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Abstract 
This paper introduces SHGAN, an adversarially-trained sys-
tem to create smart home testbeds for novelty detection. We 
design a unique structure to model the complexities of smart 
home data and generate an arbitrary amount of realistic sen-
sor readings. We validate the approach based on data col-
lected from real-world smart homes and discuss methods for 
utilizing this testbed to detect and handle novel smart home 
automated tasks.  

 Introduction  

Individuals spend much of their time in their homes, turning 
these places into sanctuaries. Embedding an AI system into 
the environment also turns these settings into smart homes. 
An intelligent agent can perceive the state of the physical 
environment and residents using sensors, reason about the 
state using AI techniques, and take actions to achieve goals 
such as maximizing security, minimizing resource con-
sumption, and maintaining resident health (Dahmen et al. 
2017; Schmitter-Edgecombe and Cook 2021; Zhang, 
Srivastava, and Cook 2020). 

Achieving such goals in a smart home is challenging be-
cause of the extreme variability in human behavior and en-
vironmental conditions (Arocha 2021; Olthof, Hasselman, 
and Lichtwarck-Aschoff 2020). As a result, smart homes 
provide a valuable testbed to evaluate the ability of an AI 
system to react to unexpected events. Frameworks exist to 
evaluate AI systems, but these are frequently based on a set 
of similar tests (e.g., OpenAI Gym (Brockman et al. 2016)) 
or a single complex environment (e.g., Urban Combat 
Testbed (Youngblood et al. 2006)). In contrast, a smart 
home testbed is both realistic, practical, and dynamic. 

Two tasks that are inherent to smart homes and other 
smart environments are activity recognition and activity pre-
diction (D. Cook and Schmitter-Edgecombe 2021; Minor, 
Doppa, and Cook 2017). In either case, the AI system is fed 
sensor data from a fixed temporal window (e.g., 30 seconds) 
and returns a label for the current activity or the time delay 
until an activity of interest will next occur. These capabili-
ties allow an agent to describe a resident’s behavior routine 
(useful for health and security monitoring) and automate 

home functions in preparation for a future anticipated be-
havior. 

One limitation of real-world testbeds, like smart homes, 
is the limited amount of data that are available for training 
and testing AI systems. In this paper, we introduce a new 
method for generating synthetic smart home sensor data that 
are reflective of human behavior found in real smart homes. 

Fig. 1. (top) Floor plan of a smart home with corresponding loca-

tions for motion (“M”), door (“D”), and item (“I”) sensors.           
(bottom) Sample of sensor data generated by the smart home. 

Fig. 1 illustrates the types of data that are collected in 
smart environments such as smart homes using the CASAS 
Smart Home in a Box kit (D. J. Cook et al. 2012). As the 
figure highlights, smart home testbeds are unique because 1) 
data are sequentially ordered and non-i.i.d., 2) data arrive at 
non-uniform time intervals, and 3) the underlying processes 
(e.g., human behavior) are not stationary but vary based on 
time of day. We describe a generative adversarial method 
that is designed to handle the unique nature of smart home 
data. We evaluate the method using real data collected from 
multiple smart homes and discuss how the testbed can be 
utilized to evaluate the robustness of AI systems in such 
“open worlds.” 



 Related Work  

Collecting human behavior data can be challenging, partic-
ularly if the data are collected longitudinally “in the wild,” 
without constraints on the person’s activities. Researchers 
initially created mathematical models, including Markov 
chains and Petri networks, to model behavior patterns 
(Virone et al. 2003). These models were combined with a 
Poisson distribution to add the corresponding sensor reading 
timestamps (Helal et al. 2011). 

