can be defined. ‘
w
_'l
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e 2.7. Background Knowledge
!
3,
v i Although the substructure discovery techniques described in the previous sections work
k=

without prior knowledge of the domain, the application of background knowledge can direct the

SN
: ._ discovery process along more promising paths through the space of alternative substructures. This
!

section considers background knowledge in the form of substructure definitions; that is. candidate

£~

: 7 substructures that are more likely to exist in the current application domain.

: ':'- The two major functions of the substructure background knowledge are 1o maintain both

( - user-defined and discovered substructures and 1o determine which of these substructures exist in a

. - given set of input examples. In order to take maximum advantage of the hierarchical nature of

' 20 substructures, the background knowledge is arranged in a hierarchy in which complex
= substructures are defined in terms of more primitive substructures. This arrangement suggests an

! ::i architecture similar to that of a truth maintenance system (TMS) [Doyle79]. Primitive

[ ]

= substructures serve as the justifications for more complex substructures at a higher level in the

| w hierarchy. When a new substructure is added to the background knowledge. primitive
- substructures are justified by the objects and relations in the new substructure. These primitive
::\- substructures provide partial justification for the new substructure. Furthermore., the TMS
. architecture provides a simple process for determining which background knowledge substructures

; ex:st in a given set of input examples. This determination can be accomplished by first justifying

d

‘ ::;j _ations at the leaves of the background knowledge hierarchy with the relations in the input
N e...npler  Then, initiate the normal TMS propagation operation to indicate which substructures are
.} ultimately justified by the relations in the input examples. The substructure discovery process
2 may then use these background knowledge substructures as a starting point for generating

alternative substructures.

Other forms of background knowledge apply to the task of substructure discovery.
Whitehall's PLAND system {Whitehall87] for discovering substructure in sequences of actions uses

taree levels of background knowledge to guide the discovery process. PLAND's high leve!
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background knowledge is used to determine the level of abstraction that is appropriate for
processing the input sequence. PLAND's medium level background knowledge determines which
groups of substructures within a given level of abstraction to process next. The low level
background knowledge controls the type of substructures considered. Other details of the PLAND

system can be found in Section 5.4.

Currently, only declarative substructure background knowledge is considered for retention in
the hierarchy. Yet. there is an equally important and hierarchically organized body of knowledge
involved in the retention and determination of substructure function. Chapter 6 discusses future
efforts that will attempt to incorporate substructure function into the declarative background

knowledge hierarchy.

2.8. Substructure Discovery Algorithm

This section presents a substructure discovery algorithm utilizing the techniques from
previous sections. The algorithm is a computationally constrained best-first search guided by the
substructure generation and selection techniques presented in sections 2.2 and 2.3. Figure 2.4

outlines the substructure discovery algorithm.,

Initially, the algorithm is given one or more input examples and a limit. L, on the amount of
computation performed. The algorithm begins by forming the set, S, of base substructures. In the
situation where no background Knowledge is present. the set of base substructures has only one
element. the substructure corresponding to all single objects, with as many occurrences as there are

! When background knowledge is present, this set of base

objects in the input examples.
substructures, S, may contain applicable background knowledge substructures in addition to the
object substructure. As the algorithm progresses, the discovered substructures will be kept in the

set. D, that is initially empty.

n <he Vv , language for expressing these substructures, objects are represenied as variabies. However, a variable ajone
does not constitute a well-formed VL, expression. Aithough expressed as an arditrary obiect name ti.e. OBJECT-0001). the
singie object substructure should be :nterpreted as an impiicit reiation expressing the existence of the obrect .e.
‘OBJECT(OBIECT-0001)=~T}).

22




|
) &
AN
- L = limit on computation time
8 .. S = {base suostructures}
o D={}
A while (amount_of _computation < L) and (S = {}) do
! BEST-SUB = best substructure selected from S
n S = S - {BEST-SUB}
D=L U {BEST-SUB)
E = {alternative substructures generated from BEST-SUB}
C, for each e in E do
P fo if (not (member e D))
‘ - S=S U le
return D.
-~
b ‘\':
h Figure 2.4. Substructure Discovery Algorithm
kn
S

g

The next step in the algorithm is a loop that continuously generates new substructures from

s
r.

the substructures in S until either the computational limit, L. is exceeded or the set of candidate

- T

substructures, S, is exhausted. The loop begins by selecting the best substructure in S. Here, the

’: heuristics of Section 2.4 are employed to choose the best substructure from the alternatives in S.
" The actual computation performed to compute the heuristic evaluation function depends on the
. implementation. Section 3.2.2 describes the computation used in SUBDUE: although. other
”~
) methods may be used. For instance. the heuristics could be weighted, selected by the user. or
; -‘ selected by the background knowledge. However, any substructure selection method should
. involve the four heuristics described in Section 2.4. Once selected. the best substructure is stored in
- BEST-SUB and removed from S. Next. if BEST-SUB does not already reside in the set D of
:::. discovered substructures. then BEST-SUB is added to D. The substructure generation methods of
Section 2.3 are then used to construct a set of new substructures that are stored in E. Those
: substructures in E that have not already been considered by the algorithm are added to S. and the
. loop repeats. When the loop terminates, D contains the set of discovered substructures.
s
e
=
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Thus, the discovery algorithm is a straightforward implementation of the besi-first search
paradigm with a computational constraint. The power of the algorithm lies in the substructure
generation methods and selection heuristics for choosing among alternative substructures. As
subsequent examples will demonstrate. these heuristics perform well in guiding the search toward

more promising substructures.

The next chapter describes the SUBDUE system. The SUBDUE system utilizes the
substructure discovery algorithm along with substructure specialization and substructure

background knowledge to form a robust substructure discovery system.
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& CHAPTER 3

i

5\ THE SUBDUE SYSTEM

An implementation of the substructure discovery methodology described in the previous

:?‘5 chapter is contained in the SUBDUE system. Written in Common Lisp on a Texas Instruments

- Explorer. the SUBDUE program facilitates the use of the discovery algorithm both as a

e substructure concept discoverer and as a module in a more robust machine learning system. In

:.:: addition to the heuristic-based substructure discovery module, SUBDUE also includes a

.

- substructure specialization module and a substructure background knowledge module for utilizing
previously discovered substructures in subsequent discovery tasks. The substructure background
knowledge holds both user-defined and discovered substructures in a hierarchy and determines

i which of these substructures are present in the input examples.

g

TWUW W VW WO

- - Substructure
) User-Supplied "
. Background Knowledge > Background Knowledge <
“- I Substructure
_“j Specializer
- User-Supplied N Heuristic-Based
N Input Examples Substructure Discovery
- Figure 3.1. The SUBDUE System
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Figure 3.1 illustrates the interaction of the three modules. First, the user provides one or

;e-.
'\._’fx‘ lo tlie examples. Next. the heuristic-based substructure discovery module asks the substructure
h e

\.:':' background knowledge module for any known substructures that apply to the input examples.
:: The discovery module uses the background knowledge substructures. if any. to find interesting

]

,_:::: substructures in the input examples. Upon exhausting the computational resources, SUBDUE
‘ E:é passes the best substructure found to the substructure specialization module. This module appends
333 additional attribute relations to the description of the discovered substructure. Finally, both the
\'.\ original and specialized substructure concepts are added to the substructure background
;EEE knowledge. The user may then run the system on a new set of input examples, add additional
:':: background knowledge, or run the system again on the same examples. perhaps altering the

®

v

more input examples and optional background knowledge describing substructures that may apply

computational limit. SUBDUE has options to deactivate one or more of the modules to investigate

2

the operation of individual modules.

2

"
"
(' ‘ This chapter discusses the substructure representation used in SUBDUE and describes each of
Yy
o "] the three modules along with examples of their operation.
N '
o
o
oy 3.1. Substructure Representation
ol

Qs

The SUBDUE system uses the substructure description language of Section 2.2 to

7.
o
O communicate with the user. The internal representation of a substructure closelv resembles a
A8y
7 . . R .
."_,'.‘\-_. directed graph. Consider the substructure shown in Figure 3.2a. Figure 3.2b shows the external
-4 _ , . : .
o expression for this substructure, and Figure 3.2c shows the internal representation.
;‘ “’:,.-‘
-,
L Internally, SUBDUE represents a substructure by the set of relations that comprise the
e substructure. Each relation contains the name of the relation, the value of the relation. the list of
e
-:::-: object arguments 1o the relation and the order-relevancy of the arguments. Objects are represented
e
- internally by the literal names used to specify the objects in the external representation. This
e
o substructure representation is expressed as a directed graph. as in Figure 3.2¢. and facilitates a
24

jraph-theoretic comparison bet'ween substructures.

.
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A T2
S1

» )

(a) Substructure

rve

x)

b

[SHAPE(T1)=TRIANGLE][SHAPE(S1)=SQUARE][SHAPE(C1)=CIRCLE]
[ON(T1.51)=T}ON(S1.C1)=T]

R

e

(b) External Representation

|SUBSTRUCTURE

e SHAPE( . )=TRIANGLE SHAPE( | )=SQUARE SHAPE(, )=CIRCLE
%

™ ON )'T

- N

N \

' k

‘—%l S1 Ci

5 (¢) Internal Representation

Figure 3.2. Substructure Representation
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Accompanying each internal substructure representation are the heuristic value of the
substructure and a list of the occurrences of the substructure in the current set of input examples.
Although not essential, keeping the occurrences together with the substructure greatly increases the

efiiciency of substructure generation, selection and specialization processes.

The dual substructure representations provide a convenient external substructure
representation and an efficient internal representation. The external representation allows the
user-supplied input examples. the user-supplied substructure background knowledge, and the
substructures discovered by SUBDUE to be communicated in the same form. Converting this
external representation into an internal. directed graph representation permits increased efficiency

in many of the major operations performed by the SUBDUE system.

3.2. Heuristic-Based Substructure Discovery

The heuristic-based substructure discovery module in SUBDUE is an implementation of the
substructure discovery algorithm presented in Section 2.8. This implementation uses the
exhaustive minimal expansion technique discussed in Section 2.3 for generating alternative
substructures. Selection from among the alternative substructures is accomplished by evaluating
the substructures using the four heuristics described in Section 2.4: cognitive savings. compactness.
connectivity, and coverage. Section 3.2.1 outlines SUBDUE's implementation of the minimal
expansion technique for substructure generation. and Section 3.2.2 describes the computations
performed during the evaluation of a substructure. A sample execution of the heuristic-based

substructure discovery module is presented in Section 3.2.3.

3.2.1. Generation

The heuristic-based substructure discovery module uses the exhaustive minimal expansion
technique from Section 2.3 for generating alternative expanded substructures from a single
substiructure. Recall from Section 2.3 that the minimal expansion technique expands a substructure

by adding one neighboring rejation.
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SUB = description of substructure to be expanded
NEWSUBS = {}
N = {neighboring relations of the occurrences of SUB}
foreach nin N do
NSUB = new substructure formed by adding n to SUB
NEWSUBS = NEWSUBS U {NSUB}
return NEWSUBS.

Figure 3.3. Substructure Expansion Algorithm

Figure 3.3 shows the substructure expansion algorithm. The new, expanded substructures are
stored in NEWSURBS, initially an empty set. First, the set of neighboring relations of SUB are
stored in N. For each neighboring relation, a new substructure is formed by adding the neighboring
relation to the original substructure description, SUB. The newly formed substructure is added to
the set of expanded substructures, NEWSUBS. After all possible neighboring relations have been
considered. the expansion algorithm returns NEWSUBS as the set of all possible substructures

expanded from the original substructure.

3.2.2. Selection

The heuristic-based substructure discovery module selects for consideration those
substructures that score highest on the four heuristics introduced in Section 2.4: cognitive savings,
compactness, connectivity and coverage. These four heuristics are used to order the set of
alternative substructures based on their heuristic value in the context of the current set of input
examples. With the substructures ordered from best to worst, substructure selection reduces 1o
selecting the first substructure from the ordered list. This section describes the computations
involved in the calculation of each heuristic. and how these results are combined to vield the

heuristic value of a substructure.
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As defined in Section 2.4, the cognitive savings of a substructure, S. for a set of input

examples, E, is computed as

cognitive_savings(S,E) = complexity_reduction(S,E) ~ complexity(S)
= [number_of _occurrences(S,E) * complexity(S)] - complexity(S)
= complexity(S) * [number_of _occurrences(S.E) - 1]

The complexity(S) is defined as the size of the substructure, S. where the size is computed as the
sum of the number of objects and relations in the substructure. As discussed in Section 2.4, the
number_of _occurrences(S.E) is more complicated to compute, because the occurrences may overlap
in the input examples. Simply counting all objects and relations in the overlapping occurrences
would incorrectly state the true cognitive savings of the substructure. Therefore, the
complexity_reduction{S.E) is defined to be the number of objects and relations in the occurrences of
the substructure. where overlapping objects and relations are counted only once. The number of
such objects is referred to as #unique_objects, and the number of such relations is referred to as
#unigue_relations. Thus. the cognitive savings of a substructure S with occurrences OCC in the set

of input examples E is computed as

cognitive_savings(S,E) = complexity_reduction(S,E) - complexity(S)
= [#unique_objects(OCC) + #unique_relations(OCC)] - complexitv(S)
= [#unique_objects(OCC) + #unique_relations(OCC)] - size(S)
= [#unique_objects(OCC) + #unique_relations{QCC)] - [#0objects(S) + #relations(S)]

As an example of the cognitive savings calculation. consider the input examples and

’ corresponding substructures in Figure 2.2. If each circle is considered an object and each line a
‘ relation. then for each of the three substructures, #objects(S) = 4. #relations(S) = 4 and there are
four occurrences of the substructure in the input example. In Figure 2.2a, #unique_objects(OCC) =
. 16 and #unique_relations(OCC) = 16: thus. cognitive_savings = {16 + 16] - [4 = 4] = 24. In Figure
o

\ 2.2b. #unique_objects(OCC) = 13 and #unique_relations(OCC) = 16; thus, cognitive_savings = {13
- ~ 16} - (4 = 4] = 21. In Figure 2.2c. #unique_objects(OCC) = 10 and #unique_relations(OCC) = 13:

thus. cognitive_savings = {10 ~ 13] - [4 = 3] = 15. Therefore. although the substructure is the same.
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the cognitive savings value depends on the overlap of the occurrences of the substructure in the

current set of input examples.

The second heuristic. compactness, measures the density of the substructure. Compactness is
defined as the ratio of the number of relations in the substructure to the number of objects in the
substructure. Unlike cognitive savings. the compactness of a substructure is independent of the

input examples.

#relations(S)
#objects(S)

compactness(S) =

For each of the substructures in Figure 22, #relations(S) = 4 and #objects(S) = 4: thus,

compactness = 4/4 = 1.

The third heuristic, connectivity, measures the amount of external connection in the
occurrences of the substructure. Connectivity is defined as the inverse of the average number of
external connections found in all occurrences of the substructure in the input examples. Thus. the
connectivity of a substructure S with occurrences OCC in the set of input examples E is computed

as

z

1€0CC

external_ connections(i)

]—1

El

connectivity(S,E) =

Again. consider Figure 2.2. Each substructure has four occurrences in the input example. In

Figure 2.2a. each occurrence has one external connection: thus, connectivity = (4,4)"! = 1. In Figure

2.2b and Figure 2.2¢, the two innermost occurrences both have 4 external connections and the two

outermost occurrences both have 2 external connections, for a total of 12 exiernal connections.

Thus. connectivity = (12/4) 1 = 1/3.

Tae idnal heuristic. coverage. measures the amount of structure in the :nput examples

described by the substructure. Coverage :s defined as the number of unigue objects and relations :n
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the occurrences of the substructure divided by the total number of objects and relations in the

input examples. Thus. the coverage of a substructure S with occurrences OCC in the set of input

examples E is computed as

#unique_objects(OCC) + #unique_ relations(OCC)

coverage(S,E) =
#objects(E) + #relations(E)

In Figure 2.2a there are 32 unique objects and relations in the occurrences of the substructure,

and a total of 49 objects and relations in the entire example. Thus, coverage = 32/49. In both

Figure 2.2b and Figure 2.2c the occurrences of the substructure describe every object and relation

in the input example; thus, coverage = 1.

Ultimately, the value of a substructure S for a set of input examples E is computed as the

product of the four heuristics.

value(S,E) = cognitive_savings(S,E) * compactness(S) * connectivity(S,E) * coverage(S.E)

In this way the compactness. connectivily and coverage heuristics adapt the cognitive savings value

to reflect specific qualities of the substructure. The values of the substructures in Figure 2.2 are

Figure 2.2a: value =24 *1*1*32/49=15.7
Figure 2.2b: value =21*1*1/3*1=7.0
Figure 2.2¢c: value =15*1*1/3*1=5.0

3.2.3. Example

A -
I‘P'

In order to clarify the different operations of the heuristic-based substructure discovery

Al

2

F N

.‘-‘v}

module, this section traces a sample execution of the process. The execution proceeds according to

»

A

° the substructure discovery algorithm (Figure 2.4) utilizing the generation algorithm (Figure 3.3)

and the heuristic evaluation function described in the previous section. Figure 3.4 shows the input

example and the substructure that will eventually emerge. The input example is g:ven to the

.
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® svstem as:
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<[SHAPE(T1) = TRIANGLE][SHAPE(T2) = TRIANGLE]J[SHAPE(T3) = TRIANGLE]
{SHAPE(T4) = TRIANGLE][SHAPE(S1) = SQUAREI[SHAPE(S2) = SQUARE]
[SHAPE(S3) = SQUARE][SHAPE(S4) = SQUARE][SHAPE(R1) = RECTANGLE]
[SHAPE(C1) = CIRCLE}J[ON(T1,51) = TIION(T2,52) = TI[ON(T3,83) = T]
[ON(T4,54) = TON(S1,R1) = TJ[ON(C1,R1) = TI[ON(R1,T2) = T}
{ON(R1,T3) = TI[ON(R1,T4) = T]>

First, the algorithm forms the set S of base substructures. Initially, S has only one element.

the substructure denoted by <1.1 OBJECT-0001>. This substructure has as many occurrences as

there are objects in the input example. The number before a substructure is the value of the
K >
~
: X substructure, as defined in Section 3.2.2. The object names within the substructures are arbitrary
o — symbols generated by the system for each newly constructed substructure.
P
8
L -
L S = {<1.1 OBJECT-0001>}
r .‘.‘»
K -
S Next. we enter the loop. where the best substructure in S is stored in BEST-SUB. removed from S
s
E and inserted in the set D of discovered substructures. Next, BEST-SUB is minimally expanded by
' adding one neighboring relation to BEST-SUB in all possible ways. The newly created substructures
; {
l are stored in E.
! Input Example Substructure
< A—l
st (e
b | —
= B R1
2, /13 A}_,
~':: S2 S3 S4
Figure 3.4. Simple Example
k
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E = {<0.9 [SHAPE(OBJECT-0002) = TRIANGLE]> <1.3 [SHAPE(OBJECT-0002) = SQUARE]>

t, <0.0 [SHAPE(OBJECT-0002) = RECTANGLE]> < 1.0 [ON(OBJECT-0003,0BJECT-0002) = T]>
. <0.0 [SHAPE(OBJECT-0002) = CIRCLE]> }

L

g Each substructure in E is added to S in order of decreasing “alue. and the loop repeats.

S = { < 1.3 [SHAPE(OBJECT-0002) = SQUARE]> < 1.0 {ON(OBJECT-0003,0BJECT-0002) = T]>
<0.9 [SHAPE(OBJECT-0002) = TRIANGLE!> <0.0 [SHAPE(OBJECT-0002) = RECTANGLE]>
<0.0 [SHAPE(OBJECT-0002) = CIRCLE]> }

& In the second iteration of the loop. <1.3 [SHAPE(OBJECT-0002) = SQUARE]> is stored in BEST-SUB.,

removed from S and added to D. E is set to the minimal expansion of BEST-SUB.

-
L

[
el
v : E = { <0.0 [ON(OBJECT-0002,0BJECT-~0005) = TI[SHAPE(QBJECT-0002) = SQUARE]>
Y < 3.3 [ON(OBIECT-0004,0BJECT-0002) = TJSHAPE(OBJECT-0002) = SQUARE]> |
!
“
. Neither substructure in E has occurred before. Thus, both are added to S, and the loop repeats.
E:
"
Y

S = { < 3.3 [ON(OBJECT-0004 OBJECT-0002) = T)J[SHAPE(OBJECT-0002) = SQUARE]>
< 1.3 [SHAPE(OBJECT-0002) = SQUARE]> <1.0 [ON(OBJECT-0003,0BJECT-0002) = T]>
<0.9 ([SHAPE(OBIECT-0002) = TRIANGLE]> <0.0 [ON(OBJECT-0002,0BJECT-0005) = T]
W [SHAPE(OBJECT-0002) = SQUARE]> <0.0 [SHAPE(OBJECT-0002) = RECTANGLE]>
‘ <0.0 [SHAPE(OBJECT-0002) = CIRCLE]> }

9]
In the third iteration of the loop, <3.3 [ON(OBJECT-0004,0BJECT-0002) = T} [SHAPE(OBJECT-0002) = -
‘ s
b . . L
1 SQUARE]> is stored in BEST-SUB. removed from S and added to D. E is set to the minimal
: .: . :!cj
X expansion of BEST-SUB. o
«
by
v E = {<0.0 [ON(OBJECT-0002,0BJECT-0007) = TI[ON(OBJECT-0004,0BJECT-0002) = T] Y
‘. (SHAPE(OBJECT-0002) = SQUARE]> <15.5 [SHAPE(OBJECT-0004) = TRIANGLE] i
. [ON(OBJECT-0004,0BJECT-0002) = TH{SHAPE(OBJECT-0002} = SQUARE]> -
o <0.9 {ON(OBJECT-0006,0BJECT-0004) = TJJON(OBJECT-0004.0BJECT-0002) = T) ~)h
L [SHAPE(OBJECT-0002) = SQUARE]>} )
q
M Again. none of the substructures in E have occurred previously: therefore, each subsiructure is :-‘
- added to S. The ioop continues until the computational limit is exceeded or S becomes empty. ,-_J
’ !
b
: 3
X
o 34
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In this example the next substructure to be considered, <15.5 [SHAPE(OBJECT-0004) =
TRIANGLE] [ON(OBJECT-0004,0BJECT-0002) = T] [SHAPE(OBJECT-0002) = SQUARE]>, will emerge as
the best substructure. Regardless of the amount of additional computation, this substructure (the
substructure in Figure 3.4) will be the best element in the set of discovered substructures returned

by the zigcrithm

3.3. Substructure Specialization

The substructure specialization module in SUBDUE employs a simple technique for
specializing a substructure. This technique is based on the method described in Section 2.6.
SUBDUE specializes a substructure by conjoining one attribute relation. The value of the added
attribute relation is a disjunction of the values observed in the attribute relations connected to the
occurrences of the substructure. To avoid over-specialization the substructure is conjoined with
the disjunctive attribute relation representing the minimal amount of specialization among the
possible disjunctive attribute relations of the substructure. More specific substructures will
eventually be considered after less specific substructures have been stored in the background
knowledge, found in subsequent examples, and further specialized. Section 3.3.1 describes the
substructure specialization algorithm, and Section 3.3.2 illustrates an example of the specialization

process.

3.3.1. Specialization Algorithm

The substructure specialization algorithm used by SUBDUE is shown in Figure 3.5. The
aigorithm returns all possible specializations for a given substructure in the current set of input

examples.

The algorithm proceeds as follows. Given a substructure S with occurrences OCC in the set of
input examples E the substructure specialization algorithm in Figure 3.5 returns the set of all
possibie specializations of S. These specializations will be collected in SPECSUBS. that 1s iniually

empty. The algorithm begins by storing in ATTRIBUTES all the attribute relations in the
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E = current set of input examples
S = description of substructure to be specialized
OCC = {occurrences of S in E}
SPECSUBS = {}
ATTRIBUTES = {attribute relations of OCC]}
foreach REL in ATTRIBUTES do
S" = S A [REL(OBJ)=*]
OCC" = {occurrences of S in E}
UNIQUE_VALUES = {unique values of all REL(OBJ) in OCC’}
Sspec = S 2 [REL(OBJ)=UNIQUE_VALUES]
SPECSUBS = SPECSUBS U Sspec
return SPECSUBS.

Figure 3.5. Substructure Specialization Algorithm

occurrences of S. Recall from Section 2.2 that an attribute relation of an occurrence is a
neighboring relation of the occurrence whose only argument is an object contained in the
occurrence. For each attribute relation. REL, in ATTRIBUTES. a new substructure, S’. is
constructed by adding a new attribute relation to the original substructure S. This new relation,
[REL(OBJ)=*], is the same as REL except that the value slot of the relation is changed to a "don't
care” value that matches any value. For example. if REL is [COLOR(T1)=RED], and T1
corresponds to object OBJECT-0001, then the attribute relation [COLOR(OBJECT-0001)=*] will be
added to S and will match any other COLOR attribute, ie.. [COLOR(TZ)=REDj or

(COLOR(S1)=GREEN]. etc.

After S’ is constructed, the occurrences of S° in E are stored in OCC’. Next. from the set of

occurrences in OCC’, the actual values of the REL attribute relation are uniquely collected in

UNIQUE_VALUES. Then, the specialized substructure, Ssp“. is constructed by adding to the

origina} substructure S an attribute relation having the same name as REL and UNIQUE_VALUES

as tne disjunctive list of relation values. Finally, if not alreadv in SPECSUBS, S;pec IS added 10

SPECSUBS.
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After considering each attribute relation in ATTRIBUTES, the algorithm terminates and
returns the set of specialized substructures stored in SPECSUBS. However, only the minimally
specialized substructure is eventually stored in the substructure background knowledge.

Therefore. for a  substructure, Sm. with newly added  attribute relation

(REL(OBJ)=UNIQUE_VALUES] and occurrences OCC the following formula is used 1o measure the
amount of specialization in S, pec-

| UNIQUE_VALUES ‘
amount_of _specialization(Sgpe) =

|occ|
The substructure with the smallest amount of specialization will then be stored in the substructure

background knowledge along with the originally discovered substructure.

3.3.2. Example

As an example of the substructure specialization process. consider Figure 3.6. Figure 3.6a
illustrates the same input example of Figure 3.4 with the addition of several color attribute
relations. After running the heuristic-based substructure discovery algorithm on this example, the
same substructure emerges as in Figure 3.4,

S = <[SHAPE(OBJECT-0002)=TRIANGLE][SHAPE(OBJECT-0001)=SQUARE]
[ON(OBJECT-0002.0BJECT-0001)=T]>

Next. the newly discovered substructure is sent to the substructure specialization module.

First. all the attribute relations of the occurrences of the substructure are stored in ATTRIBUTES:

ATTRIBUTES = {{COLOR(T1)=RED], [COLOR(T2)=RED]. [COLOR(T3)=BLUE),
[COLOR(T4)=BLUE]}, [COLOR(S1)=GREEN], [COLOR(S2)=BLUE],
[COLOR(S3)=BLUE], [COLOR(S4)=RED]}

Next. the first attribute relation in ATTRIBUTES is given a value *' and added to the original
substructure. The name of the object argument to the attribute relation is changed from T1 1o

NBJECT-0002, because OBJECT-0002 is the name of the object in the description of the
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Figure 3.6. Subsiructure Specialization Example
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’.: 4 substructure S that corresponds to the object T1 in the occurrences of the substructure.
i
\
R
N S* = <[COLOR(OBJECT-0002)=*)[SHAPE(OBJECT-0002)=TRIANGLE]
e [SHAPE(OBJECT-0001)=SQUARE][ON(OBJECT-0002,0BJECT-0001)=T]>
N .
o
_; The four occurrences of S’ are stored in OCC’. and the unique values of their color relations are
f:’;. coilected in UNIQUE_VALUES.
N
“_ UNIQUE_V'ALUES = {RED.BLUE}
o
o 38
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Thus. the following specialized substructure is added to SPECSUBS:

S,p = <[COLOR(OBJECT-0002)=BLUE,RED][SHAPE(OBJECT-0002)=TRIANGLE]
(SHAPE(OBJECT-0001)=SQUAREJ{ON(OBJECT-0002,0BJECT-0001)=T]>

Spec bas 4 occurrences and 2 unique values in the newly added attribute relation; thus,

amount_of_sPecialization(Sspx) = 2/4 = 1/2. The only other specialized substructure added to

SPECSUBS in this example is

S, = <[COLOR(OBJECT-0001)=BLUE,GREEN,REDI[SHAPE(OBJECT-0002)=TRIANGLE]
[SHAPE(OBJECT-0001)=SQUAREJ[ON(OBJECT-0002,0BJECT-0001)=T]>

This specialized substructure also has 4 occurrences, but 3 unique values; thus.

amoum_of_specialization(Sspec) = 3/4. The first specialized substructure has a smaller amount of

specialization. Therefore. only the first substructure, shown in Figure 3.6b, is added 1o the

substructure background knowledge along with the originally discovered substructure.

