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Abstract

This paper describes a decision-theoretic approach to cooperative sensor planning
between multiple autonomous vehicles executing a military mission. For this au-
tonomous vehicle application, intelligent cooperative reasoning must be used to se-
lect optimal vehicle viewing locations and select optimal camera pan and tilt angles
throughout the mission. Decisions are made in such a way as to maximize the value of
information gained by the sensors while maintaining vehicle stealth. Because the mis-
sion involves multiple vehicles, cooperation can be used to balance the work load and
to increase information gain. This paper presents the theoretical foundations of our
cooperative sensor planning research and describes the application of these techniques

to ARPA’s Unmanned Ground Vehicle program.

1 Introduction

Traditionally, research in multi-agent planning and research in image understanding have
been pursued independently. The ARPA Unmanned Ground Vehicle (UGV) program is
pulling together these two technologies to autonomously execute multi-vehicle missions. In

this paper we describe our component of ARPA’s UGV program which combines decision
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theory, sensor planning, and multi-agent planning with cooperation to direct and focus
sensors on-board a unit of military vehicles.

We develop two capabilities for a unit of autonomous vehicles based on these ideas of
cooperative sensor planning. The first capability selects points along a path or in a bounded
region that provide optimal locations for vehicles to observe a specified objective area. The
second capability selects optimal pan/tilt angles, or a field of view, for each vehicle’s camera
as it moves in formation with the vehicle’s military unit.

For both of these capabilities, we pursue a decision-theoretic approach to the guidance of
sensing based on goals of the military mission. These goals include such possibly-conflicting
priorities as maximizing the expected value of information obtained, avoiding exposure of
one’s presence to the enemy, and balancing sensor planning and processing work between
cooperating vehicles. Static and dynamic sensor planning can be achieved in a principled
manner using the decision-making techniques developed in the area of multiattribute utility
and decision theories.

In this paper, we first describe ARPA’s Unmanned Ground Vehicle program, list the
capabilities of the vehicles and sensors used in our project, survey related work, and review
the principles of multiattribute decision theory. Next, we describe our Observation Point
refinement system that selects optimal vehicle positions for observation of a specified area.
Section 6 introduces a method of using multi-agent planning techniques with decision theory
to dynamically focus sensor attention during a military mission. Section 7 presents exper-
imental evaluations of the contributions. Finally, we conclude with directions for future

work.



2 Sensor Planning for Unmanned Ground Vehicles

The United States armed forces continuously seek to increase soldier effectiveness and sur-
vivability in the face of increasingly lethal battlefields. The need exists to operate in envi-
ronments that are hazardous because of enemy actions, to increase survivability, to enhance
continuous operation, and to expand the radius of reconnaissance / surveillance units. Un-
manned semi-autonomous ground vehicles can meet these needs.

The goal of ARPA’s Unmanned Ground Vehicle program is to develop and demonstrate
field-deployable semi-autonomous ground vehicles incorporating ARPA-sponsored technolo-
gies. A typical unmanned ground vehicle is shown in Figure 1. The capabilities that are
currently being demonstrated by these vehicles include autonomous on-road and off-road
navigation, obstacle avoidance, path planning, formation control, target detection and recog-
nition, and cooperative sensor planning.

A typical UGV task would be to cooperatively plan a reconnaissance, surveillance, and
target acquisition (RSTA) task in which the vehicles move in formation along a specified
route. At some point in the mission the vehicles may split up and move to pre-computed
spots from which they can maximally view a specified objective area while still maintaining
stealth. The vehicles would then reconvene and move in formation to the objective area.

In this problem domain, planning for vehicle movement and planning for sensor movement
must be performed in harmony. One reason for this synchronization is the need to maintain
360 degree security around the platoon unit formation. Maintaining this security requires
planning the sensor of directions to cover the entire area surrounding the vehicles while
minimizing duplicated work among separate vehicles.