More recently, generative adversarial networks (GANs) 
have become the de facto standard for creating realistic arti-
ficial data. Although these have succeeded in synthesizing 
images that are indistinguishable from real (Schonfeld, 
Schiele, and Khoreva 2020), researchers have only recently 
considered adapting these methods to other types of data. 
The closest approaches to this work generate synthetic time 
series. WaveNet, for example, is a deep network that gener-
ates raw audio waveforms used to create music fragments or 
perform text-to-speech conversion (Jiao et al. 2021). Time-
GAN trains an autoencoder to learn a latent representation 
while jointly training adversarial components to capture 
temporal relationships within the time series (Yoon et al. 
2019). Methods that do not use GANs have also been at-
tempted. One such method creates data by averaging a set 
of time series (Forestier et al. 2017). Many of these existing 
methods have been employed for data augmentation, to im-
prove the accuracy of machine learning models (Dahmen 
and Cook 2019; Forestier et al. 2017).  

Smart home data exhibit unique characteristics that are 
distinct from most sequence and time-series datasets. Data 
must be generated that are consistent with these characteris-
tics. First, data do not arrive at a constant rate. This means 
that a data generator must create realistic time stamps for 
each sensor reading. Second, the generated series does not 
contain just continuous values. Instead, a sensor name must 
be generated with a corresponding value. In the case of am-
bient temperature and ambient light sensors, the correspond-
ing value is numeric. In the case of motion and door sensors, 
the corresponding value is binary (e.g., motion sensors gen-
erate an ON or OFF value, door sensors generate an OPEN 
or CLOSED value).  

Third, sensor readings are accompanied by corresponding 
activity labels. In these experiments, activity labels are pro-
vided by external annotators. Annotators offer ground truth 
labels based on information from smart home residents, a 
home floorplan with sensor locations as in Fig. 1, and a vis-
ualization of the sensor readings. The activity labels provide 
valuable context for the sensor readings. They also represent 
information needed for open world AI tasks such as activity 
recognition, activity forecasting, health assessment, and 
home automation. We label data in new homes based on 

 
1 SHGAN is available at https://github.com/jbroot/SHGAN. 

models that were trained from these ground truth instances 
(D. Cook and Schmitter-Edgecombe 2021).  

SHGAN 

We introduce a system called Smart Home GAN (SHGAN) 
that generates an arbitrary amount of smart home data re-
flective of the data and behavior that are observed in a real 
smart home.1 

Feature Space 
To address the issue of timestamps, we add these to the fea-
ture space. Because timestamps must monotonically in-
crease, we represent them as positive differentials from the 
previous sensor reading. We normalize time differences 𝓣 
to fall in the range [-1, 1], which can later be cast onto the 
desired final value range. Because we want to support finer 
precision of small time increments, we adjust the normali-
zation using a nonlinear mapping, as shown in Fig. 2. 

Fig. 2. 𝒯 mapped by 2𝒯௡௞ െ 1. In this case, k=0.3. 

When addressing the second issue, generating data for 
continuous and binary sensors, we observe that the large 
number of binary outputs (one for each binary sensor, see 
Fig. 1 as an example) biases the output toward binary values 
when combining continuous and binary features into one 
vector. These cases are more effectively handled separately. 
As a result, the architecture uses two signal outputs, one for 
binary readings and another for continuous values. Numeric 
values are generated for all readings in the range [-1,1]. 
SHGAN computes the Wasserstein distance between the 
network output and binary options of -1 and 1 to select the 
final values for binary sensors. The generator’s binary sen-
sor name and activity label are selected through a softmax 
activation applied to the corresponding channels. 

GAN Architecture 
To generate smart home data, we start with a conditional 
Wasserstein GAN with gradient penalty (CWGAN+GP). 
One of the agents in the adversarial pair, the generator G, 



processes an input vector Z from a fixed distribution Pr and 
outputs data X following Equation 1: 

𝑮:𝒁~𝑷𝒓 → 𝑿~𝑷𝜽       (1) 
In this equation, Pr represents a Gaussian distribution 

with a mean of 0.0 and a standard deviation of 1.0 (𝑷𝒓 ∈
ℝ𝟏ൈ𝟏𝟐𝟖ሻ and P  is the output from a softmax function ad-
justed to fall in the range [-1,1]. Thus 𝑷𝜽 ∈ ℝേ𝟏

𝟔𝟒ൈ𝟏𝟏𝟐, where 
ℝേ𝟏 ∈ ሾെ𝟏,𝟏ሿ. That is, we map the noise vector z of size 
128 to a time-step series with 64 time steps and 48 features 
(1 for time, 1 for signal, 32 for sensors, and 14 for activities).  