Specializing the substructures discovered by SUBDUE adds to the substructures information
about the context in which the substructures are likely to be found. By minimally specializing the
substructure, SUBDUE avoids adding contextual information that is too specific. If the desired
substructure concept is more specific than that obtained through minimal specialization. specializing
similar substructures in subsequent examples will transform the under-constrained substructure
into the desired concept. There is the possibility that even the minimal amount of specialization
may over-constrain a substructure. SUBDUE can recover from this problem. because both the
original and specialized substructures are retained in the background knowledge. The unspecialized

substructure will always be available for application to subsequent discovery tasks.

3.4. Substructure Background Knowledge

The substructure background knowledge module in SUBDUE has two major functions:

storing both user-defined and discovered substructures and determining which of these

39




v
.
"

g

3

ML BB e ey Ll al o ac 4o -y

- g e :
e
PN

S}
e I
L e e e P .

substructures occur in a given set of input examples. The substructures are stored in a hierarchy,

A 4

where complex substructures are defined in terms of their more primitive subparts. By storing

"ﬂp“'

-\:."\. user-defined substructures. the background knowledge allows the user o contribute prior

A v

T ~ » -

:.\:'s knowledge of the application domain. Storing discovered substructures makes SUBDUE a closed- F
J ?‘\

B SN

A loop system in which the knowledge grows incrementally and hierarchically as new substructures

J

are discovered. Each execution of the heuristic-based discovery module queries the background

v
,l

7
5

5

knowledge for substructures occurring in the current set of input examples. Section 3.4.1 describes

20T,
Py

the architecture of the substructure background knowledge. and Section 3.4.2 outlines the method

& % D

A for identif ying background knowledge substructures in a given set of input examples.

",/ »

SN

N
b 3.4.1. Architecture
‘Galty

_...._. As suggested in Section 2.7, the architecture of SUBDUE's substructure background
o
' :,_::. knowledge is modeled after a variant of the truth maintenance system called the assumption-based
:::_::. truth maintenance system (ATMS) [de Kleer86). There are two reasons for choosing the ATMS to

model the substructure “ackground knowledge. First. the justification network in an ATMS

Lo

Ik . : o . .

o captures the hierarchical representation inherent in substructures. Second. the maintenance of
A | N . i

AN several environments in which a node is supported allows not only the determination of
R

substructure existence, but provides the occurrences as well. This will become clear in the next

s |
-, section.
o
R " In the ATMS used by SUBDUE. there are two types of nodes: base nodes and substructure
®
'O nodes. The base nodes are the leaves of the hierarchical background knowledge tree. A base node
o=

:-.-} represents a single relation with a unique values list. Thus, [ON(X,Y)=T], [COLOR(X)=RED] and
o

j-{_ [COLOR{X)=RED.BLUE] would be different base nodes in the hierarchv. At the lowest level in the
® . .

7 hierarchy. these base nodes serve as justifications for the higher level substructure ncdes. Each

base node mayv support any number of substructure nodes at anv level in the hierarchv. A

substructure node represents a substructure formed by adding one base node relation 10 either a

mcre primitive substructure node or another base node relation. Thus, each substructure node has
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Figure 3.7. Substructure Background Knowledge Example

-

a7 exactly two justifications. When both justifications are supported, the substructure node is also
~

supported.
- As an example. recall the substructure shown in Figure 3.6a. The background knowledge
4
- hierarchy for this substructure is shown in Figure 3.7. The question mark appearing in the
- hierarchy represents an object. Thus. the substructure containing the question mark is

[SHAPE(X)=TRIANGLE]J[ON(X,Y)=T], where the question mark corresponds to the object argument Y.

Y, ]

Other objects in the hierarchy are represented by the pictorial equivalent of their shape attiribute.

Next. suppose either the user or SUBDUE wants to add the substructure from Figure 3.2a to

the substructure background knowledge hierarchy in Figure 3.7. The resulting hierarchy is shown

A2

in Figure 3.8. This hierarchy is obtained by first treating the new substructure as an example and

'..:- finding the highest level substructure already in the background knowledge hierarchy that occurs
]

in the new substructure. In this case, the entire hierarchy of Figure 3.7 is justified by the new
S
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Figure 3.8. Two Background Knowledge Substructures

substructure and is used as support for the new substructure. Again, a question mark is used to
represent the object argument to the on relation. because the object does not have a skape attribute

at that level of the hierarchy.

As a final example, Figure 3.9 shows the resulting hierarchv after adding the specialized

substructure from Figure 3.6b to the hierarchy of Figure 3.8. As new substructures are added by
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Figure 3.9. Three Background Knowledge Substructures

the user or by SUBDUE. the substructure background knowledge grows incrementally to define the

new substructures in terms of the substructures already known.

3.4.2. Identifying Substructures in Examples

As described in Section 2.8, the substructure discovery algorithm includes. in the set of initial

substructures. any background knowledge substructures occurring in the set of input examples.
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o,
o
e
;
?é The identification process described in this section determines which background knowledge
‘-}' substructures occur in the input examples. Furthermore, the identification process also finds each
'.:,.j occurrence of the identified substructures. The method of identification used by SUBDUE is
IR <+
i
ﬂ::: illustrated in this section by identifying the substructures in a simple example.
e~ Suppose the current state of the background knowledge is as shown in Figure 3.7, and the
t
gt
": background knowledge substructures occurring in the input example of Figure 3.4 are 10 be
(W,
) identified. First, all the relations in the input example are used as support for the corresponding
E] \’
’ ) base node relations in the background knowledge hierarchy. For example, each
:f.'_-j [SHAPE(X)=TRIANGLE] supports the SHAPE=TRIANGLE base node. Relations having no
:-::‘_:j corresponding base node (e.g.. [SHAPE(C1)=CIRCLE]) are ignored. The base node supports resulting
;';:-f from the current example are shown in Figure 3.10.
-
. .‘_-:_ After the base node supports are constructed, an ATMS-like propagation begins. The only
¥ )
LIRS
z {,i- difference between the normal ATMS propagation and that used by SUBDUE's background
ol
"ol
( | knowledge is that instead of assigning the entire cross product of the two justifications to the
p 'j; supported substructure node, only the combinations resulting in a valid. connected substructure for
‘.'l.
NS
‘_‘-_‘:'_' that substructure node are retained. For instance, the “triangle on top of something" substructure
J' node in Figure 3.10 is not assigned [ON(C1,R1)=T]J[SHAPE(T1)=TRIANGLE], because the resulting
! '_‘_:-'_ substructure is not connected. Similarly, the substructure node is not assigned
o0
- [ON(R1.T2)=T][SHAPE(T2)=TRIANGLE], because the resulting substructure is not a valid instance of
'. the substructure represented by this node. Once the propagation completes. the top level
_:.'.::'_: substructure node will be assigned the set of occurrences identified in the input example. The final
::-:T : substructure node assignments are also shown in Figure 3.10.
p
® The ATMS architecture of SUBDUE’s substructure background knowledge provides a
A
D \:: hierarchical representation and a simple propagation technique for identifving the occurrences of
.p.'t: the background knowiedge substructures in the current set of input examples. With the
N
4 "
) substructure background knowledge module. not only can SUBDUE utilize user-supplied
I~
\d}.
\‘.r\
o
4 4“
Tu
]

L N
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: ) [ON(T1.81)=T][SHAPE(T1)=TRIANGLE] [SHAPE(S1)=SQUARE]
_- ;:: (ON(T2.52)=T}{SHAPE(T2)=TRIANGLE] [SHAPE(S2)=SQUARE]
AR [ON(T3.83)=T][SHAPE(T3)=TRIANGLE) [SHAPE(S3)=SQUARE]

[ON(T4,84)=T][SHAPE(T4)=TRIANGLE] [SHAPE(S4)=SQUARE]

.. - [ON(T1.81)=T}[SHAPE(T1)=TRIANGLE] /

N [ON(T2.52)=T][SHAPE(T2)=TRIANGLE]
AR [ON(T3.83)=T][SHAPE(T3)=TRIANGLE]
{ [ON(T4.54)=T][SHAPE(T4)=TRIANGLE] 9

¥ |

el

IR

ON=T SHAPE=TRIANGLE SHAPE=SQUARE

[ON(T1.81)=T] [SHAPE(T1)=TRIANGLE] [SHAPE(S1)=SQUARE]
[ON(T2.52)=T) [SHAPE(T2)=TRIANGLE} [SHAPE(S2)=SQUARE]
[ON(T3.83)=T] [SHAPE(T3)=TRIANGLE] [SHAPE(S3)=SQUARE]
(ON(T4.54)=T] [SHAPE(T4)=TRIANGLE] [SHAPE(S4)=SQUARE]
[ON(S1.R1)=T]

[ON(C1.R1)=T]

{ON(R1.T2)=T)

[ON(R1.T3)=T] Base Node Support

[ON(R1.T4)=T]

i R
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~ Figure 3.10. Substructure Identification Example

LA A N Y

substructure background Kknowledge. but both specialized and unspecialized substructures

discovered by SUBDUE can be retained for use in subsequent substructure discovery tasks.
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CHAPTER 4

EXPERIMENTS

This chapter presents several experiments that demonstrate SUBDUE's ability to discover
substructure in examples, specialize the substructure and utilize the substructure in subsequent
discovery tasks. In the experiments. the only user-variable parameter to the system is the
computational limit mentioned in Section 2.8. The computational limit represents the maximum
number of substructures considered by the heuristic-based discovery module. In other words. the
computational limit is the maximum number of iterations allowed for the while loop in the
substructure discovery algorithm of Figure 2.4. Unless explicitly stated, the computational limit is

assumed to be half the number of relations in the current set of input examples.

Each experiment is run on a Texas Instruments Explorer. SUBDUE's input and output data

for the experiments of this chapter are given in Appendix A.

4.1. Experiment 1: Varying the Computational Limit

For a given set of examples, the number of substructures considered by the substructure
discovery algorithm depends on the computational limit imposed on the discovery process.
[ncreasing the computational limit allows the algorithm to consider an increasing number of
alternative substructures and improves the chance that the heuristically best substructure is
generated. Experiment 1 demonstrates the effects of varying the computational limit. The results

cbtained by the algorithm on two examples are presented.

Figure 4.1 and Figure 4.2 show the results of the two examples in Experiment 1 run with
‘our different values of the computational limit. As in the illustrations of the background

xnowledge in Section 3.4.1. the question marks in Figure 4.1 represent object ar~uments to the on
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Input Example:
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Computation Limit

Three Best Substructures Discovered

Q ?

ON

4 9
Value(S)=8.8 Value(S)=2.1 Value(S)=1.7
?
: @ 5 0
Value(S)=31.2 Value(S)=9.6 Value(S)=8.8
? O
@ g L B
10
Value(S)=31.2 Value(S)=9.6
Value(S)=9.2
A ?
[ O il
y O ] O

Value(S)=31.2 Value(S)=9.6

O O]

Value(S§)=10.3

Figure 4.1. First Example of Experiment 1
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relation. Thus. the second substructure in the first row of Figure 4.1 is <[SHAPE(N)=SQUARE]
[ON(X.Y)=T]>, where the question mark corresponds to the object argument Y. Other objects in the

figure are represented by the pictorial equivalent of their shape attribute.
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:.:} Figures 4.1 and 4.2 indicate an important quality of the heuristic evaluation function that
1\'\.1:
"'*" applies to most of the examples processed by SUBDUE: the heuristics are weil-behaved. The
:1:"" heuristics prevent the best-first search from straying too far from the path towards the
\
substructure with the highest overall heuristic value. The best substructure discovered with a
)
)
'igj!)- computational limit of six in both Figure 4.1 and Figure 4.2 is the best substructure, according to
t
.{:.r the heuristics, of all possible substructures in the input example.
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The definition of computational limit given at the beginning of this chapter implies, in the
absence of background knowledge. that the best substructure returned by the discovery algorithm
cannot contain more relations than the computational limit. If a substructure of a certain size is
desired. the computational limit must be set higher than this size. However, the results of
Experiment 1 indicate that the limit need not be set much higher than the desired size, if the best
overall substructure is indeed of that size. The heuristics appropriately constrain the search to
consider substructures along a path of increasing heuristic value towards the best substructure in

the input examples.

4.2. Experiment 2: Specialization and Background Knowledge

The ability to retain newly discovered knowledge is beneficial to any learning system.
Applying this knowledge to similar tasks can greatly reduce the amount of processing required to
perform the task. SUBDUE takes advantage of this idea by specializing discovered substructures
and retaining both specialized and unspecialized substructures in the background knowledge.
During subsequent discovery tasks. SUBDUE applies the known substructures to the current task.
As more examples from similar domains are processed. increasingly complex substructures are
discovered i1n terms of more primitive substructures already known. Eventually, SUBDUE's
background knowledge becomes a hierarchical representation of the structure in the domain.
Experiment 2 demonstrates SUBDUE's ability to specialize and retain newly discovered

substructures and illustrates how these substructures might be applied to a similar discovery task.

The examples for this experiment are drawn from the domain of organic chemistry. Figure
4.3a shows the first example for Experiment 2. The example describes a derivative of the
compound Hexabenzobenzene. The best substructure discovered by SUBDUE for this example is
shown in Figure 4.3b. and the specialization of this substructure is in Figure 4 3c. Both of these
substructures are added to the background knowledge. The resulting background knowledge
hierarchy is shown in Figure 4.4. The dashed arrows in Figure 4.4 represent the background

inowledge hierarchy denning the discovered substructure of Figure 4.3b.
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Figure 4.4. Background Knowledge Hierarchy After First Example

The second example is shown in Figure 4.5a. The example describes a derivative of the

compound Triphenvlene. The substructure background Knowledge finds occurrences of both
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previously retained substructures in this input example. ‘"The previously discovered substructure

-. of Figure 4.3b has six occurrences in the example. and the previously specialized substructure of
Figure 4.3c has three occurrences. Each of these substructures is added to the list of base
:; substructures used by the substructure discovery algorithm (see Section 2.8). The previously
)
discovered substructure of Figure 4.3b evaluates tc a higher value than the previously specialized
g substructure: thus, the algorithm begins by considering extensions from the unspecialized
™. substructure. After running the algorithm with a computational limit of 10. SUBDUE produces
™
w the substructure in Figure 4.5b as the best discovered substructure. The resulting specialized
; substructure is shown in Figure 4.5¢c. Again. both of these substructures are added to the
background knowledge. However, SUBDUE takes advantage of the substructures already stored to
;5 deiine the new substructures in terms of the substructures already known. As a result, the

background knowledge is extended hierarchically upward to incorporate the new substructures.
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Figure 4.5. Second Example for Experiment 2
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The background knowledge hierarchy containing the four substructures of this experiment is
shown in Figure 4.6. As in Figure 4.4, the dashed arrows in Figure 4.6 represent the background

knowledge hierarchy defining the discovered substructure of Figure 4.3b.

This experiment demonstrates SUBDUE's ability to utilize previously discovered
substructures in subsequent discovery tasks. Without background knowledge, SUBDUE discovers
the substructure of Figure 4.5b in the second example after considering 29 substructures. With the
background knowledge, SUBDUE discovers the same substructure after considering only 35
substructures As knowledge of a domain increases, SUBDUE can discover more complex
substructures in terms of the substructures already known. For each new example, SUBDUE
applies the known substructures to the example and ‘ncorporate the resulling discovered

substructures into the background knowledge hierarchy.
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Figure 4.6. Background Knowledge Hierarchy After Second Exampie
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4.3. Experiment 3: Discovering Classif ying Attributes in Multiple Examples

Most machine learning systems assume that the description of the input examples incorporates
attributes that are relevant to the learning task. This assumption frequently does not hold, and the
best classifying attributes may be those that are synthesized from 2 combination or a reformulation
of the given attiributes. A recent approach to conceptual clustering, called goal-oriented conceptual
clustering [Stepp86]. uses a Goal-Dependency Network (GDN) to suggest relevant attributes on

which to focus the attention of the conceptual clustering process.

A GDN directs the conceptual clustering technique implemented in the CLUSTER/CA
program [Mogensen87]. In CLUSTER/CA the GDN is provided by the user. However, the user
may not always know which attributes or combination of atiributes are relevant 1o a specific
problem. In this case. the best substructure discovered by SUBDUE in the given examples can be
added to the GDN. The substructure attributes added 1o the GDN suggest problem-specific features
to help focus the conceptual clustering process. Experiment 3 demonstrates how SUBDUE and
CLUSTER/CA work together to discover conceptual clusterings based on newly discovered

substructure attributes.

Thus far, the operation of SUBDUE has been examined in the context of one input example.
SUBDUE operates on multiple input examples in exactly the same manner. SUBDUE always
represents the input examples as a graph with single input examples represented as a single
connected graph. and multiple input examples represented as a disconnected graph with a connected
subgraph component for each example. Because substructures are connected graphs. the
substructures discovered in the context of multiple input examples cannot contain structure

spanning more than one example.

The examples for this experiment consist of ten trains first introduced by Larson [Larson77]
and later used for psychological testing [Medin87). These same trains are used 1o demonstrate the
operation of CLUSTER/CA [Mogensen87). The ten trains used in Experiment 3 are shown in Figure

4 7. Cars within a train are connected with an in-front relation. Each car is descrited bv the
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In CLUSTER/CA the "goodness” of a clustering is measured by a Lexicographical Evaluation
Function (LEF) [Michalski80]. The LEF used for this experiment biases CLUSTER/CA toward
clusterings with an equal number of examples per cluster, clusterings covering the maximum
number of examples. and clusterings having the simplest descriptions. Using this LEF and the GDN

described in [Mogensen87]. the two best clusterings discovered are

Number of cars is "Three” | "Four” | "Five”

Color of engine wheels is "Black” | "White"

When the examples are given to SUBDUE. the best substructure found by the heuristic-based
substructure discovery module is

<[CAR-LENGTH(OBJECT-0001)=SHORTILOAD-NUMBER(OBJECT-0001 )=ONE]
{WHEEL-COLOR(OBJECT-0001)=WHITE]>

In other words. the best substructure found is a short car with white wheels and one load. By
adding this substructure to the original GDN and running CLUSTER/CA again on the same

examples, the two best clusterings discovered are

Number of cars is "Three" | "Four” i "Five"

Number of short cars with white wheels and one load
. " " " L] L] "
is Zero | "One | "Two to Four

The best clustering discovered by CLUSTER/CA is the same as the best clustering discovered
without SUBDUE. However, the second best clustering uses the SUBDUE-discovered substructure
attribute to cluster the input examples. Thus, according to the LEF, this new clustering is better
than the clustering based on the color of the engine wheels. Without the suggestion from SUBDUE,

CLUSTER. CA would not have discovered this conceptual clustering.

That CLUSTER/CA was unable to discover the clustering based on the substructure attribute

suggested by SUBDUE is mostly due to CLUSTER/CA’'s hias tcwards the attributes given in the
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GDN. If CLUSTER/CA were able to use a heuristic like cognitive savings to augment the GDN
with problem-specific attributes, discovering such clusterings would be easier and perhaps more
efficient than the combination of the two systems. Using SUBDUE to focus a conceptual ch.xstering
system like CLUSTER/CA can produce better results than a system with less direction towards

relevant attributes.

Substructure discovery in SUBDUE represents a method for suggesting new attributes on
which to focus the conceptual clustering process. In this way, SUBDUE allows other machine
learning classification systems to discover novel concepts based on attributes that may not have

been considered by the learning system alone.

4.4. Experiment 4: Discovering Macro-Operators in Proof Trees

Experiment 4 illustrates one possible application of SUBDUE to other work in machine
learning and planning. The application demonstrated by Experiment 4 is related to the task of

discovering macro-operators in plans.

There is much related research on learning macro-operators from plans. In the STRIPS
program (Fikes72], once a plan is constructed to perform a given task. the plan is retained as a
macro-operator for use in future planning. By storing the macro-operator in a iriangle table,
subsequences within the original plan are also available as macro-operators. The chunking
mechanism of SOAR [Laird86] offers another method for learning macro-operators. After a
problem is solved, the proof iree used to solve the problem is retained. or chunked for use in future
problem solving. If the proof tree involves previously learned chunks, the new chunk is defined
hierarchicaily in terms of the old chunks. Explanation-based learning (EBL) [Defong86.
Mitchell86] provides a third example of research related to learning macro-operators. In EBL. a
proof tree is generated that proves an example is an instance of the goal concept to be learned. This
croof tree is generaiized and retained as a macro-operator, or schema for use in future learning. As

in SOAR. schemas can be defined hierarchicallv in terms of other schemas.
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In each of these learning paradigms the entire proof tree is considered the macro-operator.

Although STRIPS learns subsequences of the plan as macro-operators, the subsequences are chosen
arbitrarily. SUBDUE offers a method for discovering “interesting” macro-operators within the
structure of the proof tree. Another system that works with the internal structure of a proof tree
is the BAGGER system [Shavlik88]. BAGGER generalizes to N by finding loops in the proof tree
that can be collapsed into one macro-operator representing an iterative instance of the operators
within the loop. The PLAND system [Whitehall87) uses a2 method similar to SUBDUE's to discover
macro-operators involving loops and conditionals in observed sequences of plan steps. Section 5.4

discusses similarities and differences between SUBDUE and PLAND.

Experiment 4 shows how SUBDUE can be used to find a macro-operator within the structure
of a proof tree. The example for this experiment is drawn from the "blocks world" domain. The

operators for this domain are taken from [Nilsson80] and are repeated below:

PICKUP(x)
Preconditions: ONTABLE(x), CLEAR(x). HANDEMPTY
Add: HOLDING(x)
Delete: ONTABLE(x), CLEAR(x), HANDEMPTY

PUTDOWN(x)
Preconditions: HOLDING(x)
Add: ONTABLE(x). CLEAR(x). HANDEMPTY
Delete: HC .OTNG{x)

STACK(x.y)
Preconditions: HOLDING(x). CLEAR(y)
Add: HANDEMPTY. ON(x,y), CLEAR(x)
Delete: HOLDING(x), CLEAR(y)
UNSTACK(x.y)
Preconditions: HANDEMPTY. CLEAR(x), ON(x.y)

Add: HOLDING(x). CLEAR(y)
Delete: HANDEMPTY, CLEAR(x), ON(x.y)

For this example. suppose the initial world state is as shown in Figure 4.8a. and the desired
oal :s in Figure 4.8b. The proof tree of operators to achieve the goal is shown in Figure 4.8c. With

this proof tree as input. SUBDUE discovers the substructure shown in Figure 4.9. The
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[ON(A.C)JON(D.G)]

(b) Goal

GOAL
STACK(D.G) STACK(A.C)
UNSTACK(F.G) PICKUP(D) UNSTACK(B.C) PICKUP(A)

TN | |

UNSTACK(E.F) PUTDOWN(E) PUTDOWN(F) PUTDOWN(B)

(¢) Proof Tree

Figure 4.8. Proof Tree Example for Experiment 4

substructure represents a macro-operator for accomplishing a subgoal to stack a block X on another

block Z when a block Y is already on top of block Z.

The macro-operators discovered by SUBDUE can be used in several ways. Replacing the
occurrences of the macro-operator in the original proof tree by instantiations of the macro-operator
can reduce the storage requirements of the schema constructed from the entire proof tree.

Retaining the macro-operators might improve the performance of the explanation process in an EBL
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Figure 4.9. Discovered Macro-Operator

system, because the macro-operators may occur in subsequent examples. If the discovered macro-~
operators are added to SUBDUE's background knowledge. a hierarchy of macro-operators can be

constructed. This hierarchy might serve as an initial domain theory for an EBL system.

4.5. Experiment 5: Data Abstraction and Feature Formation

Experiment 5 combines SUBDUE with the INDUCE system [Hoff83] to demonstrate the
improvement gained in both processing time and quality of results when the examples contain a
large amount of structure. A Common Lisp version of INDUCE was used for this example running

on the same Texas Instruments Explorer as the SUBDUE system.

Figure 4.10a shows a pictorial representation of the three positive and three negative examples
given to INDUCE. Each of the symbolic benzene rings in the examples of Figure 4.10a corresponds
to the detailed description of the atomic structure of the benzene ring. similar to the one shown in
the left side of Figure 4.10c. The actual input specification for the six examples contains a total of
178 relations of the form [SINGLE-BOND(C1.C2)=T] or [DOUBLE-BOND(C1.C2)=T]. After 160

seconds of processing time. INDUCE produces the concept shown in Figure 4.10b.
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All six examples were given to SUBDUE using the same 178 relations. After considering
seven alternative substructures for 15 seconds of processing time, SUBDUE discovers the
substructure concept of a benzene ring as shown on the left side of Figure 4.10c. The newly
discovered substructure concept is then used to reduce the complexity of the original examples by
replacing each occurrence of the benzene ring with a single relation. ie., [BENZENE-
RING(C1.C2.C3.C4,C5,C6)=T]. Using the reduced set of positive and negative examples, INDUCE
then produces the concept on the right side of Figure 4.10c in 38 seconds of processing time. In
Figure 4.10c the symbolic benzene rings represent the BENZENE-RING relation, not the complex

structural representation used in the original descriptions of the examples.

By abstracting over the structure representing the benzene ring, SUBDUE allows INDUCE to
discover the desired concept distinguishing the positive and negative examples: benzene rings are
paired across one carbon atom in the positive examples, but not in the negative examples. INDUCE
represents this concept in terms of the high-level benzene ring feature provided by SUBDUE.

Furthermore, the processing time of SUBDUE and INDUCE combined (53 seconds) represents a
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n speedup of 3 over INDUCE alone. This experiment demonstrates how the substructures discovered
-' by SUBDUE can improve the results of other learning systems by abstracting over detailed

structure in the input and providing new features.
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CHAPTER §

RELATED WORK

This chapter presents related work on discovering substructure in examples. Describing
examples in terms of their subparts suggests a gestalt approach to substructure discovery. Gestalt
theory motivates several of the ideas behind the substructure discovery algorithm. In the area of
machine learning, Winston's ARCH program contains mechanisms for discovering groups of objects
in examples. More recent work in machine learning related to substructure discovery includes
Wolff's SNPR program for language acquisition and Whitehall's PLAND system for discovering

substructure in action sequences.

5.1. Gestalt Psychology

Many of the ideas in this thesis originated from work in gestalt psychology [Kohlerd7].
Gestalt theory identifies several underlying cognitive processes that humans use to perceive
structure 1n a visual scene. In particular, two of the heuristics used for substructure evaluation
(see Section 2.4) are derived from Wertheimer's Principles of Organization (Wertheimer39]. The
compactness heuristic is a generalization of Wertheimer's Factor of Closure. and the connectivity
heuristic is derived from Wertheimer's Factor of Proximity. Other research has shown that gestalt
theory. particularly Wertheimer's principles. applies successfully to problems in the visual domain.
For instance, Narasimhan prcposes a Syntactic Model that applies gestalt phenomena to the analysis
and cescription of pictures {Narasimhan63]. The model is used to detect alphabetic characters in
pictures and linear elements in bubble chamber negatives. Also, Tuceryan and Ahuja apply results
from the gestalt theory to the problem of finding perceptual structure in dot patterns
{Tucer:an87]. Other psvchological theories elaborate on the gestalt theory 1o arrive al more

detailed explanaticns for the perceptual grouping abilities exhibited by humans [Treisman82]. The
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implications of these gestalt theories guided the development of the substructure discovery

algorithm.

5.2. Discovering Groups of Objects in Winston’s ARCH Program

Winston's ARCH program [Winston75] discovers substructure in order to deepen the
hierarchical description of a scene and describe groups of objects as individual concepts. The ARCH
program searches for two types of substructure in the blocks world domain. The first type
involves a sequence of objects connected by a chain of similar relations. The second type involves a
set of objects each having a similar relationship to some "grouping” object. The approach used by
the ARCH program begins with a conjecture process that searches for occurrences of the two types
of substructure. Next. the revision process excludes from the group those occurrences that fall
below a given threshold of the group’s average. This section discusses the method by which the
ARCH program discovers both types of substructure and how the method compares to that of
SUBDUE.

When searching for sequences of objects, the ARCH program considers chains of objects
connected by SUPPORTED-BY or IN-FRONT-OF relations. All such chains with three or more

objects qualify as a sequence. However, as illustrated in Figure 5.1. not all objects in a sequence

Figure 5.1. Sequence Termination Conditions
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belong in the sequence. The revision process removes such objects according to three rules:

Yo o .
X 153.3":.#.':..

Y terminate chains at junction points. break chains at size differences, and break chains at
-::\:':'. nonlinearities. As an example of the first rule, consider Figure 5.1a. Two sequences of
23:’- SUPPORTED-BY relations are conjectured: A-B-C-D and A-B-C-E. However. the junction point at
) :: C causes the program to remove D and E from the sequences, resulting in one final sequence, A-B-C.
:-:::: Figure 5.1b demonstrates the applicability of the last two rules. The sequence of seven objects. A-
‘:'.:E B-C-D-E-F-G. connected by IN-FRONT-OF relations is broken into two sequences, A-B-C and E-
i F-G., because the objects of the original sequence are not collinear and differ in size. Upon
'_'::::{: completion of the revision process, the ARCH program uses the remaining sequences to describe the
.:-_ groups of objects as single concepts.