Another motivation for controlling vehicle and sensor movement together is active RSTA,
or coordinated recognition of enemy targets. Executing such a coordinated effort requires

planning of both vehicle positions and camera angles for maximum coverage of the target



Figure 1: ARPA’s Autonomous Vehicle

while maintaining formation security. A third reason that plan generation is needed for
both vehicle and sensor movement is stealth navigation through unknown terrain, and a
fourth reason is that both vehicle and sensor capabilities must be considered to cooperatively
compute optimal observation point locations for individual vehicles.

Figure 2 illustrates several unit formations that may be employed throughout a mission.
At planning time, each vehicle’s sensor space is divided into individual fields of regard and
weighted to ensure complete 360 degree security around the unit formation while keeping the
major focus of attention toward the objective area. The relative amount of time allocated
to each field of regard is shown.

The camera suite onboard the vehicles can be controlled in terms of pan, tilt, zoom, and

focus. These parameters are controlled by our planning systems.

3 Related Work

Work on active vision has been well established in the field. Bajcsy [3] introduced the

idea of active perception as applied to controlling a sensor at any level of abstraction, from
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controlling the focus of the physical device (as we are doing) to controlling the semantic
interpretation of information returned from the sensor. Bajcsy notes that the role of active
vision is to gain the most information while minimizing resulting cost. This approach lays
the foundation for a decision-theoretic approach to sensor planning.

Decision-theoretic approaches to measuring the utility of gathered knowledge have ap-
peared in active vision research [1, 3, 16, 19], but application to the type of military scenario
described in this paper involving both static and dynamic decision making represents a new
direction in active vision. A decision-theoretic approach is also motivated by literature in
the cognitive science community, which reports that a decision-theoretic approach to sensor
planning is also demonstrated in human perception and information gathering [6, 22].

While a majority of reported active vision techniques have been applied to assembly,
object recognition, and robot monitoring, Camus et al. [8] describe an application of active
vision that is closely related to our UGV work. They have developed a system that employs
active vision to perform target detection and retrieval. In their multi-layer approach, a
supervisory layer decides to look in high-probability parts of the area based on information
returned from low-level sensors. Their approach does not rely on prior probabilities as our
approach does. On the other hand, their system can control navigation as well as camera
movement, and thus regions can be traversed for maximum information gathering, and can
be traversed more than once. Control of navigation as well as sensors would be a good future
direction for decision theory-based UGV research.

Although active vision techniques have been used to make centralized decisions about
sensor movements, there is very little work that decentralizes sensor planning decisions. Yet
as automation of intelligent tasks increases, the need arises for heterogeneous agents to work
in a common environment. While the need for multi-agent planning algorithms is apparent,

the development of algorithms which meet each agent’s goals in a timely fashion, avoid



deadlock, and do not incur heavy communication costs provides a challenging task.

Multi-agent planning and negotiation techniques are common in the AT literature [7, 10,
11, 17, 20, 24], but have not been integrated into computer vision work. Some research
[2, 14] has focused on developing centralized and distributed methods for multi-agent plan-
ning specifically in the context of the Unmanned Ground Vehicle project. Again, these
projects focus on planning for navigation of the vehicles. Very little work has been investi-
gated on multi-agent techniques for sensor planning and information gathering. This paper
describes a project that uses ideas from multi-agent planning and from sensor planning to
allow centralized allocation of major tasks, local control of individual sensor direction, and
distributed cooperation between intelligent perceptual agents.

Ballard and Brown [5] and Bajcsy and Campos [4] both emphasize that learning is an
important part of active perception. To date, the probabilities use by our cooperative sensor
planning algorithms are hard-coded based on information gathered about the mission and
the battlefield area. Future extensions of this project will focus on learning the value of
each type of information and the probability distributions from experience. One method of
learning probability values is through the use of adaptive probabilistic networks, a subset
of belief nets that can learn individual probability values and distributions using gradient

descent [18, 21, 23].