SHGAN creates a window of data whose number of read-
ings is bounded by a single generation cycle. To create arbi-
trarily-long sequences that can be fused, the model must 
maintain some memory. A bidirectional LSTM (Bi-LSTM) 
accomplishes this using two LSTM layers, one that passes 
data forward and the other backward. The layers learn con-
text-sensitive relationships and maintain memory. In our ex-
periments, SHGAN employs the Adam optimizer with a 
learning rate of 0.0002, exponential decay of 0.5 for first-
moment estimates, and exponential decay of 0.9 for second-
moment estimates. 

In the first layer of the architecture, generator G upsam-
ples Z via a dense layer of leaky ReLU activations (x = 
max(0.20, )). Hidden layers are upsampled by repeating the 
temporal step twice along the time axis. The output is then 
passed through a single-dimensional convolution layer. We 
use zero padding and a stride of one to preserve the dimen-
sions. The feature size is scaled approximately linearly to 
distribute the cost of upsampling amongst the layers. 

The target output is in ℝ𝟔𝟒ൈ𝟒𝟖. SHGAN splits the last hid-
den layer to predict each of the original channels with their 
own convolutional layer. These channels correspond to 
time, signal, sensor, and activity. The time and signals final 
layers are straightforward convolutional layers with one 
layer employing zero padding, a stride of one, and the tanh 
activation function. The sensor and activity outputs are sim-
ilar except they use an adjusted softmax function. This gen-
erated data is given to the discriminator without additional 
processing or masking. 

The GAN’s discriminator D scores the generated data us-
ing the Wasserstein distance with the first moment W1, as 
formalized in Equation 2.  

𝑾𝟏ሺ𝑺,𝑹ሻ ൌ  𝒊𝒏𝒇𝜸∈𝚪ሺ𝑺,𝑹ሻ ׬ 𝒅ሺ𝒙,𝒚ሻ𝒅𝜸ሺ𝒙,𝒚ሻ
 
𝑴𝒙𝑴

  (2) 

Intuitively, W1 represents the minimum earth mover’s dis-
tance between the synthetic (S) and real (R) data distribu-
tions. The discriminator halves the timesteps in each layer 
until there is only one step. The data are scaled approxi-
mately linearly using the same process as for the generator. 
Finally, a fully dense layer yields a single linear output. As 
recommended in the literature, the discriminator is trained 
five iterations for every one iteration of generator training 
(Arjovsky, Chintala, and Bottou 2017). 

Experimental Results  

We validate our approach to creating a smart home novelty 
testbed by analyzing synthetic data based on three real-
world smart homes. We start by visually inspecting the data 
then quantify similarity between real and synthetic data. 

Qualitative Analysis 
Fig. 3 plots the distribution of labels that are generated for 
sensor and activity categories. The two graphs reflect the 
similarity in distribution between real and synthetic data. 
This figure also highlights another challenge that is faced by 
SHGAN. As the histograms indicate, smart home data tend 
to be imbalanced both among sensor types and activity cat-
egories. First, there is an imbalance among the sensor types: 
the door sensors (labels start with “D”) and temperature sen-
sors (labels start with “T”) do not generate as many readings 
as light sensors (labels start with “L”) and motion sensors 
(labels start with “M”). Additional sensors are attached 
throughout the smart home to reflect the battery level of 
smart home components. Because none of the batteries ran 
low, these sensors (labels start with “B”) did not generate a 
single reading. 