..'~ When searching for groups of objects with a common relation to another object. the ARCH
2 program generates groups based on one common relation and then removes objects from the group
‘ to maintain a homogeneous set of objects. As an example of the procedure. consider Figure 5.2.
The procedure begins by forming the common-relationships-list, a list of all relations possessed by
;: :;N more than half of the objects in the group. Objects A through E are considered as a possible group
% x_:,; because they all possess a SUPPORTED-BY relation to object F. The relations of the candidate
.,

O objects are:

niNe

el }-‘%‘FIEQ_Q
F

Figure 5.2. Common Relations Example
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A. B C
1 SUPPORTED-BY relationto F
2 MARRIES relation to F
3 A-KIND-OF relation to BRICK
4 HAS-PROPERTY-OF relation to MEDIUM

1 SUPPORTED-BY relationto F

2 MARRIES relationto F

3 A-KIND-OF relation to BRICK

4 HAS-PROPERTY-OF relation to SMALL

1 SUPPORTED-BY relation to F

2 MARRIES relation to F

3 A-KIND-OF relation to WEDGE

4 HAS-PROPERTY-OF relation to SMALL

The common-relationships-list contains the four relations possessed by more than half the

candidates:

Common-Relationships-List:
1 SUPPORTED-BY relation to F
2 MARRIES relation to F
3 A-KIND-OF relation to BRICK
4 HAS-PROPERTY-OF relation to MEDIUM

Next. the procedure measures how typical each candidate is in comparison to the relations in the

common-relationships-list. The measure is computed as

Number of properties in intersection

Number of properties in union

where the intersection and union are of the candidate’s relations list and the common-relationships-

list. Tue results of using this measure to compare each candidate are:

A compared to common-relationships-list: 4/4 = 1
B compared 10 common-relationships-list: 4/4 = 1
C compared 1o common-relationships-list: 4/4 = 1
D compared 10 common-relationships-list: 3/4 = .75
E compared to common-relationships-list: 2.4 = .5
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o
f k:-i Next, the procedure removes those objects having a comparison measure less than 80 percent
P
DL
( ' of the highest value. Thus, D and E are removed from the set of candidates. Object D is removed
D . . . . .
) : ' because of its uncommon size. and object E is removed because of its uncommon size and shape.
o . . . . .
Lot The evaluation procedure repeats until none of the objects are eliminated from the candidate set.
D' e
o
‘ ) N - 3 . -
') In the example of Figure 5.2, the resulting set contains objects A. B and C.
Yl
~, . . . .
| .'-‘r_. The substructure discovery procedure used by the ARCH program differs from SUBDUE in
K -l‘h'-.".
L~ . . .
p~o several ways. First, the methods employed by the ARCH program are designed specifically for the
-’“-'
( “ blocks world domain. For instance, the sequence discovery method looks for SUPPORTED-BY and
o
.::::-(‘. IN-FRONT-OF relations only, and the sequence termination conditions depend on discrepancies in
v
Y N
* ". - . . . .
) -;:',: particular relations such as size and shape. SUBDUE's substructure discovery method is domain
Ll
M
® independent (assuming the domain is representable in first order predicate calculus).
23
A Second, the ARCH program’s method for discovering objects with common relations to
) a
oo
R‘ ." . - . .
o another object represents a different approach to discovering such substructure. The ARCH
»
‘ program begins with a prototype object whose relations are kept on the common-relationships-list.
A
YA The prototype object is modified as some objects are eliminated from consideration, while relations
TN
P . . . . v .
- from other objects become more common in the remaining candidate objects. Hcwever, this
) procedure is somewhat arbitrary due to the more than half and 80 percent threshold criteria used 10
SN
NN add relations and drop objects, respectively. Alternatively, SUBDUE relies solely on the heuristic
».‘{.‘-
0N value of a substructure as the measure of "interestingness.” Maintaining a prototype substructure
L is a more intelligent method for discovering an appropriate substructure: however., domain
f.j-::: knowledge must be present to suggest such prototypes. SUBDUE simulates the use of prototypes
Ir, .-
by suggesting background knowledge substructures, but more work is needed t0 incorporate other
s
® . types of domain knowledge for suggesting appropriate substructure prototvrpes.
AR
LSkt
o, . . L. .
.,-'_:;:: Third. the ARCH program discovers substructures containing only one type of object. The |
,-t.“:', |
e objects in a sequence must all have the same size or shape. Although the objects in a grouping are ‘
_?__.. not constrained to be the same tvpe, the ARCH program prefers groupings whose objects are the
SO
\-:_\{.
‘::.:‘
o
A\ 66
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same tvpe. In SUBDUE. the type of an object is an attribute relation. and attribute relations are
treated as any other relation during the discovery process. SUBDUE does not constrain the
discovered substructures according to the types of the objects in the substructure. Extending the
ARCH program to more easily discover substructures with different object types does not seem
difficult. Running both the sequence and common relation discovery processes more than once
might encourage the ARCH program to build substructure concepts containing objects with
different types. However, the new process would still remain dependent upon the blocks world

domain.

The final comparison of the two systems involves the representation used to store the
discovered substructures. The ARCH program utilizes the semantic network formalism. Here. the
substructure node has a TYPICAL-MEMBER link to a general description of the prototype
substructure. and each occurrence is linked to the same substructure node with a GROUP-
MEMBER. Also, a FORM link notes the substructure type of the node: sequence or common
property. In SUBDUE. only the substructure description is retained in the background knowledge.
Furthermore, the background knowledge maintains the substructures in a hierarchy that defines
complex substructures in terms of previously learned, more primitive substructures. Although the
semantic network formalism of the ARCH program can represent hierarchical structures, Winston
does not mention this ability explicitly [Winston75]). The substructure representation used bv
SUBDUE's background knowledge is overly rigid. Eventually, SUBDUE must be able to represent
background knowledge other than substructures. For this reason. SUBDUE would benefit from a

more general representation such as the semantic network used by the ARCH program.

53. Cognitive Optimization in Wolff’s SNPR Program

Research toward a comprehensive theory of cognitive development has led Wolff 1o postulate
that optimization is a major underlying goal in building and refining a knowledge structure
[Wcliff$8]. The resulting knowledge structures are optimally efficient for the required tasks.

Furthermore. Wolff presents six data compression principles for impiementing tae ortimizat:on
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process: (1) formation of AND groupings, (2) formation of OR groupings. (3) choosing among
groupings according to frequency and size, (4) recursion, (5) generalization. and (6) schema plus
correction. Wolff's SNPR program [Wolff82] embodies all but the sixth principle. The third data
compression principle plays a central role in SNPR by selecting the conjunctions. disjunctions,
recursive structures and generalized structures that form a knowledge structure having maximum
data compression capacity. Mazximizing data compression is the same idea behind the cognitive
savings heuristic employed by SUBDUE. This section briefly describes the SNPR program and

compares the heuristic approaches of SNPR and SUBDUE.

The SNPR program utilizes the first five data compression principles to learn grammars from
input texts. SNPR forms conjunctive (AND) groupings. or chunks, by detecting frequently used
substrings within the input text. For example, the text, ABPQRABABPQRAB,. may be reduced to
xvxxyx, where <x — AB> and <y — PQR>. Likewise, SNPR learns grammars with disjunctive
(OR) groupings. such as <x — JOHNyMARY> and <y — LOVES | HATES> (where "" means
exclusive OR). These groupings are chosen according 1o their size and frequency within current and
previous input texts. SNPR is capable of learning recursive grammars, such as <x — ABx>.
Generalization is accomplished by replacing the elements of an OR grouping with a disjunction of
the elements. For example. the OR grouping < THE | ONE> would replace instances of <THE>
and <ONE> in previously formed structures. Overgeneralizations are corrected through a process
called rebuilding that removes elements from disjunctive structures when the particular instance

was never seen. For instance, if the substring ABRCD was never seen in the input text. then the

structure <ABxCD>, <x = PI1Q!R> is reconstructed as <AByCD>, <y — PI1Q>.

The goal of the SNPR program is to find a grammar that generates the input text and provides
the maximum amount of data compression. Wolff measures the data compression provided by a
grammar by considering the amount of data compression provided by each production rule. or
eiement.

in the grammar. This measure is called the compression vaiue (CV' ) of the element and is

denned as
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f*(S—s)
S

CV, =

where f is the frequency of the element in the input text, S is the size of the element and s is the
size of the pointer used to replace. or instantiate, the element in the input text. Thus, f*(S-s)
represents the reduction in size of the input text after replacing each occurrence of the element by a
pointer to the element. Dividing this term by the cost S of storing the element yields a value that
increases as the amount of data compression provided by the element increases. Therefore, SNPR

seeks a grammar whose elements maximize CV,.

SNPR’s compression value is similar to SUBDUE’s cognitive savings. Recall from Section
3.2.2 that SUBDUE computes the cognitive savings of a substructure as a function of the number
of occurrences (frequency) of the substructure and the size of the substructure. If the number of
occurrences of the substructure is f, and the size of the substructure is S, then the cognitive savings

of the substructure can be expressed as

cognitive_savings = S*(f-1)=Sf - §

There are two differences between this expression for cognitive savings and the expression for
compression value. First, the size of the pointer replacing the substructure occurrences is not
considered in the cognitive savings value. Second. the size of the substructure is subtracted from
the reduction term in the cognitive savings value; whereas, the size of the element is divided into
the reduction term in the compression value. These differences suggest possible future

improvements 10 the cognitive savings measure.

5.4. Substructure Discovery in Whitehall’s PLAND System

The PLAND system [Whitehail87] discovers substructure in an observed sequence of actions.
These substructures are termed macro-operators or macrops. PLAND incorporates generalization
with diferent levels of background knowledge to discover three tvpes of macrops: sequences. loops

and conditionais. SUBDUE is simiiar to PLAND in that both svstems use the cognitive savings
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heuristic to select among alternative substructures. and both systems utilize previously discovered
substructures in subsequent discovery tasks. This section discusses the PLAND system and

analyzes these similarities in more detail.

Input to the PLAND system consists of a sequence of primitive actions. Each action is related
to the next action by a follows relation. The input sequences can be a list of complex actions, such
as MOVE. PICKUP. PUTDOWN, or simply a list of letters similar to the input of Wolff's SNPR
program described in the previous section. As mentioned above, PLAND searches the input for
three types of substructure: sequences. loops and conditionals. Sequences are blocks of actions that
appear repetitively throughout the input sequence. PLAND maintains sequences as partial macrops
and promotes them to complete macrops only upon recommendation from background knowledge.
Loops are sequences of actions appearing consecutively in the input sequence. Loops are expressed
in a formal grammar syntax. For example, the loop in the input sequence, ABCBCEBCBCBCEF, is
expressed as (BC)*. Conditionals allow a choice of actions within a macrop. For example, within
the input sequence. ABDCBECFBECBDCBDCG, PLAND discovers the macrop (B(D+E)C)*. Once
primitive macrops are discovered, PLAND can discover more complex macrops in terms of these

primitive macrops and construct a hierarchical representation of the input sequence.

PLAND processes the input sequence at different levels of abstraction (generalization), called
conzexrs. For instance, the original input sequence is a context. After PLAND discovers macrops in
the original input sequence. the sequence of actions described by the best macrops are replaced bv
singie forms representing the macrops. These macrops act as single actions in another. more
abstract context. Within a context PLAND considers alternative macrops according to agendas. An

agenda contains information about where to look for a macrop within the input sequence.

At each level of processing. PLAND uses background knowledge 10 guide the search for
macrops. High level background knowledge is used 1o determine which context to process next.
Medium level background knowledge determines which agenda to process next. Low level

nsackground knowledge controls the type of macrops considered by PLAND. These background
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knowledge rules are typically domain dependent. although PLAND also functions in the absence of

this knowledge.

The PLAND system uses the cognitive savings heuristic 1o evaluate macrop substructures.

The cognitive savings used by PLAND is computed as

cognitive_savings = (number of macrop occurrences - 1) * length of macrop

The only difference between this definition and SUBDUE's is the modification in SUBDUE's
definition to allow for overlapping substructures. PLAND does not allow macrops in an agenda to
overlap. Using the cognitive savings heuristic allows PLAND to select among competing partial

macrop agendas and to select complete macrops for instantiation in the input sequence.

Observed Action Sequence:
ABYXXXYXXZYXXYXXXXZ

CONTEXT 1
cogsav macrops
100 M, =(X)*

1125 M, =(Y M, *»
8.5 M, =(M,*2)*

Instantiated Action Sequence:
ABM,,ZM,,Z

CONTEXT 2
cogsav macrops
2.0 M, =M, ,* )

Instantiated Action Sequence:
ABM,,

All interesting macrops discovered.
End.

Figure 5.3. PLAND Example
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Figure 5.3 demonstrates the results obtained by PLAND on a simple action sequence. In this
example PLAND is run without background knowledge. The naming convention for the macrops.
M_,. indicates that the macrop is the nth macrop discovered in context ¢. Within the first context,
PLAND discovers three loop macrops: M, = (X)*, M, = (Y M, *)* and M, ; = (M, ,* Z)*. Notice
how PLAND builds a hierarchical structure by discovering new macrops in terms of recently
discovered macrbps. Along with each macrop is its cognitive savings value. PLAND replaces all
occurrences of the best macrop with an atomic form, M, , in this example. PLAND then creates a
second context with the instantiated input sequence. In this context PLAND discovers only one

macrop: M, | = M, ,* Z)*. After instantiating this macrop in the input sequence. PLAND finds no
more interesting macrops in the sequence.

PLAND demonstrates the applicability of the cognitive savings heuristic to substructures
different from those discovered by SUBDUE. Although PLAND is unable to retain the discovered
substructures for use in subsequent action sequences, retention of the macrops as rules in the
existing background knowledge does not seem difficult to implement. Instead. PLAND uses
discovered macrops in subsequent discovery tasks within the same input sequence. Retention and
instantiation of substructures not only across examples, but also across iterations of the discovery

algorithm might improve SUBDUE's performance.
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CHAPTER 6

CONCLUSION

Complex hierarchies of substructure are ubiquitous in the real world and. as the experiments
of Chapter 4 demonstrate, in less realistic domains as well. In order for an intelligent entity to
learn about such an environment, the entity must abstract over uninteresting detail and discover
substructure concepts that allow an efficient and useful representation of the environment. Thi.
thesis presents a computational method for discovering substructure in examples from structured
domains. Section 6.1 summarizes the substructure discovery theory and methodology discussed in

this thesis, and Section 6.2 discusses directions for future work in substructure discovery.

6.1. Summary

The purpose of substructure discovery is to identify interesting and repetitive structural
concepts within a structural representation of the environment. Such a discovery system is
motivated by the needs to abstract over detail, to maintain a hierarchical description of the
environment and 10 take advantage of substructure within other knowledge-bases to reduce storage
requirements and retrieval times. This thesis presents the important processes and methodoiogical

alternatives involved in a computational method for discovering substructure.

A substructure discovery system must generate alternative substructures to be considered by
the discovery process. Four methods of substructure generation are discussed: minimal expansion.
combination expansion. minimal disconnection, and cut disconnection. These methods differ along
two dimensions. The expansion methods generate larger substructures bv adding structure to
smaller ones, while the disconnection methods generate smaller substructures by removing

structure {rom larger ones. The minimal methods add or remove only small amounts of structure
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. to generate new substructures, while the combination and cut methods add or remove large
- . . . .
o amounts of substructure t0 generate new substructures. A third dimension along which these
»: methods may differ is the knowledge available for constraining the type and number of "
{ 7
. substructures generated. Background knowledge pertaining to the types of expansions or :]
- disconnections performed may improve the performance of the substructure generation methods.
\
». . L
.. Once the alternative substructures are generated, the substructure discovery system must j
select the more interesting substructures from among the alternatives. The proposed method of "
\ i
» |
substructure selection chooses the best substructures according to four heuristics: cognitive savings, i
- compactness. connectivity. and coverage. Several experiments demonstrate the applicability of ’:-y
: these heuristics to the task of identifying interesting substructures.

’ The substructure generation and substructure selection processes form the nucleus of the <
8- substructure discovery algerithm. The algorithm performs a computationally-constrained best- :}l
) -

~ first search through the generated substructures. The search is guided by the four heuristics. The
N
result of the substructure discovery algorithm is the best substructure found within the amount of
{ et
o computation allotted to the algorithm. The discovery system can then perform several operations

P d
rox_2
p o

- with this substructure. First, the substructure can be specialized by appending additional

siructure. Specialization serves to annotate the substructure with additional information about the

' =3
» context in which the substructure may be applicable. Second. the discovery system may retain
- both the original and specialized substructures for use in subsequent discovery tasks. The 3
( substructures are maintained in a hierarchy to preserve the hierarchical structure of the
~
. : . A . -
3 environment and to exploit previously learned substructures in the representation of newly S
: discovered. more complex substructures. Third. the substructure can be used 10 simplify the -
- A
( original input examples by instantiating each occurrence of the substructure with a single form. -
- The simplified description of the examples mav then be passed 10 other learning svstems. In
{ P : A g S) -
3
tx addition. the subsiructure discovery process may be appiied . “netitivelv to further simplify the
> - ‘.
examples or to build a hierarchical interpretation of the examples in terms of their sutparts.
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The SUBDUE system is an implementation of the processes involved in substructure
discovery. SUBDUE contains three modules: the heuristic-based substructure discovery module,
the substructure specialization module, and the substructure background knowledge module. The
heuristic-based discovery module utilizes the substructure generation and selection processes and
optional background knowledge to identify interesting substructures in the given input examples.
The specialization module modifies the substructure to apply in a more constrained environment.
The background knowledge module retains both the discovered and specialized substructures in a
hierarchy and suggests to the heuristic-based discovery module which of the known substructures
apply to the current set of input examples. Experiments with SUBDUE demonstrate the utility of
the guidance provided by the heuristics to direct the search towards more interesting substructures
and the possible applications of the SUBDUE substructure discovery system in a variety of

domains.

The ability to discover substructure in a structured environment is important te¢ the task of
learning about the environment. For this reason. substructure discovery represents an important
class of problems in the area of machine learning. Operation in real-world domains demands of
.earning programs the ability to abstract over unnecessary detail by identifying interesting patierns
in the environment. Empirical evidence from the SUBDUE system demonstrates the applicability
of the concepts presented in this thesis to the task of discovering substructure in examples.
Expanding upon these underlying concepts may provide more insight into the development of a

substructure discovery system capable of interacting with a real-world environment.

6.2. Future Research

Several extensions and applications of the substructure discoverv method and the SUBDUE
system require further investigation. Interesting extensions to the substructure discoverv method
~ciude the incorporation of new heuristics and background knowledge into the discoveryv process
and the ability to discover other types of substructure. Improved methods of substructure

:nstantiaticon are needed to hetler capture the abstracuion provided by a substructure. The

Pt T S I A A
N e W .',"?t.,,-_,& y 2 "-P'.-‘

Y. 4

.
N L
NN AN

Al

e e T T



L'
xR

f"v/ L

A
a
54

- g ot e s

[l 2 e
s
[

N 1

'
oLt

1
[ S
PRI
I

@®>
K .

..-- -~--,..
. » x
,l,‘_l,',l,.. Eaa )
PR [ A AP A
A IO e
'.""-'.'.'.'

T
R N L '

Py

,
e
.

PE

i
.

v .
LR DR
'

-
o

substructure background knowledge must be extended to accommodate other forms of background
knowledge and to allow flexible application of this knowledge. Promising future applications of
the subsiructure discovery system include visual image processing, database organization and

consiructive feature formation.

6.2.1. Substructure Discovery and Instantiation

Currently, the substructure discovery algorithm relies solely on the four heuristics for
directing the search toward interesting substructures. Although background knowledge may
suggest substructures from which to begin the discovery process. this knowledge does not affect the
operations performed by the algorithm. One potential improvement to the discovery algorithm is
the utilization of background knowledge to intelligently constrain the substructure generation
process. When expanding a substructure to gencrate new substructures, some expansions may be
better than others. Background knowledge rules that prefer certain expansions to others may
significantly reduce the number of substructures generated by the current exhaustive substructure
generation process. Furthermore. these rules can be learned by monitoring the contributions of

certain expansions to the discovery of interesting substructures.

Just as the substructure generation process can be constrained, the substructure selection
process can also be constrained through the use of appropriate background knowledge and the
application of new heuristics. Although the cognitive savings heuristic should play a central role in
any substructure heuristic evaluation function. it and other heuristics by no means represent the
only dimensions along which to measure the goodness of a substructure. For instance. by
incorperating the substructure specialization module into the discovery process. the measure of the
amount of specialization provided by a substructure could be intergrated into the heuristic
evaluation function. This new discovery process may improve the quality of the discovered
substructures over those resuliting from the separate module approach. A better approach to the

intreduction of new heuristics is through background knowledge. Previouslyv learned rules could
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suggest heuristics to apply during the discovery process according to the current domain and the

previous success of similar rule applications.

In addition to increasing the intelligence of the substructure discovery process, further
research is needed to increase the scope of the process. Currently. there are several types of
substructures that cannot be discovered. For instance, the current discovery algorithm cannot
discover  recursive substructures, substructures with negation (e.g., <[ON(X.Y)=T]
(COLOR(X)=RED]> ), or substructures with constraints on the type of structure to which they can
be connected. The ability to discover these types of substructures will require major modifications
in both the background knowledge architecture and the operations performed by the discovery

algorithm.

Improvements in both the scope and the performance of the cubstructure discovery process
may arise from a better method of substructure instantiation. Current methods do not
satisfactorily represent the full amount of abstraction provided by a substructure. Instantiation
by a single object retains no information about the way in which the substructure was connected
with the rest of the input example. Contrastingly. instantiation by a single relation preserves
external connection information for each object in the substructure. An instantiation method that
combines both approaches may be more appropriate. Better substructure instantiation methods
would allow abstraction to take place automatically within the discovery process. The discovery
process could work at several levels of abstraction by instantiating intermediate substructures into
the current set of input examples. In this way several hierarchically defined substructures may be

discovered with a single application of the discovery algorithm.

Many of the suggested improvements to the substructure discovery process represent
extensive modifications to the current methodology. However, most of the improvements involve
the use of alternative forms of background knowledge. The proposed extensions to the discoverv

process may be simplified by appropriate extensions 1o the substructure background knowledge.
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6.2.2. Background Knowledge

The substructure background knowledge in SUBDUE plays only a minor role in the discovery
process. Currently. the background knowledge maintains discovered substructures. as well as
user-supplied substructures and identifies which of these substructures occur in the input
examples. The discovery process uses these substructures as starting points. The idea behind most
of the proposed exiensions to the substructure background knowledge is for the background

knowledge to play an active role in the discovery process.

As mentioned in the previous section, the background knowledge should recommend not only
exact substructures from which to begin the discovery process, but should also suggest heuristics,
substructure generation constraints, and other substructures similar 1o the exact substructures.
One possible method for incorporating such knowledge into the existing substructure hierarchy is
to attach the knowledge to the node representing the substructure. When a substructure is
identified by the discovery process, the attached knowledge augments the discovery algorithm with
new heuristics. generation consiraints. and alternative substructures. Thus. the background
knowledge becomes a hierarchically arranged set of rules with the substructure definitions as the

antecedents and the attached procedural knowledge as the consequents.

Along with the knowledge for directing the discovery process. the substructure nodes may
also contain knowledge indicating the function of the substructure. This can be thought of as a
separate plane of the background knowledge hierarchy. On one plane is the declarative
substructure hierarchy. while a second plane contains the functional hierarchy. As in the
declarative hierarchy. the functional hierarchyv defines the function of a substructure in terms of
more primitive substructure functionality already defined. However. in order for SUBDUE 1o
learn functionality. the input examples must be recast to inuwate the primitive function of their

components. Such information may be difficult to add to the declarative definition of the examples.

Another proposed extension to the background knowledge is to perform onlyv a partial

“"fuzzv") match instead of the exact match. Without partial matching, the knowledge contained at
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- each node of the substructure hierarchy could be used only after identif ying the exact substructure

i to which this knowledge is attached. Developing methods for incorporating "fuzziness” in the
. match would improve the flexibility of the background knowledge.

o

Oy One of the major limiting factors in SUBDUE’s performance is the sparse amount of

knowledge applicable during the discovery process. The proposed extensions to the background

i, ]

o knowledge will significantly improve SUBDUE's ability to learn substructure concepts.

»

' 6.2.3. Applications

5 Several applications appear promising for the SUBDUE substructure discovery system.

i SUBDUE might be used to detect texture primitives and subimages in a visual image, organize and

_i: compress large databases. or discover interesting features in the input to other machine learning

. systems.

.:‘-,

J) One of the goals of visual processing is to construct a high-level interpretation of an image

= composed only of pixels. In this context, SUBDUE could be used to detect repetitive patterns in the
regions of a visual image. Instantiating the patterns to abstract over their detailed representation

,» simplifies the image and allows other vision processing systems to work at a higher level of

abstraction.

The need to access information from large databases has become commonplace in most

' computing environments. Unfortunately, as the amount of knowledge in a database increases, so

. do the storage requirements and access times. Using the database as input. SUBDUE may discover

o

oy repetitive substructure in the data. The substructures can be used to compress the database and

impose a hierarchical representation. This reorganization reduces the storage requirements of the

database and decreases retrieval time for queries referencing data with similar substructure.

An important future application of SUBDUE involves integration with other machine learning

4
. svstems. Most current systems are unable to process the large number of features available 1n a
l reai-world environment. SUBDUE could preprocess the input features and abstract over
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unnecessary detail. By instantiating both previously known and discovered substructures in the
input. SUBDUE reduces the complexity of the input to a level that is tolerable to the other learning
systems. Also, many current learning systems either do not add new features to the input
examples or add only predefined features. SUBDUE offers a method for discovering interesting
features within the input examples. These features can be added to the input examples so that the
other system may learn concepts in terms of features not present in the original input. The results
of experiments in Chapter 4 indicate that integrating SUBDUE into other learning systems may
improve the overall performance of the learning method.

With the extensions discussed in the previous section, the SUBDUE system and the
substructure discovery methodology will provide a powerful tool to aid other machine learning
systems, as well as become a general method for discovering concepts in a richly structured

environment.
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APPENDIX A

EXPERIMENT DATA

This appendix contains the input data and output traces for the experiments in Chapter 4.
The experiments were run on a Texas Instruments Explorer. Input examples are given to SUBDUE

through calls to the DefExample function:
(DefExample "(objects relation-definitions relations))

The objects argument s a list of all the object names referred to in the relations of the example.
The relacion-definitions argument is a list of relation definitions, where each definition is a list with
two elements. The first element is the name of the relation, and the second element is T, if the
order of the arguments to the relation is relevant. and NIL otherwise. Finally, the relations
argument is a list of relations, where each relation is a list with three elements. The first element is
the relation name. The second element is a list of object arguments to the relation, and the third
element is the value of the relation. Multiple examples are defined through multiple calls to the

DefExample function.

Once the input examples are defined. a call to the subdue function generates the output traces

shown in this appendix. The subdue function has several keyword arguments:

limit The computational limit on the substructure discovery algorithm. Default is NIL.,
which sets the computational limit to half the number of relations in the current
set of input examples. A nonzero. positive integer may be specified. The
computational limit is the number of substructures considered by the algorithm.

:connectivity A boolean value indicating whether or not SUBDUE should apply the connectivity
heuristic to the cognitive savings. while evaluating a substructure. Default is T.

:compactness A boolean value indicating whether or not SUBDUE should apply the compactness
heuristic to the cognitive savings, while evaluating a substructure. Default is T.
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A boolean value indicating whether or not SUBDUE should apply the coverage
heuristic to the cognitive savings, while evaluating 2 substructure. Default is T.

A boolean value indicating whether or not SUBDUE should consult the background
knowledge module for substructures applying to the current set of input examples.
Default is NIL.

A boolean value indicating whether or not SUBDUE should perform the
substructure discovery algorithm on the current set of input examples. Default is
T.

A boolean value indicating whether or not SUBDUE should specialize the best
substructure found by the substructure discovery module. Default is NIL.

A boolean value indicating whether or not SUBDUE should incrementally add the
best discovered substructure and the specialized substructure, if requested via the
previous keyword, to the background knowledge. Default is NIL.

A boolean flag for toggling the output of trace information during SUBDLE's
execution. Default is T.

The result of a call to the subdue function is a list of the substructures discovered in order
from best to worst. Each substructure is accompanied by the occurrences of the substructure in the

input examples. The substructures in the subsequent output traces appear in the following form:

{Substructure#n :value v relazions}
WITH OCCURRENCES:

{relations)

{relations}

The substructure number n indicates that this substructure was the nth substructure discovered.
. The value v is the result of the value(S) computation from Section 3.2.2 for this substructure.

Relations is the list of relations defining the substructure or occurrence.