4 Decision-Theoretic Foundations

Our approach to intelligent sensing behavior during a military scouting mission is based on
the utility and decision theories. Our basic premise is that the guidance of sensing behavior
should be based on the rational trade-off between two conflicting priorities (or attributes) of

a military scouting mission: to maximize the expected value of information obtained, and



to avoid exposing one’s presence to the enemy (minimize information obtainable by enemy).
One of the basic results in the multiattribute utility theory states that if the attributes are
utility-independent then the global utility can be computed as a multiplicative function over
the attributes considered [15]. Thus, for our case of a military scouting mission, the global
function that the agent is attempting to maximize, U(A, S, P), of scanning an area A using

a sensor S from position P, can be postulated to have the following general form:

U(A, S, P) = klUScan(Aa S, P) + k2UStealth(P> S) + kleUScan(Au Sa P)UStealth(Pa S)7 (1)

where Usean (A, S, P) is the expected value of information obtained during the sensing action,
and Usyean (P, S) is the expected utility of maintaining stealth, i.e., remaining hidden from
the enemy while occupying the position P and using the sensor S. Let us note that this
value includes not only the danger of being discovered due to occupying an exposed location
P, but also the danger of using the sensor S that could itself be detected by the enemy.
The values of the constants k; and ky determine the relative weight with which the desirable
attributes of gaining more information and remaining undetected can be traded off against
one another. These values can be made to reflect the parameters of a particular military
scouting mission at hand.

The following two subsections briefly describe our proposed approach to calculating the

values of Ugcan and Uggeqrn, during a military scouting mission.

4.1 Determining the Utility of a Sensing Action

The value of information, in general, is equal to the difference between the expected value
of an action selected using the information and the expected value of an action selected

without using the information. In the UGV domain, the resulting desirable behavior will



be an agent’s attempt to look for objects of greatest concern and relevance to the overall
military objective. The calculation of the expected value of a sensing action has to include
the likelihood that the interesting object is located within the area scanned, and that the
sensor can successfully recognize the object at that location. Following Feldman and Sproull
[12], we propose that the general expression for the value of scanning the area A, using sensor

S, from the position P, be:

Usean(A, S, P) = /A S° P1.(z, y)P2u(x, y)V Ipdady, 2)
k

where P1.(z,y) is defined as the conditional probability that an object located at (x,y)
((z,y) € A) will be correctly identified from the position P with the sensor S, P2(x,y)
is defined as the prior probability that an object of type k exists at location (z,y), and the
V I, is the value of information about the object of type k.

Intuitively, the probability P1.(z,y) contains information about the sensing ability of
sensor S given the current conditions ¢ (day, night, fog, smoke, etc.), and the distance
involved, i.e., how well and how far the sensor can currently “see”. The probability P2 (x,y)
contains the prior information as to where various kinds of objects are likely to be located.
Intelligence Preparation of the Battlefield (IPB) information contains information gathered
about an area before the mission is executed. Information such as elevation maps, vegetation
grids, and locations of roads and streams is used to initially derive prior probabilities of enemy
locations and visibility factors. This probability is also continually updated as the sensing
actions are performed, so that it correctly represents the up-to-date state of the system’s
knowledge about the environment. The updating function on which we will concentrate is
Bayes’ rule; however, alternative methods are currently being investigated.

The value of information VI, about the object of type k reflects the importance of

knowing the location of an object of type k. The kinds of objects the system may be interested



in include the various kinds of enemy forces in the area (tanks, HMMWVs, trucks, etc.), the
locations of friendly forces and other scouting vehicles, and the locations of obstacles and
other relevant elements of the terrain.