Second, this imbalance also exists among activity cate-
gories: activities “Work” and “Other” appear much more of-
ten than the other activities. This situation creates a chal-
lenge for SHGAN, because the generator often ignores un-
derrepresented categories. To address this issue, SHGAN 
replays windows to the discriminator that contain instances 
of minority categories.  

Fig. 3. Histogram of data distributions for (top) synthetic data and 
(bottom) real data. Entries to the left of the vertical dashed line 
represent sensors, entries to the right represent activities. 



Fig. 4. Heat maps of the probabilistic relationship between the sen-
sor identifier and the activity label for each reading in the real and 
synthetic smart home data. (top left) P(activity|sensor) for the real 
data and (top right) the corresponding synthetic data. (bottom left) 
P(sensor|activity) for the real data and (bottom right) the 
coresponding synthetic data. Colors range from black (P=0.0) to 
white (P=1.0). Data are generated for 14 activities and 32 sensors. 

Next, we examine whether SHGAN captured the de-
pendencies between sensors and activity labels. The heat 
maps in Fig. 4 show the probabilistic relationship between 
activities and the corresponding sensors for each reading in 
real and synthetic data. Each row of the figure compares real 
data on the left with the corresponding synthetic data on the 
right. Despite the issues with imbalanced data distributions, 
the graphs indicate the large degree of similarity that exists 
between the sensor and activity relationships in the real and 
synthetic datasets. 

Quantitative Analysis 
To quantitatively analyze the ability of SHGAN to generate 
realistic synthetic smart home data, we use three metrics. 
First, we estimate sequential conditional probabilities for 
real and synthetic data. Based on these estimates, we calcu-
late the average difference between the bigram probabilities 
for sensor labels and activity labels. We report the normal-
ized difference over all datasets. Using this metric, the dif-
ference for sensor bigrams is 0.0002  0.0005, and for ac-
tivity bigrams is 0.0217  0.0019. While the deviations are 
small, we recognize that small perturbations have cascading 
effects in time-series data. 

Second, we employ the two-sample Kolmogorov-
Smirnov nonparametric test (KS) to determine the equality 
of the real and synthetic data distributions. This metric could 
be replaced or supplemented in future work with other 

distribution comparisons such as the Jensen-Shannon dis-
tance or Kullback-Leibler distance. 

Using this metric, the mean KS distance between syn-
thetic data and hold-out real data is 0.080 with a standard 
deviation of 0.021. While the distance is small, the values 
are larger than the average KS distance between multiple 
days from the same home which is 0.070 with a standard 
deviation of 0.022. The result indicates that SHGAN would 
benefit from continued improvement, particularly to address 
the imbalanced distribution challenge. On the other hand, 
the average p value for the KS test comparing real and syn-
thetic data is 0.876 with a standard deviation of 0.029. Be-
cause p > .05, we cannot reject the null hypothesis that real 
and synthetic data originate from the same distribution. 

Third, we utilize a “train on synthetic, test on real” 
(TSTR) metric in which sensor labels and values are used to 
predict the activity label for a window of data. 

We note that all these quantitative metrics can be used not 
only to validate SHGAN but also to quantify the difference 
between training and test data for an AI system and thus the 
novelty of a particular task. Training and testing on synthetic 
data (TSTS) yields a predictive accuracy of 0.83 for 14 ac-
tivities. In comparison, training on synthetic data and testing 
on real yields a predictive accuracy of 0.80 for the same ac-
tivities. The p value using a paired t-test is > .05. 

Conclusions 

This paper demonstrates that an adversarial approach can be 
designed to generate realistic smart home sensor data. Our 
proposed algorithm, SHGAN, is adapted from a conditional 
Wasserstein GAN to handle the unique challenges of non-
homogeneous feature types and readings that arrive at irreg-
ular time increments. Metrics including bigram probability 
comparison, KS distance, and TSTR validate the realism of 
the generated data and provide a mechanism to evaluate the 
novelty of a smart home situation. Future work can improve 
the quality of the data by more completely addressing the 
challenges of imbalanced data distributions and incorporat-
ing a greater variety of sensor types. 
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