In all the experiments, the default values are used for the connectivity, compactness. coverage.
discover and trace keywords. Also, to conserve space, only the three best substructures discovered

bv SUBDUE are shown in the output traces, regardless of the computational limit.
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o
‘;:-f. A.l. Experiment 1
o
( ' The purpose of Experiment 1 is to show how varying the computational limit affects the
o
‘~$:: results of SUBDUE's beuristic-based discovery module. The experiment involves two examples,
L)
A . . -
:,(-}. each run for four different values of the computational limit. The DefExample calls for the two
N
G
.) examples and the output traces for each of the eight runs are shown below.
s,
! - -
‘\_f‘-f A.l.1. Input for First Example of Experiment 1
S
-:'.;': (DefExample
et ((t1 12t3t4s1 s2s3sdclc2c3cadcsrl)
' {on 1) (shape nil))
A ((shape (11) triangle) (shape (t2) triangle) (shape (13) triangle) (shape (14) triangle) (shape (s1) square)
Al (shape (52) square) (shape (s3) square) (shape (s4) square) (shape (c1) circle) {(shiape (c2) circle) (shape (c3) circle)
o (shape (¢4) circle) {shape (c5) circie) (shape (r1) rectangie) (on (11 51) 1) (on (sl el) ) ton (Ll s 1)
Lo {on (11 12} 1) (on (r1 13) 1) (on (rl 1) 1) (on (12 52) t) (on (13 53) 1) (on (14 54) 1) (on (s2 c2) 1) (on (53 ¢32 1)
'f-.j (on (s4 c4) 1) (on (c5 11 1))
N
| ]
] ‘. 3 . 3 .
B A.1.2. Output for First Example of Experiment 1: Limit =4
"y > (subdue limit 4)
>
o
~
La Begin trace...
o egin trace
x { Parameters: limit = 4 connectivity =t compactness = 1 coverage = 1
AR use-bk = nil discover = t specialize = nil inc-bk = nil
p J--‘.-.‘
.,::;, Running substructure discovery...
w, o,
R Disccvered the following 4 substructures in 0.23333333 seconds:
o,

\ iSubstructure#d :vaiue 8.780488 ({shape(cbject-0001)=square] [shape( 0bject-0002)=circle] {on(object-0001,0bject-0002 j=t))!
. WITH OCCURRENCES:
- i{[shape(sl j=square] [shape(cl)=circle] [on(sl,c1)=1]}

“:-' ([shape(s2 jasquare] [shape(c2)=circie] [on(s2,c2)=1])}
':x'(' {{{shape(s3)=square] [shapetc3)=circle] {on(s3.c3)=1])}
N {([shapets4)=square] [shapeicd)=circle] [on(s4,c4)=t])}
-
e \Substructure# 3 :value 2.0813007 ({shape(object-0002)=circie] {on(object-0001,00bject-0002)=t})}

WITH OCCURRENCES:

i([snape(cl)=circle] [on(s1.cl)=1]))
i([shape(c2)=circle} {on(s2.c2)=t)}
{({shape(c3)=circte] [on(s3.c3)=1]}
‘({shape{cd)=circie] {onlsd,ca)-1])}

'Substructure#2 :value 1.656963 {{on(obiect-0001,cject-0002)=t])!

o WITH OCCURRENCES:
= {[onlt1.s1=t])i
::. - Hlonirl. 2=t}
vt ilon(12,52)=tD}
. {lon.rl.131=1))}
R R \
e H{lont13.s3=t
'_',.‘*:-' Goomurl . ~4i=tt
o ontdsdi=t]))
® i lonusl.cl =t
‘-;.‘- Tons2e2i=
‘:.":: fon s3.c3 =t
o
N
-t
"nn\
S
'\.‘.‘\ 86
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{({on(s4.c4)=1))}
{({on(cl,r1)=tD}
(([o-n(cs,rl )=t])}

End trace.

A.13. Output for First Example of Experiment 1: Limit=6

> (subdue :limit 6)
Begin trace...

Parameters: limit=6 connectivity = t compactness = t coverage =t
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substructure discovery...
Discovered the following 6 substructures in 0.23333333 seconds:

!Substructure#6 :value 31.219513 ([shape(object-0008)=triangle] [on(object-0008,0bject-0001)=1]
(shape(object-0001)=square] {shape{object-0002)=circle] [on(object-0001 0bject-0002)=1))}

WITH OCCURRENCES:

i([shape(t1)=triangle] [on(t1,51)=t] {shape(sl)=square] [shape(cl }=circle] [on(s1,c1)=t])}

{([shape(12)=triangie] [on(12,52)=t] [shape(s2)=square] {shape(c2)=circie] [on(s2.c2)=1))}

«((>i,ape t)=triangle] {on(13,53)=t] [shape(s3)=square] [shape(c3)=circle] {on(s3,c3)=t])}

'([shape(t4)=triangie] [oz{14 s4)=t] [shape(s4)=square] [shape(cd)=circle] {on(s4,c4)=t])}

'Substructure#S :value 9.560976 ({on(object-0008,0bjec1-0C01 )=t [shape(object-0001)=square] [shape(object-0002 )=circie]
[on(object-0001,0bject-0002)=1D)}
WITH OCCURRENCES:
'(fon(11 s1)=t] {shape(s1 )=square] [shape(cl)=circle] {on(s1.c1)=t]}
:([on(12,52)=1] [shape(s2)=square] [shape(c2)=circle] [on(s2,c2)=tD}
1([on(13,53)=t] [shape(s3)=square] [shape(c3)=circle] [on(s3.c3)=t])}
{{{on(14,54)=1] [shape(s4)=square] [shape(cd)=circie] [on(sd.c4)=t])}
‘Substructure#4 :value 8.780488 ([shape(object-0001)=square] [shape(obiect-0002)=circle] [on(object-0001 object-0002)=t])}
WITH OCCURRENCES:
i([shape(s])=square] [shape(cl)=circle] {on(s1.c1)=t]}}
‘([shape(s2)=square] [shape(c2)=circle] Eon(sz,cz)st])}
(

/([shapets3)=square] [shape(c3)=circle] [on(s3.c3)=t]}
:({shape(s4)=square] (shape(cd)=circie] [on(s4,c4)=t])}

End trace.

A.1.4. Qutput for First Example of Experiment 1: Limit = 10

> {subdue :limit 10)
Begin ‘race...

Parameters: limit = 10 connectivity = 1 compactness = t coverage =t
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substruct re discovery...

Discovered the follow‘ng 10 substructures in 0.6666667 seconds:

Substructure#6 :value 31.219513 ([shape(object-0008 )=triangle] [on(object-0008.cbiect-0001 }=t;
“snapel obiect-0001 =sq are] {shapei object-0002)=circie] {onlobiect-0001 .object-0002)=1]}

WITH OCCURRENCES:
{ishape 1l )=triangie; lon(t1.51)=t] [shape(sl)=squarej isnapelcl i=circle] lontsl.cli=ti;)
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o .1, ‘l

*

{([shape(12)=triangle] (on(12,52)=1] [shape(s2)=square] [shape(c2)=circle] [on(s2,c2)=t])}
{([shape(t3)=triangle] {on(13,53)=t] [shape(s3)=square] [shape(c3)=circle] [on(s3,c3)=t])!
([shape(t4)=triangle] [on(14,54)=1] [shape(sd)=square] [shape(cd)=circle] {on(s4,c4)=t])}

{Substructure#S :value 9.560976 ([on{object-0008,0bject-0001)=1] [shape(object-0001)=square] [shape(object-0002)=circie]
[oniobject-0001,0bject-0002)=t])}

WITH OCCURRENCES:

{([en(11,51)=1] [shape{s1)=square] [shape(cl)=circle] [on(s1,c1)=t]D}

{({on(t2,52)=1] [shape(s2)=square] [shape(c2)=circie] [on(s2,c2)=t]}

{([on(13,53)=1] [shape(s3)=square] [shape(c3)=circle] [on(s3,c3)=1])}

{({on(t4.54)=1t] [shape(s4)=square] [shape(cd)=circle] [on(s4,cd)=t])}

{Substructure#10 :value 9.219512 ([shape(object-0016)=circle] [on(object-0016,0bject-0012)=1]
[shape(object-0012)=rectangle] [on(object-0012,0bject-0008 )=1] [shape(object-0008)=triangle]
{on{object-0008 object-0001 )=1] [shape(object-0001)=square] [shape{object-0002)=circie}
(on(object-0001,0bject-0002)=tD}
WITH OCCURRENCES:
{({shape(cl)=circle] [on(cl,r1)=t] [shape(rl)=rectangie] {on(rl,12)=t] [shape(12)=triangie] {on(12,52)=1] [shape(s2)=square]
[shape(c2)=circle] {on(s2,c2)=t])}
{([shape(cS)=circle] [on(cS5,r1)=t] [shape(rl)=rectangle] [on(r1,12)=t] [shape(12)=triangle] {on(12,52)=1] [shape(s2)=square]
{shape(c2)=circle] [on(s2,c2)=tD}
{{[shape(cl)=circle] [on(el,r1)=t] [shape(r1)=rectangle] [on(r1,13)=t]} [shape(13)=triangle] [on(t3,53)=t] [shape(s3)=square]
[shape(c3)=circie] [on(s3,c3)=t])}
([{shape(os)-cxrcle] {on(c3,r1)=t] [shape(rl)=rectangle] [on(rl,t3)=t] [shape(13)=triangle] [on(13,53)=t] {shape(s3)=square]
[
{
[
{

shape(c3)=circle] {on(s3,c3)=tD}

{([shape(c )=circle] [on(cl,r1)=t} [shape(r1)=rectangle] [on(rl,14)=t] [shape(14)=triangle] (on(t4,54)=t] [shape(sd)=square]
shape(cd)=circle] [on(s4,c4)=1])}

{([shape(cS)=circie] [on(cS,11)=1] [shape(rl)=rectangle] [on(rl,14)=t]{shape(14)=triangle] [on(14,54)=1] [shape(sd)=square]
snape(czt)-cxrc‘c] {on(s4,ca)=1D}

Enc‘ trace.

A.1.5. Output for First Example of Experiment 1: Limit = 14

> (subdue :limit 14)
Beg:!n trace...

Parameters: limit = 14 connectivity =t compactness = 1 coverage = 1
use-b5k = nil discover =t specialize = nil in¢-bk = nil

Runring substiructure discovery...
Discovered the foilowing 14 substructures in 1.6166667 seconds:

iSubstructure#6 :value 31.219513 ([shape(object-0008)~1riangle} lon(object-0008,0bject-0001 )=1)
{shape{object-0001)=square; [shape(object-0002)=circle] [on(object-0001,0bjec-0002)=1])}
WITH OCCURRENCES:
itIsnape( t1)=triangle] (on(t1 s1)=t] [shape(sl1)=square] [shape(cl =circle] [on(sl,cl)=1])}
‘{{snape(t2,="riangle] [ont 12 sZ)=t]fshape(52) -square] [shape(c2)=circie] [on(s2,c2;=t])}
"s. ape(13=triangle] (on(t3.s3)=t (shapc\sj) square ] [shape(c3i=circie] [onts3.c3)=t])}
.snape( t4)=triangic] {on(t4.54)=1} (shapetsd }=square] {shape{cd =circle} (on(s4,c4)="]}}

Pl x_¥
N %
o J?}‘J_ ,;_'j. xS

Substrueture®14 :vajue 10 327526 /[shape(object-0027 )-square] {onlobject-0027 0bject-0016)=1] [shape(obiect-0022 }=cizci e
ran(object-0022.0bject-0012 = 1] [shapetobiect-0016 )=circle] (on(object-0016.0bject-0012 =1} [shapei object-001 2 )=rectangie,
.01 object-0012 ohiect-0008 j=1] {shapel obiec:-0008 )=triangle] [on object-0008 0bject-0001)=1] [shape object-0001 j=squate;
“s.1apel 0brect-0002 }=c:rele] [ontobiect-0001 .object-0002 )=t}

"VITH OCCU RREVCES
[s’laoe sli=square] [onisl.cl;=t) Lsraoe\ca =c1rc1 1{on(cS.r1:=1] [shaoc\'cl)=c rcie] fon(cl, '1;=II {shapetri =rectangie]
onfrl.t ’)-t‘;sraoe’ tZ)-manch font12,52)=1] [shapc(s-! square] [snapeic2 =circlejion(s2,c2i=1)"

‘f:s:apc‘ sli=squarejfonisl,cl =] srapc(cS)—cn'clc] {on(cS,r1 '=1] 'shapeicl )=citcie} [ontcl £l -IJ sk‘apc\rl ‘=reclangie.
‘enirl.23,=1j[skape t33=triangle] font13.53)=1] [shape s3)=square] ‘snape(c3 /=circie] jonts3,c3i=1]

'snape sti=square [2msl.cl'=t; shape ¢S =circie] onic3.rl =1] shapeicli=circiel jontcl,r1 =1} [shape sl '=rectangie’
Lonirl,i4i=1 shape t4i=tr:angie; (onttd.54)=1; [shapelsd)=square, snapeicd =circle] onisd.cdi=1]
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¢ L{" {Substructure#s :value 9.560976 ([on(object-0008,0bject-0001 )=t] {shape(object-0001 =square] [shape(object-0002 )=circle]
! [on(object-0001,0bject-0002)=t])}

N o~ WITH OCCURRENCES:

' K {{{on(11,s1)=t] [shape(<1)=square] [shape(c])=circle] [on(s1,c1)=t])}
A {([on(12,52)=t] [shape(s2)=square] [shape(c2)=circle] [on(s2,c2)=1])}

{([on(13,53)=t] [shape(s3)=square] [shape(c3)=circle] [on(s3,c3)=1]D}
v . . {({on(14 s4)=t] [shape(s4)=square] [shape(c4)=circle] [on(s4 c4)=t])}
\ .

End trace.

,.
o -
-‘l

A.1.6. Input for Second Example of Experiment 1

{DefExampie

£~ "((n01 n02 n03 n04 n0S n06 n07 n08 n09 n10)

ot ((connected nil))

: ((connected (n01 n06) 1) (connected (n01 n02) t) (connected (n02 n07) t) (connected (n02 n03) t) (connected (n03 n08) t)
‘ (connected (n03 n04) t) (connected (n04 n09) t) (connected (n04 n05) t) (connected (n0S5 n10) t) (connected (n06 n07) 1)
{connected (n07 n08) t) (connected (n08 n09) 1) (connected (n09 n10) 1))))

- A.1.7. Qutput for Second Example of Experiment 1: Limit =4
> (subdue :limit 4)
Bezin trace...

Parameters: limit =4 connectivity =t compactness = t coverage = t
use-bk = nil discover =t specialize = nil inc-bk = nil

Running substructure discovery...
Discovered the following 4 substructures in 0.98333335 seconds:

-~ {Substructure#2 :value 2.9545455 ([connected(object-0001.0bject-0002)=t])}
WITH OCCURRENCES:
{({[connected(n01.n06)=tD}
{([connected(n01,n02)=t])}
!([connected(n02.n07)=t])}
' {({connected(n02.203)=t)}
X . {{{connected(n03.n08)=t])}
{'{connected(n03.n04)=t])}
b L {{connected(n04.n09)=t))}
po ‘([connected(n04.005)=1D}
o "{{[connected(n05.n110)=t])}
! !{{connected(n06,n07)=t])}
i/{connected(207.n08)=t])}
" {([connected(n08.n09)=t))}
., {({connected(n09.n10)=t])}

:Substructure#3 :value 2.8085105 ([connected(object-0002.0bject-0003)=1] [connected(object-0001 0bject-0002 =11}
' WITH OCCURRENCES:
i({connected(n01.n02)=t] [connect~d(n01.n06)=t])}
) i({connected(n06,n07)=t} [connected(n01,n06)=t))}
‘{connected(n02,n07)=t] [connected(n01,n02)=1))}
- “[connected(n02.n03)=t][connected(n01,n02)=1])}
{connected(n02.n03 )=t} [connected(n02.n07)=t])}
. ‘“[connected(n06.n07)=t] [connected(n02,n07)=t]}}
‘({connected(n07.208)=t] [connected(n02,207)=t])}
' ‘{connected(n03.n08)=t) [connected(n02,n03)=1])!
AT ‘[connected(n03,104)=1][connected(202.n03)=t])}
‘lconnected(n03.n04)=t] [connected(n03,n08)=t]}}
"Teonnected( n07 108)=t] [connected( n03,n08)=1])}
Tconnected! n08.n09)=t] [connected(n03,n08)=t}}}
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{({connected(n04,n09)=1] [connected(n03,n04)=1])}
{({connected(n04,n05)=t] [connected(n03,n04)=1D}
{({connected(n04,n05)=1]} [connected(n04,n09)=1]}
{{{connected(n08,n09)=t] [connected(n04,n09)=1))
{([connected(n09.n10)=1] [connected(n04,n09)=1])}
{({connected(n05,n10)=t] [connected(n04,n05)=t)D}
{({connected(n09.110)=t] [connected(n05.n10)=1]}
{([connected(n07,n08)=1t] [connected(n06,007)=t])}
{({connected(n08,1.09)=1] [connected(n07,008)=tD}
{({connected(n09,510)at} [connected(n08,009)=tD}

{Substructure#4 :value 2.590909 ([connected(object-0003,0bject-0004)=1] [connected(object-0002,0bject-0003 )=1]
{connected(obiect-0001,0bject-0002)=t]}

WITH OCCURRENCES:

{({connected(n06,n07)=t] [connected(n01,n02)=t] {connected(n01,006)=tD}

{({connected(n02,n07)=1] [connected(n01,n02)=1] [connected(n01,006)=1])}

i({connected(n02.103)=t] [connected(n01,202)=1] [connected(n01,006)=t])}

. {({connected(n02,n07)=t) [connected(n06,007)=1] [connected(n01,n06)=t]}

y {{{[connected(n07,n08)=1] [connected(n06,n07)=t] [connected(n01,n06)=1D}

([connected(n06,n07)=t] [connected(n0Z,n07)=t] [connected(n01,n02)=t])}

AN {
N ‘(_\ {({connected(n07,n08)=1] [connected(n02,007)=t] [connected(n01,102)=1])}
O {({connected(n03.n08)=1] [connected(n02,n03)=1] (connected(n01,n02)=t])}
! :'{\ {(connected(n03,104)=t] {connected(n02.0n03)=t] [conaected(n01,002)=t))}
DAY {({connected(n06,n07)=1] [connected(n02,n03)=t] [connected(n02,207)=t])}
! ‘;\ {([connected(n07,n08)=t] [connected(n02,n03)=t] [connected(n02,n07)=t]}}
SN {

({connected(n03,n08)=1] [connected(n02,n03)=t] [connected(n02,n07 )=t}
{({connected(n03,n04)=1] [connected(n02,n03)=t] [connected(n02,n07)=tD}
{({connected(n03,n08)=1] [connected(n07,n08)=t] [connected(n02,n07)=t])}

& % {({connected(n08,n09)=1) [connected(n07,n08)=t] [connected(n02,n07)=1]}
N i({connected(n07,n08)=1} {connected(n03,n08)=t] [connected(n02,n03)=1])}
: :-\ {([connected(n08,n09)=1] [connected(n03,n08)=t] [connected(n02,n03)=tD}
K q_:\ {({connected(n04,709)=t] [connected(n03,n04)=t] [connected(n02,n03)=t])}
s {{connected(n04,205)=1] [connected(n03,n04)=t) [connected(n02,n03)=tD}

t({connected(n07,n08)=t] [connected(n03,n04)=t] [connected(n03,n08)=tD}
{({connected(n08,n09)=1] (connected(n03,n04)=t] (connected(n03,008)=t]D}

I

LA 4]

- {{connected(n04,n09)=1t] [connected(n03,n104)=t] {connected(n03,n08 )=t}

. ‘({connected(n04,n05)=t] [connected(n03,n04)=t] [connected(n03.n08)=tD}

:.': !({connected(n06,n07)=t] [connected(n07,n08)=t] (connected(n03,n08)=t})}

v, " !(connected(n04,009)=1] [connected(n08,n09)=1} {connected(n03,n08)=t])}
: _';- I({connected(n09,010)=t} [connccted(n08.n09)=t] [connected(n03,n08)=t])}
A {([connected(n08,109)=t] [connected(n04,n09)=t] [connected(n03,204)=1D}

{({connected(n09,n10)=t] [connected(n04,n09)=t] [connected(n03,n04)=t])}

' _c ({connected(n05,n10)=t] {connected(n04.n05)=1} [connected( n03,n04)-t1)}
' :. : {({connected( n08,n09)=t} [connected(n04.n05)=t] [connected(n04.009)=1))}
N ' i({connected(n09,n10)=t] [connected(n04,005)=t] [connected(n04,n09)=t}}
W {{{connected(n05,n10)=1] [connected(n04,205)=t] {connected(n04.009)=1])}
o {({connected(n07.n08)=1) [connected(n08,n09)=1] [connected(n04.n09)=t))}
o {({connected(n05.110)=1] [connected(n09,n10)=t] [connected( n04.n09)=t]}
\. - {{connected(n09.510)=t] [connected(n0S5.n10)=t] [connected(n04,n05)=t})}
v o -, i({connected! n08,n09)=t] [connected(n09,n10)=t] [connected(n05.010)=t])}
'-.:<, ‘(lconnec*ed(n08.n09)=1] [connected(n07.n08)=t] [connected(n06,n07)=t])}
‘},'. {{connected(£09.210)=1) [connected(n08,7109)=t] {connected(n07,n08)=t))}
-i-t .
sy Zad trace.
¢
72 A.1.8. Qutput for Second Example of Experiment 1: Limit =6
.-.f
w7 > subdue :.imit 6)
o
.;-:‘: Beg:n “race...
s
Parameress: limit = 6 connectivity = 1t compactness = & coverage = 1
. " use-bk = nil discover = t speciaiize = nii inc-hk = ail
o 90
o
"
AN
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Running substructure discoverv...
Discovered the following 6 substructures in 3.2 seconds:

{Substructure#5 :value 5.0 ([connected(object-0001,0bject-0004)=t] [connected(object-0003,0bject-0004 )=t]
[connected(object-0002,0bject-0003)=1] [connected(object-0001 ,0bject-0002)=1]}}

WTTH OCCURRENCES:

{([connected(202,n07)=t] [connected(n06,007)=t] [connected(n01,n02)=1] [connected(n01,n06)=t]}

{({connected(n03,n08)=t] [connected(n07,008)=1] [connected(n02,n03)=1] [connected(n02.n07)=t])}

{([connected(n04,n09)=1] [connected(n08,n09)=t] [connected(n03,004)=t] [connected(n03.n08)=t])}

{([connected(n05,010)=1] {connected(n09,n10)=t] [connected(n04,005)=1] [connected(n04,n09)=1]}

{Substructure#6 :value 3.25 ((connected(object-0008 object-0003)=t] [connected(object-0001,0bject-0004)=1]
[connected(object-0003,0bject-0004)=1] [connected(object-0002,0bject-0003)=1] {connected(object-0001,0bject-0002)=t )}
WITH OCCURRENCES:
{({connected(n02.n03)=t] [connected(n02,007)=t] [connected(n06,n07)=t] [connected(n01,n02)=t] [connected(n01,n06)=1))}
{({connected(n07.n08)=t] {connected(n02.n07)=t] [connected(n06,n07)=1] [connected(n01.n02)=t} [connected( n01.n06)=1])}
{({connected(n01,102)=t] [connected(n03.n08)=t] {connected(n07.n08)=t] [connected(n02,n03)=t) [connected(n02,n07)=t])}
{({connected(n06,n07)=t] [connected(n03.n08)=t] [connected(n07,n08)=1] [connected(n02,n03)=t] [connected(nN? nOT)=1N}
{([connected(n03,n04)=t] {connected(n03,n08)=t] [connected(n07,n08)=t] [connected(n02,n03)=1] [connected(n02.n07)=1]}}
{([connected(n08.n09)=t] [connected(n03,n08)=t] [connected(n07.0108)=1] [connected(n02,n03)=t] [connected(n02,n07)=1])}
{([connected(n02,n03)=t] [connected(n04,n09)=1] [connected(n08,n09)=t] [connected(n03,n04)=t] [connected(n03.n08)=1])}
{([connected(n07.n08)=1) [connected(n04.n09)=t] {connected(n08,n09)=t} [connected(n03,n04)=t] [connected(n03,n08)=1])}
{([connected(n04.n05)=t] [connected(n04,n09)=1] [connected(n08,109)=1] [connected(n03,n04)=1] [connected(n03.n08)=t])}
{{[connected(n09.110)=t] [connected(n04 n09)=1] [connected(n08,n09)=1] [connected(n03,004)=t] [connected(n03.n08)=t]}
{({connected(n03.n04)=t] [connected(n05,110)=t] [connected(n09,n10)=1] [connected(n04.n05)=t] [connected(n04,n09)=1])}
{{[connected(n08.n09)=t] [connected(n05,n10)=t] [connected(n09,n10)=t] [connected(n04,n05)=1] [connected(n04.n09)=t})}

{Substracture#2 :value 2.9545455 ([connected(object-0001.0bject-0002)=t])}
WITH OCCURRENCES:

{({connected(n01.n06)=t])}

{([connected(n01,n02)=t]}

{([connec ed(n02.n07)=t]}

{({[connected(n02,n03)=t]}

{{{connected(n03,n08)=t])}

{([connected(n03,n04)=1])}

{([connected(n04,n09)=t])}

{({connected(n04,n05)=1])}

{{{connected(n05,n10)=t])}

{({connected(n06,n07)=t])}
{([connected(n07,n08)=t])}
{{[connected(n08,n09)=1]}
i([connected(n09,n10)=t])}
End trace.

A.1.9. Output for Second Example of Experiment 1: Limit = 10

> (subdue :limit 10)
Begin trace...

Parameters: limit = 10 connectivity =t compactness = 1 coverage =
) p 4
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substructure discovery...
Discovered the {ollowing 10 substructures in 30.45 seconds:

Substructures S :value 5.0 ([connected(object-0001.0bject-0004)=1] [connected(object-0003.0bject-0004 i=1]
‘connected(2bject-0002 object-0003 )=t] [connected(abiect-0001 ,0bject-0002,=t])i

"WITH GCCURRENCES:

‘Teannected! 202,107 ~*) {eannected! n06,n07 )=1] [connected( n0!,102 )=1] [connected( n01.n06)=t})!
“connected(103.n08,=1] {connecteci n07,n0 =] [connected(n02,003 ;=1 {connected( n02.007 S=1})
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{({connected(r04.0n09)=1] [connected(n08,n09)=1] {connected(n03,n04)=1] [connected(n03,n08)=t])}
{([connected(n05,210)=1] [connected(n09,n10)=t] [connected(n04,n05)=t] [connected(n04,009)=t))}

{Substructure#$ :value 4.375 ([connected(object-0004,0bject-0009)=t] [connected(object-0009.0bject-0008 J=t]
(connected(object-0008,0bject-0003)=1] [connected(object-0001,0bject-0004)=1] [connected(object-0003,0bject-0004)=1]
[connected(object-0002,0bject-0003)=1] {connected(object-0001,0bject-0002)=1])}

WITH OCCURRENCES:

{({connected(n07,n08)=t] {connected(n03,n08)=t] [connected(n02,n03)=t} [connected(n02,007 )=t} [connected(n06,n07 J=t]
{connected(n01,n02)=t] [connected(n01,n06)=1]}

{({connected(n08.n09)=t] [connected(n04,n09)=t] [connected(n03,n04)=t] [connected(n03,n08)=t] [connected(n07,n08)=t)
(connected(n02,n03)=t] [connected(n02,n07)=1D}

{({connected(n09,n10)=t] [connected(n05.010)=t] [connected(n04,n05)=t] [connected(n04,009)=t] [connected(n08,009)=t]
{connected(203,n04)=t] [connected(n03,n08)=tD}

{Substructure#6 :value 3.25 ([connected(object-0008,0bject-0003)=t] [connected(object-0001,0bject-0004)=t]
{[connected(object-0003,0bject-0004)=t] [connected(object-0002,0bject-0003)=t] [connected(object-0001,0bject-0002)=1])}
WITH OCCURRENCES:
{({connected(n02.n03)=1] [connected(n02,n07)=t] [connected(n06,007)=1} {connected(n01,n02)=1} [connected(n01.006)=1])}
{({connected(a07,n08)=t] {connected(n02,n07)=t] {connected(n06,n07)=t] [connected(n01,n02)=t] [connected(n01,n06)=1])}
{(ccnnected(201,002)=1] [conaected(n03,108)=t] [connected(n07,r08)=t] [connected(n02,n03)=1] [connected(n02.n07 )=t ])}
{{{connected(n06,n07)=t] (connected(n03,n08)=t] [connected(n07,n08)=t] [connected(n02,003)=t] [connected(n02.n07)=t]}}
{([connected(n03,n04)=1} [connected(n03.n08)=1] [connected(n07,n08)=1] [connected(n02,n03)=t] [connected(n02,n07)=t]}}
{({connected(n08,109}=1] [connected(n03,n08 )=t} [connected(n07.n08)=1] [connected(n02,n03)=1t] [connected(n02.207 )=t]}}
{({connected(202.103)=t] [connected(n04.109)=t] [connected(n08,n09)=t] [connected(n03.n04)=t] {connected(n03,n08 )mt])}
{({connected(n07,n08 )=t} [connected(n04,n109)=t] [connected(n08,n09)=t] [connected(n03.004)=t] [connected(n03.n08 )=t ])}
{({connected(n04,n05)=1] [connected(n04,n09)=1] [connected(n08,n09)=1] {connected(n03,004)=t] [connected(n03,n08)=t])}
{({connected(n09.n10)=1] [connected(n04,n09)=1] [connected(n08,n09)=1] [connected(n03.n04)=t] [connected(n03.n38)=t]}}
{({connected(n03.n04)=1] {connected(n05.n10)=t] {connected(n09,n10)=t] [connected(n04,n05)=t] [connected(n04.0109)=t])}
{({connected(n08,n09)=t] [connected(n05.n10)=1} [connected(n09,n10)=t] [connected(n04,n05)=t] [connected(n04,209)=t]}}

End trace.