As an example, suppose that we are trying to select one of two areas, A; and A,, to scan.
Assume that A; and A, are each composed of two discrete locations. Relevant parameter

values are listed below.

e A; = {(100, 100), (100, 150)}

e Ay = {(1000, 1000), (1000, 1050)}

e S; = Infrared

e S, = Color CCD Camera

e k = {M1 tank, M2 tank, HMMWV}
o VI =10

o Vi, =28

o Vigmmwy =5

e P=(0,0)

e ¢ = clear, early evening, 60 degrees

e Using Sensor Si:
P1.(100, 100) = .9
P1.(100, 150) = .9
P1.(1000, 1000) = .7

P1.(1000, 1050) = .6

10



e For every location (z,y):

P2gymwy (T, y) = .01

The value of scanning areas A; and Ay can be computed using equation 2. Because of

the time of day, assume that the infrared sensor is used. U,.q, is computed below.

Uscan(A1,S1,P) = 9%.001%x10 + 9%.001%x8 + .9%.01%x5 +
O9%x.001%x10 + 9%x.001x8 + 9%.01x%5

= .1224

Uscan(A2,S1,P) = 7+.001%x10 + .7%.001%8 + .7%x.01%x5 +
6%x.001%x10 + 6%x.001x8 + .6%.01x%5H

= .0884

Area A; thus provides a higher scan utility over area A;. The probability distributions
P1 and P2, as well as the values of information V' I, will depend on the goals of the mission as
well as the nature of the battlefield area. Once the goals and locations are established, these
values can be generated and used for sensor planning. Although this example demonstrates
the application of utility theory to detection of enemy targets, the underlying formulas can
be used to direct sensor planning for a variety of applications.

For our UGV field exercises, the value VI of each type of potential target (M113 APC,
M35 Truck, M60 Tank, HMMWYV) was assigned an constant value of 1.0. Factors affect-

ing the calculation of P1 were largely terrain features. For example, information regarding
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locations of trees, shrubs, grass, and elevation was available. Vegetation locations and ele-
vation values were used to determine visibility of a region, which in turn affected the ability
of a sensor to view a given region. The prior probability P2 of each potential target was
precomputed given vegetation and elevation information. The prior probability of a target
at location (x,y) was increased if the location was on the border of a forested area (+/- 2
meters from the forest boundary) or just below the crest of a hill (2...3 meters below peak),
and the prior probability was decreased if the slope at location (z,y) was greater than a

threshold value.

4.2 Utility of Maintaining Stealth

We can postulate that the utility of maintaining the stealth of the scouting vehicle is the

negative of the expected cost, ECp;sc(P, S), of being discovered by the enemy:

UStealth(Pa S) = _ECDisc(P; S) (3)

The expected cost of being discovered is the probability pp;s.(P, S) of being discovered

while at position P and using sensor S, multiplied by the cost itself:

ECpise(P, S) = ppisc(P, S)Cpisc(P, ). (4)

The probability of the vehicle being discovered, pp;s.(P,S), depends on the location of
the enemy forces relative to the location P and their line of sight, and on the detectability of
the sensor used. Thus, the same location can be safe or dangerous, depending on whether the
enemy’s expected position allows for a clear line of sight of this location. Also, some sensors
can be safer due to the fact that they are more difficult to detect by the enemy. Thus, the
probability ppis.(P, S) can be computed from prior information about the possible locations

of the enemy forces, and from an estimate of detectability of the sensor used.
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The cost of being discovered by the enemy at the given location is also a combination of
several factors. There is the immediate danger that the given vehicle will become a target of
enemy forces, as well as the danger associated with how the information about the location
of the vehicle could be used by the enemy to harm and obstruct the mission of other friendly
forces.

The exact algorithms for computing pp;s.(P, S) and Cpgs.(P, S) remain among the active
research areas within the UGV project. The obvious question is the appropriate level of detail
that should be included in these calculations. Our ongoing research will initially answer this
question by examining the elements of the very rigorous and detailed view, as outlined above,
and proceed by successive approximations to find the sensitivity of the resulting performance

to the details neglected, given the real-time control requirements of the modern battlefield.

5 Decision-Guided Observation Point Refinement

The observation-point refinement algorithm (OP) is used to select optimal observation points
from which vehicles can observe a specified area of interest. OP is provided with polygonal
descriptions of the area to be observed (area of interest) and the selected regions where
the vehicles will perform observation. OP will return a sorted list of observation-point sets
(a set contains a single observation point for each vehicle), where each set is rated by its
visibility /stealth measure.