A.1.10. Qutput for Second Example of Experiment 1: Limit = 14

> (subdue :limit 14)
Begin trace...

Paramezers: limit = 14 connectivity = t compactness = t coverage = t
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substiructure discovery...
Discovered the following 14 substructures in 120.71667 seconds:

"Substructure#$ :value 5.0 ({connected(object-0001,0bject-0004)=t] [connected(object-0003,0bject-0004 )=t]
[connected(obiect-0002,0biect-0003)=t] [connected(object-0001,0bject-0002)=1])}
WITH OCCURRENCES:
{({[connected(202,107)=1] {connected(n06.n07)=t] [connected(n01,n02)=t] [connected(n01.106)=t]}
{({[connected( 203,n08 =1] [connected(n07,n08)=1] [connected(n02,n03)=t] [connected(n02.n07 )=t D}
(lconnected( n04.n09 =1 [connected(n08.n09)=t] {connected(n03.n04)=1] [connected(n03,0108)=t])}
‘({conrected(£05,110,=1] {connected(n09.n10)=t] [connected(nd4,n05)=1t] {[connected(n04,n09)=1))}

‘Substructure#$ :value 4.375 ([connected(object-0004,0bject-0009)=t] {connected(object-0009 object-0008 j=1]
.connected(object-0008,0biect-0003)=t] [connected( obiec:-0001,0bject-0004)=1] {connected(object-0003,0bject-0004 j=1]
‘connected(obiect-0002,0biect-0003)=t] {connected(object-0001,0bject-0002)=1])}

WITH OCCURRENCES:

'{iconnecied(r.07,n08 =1} [connected(n03.0108)=1] [connected(n02.n03)=1] [connected(n02.n07)=t] [conneciedt n06.n07 ;=t]
‘connected( 201,102 =) [connected(n01.n06)=t])}

"connecred! 108.109 =1} (connected(n04.109)=t} [connected{ n03.n04)=1] [connected(n03.n08)=t! [connected(n07.008 1=1)
"comnected(102.103)=1] ‘connectedi n02,n07)=t))}

{{connected 209.110="] {connected(n05.n10)=t] {connected n04.n105)=t] [connected(n04.n09 )=t} [connected n08.009 '=*]
‘connected! 203,704 )=1] [connected(n03.0108)=t])}
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{Substructure#6 :value 3.25 ({connected(object-0008 .0bject-0003)=t] [connected(object-0001,0bject-0004 )=1]
{connected(object-0003,0bject-0004)=1] [connected(object-0002,0bject-G003)=1] [connected(object-0001 0bject-0002)=1))}
WITH OCCURRENCES:
{({connected(n02,n03)=t] [connected(n02,n07)=t] [connected(n06,n07)=1] [connected(n01,n02)=t] [connected(n01,n06)=1]}}
{({connected(n07,n08)=t] [connected(n02,n07)=1] [connected(n06,n07)=t] [connected(n01,n02)=1) [connected(n01,n06)=t])}
{({connected(n01,n02)=t] [connected(n03,n08)=1] [connected(n07,n08)=1] [connected(n02,n03)=1) [connected(n02,n07)=t])}
{([connected(n06,n07)=1] [connected(n03,008)=t] [connected(n07,n08)=1] [connected(n02,n03)=1] [connected(n02,n07)=1))}
{([connected(n03,004)=1] {connected(n03,n08)=t] [connected(n07,n08)=1] [connected(n02,n03)=1] [connected(n02,n07)=t])}
{({connected(n08,009)=1] (connected(n03,n08)=1] [connected(n07,n08)=t] [connected(n02,n03)=t] {connected(n02,n07)=1])}
{({connected(n02,n03)=t] [connected(n04,n09)=1] [connected(n08,n09)=t] [connected(n03,n04)=t) [connected(n03,n08)=1])}
{({connected(n07,n08)=t] {connected(n04,n09)=1t] [connected(n08,n09)=t] [connected(n03,n04)=1] [connected(n03,n08)=1])}
{{({connected(n04,n05)=t] {connected(n04,n09)=1t] [connected(n08,n09)=t] [connected(n03,n04)=t] (connected(n03.n08)=t))}
{({connected(n09,n10)=t] {connected(n04,n09)=1] [connected(n08,n09)=t} [connected(n03,n04)=t] [connected(n03,n08)=1]}
([connected(n03,n04)=t]} [connected(n05,n10)=1] [connected(n09,010)=t] [connected(n04,n05)=t] [connected(n04,n09)=1tD}
({connected(n08,n09)=t] (connected(n05,n10)=1] [connected(n09,n10)=t} {connected(n04,n05)=1] [connected(n04,n09)=t])}

!
i
s
!

Ead trace.

A.2. Experiment 2

Experiment 2 illustrates the use of SUBDUE's substructure specialization module and
substructure background knowledge module. Two examples from the chemical domain are
presented. The resulting output shows the performance improvement obtained by applying

previously discovered substructures to subsequent discovery tasks.

A.2.1. Input for First Example of Experiment 2

‘DefExample
“(hl n2 h3 14 1S h6 cll c12 brl br2 il i2 c01 c02 c03 c04 c0S5 c06 c07 c08 c09 c10cll c12cl3 cldclScl6clT cl8 c19 c20
€21 ¢22 ¢c23 c24)
({single-bond nil) (double-bond nil) {atom-type nil))
(fatom-1ype ‘hl) hvdrogen) (atom-tyve (h2) hydrogen) (atom-type (h3) hvdrogen) (atom-type (h4) hydrogen)
atom-type « hS) hydrogen) (atom-type (h6) hvdrogen) (atom-type (cl1) chlorine) (atom-type (clI2) chivrine)
"atom-iype ‘brl} bromine, (atom-type {br2) bromine) (atom-type (il) iodine) (atom-type (i2) iodine)
‘atom-type (c01) carbon) iatom-type (¢02) carbon) (atom-type (¢03) carbon) (atom-type (c04) carbon)
tatom-type (c05) carbon) (atom-type (c06) carbon) (atom-type (c07) carbon) (atom-type (cO8) carbon)
ratom-tvpe (¢09) carbon) (atom-tvpe (c¢10) carbon) (atom-type (c11) carbon) (atom-type (c12) carbon)
‘atom-type (cl3) carbon) (atom-type (c14) carbon) (atom-type (c15) carbon) (atom-type (c16) carbon)
<atom-type (c17) carbon) (atom-type (c18) carbon) (atom-type (c19) carbon) (atom-type (c20) carbon)
‘atom-type «c21) carbon) (atom-type (c22) carbon) (atom-type (c23) carbon) (atom-type (c24) carbon)
{single-bond (cO1 i1) t) (single-bond (c02 cl1) 1) (single-bond (05 h1) ) (single-bond (c12 br2) t)
(single-bond (c16 h2) 1) (single-bond (c22 h3) 1) (single-bond (¢24 i2) 1) (single-bond (c23 c12) 1)
single-bond (¢20 h4) 1) (single-bond (c13 br1) 1) (single-bond (c09 h5) 1) (single-bond (c03 h6) 1)
‘singie-bond (Ol ¢04) 1) (single-bond (c02 c04) 1) (single-bond (¢03 c06) 1) (single-bond (c05 c08) 1)
"single-bond (c06 c09) 1) (single-bond (¢07 c10) 1) (single-bond (c07 c11) t) (single-bond (c08 ¢12) 1)
‘single-bond (c10 c14) t) (single-bond (c11 c15) 1) (single-bond (c13 ¢17) t) (single-bond (c14 c18) 1)
tsingle-bond (c15 ¢18) t) (single-bond "c16 ¢19) 1) (single-bond (c17 ¢20, tJ (single-bond (c19 ¢22) v}
‘single-bond (¢21 ¢23) 1) (single-bond (c21 ¢24) 1) (double-bond (c01 ¢03) ) (double-bond (€02 ¢c0S5) 1)
‘doubie-bond {¢c04 c07) t) (double-bond c06 c10) t) (double-bond (c08 c11) 1) (double-bond (c09 c13) 1)
‘doubie-bond (cl12 cl6) 1) {double-bond “c14 c17) t) (double-bond (c15 c19) 1) (double-bond (c18 c21) 1}
double-bond {¢20 ¢23) 1) ‘doubie-bond (¢22 ¢24) 1))))
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: A.2.2. Qutput for First Example of Experiment 2
D,
'l - > (subdue :specialize t :inc-bk t)
50 Begin trace...
| Parameters: limit = 39 connectivity = t compactness = t coverage = t
L+ use-bk = nil discover = t specialize = t inc-bk = t
: Runrning substructure discovery...
; Discovered the following 39 substructures in 406.93332 seconds:

{Subst-ucture#37 :value 30.197369 ([single-bond(object-0058,0bject-0200)=1] [atom-type(object-0171)acarbon]
[double-bond(object-0176,0bject-0171)=t] [atom-type(object-0176)=carbon] [single-bond(object-0013,0bject-0176)=t]
[single-bond(object-0171,0bject-0058)=t] {atom-type(object-0011)=hydrogen] {atom-typelobject-0058)=carbon)
{double-bond(object-0058,0bject-0005)=1] [atom-typelobject-0013)=carbon] [double-bond(cbject-001 3,0bject-0001)=t]
{singie-bond(object-0005,0bject-0011)=t] [atom-type(object-0005)=carbon] {single-bond(object-0005,0bject-0001)=1]
[atom-type(object-0001 Jacarbon])}

WITH OCCURRENCES:

{({single-bond(c01,i1)=1] [atom-type(cO4)=carbon] [double-bond(c04.c07 =] [atom-type(cO7}=caricr]
Isingle-bond(c07,c10)=t] [single-bond(c01,c04)=t] [atom-type(h6)=hydrogen] [atom-type(cO1)=carbon]
{doubie-bond(c01,c03)=t} [atom-1ype(c10)=carbon] [double-bond(c06,c10)=1] [single-bond(c03,h6)=1]
{atom-type(c06)=carbon] [singie-bond(c03,c06)=t} [atom-type(c03)=carbon))}

S5

H, o

"t
e,

.ll
AN

oY {([single-bond(c02,ci1)=t} [atom-type(c04)=carbon] {double-bond(c04,c07)=t] [atom-type(cO7)=carbon]
= {singie-bond(c07,c11)=t] [single-bond(c02,c04}=1] [atom-type(hl)=hydrogen] {atom-type(c02)=carbon]
.., {double-bond(c02,c05)=t] [atom-type(cl 1)=carbon] [double-bond(c08,c11)=t][single-bond(c05,h1)=t]

- [atom-type(cO8 )=carbon] [single-bond(c05,c08)=t] [atom-type(c0S)=carbon])}

o {({singie-bond(c13 brl)=t] [atom-type(c17)=carbon][doubie-bond(c14,c17)=t] [atom-type(cl4)=carbon]
- {single-bond(c10.c14)=1] [single-bond(cl3,c17)=t] (atom-type(hS)=hydrogen] [atom-type(c13)=carbon]
. [double-bond(c09,c13)=t] [atom-type(c10)=carbon) [double-bond(c06,c10)=t] [single-bond(c09,h5)=t]

e {ato:n-type(c09)=carbon] [single-bond(c06,c09)=t] [atom-1ype(c06)=carbon])}

{({single-bond(c12.br2)=t] [atom-type(cO8)=carbon] {double-bond(c08.c11)=t] [atom-type(cl1)=carbon]
‘single-bond(cl1,c15)=1][single-bond(c08,c12)=t] {atom-type(h2)=hydrogen] [atom-tvpelc12)=carbon]
{double-bond(c12,c16)=1] [atom-type(cl 5)=carbon] [double-bond(c1S5.c19)=t] [single-bond(c16,h2)=t]
{atom-tvpe(cl9)=carbon] [single-bond(c16,c19)=t] [atom-type(cl6)=carbon ]}

{([singie-bond(c23.c12)=t] {atom-type(c21)=carbon] [double-bond(c18,c21)=t] [atom-type(cl 8)=carbon]
{single-bond(c14,c18)=t] [single-bond(c21,c23)=t] [atom-type(hd)=hydrogen] [atom-type(c23)=carbon]
{double-bond(c20.c23)=t] [atom-type(cl4)=carbon] [double-bond(c14,c17)=t][single-bond(c20,hd)=t]
[atom-type(c20)=carbon] {single-bond(c17,c20)=t]} (atom-type(cl7)=carbon]D}

{{[single-bond(c24,i2)=t] [atom-type(c21)=carbon] [double-bond(c18,c21)=t] [atom-type(c18)=carbon]
Tsingie-bond(c15,c18)=1] [single-bond(c21,c24)=t] [atom-type(h3)=hydrogen] [atom-type(c24)=carbon]
{double-bond(¢c22.c24)=1] (atom-type(cl 5)=carbon] [double-bond(clS,c19)=t][single-bond(c22,h3)=1]
{atom-typetc22)=carbon] [single-bond(c19,c22)=t] [atom-type(c19)=carbon]}

——— _ r—
RNy Whsbth

x
.l.l

!Substructure® 36 :value 25.263159 ({atom-type(obiect-0171)acarbon] {double-bond(object-0176,0bject-0171)=t]

\ '. fatom-tvpelobject-0176)=carvon] [singie-bond(object-0013,0bject-0176)=1] {single-bond(object-0171.0bject-0058 )=1]
- (atom-type(object-0011)=hvdrogen] (atom-type{object-0058 }=carbon] [doubie-bond(object-0058,0bject-00053=1]
® [atom-typefobject-0013)=cardon](double-bond(object-0013,0bject-0001 )=1] [single-bond(object-0005,0bject-0011)=t1]
N (atom-type(obiect-0005)=carbon] [single-bond(object-0005,0bject-0001)=t] (atom-type(object-0001 )=carbon )}
N WITH OCCURRENCES:
e /{atom-type(c04 =carbon] {double-bond(c04,c07)=t] [atom-type(c07 )=carbon] [single-bond(c07.c10)xt]
" ‘single-bond(c01,c04’=1] [atom-type(h6)=hydrogen] [atom-type(cO1)=carbon] {double-bond(c01,c03)=t]
.-: {atem-typeic10)=carbon ] {double-bond(c06,c10)=t] [single-bond(c03,h6)=1] [atom-type(c06 )=carbon] .
N {singie-bond(¢03,c06)=1] [atom-type(c03)=carbon])} "
{{{atom-type(c04)=carbon| [double-bond(c04,c07)=t] [atom-type(c07 =carbon] [single-bond(c07.c11)=t]
L {singie-bond(c02,c04)=t] (atom-type(hl)=hvdrogen] [atom-type c02)=carbon][double-bond(c02.c05)=1}
.. fatom-typeicll)=carbon]{double-bond(c08.c11 =t][single-bond(c0S,h1)=1] [atom-type(cO8 j=carbon] v
. ‘single-bond(c05,c08=t] [atom-type(c0S)=carbon))} K
L ttfatom-typetcl7 =carbon| {double-bond(c14,c17 =] (atom-type(cl4)=carbon] [single-bond(c10,c14)=t] .
- rsn"g e-bondicl3.cl7 =t} atom- ‘Vpc(55)=hvdroge1][atom typetcl3)=carbon]{double-bord(c09.c13;=2]
-, {atom-type(cl10)=carion] [double-bond(c06.c10)=1] (single-bond(c09, hS5)=t][atom-tvpetc09 1=carbon] .
" single-bondt c06.c09)=t] {atom-tvpe(c06 }=carbon))} .
° "auorr *yoe c08§)=carhon, [double 20nd(c08.c11:=1] {atom-tvoetcll,=carbon] [single-bondicl1.cl5i=t] S
w7, isingie-ncnd(cO8 €12;=1]{atom-tvpe(hZ)=hvdrogenj{atom-t1vpe{cl2)=carbon) [double-bondicl2.cl6i=2}
'_':- {atom-1vpeicl§i=carbon ] {double-bondic15.c19)=1] [singic Dond(cl6,n2)=t] atom-typercl9 =carbon]
i
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o {single-bond(c16,c19)=t] [atom-type(c16)=carbon])}

{({atom-type(c21)=carbon] [doublie-bond(c18,c21)=t] [atom-type(c18)=carben] [single-bond(c14,c18)=t]
~. [single-bond(c21.c23)=t] [atom-type(hd)=hydrogen] [atom-type(c23)=carbon] [double-bond(c20,c23)=1)
E {atom-type(cl4)=carbon] [double-bond(c14,c17)=t] [single-bond(c20,hd)=t] (atom-type(c20)=carbon]

[single-bond(c17.c20)=t] [atom-type(c17)=carbon])}
{({atom-type(c21)=carbon] (double-bond(c18,c21)=t] [atom-type(cl8)=carbon] [single-bond(c15,c18)=t]

. (single-bond(c21.c24)=t] [atom-1ype(h3)=hydrogen] (atom-type(c24)=carbon] [double-bond(c22,c24)=t]
" (atom-type{cl5)=carbon] [double-bond(cl5,¢19)=t] [single-bond(c22,h3)=1] [atom-type(c22)=carbon]
A7 [single-bond(c19,c22)=t] [atom-type(c19)=carbon]D}

{Substructure#38 :value 22.780703 ([single-bond(object-0058 0bject-0195)=t] [double-bond(object-0176,0bject-0171)=t]
- (atom-type(object-0176)=carbon] [single-bond(object-0013.0bject-0176)=1] [single-bornd(object-0171,0bject-0058)=t]
v {atom-type(object-0011)=hydrogen] [atom-type(object-0058)=carbon] [double-bond(object-0058,0bject-0005)=t)
~ {atom-type(object-0013)=carbon] [double-bond(object-0013,0bject-0001)=1] [single-bond(object-0005,0bject-0011)=t]
[atom-type(object-0005)=carbon] [single-bond(object-0005,0bject-0001)=t] [atom-type(object-0001)=carbon])}

(8 VV'ITH OCCURRENCES:

> {([single-bond(c01,i1)=t] [double-bond(c04,c07)=t] [atom-type(c07)=carbon] [single-bond(c07,c10)=t]

R [single-bond(c01,c04)=t] [atom-type(h6)=hydrogen] [atom-type(cO1)=carbon] [double-bond(c01,c03)=1t]
[atom-type(c10)=carbon] [double-bond(c06,c10)=t] [single-bond(c03,h6)=t] [atom-type(cO6)=carbon]

- [single-bond(c03,c06)=t] [atom-type(c03)=carbon])}

:"_- {({single-bond(c02,c11)=1] [double-bond(c04,c07)=1] [atom-type(c07)=carbon] [single-bond(c07,c11)=1]

N {single-bond(c02,c04)=t] [atom-type(hl)=hydrogen] [atom-type(c02)=carbon] [double-bond(c02,c05)=1]
{atom-type(cl1)=carbon] [double-bond(c08,c11)=1] [single-bond(c05,h1)=1] [atom-type(c08)=carbon}

. [single-bond(c05,c08)=t] [atom-type(c0S5)=carbon])}

N, {([single-bond(c13,br1)=1] [double-bond(c14,c17)=t] [atom-type(cl4)=carbon] [single-bond(c10.c14)=t]

N {single-bond(c13,c17)=t] [atom-type(hS)=hydrogen] [atom-type(c13)=carbon] [double-bond(c09,c13)=t]
[atom-type(c10)=carbon] [double-bond(c06,c10)=t] [single-bond(c09,h5)=1] [atom-type(c09)=carbon]
[smgle bond(c06.c09)=t]} [atom-typelc06)=carbon])}

- {({single-bond(c12,br2)=t] [double-bond(c08,c11)=t] [atom-type(cl1)=carbon] [single-bond(c11.c15)=t]

- "smgle bond(c08,c12)=t] {atom-type(h2)=hydrogen] [atom-tvpe(c12)=carbon] [double-bond(cl2,c16)=t]

{atom-type(cl5)=carbon] [double-bond(c15,c19)=1] [single-bond(c16,h2)=t] [atom-type(c19)=carbon]
(single-bond(c16,c19)=t] (atom-type(c16)=carbon])}

{(fsmgle-bond(cz.% c12)=t] [double-bond(c18,c21)=1] [atom-type(c18)=carbon] [single-bond(c14,c18)=t]
ismgle bond(c21,c23)=t] [atom-type(hd)=hydrogen] [atom-type(c23)=carbon] {double-bond(c20,c23)=1]
Latom- type{cl4)=carbon] [double-bond(c14,c17)=t] [single-bond(c20,hd)=t] [atom-type(c20)=carbon]

{single-bond(c17,c20)=t] (atom-type(cl 7)=carbon])}
o i({single-bond(c24,i2)=t] [double-bond(c18,c21)=t] {atom-type(c18)=carbon] [single-bond(c1 5,¢18)=1]
N Ismgle bond(c21,c24)=t] [atom-type(h3)=hydrogen] [atom-type(c24)=carbon] [double-bond(c22,c24)=1]

{atom-type(cl5)=carbon] [double-bond(c15,c19)=1] [single-bond(c22,h3)=t] {atom-type(c22)=carbon]
[smgle-bond(c19,c22)-t] [atom-type(c19)=carbon])}

- Specializing substructure...

e Specialized the substructure:

‘~

- {Substructure#37 :value 30.197369 ([single-bond(object-0058 .objec1-0200)=t] (atom-type(object-0171 j=carbon]

.double-bond(object-0176.0bject-0171 )=t} [atom-type(object-01 76)=carbon] [single-bond(object-0013.0bject-0176)=t]

fsingle-bond(object-0171,0bject-0058)=1] [atom-type(object-0011)=hydrogen] (atom- type(ob;ect 0058)=carbon]

N .Jouble-bond(object-0058, 0bject-0005)=1] [atom-type(object-0013)=carbon] [double-bon- object-0013,0bject-0001 )=t)

- [single-bond(object-0005,0bject-0011)=t] [atom-typelobject-0005)=carbon] [single- bond(ou;ect-OOOS object-0001 )=t]
‘atom-type(0bject-0001)=carbon )}

K 10 the following substructures:

v,

v {Substructure#0 :value 1/2 ([atom-type(obiect-0200)=bromine,chlorine.iodine] [single-bond(object-0058 .object-0200)=1]
[a;om typeiobject-0171)=carbon] [double-bond( object-0176,0bject-0171)=1] [atom-type(object-0176)=carbon]

- ;single-bond(object-0013,0bject-0176)=t] [single-bond(object-0171.0bject-0058)=1] [atom-type(object-0011)=hydrogen)

e ‘atom-typelobject-0058)=carbon] [double-bond( object-0058,0bject-0005)=1] [atom-type(object-0013)=carbon]

‘doubie-bond{ object-0013,0bject-0001)=2] {single-bond{ obiect-0005.0bject-0011 .=t} [atom-type(obiect-0005)=carbon]
_s:nzle-bond(object-0005,0bject-0001 )=t ] [atom-type(object-0001 J=carbon )}

N Adding substructures to BK...

Adceri “he fcilowing substructures to BK:
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Discovered: {Substructure#37 :value 30.197369 ([single-bond(object-0058,0bject-0200)=1] [atom-type(object-0171)=carbon]
(double-bond(object-0176,0bject-0171)=t] [atom-type(object-0176)=carbon] [single-bond(object-0013,0bject-0176)=1)
(single-bond(object-0171 object-0058)=1] [atom-type(object-0011)=hydrogen] [atom-typeiobject-0058 )=carbon)
{double-bond(obiect-0058,0bject-0005)=1] {atom-type(object-0013)=carbon] [double-bond(object-001 3,0hject-0001 )=t)
[single-bond(object-0005,0bject-0011)=t] {atom-type(object-0005)=carbon] [single-bond(object-0005,0bjec1-0001 )=1]
[atom-type{object-0001)=carbon])}

Specialized: {Substructure#0 :value 1/2 ([atom-type(object-0200)=bromine.chlorine,iodine]
[singie-bond(object-0058,0bject-0200)=t] [atom-type(object-0171)=carbon] [double-bond(object-0176,0bject-0171 )=t}
[atotn-type{object-0176)=carbon ] [single-bond(object-0013,0bject-0176)=t] [single-bond(object-0171,0bject-0058)=t]
(atom-type(object-0011)=hydrogen] [atom-type{object-0058 )=carbon] [double-bond(object-0058,0bject-0005)=1]
[atom-type(object-0013)=carbon] [double-bond(object-0013,0bject-0001)=1] [single-bond(object-0005,0bject-0011)=1]
{atom-type(object-0005)=carbon ] [single-bond(object-0005,0bject-0001 )=t] [atom-type(object-0001 Jecarbon D}

End trace.

A.2.3. Input for Second Example of Experiment 2

(DefExampie
({h02 h03 h04 105 h08 109 h10 hll hl12 ¢l bri c0l c02 c03 c04 c05 c06 c07 c08 ¢09 c10cll c12c13cld4cl5cl6clT c18)

((single-bond nil) (double-bond nil) (atom-type nil))

((atom-type (cl) chlorine) {atom-type (R02) hydrogen) (atom-type (h03) hydrogen) (atom-type (h04) hydrogen)
(atom-type (h05) hvdrogen) (atom-type (i) iodine) (atom-type (n08) hydrogen) (atom-type (br) bromine)
‘atom-type (h09) hvdrogen) (atom-type (h10) hydrogen) (atom-type (h11) hydrogen) (atom-type (h12) hydrogen)
{atom-type (c01) ca-bon) {atom-tvpe (c02) carbon) (atom-type (c03) carbon) (atom-type (¢04) carbon)
‘atom-type (c0S) carbon) (atom-type (¢06) carbon) (atom-type (¢07) carbon) (atom-type (¢08) carbon)

{atom-type (c09) carbon) (atom-type (¢10) carbon) (atom-type (c11) carbon) (atom-type (c12) carbon)
(atom-type {cl3) carbon) (atom-type (¢14) carbon) (atom-type (c15) carbon) (atom-type (c16) carbon)

{atom-tvpe (c17) carbon) (atom-type (c18) carbon) (single-bond (01 c1} 1) (single-bond (c02 h02) t)

“single-bond (c03 h03} 1) (single-bond (c04 h04) t) (single-bond (c15 h0S) t) (single-bond (c18 i) 1)

{single-bond (c11 br) t) (single-bond (¢12 h08) 1) (single-bond (c13 h09) t) (single-bond {c14 h10) t)

{single-bond (c16 h1l) 1) (single-bond {c17 h12) 1) (single-bond (c01 c06) 1) (single-bond (c02 c03) t)

{single-bond (c04 c0S5) t) (single-bond (c06 c07) 1) (single-bond (c05 c10) 1) (single-bond (c08 c09) 1)

{single-bond (07 c11) 1) (single-bond (c12 ¢13) 1) (single-bond (c08 c14) 1) (single-bond (c10 ¢15) t)

(single-bond (c16 c17) 1) (single-bond (c09 c18) 1) (double-bond (cO1 ¢02) 1) (double-bond (c03 c04) 1)
“double-bond (c05 ¢06) t) (double-bond (c07 c08) 1) (double-bond (c09 ¢10) t) (double-bond (c11 ¢12) t)
{doubie-bond (¢13 c14) t) (doubie-bond (c15 c16) 1) (double-bond (c17 c18) t))))

A.2.4. Output for Second Example of Experiment 2
> .subdue :limit 10 :use-bk 1 :specialize t :inc-bk )

Begin trace...

Paramezters: limit = 10 connecuvity =t compactness = 1 coverage = t
use-bk =1 discover = t specialize = t inc-bk =1t

.
. @
. .
- % .

2
PR
DI T B A

Checking BK for reievant substructures...

Y
y 4 b

Found ‘he ioiiowing BK substrucrures:

Lyt

e iSudstructure#0 :vaiue 22.451612 ([single-bond( objec-0012.0bject-0009 =1} {atom-tvpe(object-0011)=carbon]
‘double-hond{obiect-0010,0bject-0011 )=t} [atom-1ypel object-0010)=carbon] [single-bond(obiect-0013,0bject-0010)=1]
el "singie-hond(object-0011.0bject-0012)=t] [atom-type(object-0014 1=hydrogen] {atom-tvpei obiect-0012)=carbon)

[double-bond(obiect-0012.0bject-0015)=1][atom-1ype(obiect-0013)=carbon][couble-bond( obiect-0013.0biec:-0016 =1}
“single-hond(object-0015,0bject-0014)=1] {atom-type(object-0015)=ca-bon] [single-bond(object-0015,0bject-0016 1=t

‘atom-+vpelobiect-0016)=scarbon )
S WITH OCCURRENCES:
.‘doubie-bondicl”.cl18/=t! [doubie-oond(c15.c16i=t] [double-bond(c09 c10i=t] single-bond(c09.c18)=1]
. “single-noadicl6.c17 =1] singie-bondic10.c15:=1] ‘single-bond(c17,h12.=1} {singie-bond(c18.: =1}
, “atom-tvoecl§ =carhoniiatem typetclT =carbon!{atom-tvpelclo)=carbonj(atom-tvpe clS)=carion]
:.:~,',. Jatom-tvoeciOi=carvon| atom-tvpe(c09 i=catoon| {atem-tvpe(n12 =k vdrogenlit
.
-)‘,'J',

L=
X2
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{({double-bond(c17,c18)=t] [double-bond(cl5,c16)=t] [double-bond(c09.¢10)=1] [single-bond(c09.c18)=t}
[single-bond(c16,c17)=t] single-bond(c10,c15)=t] [single-bond(c16,h11)=t][single-bond(cl5,h05)=1]
{atom-type(c18)=carbon] [atom-type(cl7)=carbon] [atom-type(c16)=carbon] [atom-type(c1S5)=carbon]
[atom-type(c10)=carbon] (atom-type(c09)=carbon] [atom-type(hll)=hydrogen])}

{({double-bond(c17.c18)at] (double-bond(c15,c16)=t] [double-bond(c09.c10)=t] [single-bond(c09.c18)=1)
{single-bond(c16,¢17)=t] [single-bond(c10,c15)=1} [single-bond(c16,h11)=t] [single-bond(cl5,h05)=1]
[atom-type(c18)=carbon] [atom-type{cl 7)=caibon] [atom-type(cl6)=carbon]i[atom-type(clS)=carbon)
[atom-type(c10)=carbon] [atom-type(c09)=carbon] [atom-type(h0S)=hydrogen])}

{([double-bond(c13,c14)=1] (double-bond(cl1,c12)=t] [double-bond(c07,c08)=1] [single-bond(c08.c14)=t]
[single-bond(c12,c13)=t] [single-bond(c07,c11)=t] [single-bond(c14,h10)=t] [single-bond(c13,h09)=t]
{atom-type(cl4)=carbon] {atom-type(cl13)=carbon] [atom-type(cl2)=carben] [atom-type(cll)=carbon)
[atom-type(cO8)=carbon] [atom-type(c07)=carbon] [atom-tvpe(h10)=hvdrogen))}

{({double-bond(c13,c14)=t] [double-bond(c11,c12)=t] [doublie-bond(c07.c08)=1] [single-bond(c08.c14)=t]
[single-bond(c12,ci3)=1] [single-bond(c07,c11)=1] [single-bond(c14,h10)=t] [single-bond(c13,h09)=t]
(atom-type(c14)=carbon] {atom-type(cl3)=carbon][atom-type(cl2)=carbon] [atom-type(cl1)=carbon]
{atom-type(c08)=carbon] [atom-type(c0T)=carbon] [atom-type(h09)=hydrogen])}

{({double-bond(c13,c14)=t] [double-bond{cl1,c12)=t] {doubie-bond(c07,c08)=1] [single-bond(c08,c14)=1]
{single-bond(c12.c13)=t] [single-bond(c07,c11)=t] [single-bond(c12,h08)=t] [single-bond(c11,br)=1]
[atom-type{c14)=carbon] [atom-type(cl3)=carbon] [atom-type(c12)=carbon] [atom-type(cl1)=carbon]
[atom-type(cO8)=carbon] [atom-type(cO7)=carbon} [atom-type(h08)=hydrogen ]}

{({double-bond(c05.c06)=1] [double-bond(c03,c04)=1] [double-bond(c01,c02)=t] [single-bond(c04,c05)=t]
(single-bond(c02,c03)=t] [single-bond(c01,c06)=t] [single-bond(c04,h04)=1] [single-bond(c03,h03)=1]
(atom-type(c06)=carbon] [atom-type(c05)=carbon] {atom-type(c04)=carbon] [atom-type(c03)=carbon]
{atom-type(c02)=carbon] [atom-1ype(c01)=carbon] [atom-type(h04)=hydrogen )}

{{[double-bond(c05,c06)=1] [double-bond(c03,c04)=1] [double-bond(c01,c02)=1] [single-bond(c04,c05)=t]
(single-bond(c02,c03)=t] [single-bond(cO1,c06)=1] [single-bond(c04,h04)=1] [single-bond(c03,h03 )=t}
{atom-type(c06)=carbon] [atom-1ype(c0S5)=carbon] [atom-type(c04)=carbon] [atom-type(c03)=carbon]
{atom-type(c02)=carbon] [atom-type(cO1)=carbon] [atom-type(h03)=hydrogen])}

{({double-bond(c05,c06)=1] [double-bond(c03,c04)=1] [double-bond(c01,c02)=1] {single-bond(c04,c05)=1]
(single-bond(c02,c03)=t] [single-bond(c01.c06)=1] [single-bond(c02,h02)=1] [single-bond(c01,cl)=t]
{atom-type(c06)=carbon] [atom-type(cOS)=carbon] [atom-type(c04)=carbon] [atom-type(c03)=carbon]
{atom-type{c02)=carbon] [atom-type(cOl)=carbon] [atom-type(h02)=hydrogen])}

{Substructure®0 :value 18.580645 ({atom-type(object-0001)=bromine,chlorine.iodine]
{sxnglc-bond(object-0004,objecr-OOOl)=t] {atom-type(object-0003)=carbon] [double-bond(object-0002.0bject-0003)=1]
(atom-type(object-0002)=carbon] [smgle bond(object-0005,0bject-0002)=t] [single-bond(object-0003,0bject-0004)=t]
[atom-type(object-0006)=hydrogen] [atom-type(object-0004)=carbon] [double-bond(object-0004,0bject-0007 )=t}

{atom-type(object-0005)=carbon] [double-bond(object-0005,0bject-0008)=1] {single-bond( object-0007 0biect-0006)=t)
‘atom-type(object-0007)=carbon] [single-bond(object-0007 0bject-0008 )=t] [atom-type{object-0008)=carbon )}

WITH OCCURRENCES:

{{{double-bond(c05,c06)=1] [double-bond(c03,c04)=t] [double-bond(c01,c02)=t] [single-bond(c04.c05)=t]
isingle-bond(c02,c03)=t] [single-bond(c01,c06)=1] [single-bond(c02,h02}=1] [singie-bond(c01,cl)=1]

'atom type(c06)=carbon] [atom-tvpe(c05)= carbon][atom tvpe(c04)=carbon] [atom-tvpe(c03)=carbon]
;atom-type{c02)=carbon} [atom-wpc(c()l):carbon] [atom-type(h02)=hvdrogen] [atom-typelcl)=chlorine])}

I({doudle-bond(c13.c14)=t] [double-bond(cl1.c12)=t] [double-bond(c07.cO8 )=t] [single-bond(c08.c14)=t]
isingle-bond(cl2,e13)=1] [single-bond(c07,c11)=t] {single-bondicl 2 h08)=1] single-bond(cl1,br)=t]
fatcm-type(cldjacarbonjatom-type(cl3)=carbon] {atom-tvpe(cl2)=carbon] (atom-type(c11)=carbon]
;atom-type(c08j=carbon] [atom-typetcO7)=carbon, [atom-tvpe(ur)=romine) [atem-1y el hO8)=hvdrogeni)!

!f{doubie-bond(c17.c18)=1] [double-bond(cl5.c16)=1] [double-bond(c09,c10)=1] [single-bond(c09.c18)=1]
{single-bond(cl6,c17)=t] {single-bond(¢10.c15)=t] [single-bond(c17.h12)=t][single-bond{c18,i)=1]
{atom-typetcl8)=carbon]{atom-type(cl7)=carbon][atom-type(cis)=carbon] {atom-type(ci1S)=carbon]
latom-type(cl0i=carbon] [atom-type(c09)=carbon] [atom-type(hl2)=hyvdrogen] [atom-type(i)=iodine])!

Runming subdsiruciure discoverv...
Discovered the following 10 substructures in 241.81667 seconds:

{Substructure#5 :value 34.36344 ({single-bond(object-0013,0bject-0030)=1] {atom-tvpe(object-0009 ‘=Avdrogen]
‘atom tvpe(obiect- WIS):throgcr‘]'smgle bond(object-0016,0bject-0018)=t] [smglc oond(object-0012 obiec:-0009)=t]
‘atom-typelobject-0011 ;=carbon] [double -bond(object-0010.0bject-001 1 }=1] [atom-type(obiect-0010 1=carbon]
.single- )ond(ooyecL-OOIS object-0010)=1!{single-bond(object-0011.0bject-0012)= =t]{atom- tvpelobject-0014 1=hvdrogen]
ratem-tvpel(object-0012 j=carbon] [double-bond(obyect-OOl2.object-0015)=t} .atom-type(object-0013)=carbon]
‘Goubie-bond(object-0013.0bject-0016=2] [single-bond(obrect-0015, obiect-0014 =1] [atom-ivpel object-001 5 )=carbon)
“single-hondiobrect-0015,0bect-0016)=1; [atom-tvpel obiect-0016)=carbon|)}

WITH OCCTURRENCES:

fsingle-bondic18.i,=t] {atom-type(r0Si=nvdrogen} atom-typethl2)=nvdrogen;[single-bond(c17.712:=1]
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1, .'l:'-,:
o
::-‘ {double-bond(c17,c18)=t] [double-bond(c15,c16)=t]} [double-bond(c09,c10)=t} [single-bond(c09.c18)=1]
; ﬁ-," isingle-bondlc16,c17)=t] (single-bond(c10,c15)=t] [single-bond(c16,h11)=t] [single-bond(c1 5,h05)=1]
_ﬁ\: [atom-type(c18)=carbon] [atom-type(cl7)=carbon] [atom-type(c16)=carbon](atom-type(clS)mcarbon]
(atom-type(c10)=carbon] [atom-type(c09)=carbon){atom-type(hll)=hvdrogen)}
( !([single-bond(c11,br)=t] [atom-type(h10)=hydrogen] [atom-type(h08)=hydrogen! [single-bond(c12,h08)=1]
oD {double-bond(c13,c14)=t] [double-bond(cl1,c12)=t] [double-bond(c07,c08)=1] [single-bond(c08.c14)=1]
A {single-bond{c12,c13)=t] [single-bond(c07,c11)=t] [single-bond(c14,h10)=1] [single-bond(c13,h09)=1]
A [atom-type(cl4)=carbon] [atom-type(cl3)=carbon] [atom-type(c12)=carbon] [atom-type{cll)=carbon]
. {atom-type(c08)=carbon] {atom-type(c07)=carbon] [atom-type(h09)=hydrogen])!
{ -.ﬁ‘ {([single-bond(c01,c1)=t] [atom-type(h04)=hydrogen] [atom-type(h02)=hvdrogen] [single-bond(c02.h02)=1]
i {double-bond(c0S,c06)=t] [doudle-bond(c03,c04)=t] [double-bond(c01,c02)=1] [single-bond(c04,c05)=t]
v [single-bond(c02,c03)=1] {single-bond(c01,c06)=1] [single-hond(c04,h04) =1} [single-bond(c03,h03)=1]
5 (atom-type(c06)=carbon] {atom-type(c05)=carbon] [atom-type(cO4)=carbon] [atom-type(cO3)=carbon]
I {atom-type(c02)=carbon] [atom-type(cO1)=carbon] [atom-type(h03)=hydrogen])}
‘
y 2 .Substructure#4 :value 31.35484 ([atom-type(object-0009)=hvdrogen] [atom-type(object-0018)=hvdrogen]
: .,d\ [single-bond(object-0016,00ject-0018)=t] [single-bond(object-0012,0bject-0009)=1] {atom-type(object-0011 j=carbon
Al {double-bond(object-0010,0bject-0011)=1] {atom-type(object-0010)=carbon] [single-bond(object-0013.0bject-0010)=t)

(singie-bond(object-0011,0bject-0012)=t] [atom-type(object-0014)=hydrogen| (atom-type(object-0012)=carbon]
[double-bond(object-0012,0bject-0015)=t] [atom-type(object-0013)=carbon] {double-bond(object-0013,0bject-0016)=1]
[single-bond(object-0015,0bject-0014)=t] [atom-typel object-001 §)=carbon ] [single-hord(sbject-0015,0bject-0016 )mt]
(atom-type{object-0016)=carbon))}

WITH OCCURRENCES:

{([atom-type(h05)=hydrogen] (atom-type(h12)=hvdrogen] [single-bond(cl7,h12)=t] {double-bond(c17,c18)=1]
{double-bond(c15,c16)=t] [double-bond(c09,c10)=1] {singie-bond(c09,c18)=t] [single-bond(c16,c17)=1]
(single-bond(c10,c15)=t] single-bond(c16,h11)=t] [single-bond(clS.h0S)=t] (atom-type(cl8)=carbon]
latom-type(cl7)=caroon] (atom-type(ci6)=carbon] {atom-type(clS)=carbon] [atom- 1vpe(c10)=carbon]
{atom-type(c09)=carbon] [atom-type(hll)=hydrogen D!

((atom-type(h10)=hvdrogen] (atom-type(h08)=nydrogen] (single-bond(cl2,108)=t] (double-bond(c13,c14)=t]
‘double-bond(c11,c12)=t] [double-bond(c07,c08)=1] [single-bond(c08,c14)=1] [single-bond(c12,c13)=t]
‘single-bond(c07,c11)=1] {single-bond(c14,h10)=1] [single-bond(c13,h09)=t] [atom-tvpelcld)=carbon)
(atom-type(cl3)=carbon] [atom-type(cl2)=carbon] {atom-type(cl1)=carbon] {atom-type(cO8 j=carbon]
fatom-type(c07)=carbon] [atom-type(h09)=hydrogen])}

‘(iatom-type(h04)=hydrogen] [atom-type(h02)=hydrogen] [single-bond(c02,h02)=1] [double-bond(c05,c06)=1]
‘double-bond(c03,c04)=1] {double-bond(c01,c02)=1] [single-bond(c04.c05)=1] [single-bond(c02,c03)=t)
{single-bond(c01,c06)=1] [single-bond(c04,504)=t] {singie-bond(c03,h03)=t] {atom-type(c06)=carbon]
(atom-type{c05)=carbon] [atom-type(c04)=carbon] [atom-type(c03)=carbon] [atom-type(c02)=carbon]
;atom-tvpe(cOl)=carbon] [atom-type(h03)=hydrogea D!
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Substructure#10 :value 26.034458 ([atom-type(object-0034)=carbon] [single-hond(obiect-0010,0bject-0034)=1!
'single-bond(object-0013,0bject-0030)=1] [atom-type(object-0009)=hydrogen] [atom-type(object-0018)=hvdrogen]
Isingle-bond{object-0016,0bject-0018)=t] [single-bond{object-0012,0bject-0009 '=t] [atom-type(object-0011 !=carbon|
‘double-bond(object-0010,0bject-0011)=1] [atom-type(object-0010)=carbon] [single-bond(object-0013.0bject-0010)=1]

DO

.:v:: isingle-bond(object-0011,0bject-0012)=t] [atom-typeobject-0014)=hvdrogen] [atom-type(object-0012)=cardon;

o .double-dond(object-0012,0bject-0015)=1] {atom-type(object-0013)=carbon] {doudie-dbond(obiect-0013.0bject-0016 )=t
o Isingie-bond(object-0015.0bject-0014)=1] [atom-:ypel object-0015)=carbon] [single-bond(object-0015,0b1ect-0016 )=t]
.:..-;‘ {atom-type(obiect-0016)=carbor [)}

b WITH OCCURRENCES:

i {{atom-type(c08)=carbon] [single-bond(cC8,c09 =1} {sing's-bond(c!8 )~t] [atom-typel h0S = vdrogen)

] latom-type(hl2)=hydrogen] [single-bond(c17,h12)=1] [double-bond(c17,c18)=t] [double-bond(c15,cl16)=t]

- (doubie-bond(c09,c10)=1] [single-bond(c09.c18)=t} [single-bond(c16,c17)=t] [single-bond(c10.c15)=t]

T {single-bond(c16,h11)=1] [single-bond(c15,h05)=1] [atom-type(c18)=carbon] [atom-tvpe(cl7)=carhon]

. (atom-type{cl6)=carbon]{atom-type{clS)=carbon] atom-tvpe(c10)=carbon} (atom-tvpel c09 \=carbon]

o .atom-type(hll}=hydrogen])}

. {{atom-type(c06)=carbon| (single-bond(c06,c07 '=t] [single-bond(cl1,br)=t} [atom-tvpe(h10)=hvdrogen]

o ‘atom-type(h08 j=nvdrogen] [single-bond(cl2,h08)=1] [double-bond(cl3.c14)=t] [double-bond(cl1,c12)=t]

- ;double-bond(c07.c08)=1] [single-bond(c08.c14)=t] {single-bond(cl2,c13)=t] [single-bond(c07.c11)=t]

- .singie-bond(c14,n10)=1t] [single-bond(c13,h09 =t] [atom-type(c14)=carbon][atom-tvpelcl3)=carbon]
(.- ‘atom-type(cl2)=carbon] {atem-type(cli)=carbon][atom-t1ype(cO8)=carbon] [atom-typelcO7 )=carbon]
.- {atom-type h09)=hvdrogen D}
iy ({atom-typeic07)=carbon] [single-bond(c06,c07)=t] single-bond(c01.cl)=t] [atom-tvpei hO4)=hvdrogen;

,‘ atom-1ype(h02)=nydrogen] (single-bond(c02.r02)=1] {double-bond(c0S5.c06 )=t} [double-hond(c03.c04)=1,
SR .double-bond(c01,c02)=1] [singie-bond(c04.c05/=t] [single-Hond(c02.c03}=1] [single-bond(cOl .c06 !=1]

St “single-bondic04,h04)=1] [single-bond(c03,h03 =t] {atom-type(c06 jncarbon] (atom-tvpe c0S }=cardon |

® "atom-1vpe c04 i=carbon][atom-typel c03)=carbon]{atom-type(cO2)=carbon]{atom-tvpetcOl,=carben|

". ‘atom-vpe( 103 ;=hydrogen)}

-

D) .. -

o<,

N 98

L

L
o
2
L) ’l'

. -¢ »

Loy Lo R AT A s tatata T ™ RN TR LA R A e AT S LR AT AT A
N , C o AT e L LR N e S 2o '“::"' Y,

A%

Sz act. bY



i
a

¥
oo e
. 3
?
o
b
e
LN
0
. \.:
(‘ ) .i Specializing substructure...
b :.:: : Specialized the substructure:
%
' : - {Substructure#5 :vaiue 34.36344 ([single-bond(object-0013.0bject-0030)=1] [atom-type(object-0009)=nvdrogen]
WS {atom-type(object-0018)=hydrogen] [single-bond(object-0016,0bject-0018 )=t] [single-bond(object-0012.0bject-0009 )=1]

{atom-type(object-0011)=carben) [double-bond(object-0010,0bject-0011)=t] [atom-type(object-0010 )mcarbon)
(single-bond(object-0013,0bject-0010)=1] [singie-bond(object-0011,0bject-0012)=1] [atom-typelobject-0014)=hvdrogen]
{atom-type(object-0012)=carbon] [double-bond(object-0012,0bject-0015)=t] [atom-type(object-001 3)=carbon]
{double-bond(object-0013,0bject-0016)=1] [single-bond{object-0015,0bject-0014)=1] [atom-type(object-0015)=carbon]
[single-bond(object-0015,0bject-0016)=1] [atom-type(object-0016)=carbon])}

v

)
»
D

0 the following substructures:

{Substructure#0 :value 1 ([atom-type(object-0030)=bromine,chlorine,iodine] [single-bond(object-0013.0bject-0030)=t]

; {a:om~type(object-0009)=hydrogen] (atom-type(object-0018)=hvdrogen] [single-bond(object-0016.0bject-0018 }=t]

‘ - Lsmgle bond(object-0012,0bject-0009)=t] [atom-typelobject-0011)=carbon] [double-bond( obiect-0010,0bject-0011)=t]
YO [atom-type(object-0010)=carbon] [single-bond(objec:-0013,0bject-0010)=1] [singie-bond(object-0011.0bject-0012 )=t]
oo {atom-typelobject-0014)=hvdrogen] [atom-Typelobject-0012)=carbon] [double-bond(objec:-0012,0bject-001 5)=1]

N fatom-type(object-0013)=carbon] (double-bond(object-0013.0bject-0016)=1] {single-bond(object-0015,0biect-0014)=t]
,"’:-\ .. latom-typelobject-0015)=carbon] {single-bond(object-0015,0bject-0016)=1] [atom-type(object-0016)=carron ]}
RN
f.,‘_ - Adding substructures to BK...
®

&% Added the following substructures to BK:

OO

£

Discovered: {Substructure#5 :value 34.36344 ( ([single-bond(object-0013, 0bject-0030)=t] [atom-typetobject-0009 1= -nd.ogen]

S‘- .atom-type(object-0018)=hydrogen] [single-bond(object-0016,0bject-0018 )=t] [single-bond( object-0012,0biect-0009 )=t
35 ‘atom-type(object-0011)=carbon] {double- bond(ob)ect 0010,0bject-0011)=t] [atom-type(object-0010)=carbon]
Yol isingle-bond(object-0013.0bject-0010)=t] [single-bond(object-0011,0bject-0012)=1] [atom-typelobject-0014)=h vdrogen]
F ." .atom- tvpe(oo;eci- l’)-carbon][doublc-bond(ob]cct 0012.0bject-0015)=1] (atom-typelabiject-001 3 =carbon)
_ double-bond(ob)cct 001 3.0bject-0016)=1] {single-bond(object-0015,0bject-0014)=1] [atom-type(object-0015 =carbon]
| '.\; (single-bond(object-0015,0bject-0016)=t] (atom-type(object-0016)=carbon )}
:’ '-:- Specialized: {Substructure#0 :value 1 ([atom-type{object-0030)=bromine,chlorine.iodine]
- e ;single-dond(object-0013,0bject-0030)=1] [atom-type( 0bject-0009)=hydrogen] [atom-type(object-0018 . =hydrogen]
o smgle bond(obiect-0016.0bject-0018 )=t] [single-bond(object-0012, object-0009)=t] {atom-1ypeiobjec:-0011)=carbon]
B f; double- bond(ob;ect 0010,0bject-0011)=t] [atom-typef object-0010)=carbon] [single-bond(object-0013,0b1ect-0010)=1]
) ’ “single-bond(object-0011 obvec'-OOI")-t] (atom-typetobject-0014)=hvdrogen] (atom-type(object-0012; =carbon)
s - “doubie-bond(object-0012,0bject-001 5)=t] {atom-typet object-001 3)=carbon] [double-bond(cdject-0013.0bject-0016)=1]
N _single-hond(obiect-0015,0biect-0014 =1} {atom-typei obrect-0015)=carbon] [singie-bond(objeci-0015.0bject-0016 =1}
<a ‘atom-type{object-0016;=carbon])!
‘ ,-: .'._- Enc trace.
e
° .
<o A.3. Experiment 3
SO Experiment 3 demonstrates SUBDUE's ability to discover substructures that can be used as
1 b.b. -
P -'. ->— . . . . -
- high-level atiributes for classifving mu'tiple examples. The input examples consist of the
 J
-::: - descriptions of ten trains. The DefExample calls for each example are shown. along with the
- resuiting output.
o
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A3.1. Input for Experiment 3

(DefExample ;Train A
"((carl car2 car3 card cat5)

((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront 1))
((car-shape (carl) engine) (wheel-color (carl) black) (car-shape (car2) open-rectangle) (car-length (car2) long)
(load-shape (car2) rectangle) (load-number (car2) three) (wheel-color (car2) black) (car-shape (car3) sloped)
(car-length (car3) short) (load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) black)
(car-shape (card) open-rectangle) (car-length (card) long) (load-shape (car4) hexagon) (load-number (card) one)
{wheel-color (car4) black) (car-shape (car5) open-rectangle) (car-length (car$) short) (load-shape (car5) circle)
(load-number (car5) one ) (wheel-color (car$) black) (infront (carl car2) t) (infront (car2 car3) t)
(infront (car3 card) t) (infront (card car$) v))))

(DefExample ;Train B
"((carl car2 car3 card)

((car-shape nil) (wheel-calor nil) (car-length nil) (load-shape ail) (load-number nil) (infront 1))
((car-shape (carl) engine) ( wheel-color (carl) black) (car-shape (car2) u-shape) (car-length {car2) short)
{load-shape (car2) triangie) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) open-trapezoid)
{car-length (car3) short) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-color (car3) white)
(car-shape (car4) closed-rectangle) (car-length (card) short) (load-shape (card) circle) (load-number (card4) two)
(wheei-color (card) white) (infront (carl car2) t) (infront (car2 zar3) t) (infront (car3 card) 1))))

.DefExample Train C
“(carl car2 car3 car4)

{{car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront 1))

(Ccar-shape (carl) engine) ( wheel-color (carl) black) (car-shape (car2) open-rectangle) (car-length (car2) short)
{ioad-shape (car2) circle) (load-number (car2) one) (wheel-coior (car2) white) (car-shape (car3) hexagon)
{car-length (car3) short) (load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) white)
{car-shape (car4) closed-rectangie) (car-length (card) long) (load-shape (card) triangle) (load-number (card) one)
(wheel-color {car4) white) (infront (carl car2) ¥) (infront (car2 car3) 1) (infront (car3 card’ 1))))

'DefExample :Train D
“{carl car2 car3 car4 car5)

{(car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (iafront t})
?{car-shape {carl) engine) (wheel-color (carl) white) (car-shape (car2) open-trapezoid) (car-iength (car2) short)
(“oad-shape (car2) triangie) {load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) double)
{car-iength (car3) short) {load-shape (car3) triangle) (load-number (car3) one) (wheel-color (car3) white)
(car-shape (car4) ellipse) (car-length (card) short) (load-shape (card) diamond) (load-number (card) one)
(wheel-color (card) white) (car-shape (car5) open-rectangle) (car-length (car$) short) (load-shape (car$) reciangle)
{load-number (car5) one ) (wneel-color (carS) white) (infront (carl car2) t (infront (car2 car3) 1)
(infront {car3 card) 1) (infront {car4 car5) 1))))

i DefExample Train E
“(carl car2 car3 card)

({car-shape nii) (wheel-color nil) { car-length nil) (load-shape nil) (load-number nil) (infront 11)
({car-shape (carl) engine) {wheel-color (carl) black) (car-shape (car2) doubie) (car-length (car2; short’
fload-shape (car2) triangie) (load-number (car2) one) (wheel-color (car2) biack) (car-shape (car3) closed-rectangie)
(car-iength (car3) long) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-coior (car3) biack)
(car-shape (car4) closed-rectangle) (car-length (card) short) (load-shape (card) circle) (load-number (card) one!
(wheel-color (card) black) (inrront (carl car2) 1) (infront (car2 car3) t) (iniront (car3 card} t))})

‘DefExample Train F
“(carl car2 car3)
i(zar-shape nil) { wheel-cotor nil) fcar-length nil) (load-shape nil) ( load-number nil) (infroent 1))
ticar-shape (carl) engine) { wheei-color (carl) black) (car-shape \car2) closed-rectangle) (car-length fcar2) long/
{load-shape /car2) circie) (ioad-number {car2) three) (wheel-color (car2) white) (car-shape (car3) open-recta igle)
(car-iength (car3) short) (load-shape (car3) triangle) (load-number (car3) one) ( wheel-color (car3} white)
(infroat (carl car2) ) (infront {car2 car3) 1))))

"DefExample ;Train G
“{carl car2 card card)
{fcar-shape nil) ' wheel-color nil) t car-length nil) (load-shape nii) i load-number nil) (infron: 1)
f'car-shape ‘carl) engine) { wheel-color (carl) white) (car-shape (car2. doubie! {car-length <car2 snor:!
‘load-shape icar2) aircle) (ioad-number (car2) one) ( wheel-coior icar2) black (car-shape carl/ u-shape)
“car-iength (car3; short) load-shape {car3) triangle) (load-number (caz3’ one) ! wheei-coior (car3) write:
‘car-shape card) jagged) car-lengthicard’ long) (load-number (card) zero (wheel-color‘card) white
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{infront (carl car2) t) (infront (car2 car3) t) (infront (car3 card) 1))))

ot (DefExample ;Train H
E "({carl car2 car3)
~ ((car-shape nil) (wheel-color nil) (car-leagth nil) (load-shape nil) (load-number nil) (infront t))

((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) closed-rectangle) (car-length (car2) long)
. tload-shape (car2) rectangle) (load-number (car2) one) (wheel-color (car2) white) (car-shape (car3) u-shape)

- (car-length (car3) short) (load-shape (car3) circle) (load-number (car3) one) (wheel-color (car3) white)
. (infront (carl car2) t) (infront (car2 car3) t))))
(DefExample ;Train 1
- ‘((carl car2 car3 car4 car5)
X ((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))

((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) open-trapezoid) (car-length {car2) short)
(load-shape (car2) circle) (load-number (car2) one} (wheel-color (car2) white) (car-shape (car3) jagged)

- (car-length (car3) long) (load-shape (car3) rectangle) (load-number (car3) one) (wheel-color (car3) white)

s (car-shape (card) open-rectangie) (car-leagth (card) short) (load-shape (card) rectangle) (load-number (car4) one)
e (wheel-color (card4) white) (car-shape (car5) open-trapezoid) (car-length (car$) short) (load-shape (car$) circle)
{load-number (car5) one) (wheel-color (carS) white) (infront (carl car2) t) (infront (car2 car3) 1)

- {infront (car3 car4) t) (infront (car4 car$) t))))
0 (DefExample ;Train J
"((earl car2 car3)
- ((car-shape nil) (wheel-color nil) (car-length nil) (load-shape nil) (load-number nil) (infront t))
b ((car-shape (carl) engine) (wheel-color (carl) white) (car-shape (car2) u-shape) (car-length (car2) short)
¥ {load-shape (car2) rectangie) (ioad-number (car2) one) (wheel-color (car2) white) (car-shape (car3) open-rectangle)

(car-length (car3) long) (load-shape (car3) rectangle) (load-number (car3) two) (wheel-color (car3) white)
{infront (carl car2; t) (infront (car2 car3) ©))))

A.3.2. Output for Experiment 3

> subdue :limit 30)

"
s

Begin trace...