The OP framework applies decision-theoretic techniques to guide observation point re-
finement. Here, we are applying the basic idea to select an observation point so as to optimize
the expected value of the information obtained using the sensors from that location, while
maintaining stealth. When selecting an observation point, therefore, an agent should trade

off the expected value of information acquired on one hand, and the dangers of revealing the
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agent’s presence, on the other hand. In accordance with the multiattribute utility formula-
tion discussed in the previous section, we use Equation 1 to rate the suitability of candidate
vehicle locations, given an area of interest to be scanned, and given the suite of sensors
onboard the vehicle.

In our implementation we assume that a sensor can successfully recognize an object if
there exists a clear line of sight between the sensor and object and if the object is within
the sensor’s range. The likelihood of recognizing the object decreases with the increase
in obstructions (such as vegetation) between the sensor and the object. The likelihood of
recognizing an object increases as the number of vehicles that can view the object increases.
Prior information as to where various kinds of objects are likely to be located can be initially
derived from the prior Intelligence Preparation of the Battlefield (IPB). In our field exercises,
information such as the location of vegetation (trees, shrubs, grass) and elevation data were
used to determine visibility. The average height and density of each type of vegetation were
fed to the system. As a ray passed through vegetation, the visibility was decremented by an
amount proportional to the density of the corresponding vegetation. The visibility of a ray
passing through the ground is always calculated as 0.0.

The stealth of a vehicle is inversely proportional to the ability of an enemy, assumed to
be located inside the area of interest, to sense the vehicle at the observation point. While
visibility of a potential target inside the area of interest is measured from the top of the
vehicle (where the sensor is located), the visibility of a vehicle is measured with respect to
the center of the vehicle.

Consider as an example two position observation locations, OP1 = (200, 900) and OP2
= (150, 350), shown in Figure 3. The vehicle is trying to scan a single area of interest point,
AOI = (750, 400). Although the vehicle can see AOI from OP2, the vehicle itself is also

clearly seen. On the other hand, OP1 allows the vehicle to position itself behind the crest
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Figure 3: Optimal Observation Point

of a hill, so it cannot be seen well from the area of interest point. The point can be viewed
from the vehicle, though a tree along the path impedes visibility.

To calculate the utility of points OP1 and OP2, we assume the following information.

e There is one type of known object &k

® VIk =10
L] CDisc(Pa S) =50

.k1=.9
.k2:.3

To calculate P1,., we calculate the visibility between the camera position at an observation
point and the area of interest point. The camera is positioned cam meters above the OP
point, or the center of gravity of the vehicle. The visibility value is initialized to 1.0. The
ray is traversed from the origin to destination, and each time the ray is obstructed, the

visibility is adjusted using the formula vis = vis * (1 - densityopstruction). Lhe density of a
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tree is assumed to be 0.3, and the density of the ground is 1.0. The calculation of pp;s.(P, S)
follows a similar ray traversal from the area of interest point to the vehicle’s center of gravity,

or the OP point. The calculations for our sample case are provided below.

For OP1:
P1.(750,500) = vis(OP1+cam,AOI) = 1%x(1—.3) =.7
Ppisc(OP1,S) = vis(AOI,OP1) = 1x(1=3)x(1—-1) = 0
For OP2:
P1.(750,500) = wvis(OP2+ cam, AOI) = 1
pDisc(OPl, S) = UiS(AOI, OPI) =1
Thus

U(AOI, S,0P1) = 9(.7%.1%10) + .3(0%50) 4+ .27(.7%.1%10 % 0%50) = 0.63

U(AOI,S,0P2) = 9(1%.1%10) + .3(1%50) + .27(1.1%10 % 1%50) = —28.41

As expected, the utility of OP1 is greater than the utility of OP2, and OP1 is selected
as the preferred observation point.