L 2 B §
M

Parameters: limit = 30 connectivity =t compactness = t coverage = 1
use-bk = nil discover = 1 specialize = nil inc-bk = nil

Running substructure discovery...

Discovered the following 30 substructures in 21.383333 seconds:

iSubstructure#4 :value 11.297071 ([car-length(object-0001 )=short] [load-number{ object-0001 )=one]
‘whneel-color{ obiect-0001 ;=white])}
WITH OCCURRENCES:
'({car-length(car2)=short] [load-number(car2)=one] {wheel-color(car2)awhite})}
i{icar-length(car3)=short] [load-number(car3)=one] [wheel-color(car3)awhite])}
i{{car-length(car2)=short{load-number(car2)=cne] [wheei-color{car2)=white})!
{{{car-length(car3)=short] {load-number(car3)=one] [wheei-color(car3)=white])} w
{([car-length(car2)=short] [load-number{car2)=one] {wheel-color(car2)=white})} ‘
'{{car-iength(car3)=short] [load-number{car3)=one] [wheel-color{car3)=white]): ‘
.{{car-lengthicar4)=short] [load-number(card)=one] [ wheel-color(car4)=white})}
t([car-iength(car5)=short] [load-number(car5)=one] [wheel-color{cars)=white})!
{{[car-length(car3)ashort]{load-number( car3)=one% {wheel-color(car3)=white));
(
1{
]

[Badn
\“‘-

- %
“J-‘-‘

t/{car-iength(car3)=short} [ioad-number(car3)=one] [wheel-color(car3)=white))!
{{car-leng*h(car3)=short] [load-number(car3)=one] [wheel-color(car3)=white])}

S i({car-iength(car2)=snort] [load-number(car2)=one} [wheel-color(car2)~white])}
. !([car-iength(card)=shert] {load-number(card)=one} [wheel-color(card)=white])}
t({car-length{car5)=short] (load-number{car5;=one} [wheel-colortcar5)=white])}
"({car-length(car2)=shortj (load-numbert car2)=one] {wheei-color{car2)=white})!

Substructure#6 :value 8.228033 ([ wheel-colort object-0008 )=white] infront(obiect-0008 object-0001 '=1]

_car-lengthiobject-0001 j=short){icad-numbert object-0001 )=one) {wheel-color obiect-0001)=white]):
WITH OCCURRENCES:
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e {({wheel-color{car2)=white] [infront(car2,car3)=1] [car-length(car3)=short] (load-number(car3)=one]
"
Y, {wheel-color(car3)=white])}
' {([wheel-color{car2)=white] [infront(car2,car3)=t] [car-length(car3)=short] {load-number(car3)mone)
[wheel-color(car3)=white])}
! " i([wheel-coloricarl )uwhite] [infront(carl,.car2)=t] [car-length(car2)=short}{load-number(car2)=one]
AN [wheel-color(car2)=white])}
joo . . . .
o {({wheel-color(car2)=white] {infront(car2.car3)=t] [car-length(car3)=short)[load-number{car3)=one)
-, (wheel-color{car3)=white])}
AN
: a.:: < {({wheel-color(car3)=white] [infront(car3,card)=t] {car-length(card)=short] [load-number(card)=one)
~ - {wheel-color(card)=white]}
. {({wheel-color(card)=white} [infront(card.car$)=t] [car-length(car3)=short] (load-number(car5)=one}
) {wheel-color(carS)=white])}
(RS {({wheel-color{car2)=white] {infront(car2,car3)=t] {car-length(car3)=short] [load-number(car3)=one]
Sy [wheel-color(car3)=whiteD}
:f\. {({wheel-color{car2)awhite] [infront(car2,car3)=t] {car-length(car3)=short] {load-number(car3)=one]
g, [wheel-color(car3)=white]D}
:*.:‘ {({wheel-color(carl)=white] [infront(car1,car2)=t] [car-length(car2)=short] (load-number(car2)=one]
P [wheel-color{car2)=white))}
i {([wheel-color(car3)=white] [infront(car3,card)=t] [car-length(card)=short] [load-number(car4)=one]
i [wheel-color(card)=white])}
\':_-. {([wheel-color{car4)=white] [infront(card,car5)=t] [car-length(car5)=short] {load-number(car5)=one]
s [wheel-color(car5)=white]))
v i([wheel-color(carl)=white] (infront(carl,car2)=t] [car-length(car2)=short] [load-number{car2)=one]
.\:‘_.f [wheel-color{car2)=white])}
~
T {Substructure#5 :value 7.4092503 ([infront(object-0008.object-0001)=t] [car-length(object-0001 J=short]
® {load-number(object-0001, =one ] [ wheel-color(object-0001 )=white ]}
Ly WI1TH OCCURRENCES:
' j:: ‘(linfront(carl,car2)=t] [car-length(car2)=short] [load-number(car2 =one] [wheel-color{car2)=white])}
’ :vl'\'- {{{infront(car2,car3)=t] [car-length(car3)=short] {load-number(car3)=one] [wheel-color{car3)=white])}
Cnt o i([infront(carl,car2)=t] [car-length(car2)=short] [load-number{car2)=one] [wheel-color(car2)=white])}
1 *-:_\: I({infront(car2.car3)=t] [car-iength(car3)=short] [load-number(car3)=one] [wheei-coloricar3)=white])}
e, i(linfront(carl,car2)=1} [car-iength(car2)=short] [load-number(car2)=one] [wheel-color{car2)=white]))
( y {({infront(car2.car3)=t] [car-length(car3)=short] [load-number{car3)~one] [wheel-color(car3)=white]}}
. {([infront(car3,card)=1] (car-length(card)=short| (load-number(card)=one) [wheel-color{ car4)=whiteD}
[ i({infront(card,car5)=t] [car-length(car5)=short] [load-number(car$)=one} [wheel-color(cars)=white])}
! :-.:- {({infront(car2,car3)=t] {car-length(car3)=short] (load-number(car3)=one] [wheel-color(car3)=white])}
S {({infront(car2.car3)=t] [car-iength(car3)=short]j {load-number(car3)=one] [ wheel-color(card)=white])}
i 1(linfront(car2,car3)=t] (car-length(car3)=short] [load-number(car3)=one] [wheel-color{car3d)=white])}
SKH 4 L
(- i({infront(carl, car2)=1] [car-length(car2)=short] {load-number{car2)mone] { wheel-color(car2)=white]}}
. NI {([infront(car3.card)=t] [car-iength(card)=short] {load-number{card)=one} [wheel-color(card)=white])}
g i(linfront(card,carS)=t] [car-iength(cars)=short] [load-numberi car$)=one] {wheel-color{car5)=white])}
SR !(linfronticarl,car2)=1] [car-length(car2)=short] {load-numbericar2)=one] [wheel-color{car2)=white])}
A, :
e
T .
s End trace.
P
3
"
‘ata

A.4. Experiment 4

Experiment 4 applies SUBDUE to the task of discovering macro-operators from a proof tiee.
The example for this experiment is a proof tree from the blocks world. The DefExample call for

this example is shown, along with the resulting output of discovered macro-operators.

A.4.1. Input for Experiment 4

‘DefExample
"(g00 201 302 g03 204 205 g06 g07 208 209 210 arga argb arge argd arge arpf argg)
{subop t) [ before 1) (op-type nil) larg-name nul) (stack-argl 1) {stack-arg2 t) unstack-argl 1) (unstack-arg2 v
‘pickup-arg U putdown-arg t))
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{larg-name (arga) a) (arg-name {argb) b) (arg-name (arge) ¢} (arg-name (argd) d) (arg-name (arge) ¢) (arg-name (argf) f)
(arg-name (argg) g)

(subop (g00 g01) 1) (subop (g00 g02) 1) (before (g01 g02) 1)

(op-type (g01) stack) (stack-argl (gO1 arga) t) (stack-arg2 (g0l arge) t) (subop (g01 g03) 1) (subop (g01 g04) 1)
(before (g03 g04) ¥)

Lop-tvpe (g03) unstack) (unstack-argl (g03 argb) 1) (unstack-arg2 (g03 argc) t)

(op-type (g04) pickup) (pickup-arg (g04 arga) 1) (subop (g04 g05) 1)

(op-type (g05) putdown) (putdown-arg (g0S argb) 1)

(op-type (g02) stack) (stack-argl (g02 argd) 1) (stack-arg2 (g02 argg) t) (subop (g02 g06) t) (subop (g02 g07) )
(before (g06 g07) 1)

(op-type (g06) unstack) (unstack-argl (g06 argf) 1) (unstack-arg2 (g06 argg) t) (subop (g06 g08) 1) (subop (g06 g09) 1)
(before (g08 g09) 1)

(op-type (g08) unstack) (unstack-argl (g08 arge) t) (unstack-arg2 (g08 argf) 1)

(op-type (g09) putdown) (putdown-arg (g09 arge) 1)

(op-type (g07) pickup) (pickup-arg (g07 argd) t) (subop (g07 g10) 1)

(op-type (g10) putdown) (putdown-arg (g10 argf) 1))))

A.4.2. Output for Experiment 4

> {subdue)
Begin trace...

Parameters: limit = 23 connectivity =t compactness = 1 coverage = t
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substructure discovery...
Discovered the following 23 substructures in 12.566667 seconds:

‘Substructure#19 :value 4.4621396 ([op-type(obiect-0006)=pickup] [ pickup-:1g(object-0006 0bject-0084 )=t}

[subopt object-0001,0bject-0094)=t] [unstack-arg2(object-0094,0bject-0122)=1] [bef re(object-0094,0bject-0006)=1]
{subop(object-0156,0bject-0001)=t] [stack-arg2(object-0001 0bject-0122)=t} [op-typelobject-0094 =unstack]
funstack-argl(object-0094,0bject-0064)=1] [stack-arg1(object-0001,0bject-0084)=t}
{putdown-arg(object-0021,0bject-0064)=1] [op-t1ype(object-0021)=putdown] [op-type(object-0001)=stack]
[subop(object-0006,0bject-0021)=t] [subop(object-0001,0bject-0006)=t))}

WITH OCCURRENCES:

{{[op-type(g04)=pickup] pickup-arg(g04,arga)=t] [subop(g01.g03)=t] [unstack-arg2(g03,argc)=1] [befo.e(g03,g04)=1]
{subop(g00.g01)=1] [stack-arg2(g01,arge)=t] [op-type(g03)=unstack] {unstack-argl(g03,argb)=t]{stack-argl(g0l.arga)=1]
putdown-arg(g05.argb)=1t} [op-type(g05)=putdown] op-type(g01)=stack] [subop(g04,205)=1] [subep(g01.g04)=1])}

([oo-tvpe(g07)=pxckuo] (pickup-arg(g07,argd)=1] [subop(g02,g06)=1] [unstack-arg2(g06,.argg)=t] [ before(g06,g07 =t]
'suboptg00.g02)=1] [stack-arg2(g02,argg)=t] [op-type(g06)=unstack] [unstack-argl(g06,argf)=1] [stack-argl(g02.argd )=1]
.putdewn-arg(gl0.argf)=t] [op-tvpe(gl0)=putdown) [op-type(g02)=stack] [suboplg07.g10)=t] [subop(g02.g07)=1])}

‘Substructure®22 :value 3.2921875 ([op-type(obiect-0006 )=pickup] | pickup-arg(object-0006,0bject-0084)=1]
tunstack-arg2(object-0094,0bject-0122)=1] [before(object-0094,0bject-0006 )=t] {subop(object-0156,0bject-0001)=1]
Tstack-arg2(cbject-0001,0bject-0122)=t] [op-typet object-0094)=unstack ] [unstack-arg1(object-0094.0bject-0064 'at]
[stack-arg1(object-0001,0bject-0084)=1] [putdown-arg(object-0021,0bject-0064)=1] [op-type(object-0021)=putdown)]
{op-typelobject-0001)=stack] [subop(object-0006 0bject-0021)=t] [subop(object-0001 0bject-0006)=t])}

WITH OCCURRENCES:

‘({op-1ypel g04)=pickup] [ pickup-arg(g04,arga)=t] [unstack-arg2(g03,argc)=1] [before(g03,g04 i=t) [subop(g00,g01)=1)
fstack-arg2(g0l,arge)=t] (op-type(g03)=unstack] {unstack-argl(g03.argh)=t] [stack-arg1(g01,arga)=1]
putdown-arg(g05.argb)=t! [op-tvpe(g05i=putdown] [op-type(g01)=stack] [subop(g04,g05)=1] {suboplg01.g04)=1])}
{[op-typeig07)=pickup] pickup-arg(g07,argd)=t] [unstack-arg2(g06.argg)=t] [before:g06.g07)=1] [subop(g00,g02)=1]
{stack-arg2(g02.argg)=1] [oo tvpe(g06)=unstack] [unstack-arg1(g06,argf)=t] [stack-argl(g02.argd =t]
{putdown-arg(210,argf)=t] [op-type(gl0)=putdown] [op-tvpe(g02)=stack] {subop'g07,g10)=t] [subop(g02,z07 =1 ]|

'Substructure#20 :value 3.2921875 ([op-type(obiect-0006 )=pickup] [subop(ohiect-0001 ,0bject-0094 )=t}
iunstack-arg2(object-0094,0bject-0122)=t] [before(object-0094,0biect-0006 }=t] {subop(obiect-0156,0bject-0001 ;=1]
‘stack-arg2( object-0001 obrect-0122)=1} [op-typel object-0094)=unstack] [unstack-argl(ohject-0094 0bject-0064 i=t]
[stack-argl(obrect-0001,0bject-0084)=t] {putdown-arg(object-0021,0bject-0064)=t] [op-type(obrect-0021 =putdown]
‘op-1vpeiobject-0001 )=stack ; [subopl object-0006,0bject-0021)=t] [subop(object-0001 .0bject-0006 =1])}

"WITH OCCURRENCES:

“lop-*vpet g04,=pickup] subopt g01.203)=1] [unstack-arg2(g03.argc)=1] [before g02,204)=1][subopi g00.g01 =1}
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‘stack-arg2(g01,argc)=t] [cp-type(g03)=unstack] [unstack-arg1(g03,argb)=1] [stack-argi(g0l arga)=t]
Iputdown-arg(g05.argh)=t] [op-type(g05)=putdown] [op-type(g0l )=stack] [subop(g04,g05)=1] [subop(g01,g04)=1]}}
i([op-type(g07)=pickup] [subop(g02,g06)=t] [unstack-arg2(g06.argg)=t] [before(g06,g07)=t] {subop(g00.802)=1]
[stack-arg2(g02,argg)=t] {op-type(g06)=unstack] [unstack-arg1(g06.argf)=1] [stack-arg1(g02,argd)=t]
[putdown-arg(gl0,argi)=t] [op-type(g10)=putdown] [op-type(g02)=siack] [subop(g07,g10)=1} [subop(g02.g07)=1])}

End trace.

A.S. Experiment S

Experiment 5 demonstrates how SUBDUE may improve the performance of other machine
learning programs. The examples for this experiment are taken from the organic chemistry

domain. The DefExample calls for each example are shown, along with the resulting output.

AS.1. Input for Experiment §

! DefExample ;compound 1 {positive)
“(cl c2e3cdc5c6cTc8c9ci0cll cl2ci3cldacls)
{(single nil) (double nil))
((single (¢! ¢2) 1) (double (c1 ¢3) t) (double (c2 c4) 1) (single (c3 5) t) (single (c4 c6) 1) (double (c5 c6) 1)
(singie (c6 c8) t) (single (c7 ¢8) t) (single (c8 ¢9) 1) (single (c8 c10) 1) (double (c10 c11) 1) (single (c10¢c12) 1)
(singie (c11 c13) t) (double (¢12 ¢14) t) (double (c13 c15) t) (single (c14 c15) 1))))

(DefExample :compound 2 (positive)
"(felc2c3c4cScbcTc8cIclOcllel2el3cldclSclbelT cl8 cl9 c20c21 €22 c23 c24 ¢25 ¢26 c27 c28)

((single nil) (double nil))
({single (cl ¢2) 1) (doubie (cI ¢3} 1) (double (cZ ¢4} ) (single (c3 c5) t) (single (¢4 ¢6) 1) (double (c5 c6) V)
(single (c7 ¢8) t) (double (¢7 ¢9) 1) (double (¢8 ¢10) 1) (singie (cI c11) 1) (single (¢10 c12) t) (double (c11 c12) V)
(single (¢6 c14) 1) (single (c12 c15) 1) (single (c13 c14) 1) (single (c14 c15) 1) (single (c15 c16) 1)
(single (c14 c17) 1) (single (c15 c23) 1) (double (c17 c18) 1) (single (c17 c19) 1) (single (c18 ¢20) t)
(double (c19 c21) 1) (doubie (c20 c22) *) (single (c21 ¢22) 1) (double (¢23 c24) 1) (single (c23 c25) 1)
(single (c24 c26) 1) (double (¢25 c27) 1) (double (¢26 c28) 1) (single (¢27 ¢28) 1))))

‘DefExample ;compound 3 (positive)
ele2c3cdeSc6c7c8c9¢clOcllicl2cl3cldclSclédct7cl8cl9c20c21 c22¢23¢c24¢25¢26¢27 c28 ¢29 ¢30c31 ¢32

€33 ¢34 ¢35 ¢36 ¢37 ¢38 ¢39 ¢40 cdl)
“(single ail) {doubie nil))
((singie (cl ¢2) 1) (double (¢l c3) 1) (double (¢2 cd) 1) (single (c3 ¢5) 1) (single (c4 ¢6) 1) (double (c5 ¢6) 1)
(singie (c7 ¢8) 1) (double (c7 ¢9) 1) (double (c8 c10) t) (single (9 c11} 1) (single (10 €12) 1) (doubte (c11 c12) 1)
(singie (c13 ¢14) t) (double (c13 c15) t) (double (c14 c16) 1) (single (c15 c17) t) (single (c16 c18) 1)
(double (¢c17 c18) 1) (single (c6 ¢20) 1) (single (c12 c21) t) (single (c18 €22) 1) (single (c19 c20) 1)
(single (c20 ¢21) *) (single (¢21 c22) 1) (single (c22 ¢23) 1) (single (c20 c24) t) (single (c21 ¢30) v)
(single (€22 c36) 1) (double (c24 ¢25) 1) (single (c24 c26) 1) (single (c25 ¢27) 1) (double (c26 c28) 1)
(double (¢27 ¢29) 1) (single (c28 ¢29) t) (double (¢30 ¢31) t) (single (¢30 ¢32) 1) (single (¢31 ¢33) v
(double (32 c34) 1) (doudle (¢33 c¢35) 1) (single (¢34 ¢35) t) (double (c36 ¢37) ) (single (36 c38) 1)

e A BT Ui
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(single (¢37 ¢39) ) tdoubie (¢38 c40) 1) (double (¢39 c41} t) (singie (c40 c41) 1)))) )
‘DefExample ;compound 4 (negative) 1';‘

MMele2el3edeSc6cTc8c¢9clO0cllcl2el3cldclScl6clT clB)
"(single ail) (doubie nil))
‘(singie (c] ¢21 t) (double ‘cl ¢3) 1) {double (c2 cd) 1) (single (c3 ¢5) 1) (single (¢4 ¢6) 1) (double (c5 ¢6) 1)
{singie (¢T c8! t) tdouble (¢7 ¢9) *) ‘'double (8 ¢10) 1) (single (9 ¢11) ) (single (c10 ¢12) 1) (double (c11 c12)
(singie (c6 cl1d) 1) (single (€12 c15) t) (single (c13 c14) 1) (single (c14 ¢15) 1) (single (c15 c16) 1)
(s:ngieicld el”) ) (single (c15 ¢18) 1))3)

:‘Y‘

o

‘DefExampie .compound 5 (negative)
"clce2c3c4cSchbcTc8c9cl0cllcl2¢cl3cldclScl6clT c18c19¢20c21 €22 ¢23 ¢c24¢25¢26)
t(singie nil) . doubie ailj)
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((single {cl ¢2) 1) (double (c1 ¢3) 1) (double (c2 ¢4) 1) (single (¢3 ¢5) 1) (single (c4 c6) 1) (double (c5c6) 1)
(single (c7 ¢8) 1) (double (c7 ¢9) 1) (double (c8 c10) t) (single (¢9 c11) t) (single (c10 c12) t) (double (¢11 c12) 1)
(single (c13 c14) 1) (double (c13 c15) 1) (double (c14 ¢16) 1) (single (c15c17) 1) (single (c16 ¢c18) 1)

{double (c17 ¢18) 1) (single (c6 c20) 1) (single (€12 €21) 1) (single (18 ¢22) 1) (single (¢19 ¢20) 1)

(single (c20 c21) 1) (single (c21 ¢22) 1) (single (¢22 ¢23) 1) (single (c20 c24) 1) (single (c21 ¢25) V)

(single (€22 ¢26) 1))

(DefExample ;compound 6 (negative)
"((el c2c3cdc5c6c7 c8c9clOcll c12 13 cl4 c15¢16c17 18 ¢19 20 c21 c22 c23 ¢24 ¢25 26 ¢27 ¢28 ¢29 ¢30 c31 ¢32
€33 c34)

((single nil) (double nil))

((single (c1 ¢2) 1) (double (c1 ¢3) t) (double (c2 c4) 1) (single (c3 c5) t) (single (c4 c6) 1) (double (c5 ¢6) 1)
(single (c7 ¢8) 1) (double (c7 ¢9) 1) (double (c8 ¢10) t) (single (c9 c11) t) (single (c10 ¢12) t) (double (c11 c12) ¥)
(single (c13 ¢14) 1) (double (c13 c15) 1) (double (c14 c16) t) (single (c15¢c17) 1) (single (c16 c18) 1)

(double (c17 c18) 1) (single (c19 ¢20) 1) (double (c19 c21) t) (double (c20 c22) 1) (single (21 ¢23) 1)
(single (c22 c24) t) (double (¢23 c24) 1) (single (c6 ¢26) 1) (single (c12 c27) 1) (single (c18 c28) 1)
(single (c24 c29) t) (single (c25 c26) 1) (single (c26 c27) 1) (single (c27 c28) 1) (single (c28 ¢29) 1)
(single (c29 c30) 1) (single (c26 ¢31) 1) (single (c27 ¢32) 1) (single (¢28 ¢33) 1) (single (c29 c34) 1)))))

AS.2. Qutput for Experiment 5

> (subdue :limit 7)
Begin trace...

Parameters: limit =7 connectivity =t compactness = t coverage = t
use-bk = nil discover = t specialize = nil inc-bk = nil

Running substructure discovery...
Discovered the following 7 substructures in 15.183333 seconds:

'Substructure#7 :value 178.40707 ([single(object-0011,0bject-001 5)=t] [double{object-001 5,0bject-0009)=t]
{double(object-0011,0bject-0002)=t] [single(object-0005,0bject-0009)=1] [doubielobject-0005,0bject-0001 )=1]
{single(object-0001 0bject-0002)=t]}

WITH OCCURRENCES:

{{[single(cd4,c6)=1] {double(c5,c6)=t] [double(c2,cd)=1} [single(c3,c5)=1] [double(cl,c3)=1) [single(cl, c2)=1])}

{[single(c14.c15)=1] {double(c13,c15)=1] [double(c12,c14)at] [single(cl1,c13)=t] [double(c10.c11)=1] [singletc10.c12)=1])}

'(Isingle(cd.c6)=t] [doubie(cS,.c6)=t] [double(c2,ca)=t] [single(c3.c5)=t] [doubdle(cl.c3)=1] [single(cl c2)=t])}

!{[single(c10.c12)=1] [double(cl1,c12)=t] [double(c8,c10)=t] [single(c9.c11)=t] [double(c7,c9)=t] [single(c?.c8)=t]))

{([singie(c21.c22)=1] [doubie(c20,c22)=1] [double(c19.c21)=t] [single(cl §,c20)=t] [double(c17.c18)=1] [single(c17.c19)=t])}

i{({singie(c27.c283=1] [double(c26,c28)=t] [double(c25,c27)=t} [single(c24,c26)=1] [double(c23,c24)=1] [single(c23.c25 =1 )}

!([single(cd.c6)=1] [double(c5.c6)=t] [double(c2.ca)=t] [single(c3.c5)=t] [double(cl c3)=t] [single(cl.c2)=1])

{([single(c10.c12)=1] [double(cll,c12)=t] {[double(c8,c10)=t] [single(c9.c11)=t] [double(c7,c9)mt] [single(c7.c8)=t])}

{([single(c16,c18)=t] [double(c17,c18 )=t} [double(c14,c16)=1] (single(cl §,c1 7)=t] [double(c13,c15)=1] [single(c13.c14)=1])}

1([single(c28,c29)=1] {[double(c27,c29)=t] [double(c26,c28)=t] [single(c25,c27)=1] [double(c24,¢25)=1] [singlel c24,¢26)=1])}

{([single(c34.c35)=1] [double(c33,c35)=t] [double(c32,c34)=t] single(c31,c33)=t] [double(¢30,c31)=1] [single(c30.c32)=1])}

{([single(c40,c41)=t] [double(c39,c41)=1] [double(c38,c40)=t] [single(c37,c39)=1] [double(c36,c37)=1] [single(c36.c38)=1])}

{([single(cd,c6)=1] (double(cS,c6)=t] [double(c2,cd)=t] [single(c3,c5)=1] [double(cl,c3)=1] [single(el c2)=1])}

{([single(c10.c12)=1] [double(c11,c12)=t] [double(c8,c10)=1] [single(c9.c11)=t] [double(c7 c9)=t] [singie(c7.c8)=t])}

{({single(cd,c6)=1} [double(c5,c6)=t] [double(c2,c4)=t] [singie(c3,c5)=1] [double(cl.c3)=t] [singie(cl,c2)=t])}

!({singie(c10,c12)=1] [double(c11,c12)=t][double(c8,c10)=1} [single(c9.c11)=t] [double(c7,c9)=t] [single(c7.c8)=t ]}

‘([single(c16.c18)=1] [double(c17,c18)=t] [double(c14,c16)=1] [single(cl 5.c1 7 )=1] [double(c13,c15)=1] [singlelc13,c14)=t]}

i([single(cd,c6)=1] [double(c5,c6)=t) [double(c2,c4)=t] [single(c3.c5)=t] {double(cl c3)=t] [single(c], c2)=1]}}

'([singie(c10,c12)=t] [double(c11,c12)=t] [double(c8.c10)=1] [single(c9.cl1)=1] [double(c7,c9)=t] [single(c7 .c8)=t])}

([single(c16.c18)=t] [double(c17,c18)=t} [double(c14,c16)=t] [single(cl 5,c17)=t] [doubletcl3,c15)=1] [single(c13.c14)=t])}

i([singie(c22.c24)=1) [double(c23,c24)=t] [double(c20,c22)=1] {single(c21,c23)=t] [double(c19.c21)=1] [singletc19,c20)=1 D}

‘Substructure#6 :value 74.64602 ([double(objec:-0015.0bject-0009 )=t] [double(object-0011.0bject-0002)=t]
(singietobject-0005 object-0009)=1] [double(object-0005,0bject-0001 )=t] [single(object-0001 .object-0002 1=t ])}

WITH OCCURRENCES:

‘{doubletc5.c6)=t] [double(c2,c4)=t] [single(c3.c5)=t] [double(cl c3)=t] {single(cl.c2)=1])}

i{{doubleic5.c6)=t]{double(cl.c3)=1][single(cd.c6i=t] [double(c2.c4 =] [single(cl.c2i=1]);

((doudlelc2.c4)=t](double(cl, c3,=1] [singielcd.c6,=t] {doubleic5.co,=t] [single(c3.c5)=t))!