In total, three types of operations are executed by OP. All three operations rely on the
formulae described earlier.

Selection of observation points within an area. For this operation, observation regions
are selected by the user for each vehicle. OP then collects sample points within each region,
and computes visibility/stealth measures for each combination of observation points. The

sorted list of sets is returned to the user to be integrated into the mission plan.
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Selection of observation points along a path. Although an explicit observation task is
often integrated into the mission plan, the operator may desire for vehicles to scan an area
of interest throughout the entire plan, from a variety of vantage points along the specified
mission route. As a result, OP can be used to sample points along a specified path and
select a set of these points that maximizes information gain and information value. The
entire formation would stop at these locations to scan the area of interest.

Division of objective area among vehicles. The current efficiency of target recognition
algorithms prevents a quick perusal of the objective area by unmanned ground vehicles.
Therefore, the work must be divided as efficiently as possible among the vehicles involved in
the mission. Given a polygonal description of the area of interest, OP divides the polygon
into separate contiguous regions, one per vehicle. These regions are selected to maximize
visibility of the region by the vehicles while also trying to balance the work load between
vehicles.

To date, the objective area is split into separate regions along lines parallel to the x or y
axis. In the future, piecewise linear regression algorithms [25] can be used to yield a more
effective split.

All of these operations can be computationally expensive because of the large number
of rays that must be traced. The procedure can be made more efficient by reducing the
number of sample points considered within the observation regions and within the area of
interest. The number of sample points is reduced by either utilizing a coarse-grain sampling
technique or by selecting sample points with the highest prior probability. Once a few
potential observation points are selected, the selected points can be refined recursively using a
more detailed sampling. Parallel processing techniques can also be used to improve efficiency

by calculating visibility /stealth measures for individual points in parallel.

17



6 Dynamic Zone Security

The RSTA planning system is used to cooperatively maintain 360-degree camera security
around a moving unit formation and to cooperatively search for targets. Both capabilities use
a decision-theoretic approach to select the current camera field of view throughout mission
execution. In this section we describe the field of view selection method and cooperative
reasoning methods that are central to our cooperative sensor planning system called MA-

DSP (Multi-Agent Dynamic Sensor Planning).

6.1 Decision-Based Field Of View Selection

Zone security is accomplished by defining multiple fields of regard for each vehicle according
to the current formation (line, wedge, diamond, column) and the vehicle’s position in the
formation. Weights assigned to each field of regard allow the vehicle to spend more time
looking in higher-interest areas.

Each vehicle’s field of regard is divided into individual fields of view (FOV). Associated
with each field of view is a location (in terms of pan/tilt angles or a world coordinate focus
location), a weight indicating the priority of the FOV, and the desired angular width of the
FOV. Each time the camera is ready to move to a new location, the weights of the fields of
view are updated and the current FOV is selected.

The weights of each individual field of view are adjusted dynamically. As we mentioned,
the value of a particular field of view area A viewed with sensor S from position P can be

calculated as
Usean(A, S, P) = /A S Plo(z,y) P2%(z, )V Lidady,
k

where P1.(x,y) is the probability that an object located at (z,y) will be correctly identified

from the position P with the sensor S under conditions ¢, P2;(z,y) is the prior probability
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that an object of type k is located at (x,y), and VI is the value of information about the
object of type k.

There are several factors that affect P1 and P2, including security, continuity, focus of
attention, and terrain reasoning. A priority of a multi-vehicle reconnaissance mission is to
maintain 360-degree security around the unit at all times. The computational demands of
current target detection and recognition algorithms prevent rapid processing of each image
frame. Because each vehicle cannot quickly scan the entire area around the unit, vehicles
must make use of teamwork to effectively divide the work. Each vehicle is assigned the
portion of the unit security that can best be handled from that position in the unit formation.