105




o
Tt
Gl |

YAl

. y? _ P
L JRLNN
A > &

-

{({double(cl3,c15)=t] [double(c12,c14)=t] [single(cl1,c13)=t] [double(c10.c11)=1] single(c10,c12)=t]}}
{{{double(c13,c15)=t] [double(c10,c11)=t] [single(c14,c15)=t] [double(cl2,c14)=t]{single(c10,c12)=t])}
{({double(c12,c14)=1] [double(c10,c11)=t] [single(c14,c15)=t] [double(cl3,c15)=t] [single(cll,c13)=t])}
{({double(c5,c6)=1] [double(c2,cd)=1] [single(c3.c5)=t] [double(cl.c3)=t] [single(cl,c2)mt]))
{{[double(c5.c6)=1] [double(cl c3)=1]}[single(cd,c6)=1] [double{c2,c4)=t] [single(c],c2)=tD)
{({double(c2,c4)=t] [double(cl,c3)=1] [single(cd,c6)=t] [double(cS,c6)=1] [single(c3.c5)=tD}
{({double(c11,c12)=t] [double(c8,c10)=t] {single(c9.c11)=t] [double(c?,c9)=t] [single(cT c8)=t])}
{({double(c1,c12)=t] [double(c7,c9)=t] [single(c10,c12)=t] [double(c8,c10)=t] [single(c7,c8)=1D}
{({double(c8.c10)=t] [double(c7,c9)=t] [single(c10,c12)=t] [double(cl1,cl12)=t] [single(c9,c11)=t]}}
{({[double(c20,c22)=t] [double(c19,c21)=t] [single(c18,c20)=t] [doubie(c17,c18)=t] [single(c17,c19)=t])}
{({doudle(c20,c22)=t] {double(c17,c18)=t] [single(c21,c22)=1] [double(c19.c21)=t] [single(c17,c19)wt]}
{({[double(c19,¢21)=t] [double(cl7,c18)=t] [single(c21.c22)=t] [double(c20,c22)=t] [single(c1 8,c20)=t))}
{({double(c26,c28)=t] {double(c25,c27)=1] [single(c24,c26)=t] [double(c23,c24)=t] {single(c23,c25)=t])}
{({[double(c26,c28)=1] [double(c23,c24)=t] [single(c27,c28)=t] [double(c25,c27)=1] [single(c23,c25)=t]))
{([doubdle(c25,c27)=t] [double(c23,c24)=t] [single(c27 c28)=t] {double(c26,c28)=1] [single(c24,c26)=t]}
{([double(c5.c6)=t] [double(c2,c4)=t] {single(c3,c5)=1] [double(cl.c3)=t] [single(cl.c2)=1]}
{({[double(cS.c6)=t] {double(cl,c3)=t] [single(cd,c6)=t] [double(c2,c4)=t] [single(cl,c2)=t]D}
{({double(c2.c4)=t] [double(cl .c3)=t] [single(cd,c6)=t] [double(cS.c6)=1] [single(c3,c5)=tD}
{({[doublelcil,c12)=1] [double(c8,c10)=t] {single(c9,c11)=t] {double(c7,c9)=1] [single(c7,c8)=t])}
{({double(c11,c12)=t] [double(c7,c9)=t] [single(c10,c12)=t] [doubie(c8,c10)=t] [single(c7,c8)=t])
{({[double(c8.c10)=t] {double(c7.c9)=1] [single(c10,c12)=t] [double(cl 1,c12)=t] [single(cF.c11)=t])}
{({[double(c17,c18)=1] [double(ct4,c16)=t] [single(c15.c17)=t] [double(cl3,c15)=t] [single(cl 3,c14)=t])}
{({double(c17,c18)=t] [double(cl3,c15)=t] [singie(c16.c18)=t] [double(ci4,c16)=1] [singlecl 3,c14)mt]}
{([doubie(c14,c16)=1] {double(c13,c15)=1] [single(c16,c18)=t] [double{c17,c18)=t] [single(c15,c17)mt])}
{([double(c27.c29)=t] [double(c26,c28)=t] [single(c25,c27)=t] [double(c24,c25)=1] [single(c24,c26)=1])}
{({double(c27,¢29)=t] (double(c24,c25)=t] {single(c28.c29)=t] {double(c26,c28)=t] [single(c24,c26)=t])}
{({double(c26,c28)=1] [double(c24,c25)=t] [single(c28,c29)=t] [double(c27,c29)=t] [single(c25,c27)=t])}
1({double(c33,c35)=t] [double(c32,c34)=1] [single(c31,c33)=1] [doubie(c30,c31)=1] [single(c30,c32)mt])}
{({double(c33,c35)=t] [double(c30.c31)=1] [single(c34.c35)=t] [double(c32.c34)=t] [single(¢30,c32)=t])}
{({double(c32,c34)=1] [double(c30,c31)=1] [singie(c34.c35)=t] [double(c33.c35)=t] [single(c31,c33)=t])}
{({double(c39,c41)=1] [double(c38.c40)=1] [single(c37,c39)=t] {double(c36,c37)=t] [single(c36,c38)=t])}
!([double(c39,c41)=t] [double(c36,c37)at] [single(cd0,c41)=t] [double(c38.c40)=t] [single(c36,c38)=t])}
{({double(c38,c40)=t] [double(c36,c37)=1] [single(cd0,ca1)=t] [double(c39,cd1)=t] [single(c37,c39)=])}
{([double(cS,c6)=1] [double(c2,ca)=t] [single(c3,c5)=t] [double(cl c3)=t] [single(cl.c2)=tD}
{({[double(cS c6)=t] [double(cl c3)=t] [single(cd,c6)=t] [double(c2,cd)=t] {single(cl,c2)=tD}
{([double(c2.c4)=1] [double(cl c3)=t] [single(cd,c6)=t] [double(cS.c6)=t] [single(c3.c5)=tD)
{({double(cll,c12)=t] [double(c8,c10)=t] [single(c9,c11)=t] [double(c?,c9)=t] [single(c7.c8)=t])}
{([double(cll,c12)=1] [double(c?,c9)=t] [single(c10.c12)=t] [double(c8,c10)=t] [single(c7.c8)=t})}
{([double(c8.c10)=t] [doubie(c7,c9)=t] [single(c10,c12)=t] [double{cl 1,c12)=t] [single(c9.c11)=t])}
{([double(cS,c6)=1] [double(c2,c4)=1] [single(c3,c5)=t] [double(cl,c3)=t] (single(cl.c2)=t])}
{{{double(c5.c6)=t] [double(cl,e3)=1] [single(cd,c6)=t] [double(c2,c4)=1] [single(cl,c2)=t])}
!([double(c2,c4)=t] [doubdle(cl,c3)=t] [single(ca,c6)=1] [double(cS5,c6)=t] [single(c3.c5)=tD)}
i({double(cl1,c12)=1] [double(c8,c10)=t] [single(c9 c11)=t] [double(c7,c9)=t] {single(c7,c8 }mt])}
([double(cll,c12)=1] [double(c7,c9)=t] [single(c10.c12)=1t] [doubie(c8,c10)=t] [single(c?.c8)=t])}
i({double(c8.¢10)=t] [double(c7.c9)=1] [single(c10.c12)=t] {double(cl 1,c12)=t] [single(cS.c11)=t]}
1({double{c17,c18)=1] [double(c14,c16)=1] [single(c15,c17)=t] [double(c13,c15)=t] [single(c13,c14)=1])}
1({double(cl7,c18)=1] [double(c1d,c1 5)=t] [single(c16.c18)=1] [doubie(c14,c16)xt] [single(cl 3,c14)=t]})
([double(ci4,c16)=t} [double(c13,c15)=1] [single(c16.c18)=t] [doubie(c17.c18)=t] [single(c15,c17)=t]}
i([double(cS.c6)=t] [double(c2,c4)=t][single(c3,c5)=1] [double(cl,c3)=1} [single(cl.c2)=1])
1([double(cS.c6)=t] {[double(cl,c3)=1] [single(cd.c6)=1] [double(c2,c4)=t] [single(cl c2)=t])}
{({double(c2,c4)=t] [double(cl,c3)=t] {single(cd,c6)=1] [doublec5.c6)=1] [single(c3.c5)=tD)}
!({double(cl1,c12)=1] [double{c8,c10)=1] [single(c9,c11)=1] [double(c?,c9)=1] [single(c7,c8)mt]))
({double(cl1,c12)=t] [doubie(c?,c9)=t] [single(c10,c12)=1t] [double(c8.c10)=t] [single(c?,c8)=1]D}
‘({doubie(c8.c10)=1] {double(c7.c9)=1] [single(c10,c12)=t] [doublet c11,c12)=1] [single(c9,cl11)=t])}
({double(c17,c18)=1] {double(c14,c16)=t] [single(cl5.c17)=t] {double(c13.c15)=t] [single(cl3,c14)=t])}
{([double(c17,c18)=1] [double(c13,c15)=1] [single(c16,c18)=t] [doubie(cld.c16)=t] [single(cl13,c14)=t]}
'({double(cl4,c16)=t] [double(c13,c15)=t] {single(c16,c18)=1] [doublelc17,c18)=t]single(cl 5,c17)mt])}
{l{double(c23,c24)=1] [double(¢20,c22)=1] [single(c21.c23)=1] [doubie(c19,c21)=t] [single(c19.c20)=1])}
{{{double(c23,c24)=1] [doubdle(c19,c21)=1] [single(c22,c24)=t] {doubie(c20,c22)=t] [single(c19,c20)=t)}
:({double(c20,c22)=1] [double(c19,c21=t] [single(c22 c24)=t}{double(c23.c24)=1] [single(c21,c23)=1))|

‘Substructure® S :value 60.33403 ([double(object-0011.0bjec:-0002)=t] [single( obiect-0005,0bject-0009)=1]

idouble{ obiect-0005.0brect-0001 )=1] [single{object-0001 ,0biect-0002)=1])}
"WITH OCCURRENCES:
“"doubletc2.c4)=1] [singielc3.c5)=t] (doublelcl,c3)=1] [single(cl.c2 =]}
. doubletcS.c6)=t][singietc2.c5)=1] [double(cl,c3)=t] [singietcl.c2)=1]i
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{({double(cl.c3)=t] [single(c4.c6)=t] {double(c2.c4)=t] {single(cl,c2)=1])}
{([double(cS,c6)=1] [single(cd,c6)=t] [double(c2,ca)=t] [single(c1,c2)=1])}
{([double(cl,c3)=1] [single(cd,c6)=t] [double(c5, c6)=1] [single(c3,c5)=1])}
{([double(c2.c4)=1] [single(c4,c6)=t] [double(c5.c6)=t] {single(c3,c5)=t])}
{({[double(cl,c3)=t] [single(c6.c8)=1] [double(cS,c6)::t] {single(c3,c5)=t])}
{([double(c13.c1 5)=t] [single(c11,c13)=1]{double(c10.c11)=t] [single(c8.c' 0)=t])}
{([double(c12,c14)=1] [single(c11,c13)=1] [doublie(c10,c11)=t] [single(c10,c12)=t])
{([double(c13,c15)=1] [single(cl1,c13)=t] [double(c10,c11)=t][single(c10,c12)=t]}}
{({double(c10,c11)=t] [single(c14,c15)=t] [double(c12,c14)=t]{single(c10,c12)=t]))
{([double(c13,c15)=1] [single(c14,c1 5)=t] [double(c12,c14)=t] [single(c10,c12)=1]}}
{([double(c10,c11)=t] {single(c14,c15)=t] [double(c13.c1 5)=t][single(cl1,c13)=t]})
{([double(c12,c14)=1] [single(c14.c15)=1] [double(cl13,c15)=t] [single(cll,cl3)=t])
{{[double(c2,cd)=t][single(c3,c5)=t] [double(c) c3)=t] [singlelcl,c2)=t])}
{{{double(cS,c6)mt] [single(c3,c5)=1] [double(cl c3)=t] [single(cl,c2)=1])}
{({double(cl.c3)=t] [single(cd,c6)=t] [double(c2,c4)=t] [single(cl,c2)=:D}
{([double(c5.c6)=1] [singie(ca,c6)=t] [double(c2,c4)=t] [single(cl,c2)=t])}
{([double(cl,c3)=t] [single(c4,c6)=t] [double(cS,c6)=t] [single(c3,c5)=t]))
{({[double(c2,c4)=t] [single(cd,c6)=1] [double(es,c6)=t] [single(c3,c5)=t])}
{({double(cl,c3)=1] [single(c6,c14)=t] [double(cs,c6)=t] [single(c3,c5)=t])}
{([double(c8,c10)=t] [single(c9,c11)=t] [double(c7,c9)=t] [single(c7,c8)=t]}
{([double(c11,c12)=t] [single(c9,c11)=t] [double(cT,c9)=t] [single(c7 c8)=1])}
{([double(¢7,c9)=1] [single(c10,c12)=1] [double(c8,c10)=t] [single(c7,c8)=1])}
{([double(e11,c12)=1] [single(c10,c12)=1] [double(c8,c10)=1] [single(c7,c8)=1])}
{{{double(c7,c9)=t] [single(c10,c12)=t] [double(cll,c12)=1] [single(c9,c11)=1])}
{([double(c8,c10)=1] [single(c10,c12)=t] [double(c11,c12)=1] [single(c9,c1 1)=t])}
{({double(c7,c9)=1] [single(c12.c15)=t] [double(c11,c12)=1] [single(cS,c11)=t))}
{({[double(c20,c22)=1] [single(c18,c20)=t] [double(c17.c18)=t] [single(c14,c17)=1])}
{({double(c26,c28)=1] [single(c24,c26)=1] [double(c23.c24)=t] [single(c1 5,c23)=1])}
{({[double(c19,c21)=1] [single(c18,c20)=1] [double(c17,c18)=t] [single(c17,c19)=t])}
{([double(c20,c22)=1] [single(c18,c20)=t] [double(c17,c18)=t] [single(c17,c19)=t])}
{{{double(c17,c18)=t] [single(c21,c22)=1] [double(c19,c21 )=t] [single(c17,c19)=t])}
{({double(c20,e22)=1] [single(c21,622)=1] [double(c19.c21)=t] [single(c17,c19)=t])}
{([double(c17,c18)at] [single(c21,c22)=t] (double(c20,c22)=t] [singie(c18,c20)=t])}
{([double(c19,c21 )=1] [single(c21,c22)=1] [double(c20,c22)=t] [single(c18,c20)=t])}
{([double(c25,627)=t] [single(c24,c26)=t] [double(c23,c24)=t] {single(c23,c25)=1])]
{((doudle(c26,c28)at] [singie(c24,c26)=1] [double(c23,c24)=t] [single(c23,c25)=1]))
{({double(c23,c24)=1] [single(c27.¢28)=1] [double(c25,c27)=t] single(c23,c25)=1])}
{({double(c26,c28)=t] [single(c27,c28)=1] [double(c25,c27)=t] [single(c23,c25)=1])
{({[double(c23,c24)=1] (single(c27,c28)=t]} [doublie(c26,c28)at] [single(c24,c26)=1])}
{({[doublie(c25,627)=t] [single(c27,c28)=1] [double(c26,c28)=t] [single(c24,c26)=t])}
{({double(c2,c4)=t] [single(c3.c5)a1] [double(cl,c3)=t] [single(cl,c2)=t])}
{([double(c5,c6)=t] [single(c3.c5)=t] [double(cl,c3)=t] [singie(cl,c2)=t])}
{({doudle(cl,c3)=t] [single(cd,c6)=t] [double(c2.c4)=t] [single(cl,c2)=t])}
{([double(c5.c6)=1] [single(cd.c6)=1] [double(c2,c4)=t] [single(cl,c2)=1])}
{({double(cl.c3)=t] [single(cd.c6)=1] [double(cS,c6)=t] [single(c3,c5)=t])!
{({doudle(c2,c4)=t] [single(cd.c6)=1] [double(cS,c6)=t] [single(c3,c5)=1])!
{({double(cl.c3)=t] [single(c6,c20)=1] [doubie(c5,c6)=t] [single(c3 cS)=t]))
{{{double(c8.c103=t] [single(c9,c11)=t] {double(c7,c9)=t] [singleic7,c8 h=t])}
{({double(cil,c12)=1] [single(c9,c11)=t] [double(c7.c9)=t] [single(c7.c8)=1])}
{([double(c7,c9)=1] [single(c10,c12)=t] [double(c8,c10)=t] [single(c7 c8)=1])}
{({doubdle(c11.c12)=1] [single(c10,c12)=1] [double(c8,c10)=1] [single(cT,c8)=t ]}
{({[double(c7,c9)=t] [single(c10,c12)=t] [double(ci1,c12)=t] {singie(c9,c11)=1])}
[{[double(c8,c10)=1] [single(c10,c12)=t] [double(cl1,c12)=1] [single(c9.cl1)=1])}
{({double(c7,c9)=t] [single(c12,c21)=1] [double(c11,c12)=1] [single(c9.c11)=1))}
I([double(c14,c16)=1] [single(c1 5.c17)=t] [double(cl3.c15)=t] [single(cl3.c14)=t])}
{([double(c17,c18)=1] [single(c15.c17)=1] [doubie(c13,c15)=1] [single(c13,c14)=t])}
{([double(c13.c15)=t] [singie{c16.c18)=1] [doubletc14.c16)=t] [single(cl3,c14)=1]))
{([double(c17,c18)=1] [single(c16,c18)=1] [double(cl4,c16)=t][single(c13,c14)=1])}
{{[double(c13,c15)=1] [singie(c16,c18)=1t] [double(c17.c18)=t][single(c15.c17)=t])}
{((double(c14,c16)=t] [single(c16.c18)=t] {double(c17.c18)=t]{single(c15,c17)=1])}
I({deuble(cl3.¢15)=1] [single(c]8.c22)=1] [double(c17.c18)=1]{single(c15,c17)=1})}
i([doudle(c27,¢29)=1] [singietc25.c27 )=1] [double(c24.c25)=t] [single(c20,c24)=1)}
{({double(c33.c35)=t] [singleic31.c33)=1} {doubletc30,c31 Jut] [single(c21,c30)=1])}
{{double(c39,¢41)=1] [singietc37,c39)=t] [double(c36.c37)=t] [single(c22,c36)=1))!
'[double(c26.c28)=t! [singie(c25.c27)=1] [double(c24,c251=1] [single(c24,¢26)=1])!
ildouble(c27,629)=1j [singietc25,c27)=1] [doublelc24.c25)=1} [single(c24,c26)=1])}
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"'.. , {{{double(c24,c25)=1] [single(c28,c29)=1] [double(c26.c28 )=1] [single(c24,c26)=1])}
' {{[double(c27,c29)=1] [single(c28,c29)=1] [double(c26,c28)=1] [single(c24,c26)=1])}
A {({[doubie(c24,c25)=1] [single(c28,c29)=1] [double(c27,629)=1] [single(c25,c27)=1])}
( {({double(c26,c28)=1) [single(c28.c29)=1] [double(c27,c29)=1] [single(¢25,c27)=1])}
A {([double{c32,c34)=1] [single(c31.c33)=t] [double(c30,e31)=1] [single(c30,c32)=1])}
':"s {([double(c33,c35)=1] [single(c31,c33)=1] [double(c30,c31 )=t] [single(c30,c32)=t])}
"l. y {([double(c30,c31)=t] [single(c34,c35)=1] [double(c32,c34)at] [single(c30,e32)=:])}
s {({douhie(cd3,c35)=t] [single(c34,c35)=t] [double(c32,c34)w1] [single(c30,c32)=t])}
¥ x-". {([double(c30,c31)=t) [single(c34,c35)=1) [doubie(c33,c35)=1] [single(c31,e33)=t])
W] {({[double(c32,c34)=1] [single(c34.c35)=1] [double(c33,c35)=t] [single(c31,c33)=t])}
L. {({double(c38,c40)=t] [single(c37,c39)=1] [double(c36,c37)=t] [single(c36,c38)=1]))
')f {({double(c39,c41)=1] [single(c37.c39)=1] [double(c36,c37)=t] [single(c36,c38)=t])}
- {{{dounle(c36,c37)=t] [single(c40,ca1)=t] [double(c38,c40)=1] single(c36,c38)=t])}
: ; "': {({double(c39,c41)=1] [single(c40.c41)=t] [double(c38,c40)=t] [single(c36,c38)m1D}
J'\"f {({[double(c36,c37)=t] [single(c40,c41)=t] [double(c39,c41)=t] [single(c37,c39)=t]D}
7 {({double(c38,c40)=t] [single(cd0,c41)=t] {double(c39 c41)=t] [single(c37,c39)=tD}
~ {({double(c2.c4)=1] [single(c3,c5)=t] [double(cl c3)=t] [single(cl,c2)=1])}
e {({double(c5,c6)=t] [single(c3,c5)=] [double(cl c3)=t] [single(cl, c2)=1]}}
‘ {{[double(cl,c3)=t] [single(cd,c6)=t] [double(c2,c4)=t] [single(cl,c2)=1])}
{([double(c5.c6)=t] [single(cd.c6)=1] [double(c2,cd)=t] [single(cl,c2)=1])}

{([double(cl,c3)=t] [single(cd,c6)=t] [double(c5,c6)=t] [single(c3,c5)=tD}
{{[double(c2.c4)=1] [single(cd,c6)=t] [double(cS,c6)=t] {single(c3,c5)=1]D}
{({double(cl,e3)=t] [single(c6,c14)=t] [double(cs,c6)=1] [single(c3,c5)=t])}
{{{[double(c8.c10)=1] [single{c,c11)=t] [double(c7,c9)=t] [singie(c7, c8)=t])}
{{[double(cl1,c12)=t] [singlelc9.c11)=1] [double(c7,c9)=t] (single(c7,c8)=1])}
{({doubte(c?.co)=t] [singie(c10.c12)=t] [double(c8,c10)=t] {single(c?,c8)=tD}
{({double(cl1,c12)=t] [single(c10.c12)=1] [double(c8,c10)=1] [single(c7,c8)=1])}
{({double(c7,c9)=t] [single(c10.c12)=t] [double(c11,c12)=1] [single(c9,c11)=1]))
({([doubie(c8,c10)=t] [single{c10,c12)=t] [double(c11,c12)=t] [singleic$,ci 1)=t]);)
{([doubie(c?,c9)=1] [single(c12,c15)=t] [double(cl1,c12)=1] [single(c9,c11)=1])}
{({double(c2,c4)=t] [single(c3.c5)=t] [double(cl c3)=t] [single(cl.c2)=t])}
{({double(cS5.c6)=1] [single(c,cS)=t] [double(cl, c3)=t] [single(cl,e2)=1])}
e {{({double(cl.c3)=t] [singie(cd.c6)=t] [double(c2,c4)=t] [single(cl,c2)=t])}
{ {([double(c5.c6)=1] [single(cd,c6)=t] [double(c2,c4)=t] [single(cl,c2)=1])}
{([double(cl.c3)=t] [single(cd,c6)=1] [double(c5,c6)=t] [single(c3.c5)=t])}
1({double(c2,c4)=t] [single(cd,c6)=t] [double(cS,c6)=t] [single(c3,c5)=1]))
{([double(cl.c3)=1] [single(c6,c20)=t] [double(c5,c6)=t] [single(c3,cS5)=t])}
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ho- {([double(c8.c10)=1] [single(c9.c11)=t) [double(c? c9)=t] [single(c7,c8)=tD}
L ({[double(cll,c12)=1] [single(c9.c11)=t]} [double(c7,c9)=1] [single(c? c8)=t])}
L] {([double(c7.c9)=1] [single(10,c12)=t] [double(c8,c10)=t] [single(c7.c8)=tD}

{({double(c11,c12)=t] [single(c10.c12)=t] [double(c8,c10)=t] [single(c7,c8)=1]D)}
{{{double(c7.c9)=1] [single(c10,c12)=t] [double(c11,c12)=t] [single(c9.c11)=1])}
1([double(c8,c10)=t] [singie(c10.c12)=t] [double(cl1,c12)=t]}[single(c9,c11)=t])}
{{[double(c7,¢9)=1] [single(c12.c21)=1] [double(ci1,e12)=1] [single(c,c11)=t]}}
{({double(c1d.c16/=1] [singlecclS.c17)=t]{double(c13,c15)=t] {single(cl 3,c14}=t])}
I({¢ouble(c17.c18)=1] [single(c 5,c17)=1] [double(c13,c15)=1] [single(c13,c14)=t])}
{{{double(c13.c15)=1] [single(c16,c18)=1] [double(c14,c16)=t] single(c13,c14)=1])}
i({double(c17.c18)=t}[singie(c16,c18)=1] [double(c14,c16)=t] [single(c13,c14)a])}
{{[doubie(c13,c15)=t] [single(c16,c18)=1] [double(c17,c18)=t] {singie(c15,c17)=1])}
{{{double(cl4,c16)=t] [single(c16,c18)=t] [doublelc?7,c18)=1] [single(c15,c17)at]}
{({double(c13.c15)=t] [single(c18,c22)=t] [double(c17,c18)=t] [single(cl5,c17)=t])}
([double(c2.cd)=1] [single(c3.c5)=t] [double{cl,c3)=t] [single(cl.c2)=1])}
i{[doublel ¢5.c6)=1] [single(c3.c5)=t] [double(cl,c3)=t] [single(cl.c2)=t]}
{{double(cl.c3}=t] [single(cd,c6)=t] [double(c2,cd)=t] [single(ci.c2)=t]}
if{doubletc5.c6 =] [single(cd.c6)=t] [double(c2,cd)=t] [single(cl,c2)=1])}
I{{doublei cl.c3)=1] [single(c4d,c6)=t] [double(c5,c6)=t] [single(c3,c5)=t])}
{[doublelc2.c4)=1] [single(cd c6)=t] [double(c5.c6)=t] [single(c3.c5)=:]}
{({doubletcl.c3)=1] [single(c6.c26)=t] (double(cS,c6)=1] [single(e3.c5)=t])}
{{[double(c8.c10)=1] [singletc9.c11)=t] (double(c7,c9)=t] [singletc7.c8)=1])
{({doublelcil,c12)=t] [singlelc9,cl1)=1] [doubielc7,c9)=t] [single(c7,.c8)=t]}
{([doubletc?,c9)=t]) [single(c10.c12)=t] {double(c8.c10)=t] [single(c7 c8)=t])}
{({doublecl1,c12)=1] [single(c10,c12)=1] [double(c8.c10)=1] [single(c7.c8)=1])}
{[doubietc7,c9)=1] single(c10,c12)=1] [double(cll.c12)=t] [single(cI.c11)at]}
i({double(c8.c10)=1] {single(c10.,c12)=t]{doubleicll.c12)=t][single(c9.c11)=1})}
tTdoubie(c? c9)=1; (single(clZ.c27)=1] [doubie(cll,c12)=1] {single(cd.c11)=t]),
‘(Tdoublelcl4d,c16,=t] [singletc15,c17 =t} ‘doubie(cl3,c15:=] [singlelci3.cld)=]}!

T

RO T K A A
.i‘ ‘l '.-|'. [
.’.{&I#I' _l'f.t'j AR AR

v
A

i

Padigin il .
T TR T
i D e A
PR .
PR
TR

-
"

'o'ff("v'r'a'

LR
2 N

\ ::'
@
A

W

108

b'" I G T Y A G N PR T e v WS B Rt A Tt Yy g AR W q
i N oY LY, M ) WA 3 g ) 3
‘n.'"l‘ RS |:!.i.!‘\‘. 40, AN AN T A0 20 P N b W X IOl - !l' DO MY .,Q WA -:"::“;9, ’:“\:'.,:‘:’Q.‘.:‘.:"J' ..'l, l:'..t 4 .‘D.‘D DK ‘:‘




o'y
[ I
s
N P
n
o> 7., '([double(c17,c18)=1] {single(c15,c17)=1] [double(c13,c1 5)=1] [single(c13,c14)=1])}
i {({double(c13,c15)=1] [single(c16,c18)=t] [double(cl4,c16)=t] [single(c13.c14)=1])}
v i({double(c17.c18)=1] single(c16,c18)=t] {double(c14.c16)=t] [single(c13,c14)=1])}
7 i {({double(c13,c15)=1] [single(c16,c18)=t] [double(c17,c18)=t] [single(c15,c17)=1])}
- . {({[double(c14.c16)=1] [single(c16,c18)=t] [double(c17,c18)=1] [single(c15,c17)=1])}
b "; {{{double(c13.c15)=1] [single(c18,c28)=t] [doudble(c17.c18)=t] [single(c15,c17)=1]}
e 1{[double(c20.c22)=t] [single(c21,c23)=t] [doudble(c19,c21)=t] [single(c19,c20)=t]}
Y] {([double(c23,c24)=1] [singie(c21,c23)=t] [double(c19.¢21)=t] [single(c19,c20)=1 ]}
w b {([double(c19,c21)=t] [singie(c22.c24)=1] [double(c20,c22)=1] [single(c19,c20)=t]}
3 S b {([double(c23,¢24)=1] [single(c22,c24)=t] [double(c20.c22)=t] [single(c19,620)=1])}
R {({[double(c19,c21)=1] [singie(c22,c24)=1] [double(c23.c24)=1] [single(c21,c23)=t])}
' F {({double(c20,c22)=t] [single(c22,c24)=t] [double(c23,¢24)=t] [single(c21,c23)=t]}
N P". {((double(c19.c21)=t] [single(c24,c29)=1] [double(c23,c24)=1] [single(c21,c23)=t]}}
s :
~ .
[ End trace.
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