The second factor is continuity. Continuity ensures smooth motion of the camera pan/tilt,
because fields of view that neighbor the current FOV are more heavily weighted than other
fields of view. Continuity is important when the camera pan/tilt motion is slow, when infor-
mation shared between neighboring fields of view is useful for the target detection/recognition
algorithms, and when pan/tilt limits prevent easy movement between non-neighboring views.

The third factor affecting FOV weights is focus of attention. Prior probabilities can be
established for target locations based on database information, and these probabilities can
be updated as vehicles detect potential targets throughout the mission. Any region identified
as a high-probability region will received increased priority in the FOV-selection algorithm.

Finally, terrain reasoning can be used to dynamically update FOV weights. Military
vehicles often make use of terrain for maximal stealth as well as ease of navigation. These
terrain features will thus affect the probability that a target is located in a given region. For
example, target vehicles are more likely to be found along tree lines than in an open field.
In addition, vehicles are less likely to be found on a steep slope, where the vehicle would be
unstable. Figure 4 demonstrates this type of terrain reasoning.

On the other hand, terrain obstructions can limit the amount of information obtainable
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Before Adjustment After Adjustment

Figure 4: FOV adjustment based on terrain

from a FOV, and thus the corresponding weight should be decremented. Figure 4 demon-
strates a case in which a tree obstructs the view from the vehicle, and the weight of the
corresponding FOV is decremented accordingly. Because the terrain surrounding the unit
changes as the unit moves along the specified route, the terrain-based weights must be up-
dated dynamically throughout the mission. Each of these four factors can contribute much
or little to the overall values of P1 and P2, depending on how heavily the user weights each
parameter.

When a new field of view is requested, a biased roulette wheel is spun. Roulette wheel
methods have proven to be effective in a variety of adaptive algorithm applications [13].
Using this selection method, potential fields of view are assigned a portion of the wheel
corresponding to their fraction of the total possible weight. The probability of selecting a
given FOV is proportional to the FOV’s share of the roulette wheel.

Once a field of view is selected, the width of the field of view is dynamically computed to
fit the corresponding terrain. A sampling of rays is collected that centers around the FOV
direction. Each ray is traced to the point where the ray intersects the ground, and average

distance to the ground is calculated for the FOV. If the average ray length is greater than
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the sensor range, the camera elevation is adjusted slightly or the view is re-selected, based
on current terrain features. The width of the FOV is then computed in such a way that the

amount of pixel information per FOV is constant, as given by the formula

NumDesiredPixels

ViewWidth = tan™"' :
oW an (AverageRayLength

Figure 4 demonstrates how the hill forces the ray lengths for the top FOV to be short and

thus the width will be greater than for the other fields of view.

6.2 Multi-Vehicle Cooperative Reasoning

For a military RSTA mission, multiple vehicles must be utilized. The use of multiple vehicles
increases the chance of a successful mission because of the increased robustness, increased
security, and increased number of observation points for scouting an area.

Cook [9] describes three types of multi-agent control schemes: central control, distributed
control, and local control (no communication). Central control is shown to be effective
when communication is reliable, and local control is effective if no communication is needed;
otherwise, distributed control is necessary.

Our cooperative sensor planning system has elements of all three control schemes. The
initial partitioning of the fields of regard and the weighting of each of the four selection
factors is controlled by a central force: the mission leader. The selection of each FOV and
the dynamic updating of weights and view widths is performed at a local level. Distributed
coordination schemes, while often the most robust, are also very complex. This section
describes the distributed cooperation that is necessary to our cooperative sensor planning
system.

There are several tasks that required distributed decision-making and coordination, in-

cluding;:
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e target confirmation,
e security handoff, and

e health checks.

Target confirmation. For every target that vehicle A detects, vehicle A asks for confir-
mation from all other vehicles. All other vehicles that are available to help and are in line
of sight of the potential target interrupt their work to focus on the target region. All target
detection information is passed to the requesting vehicle.

Security handoff. If a detected target is stationary, target detection and recognition can
be done quickly enough to maintain the integrity of the unit security camera movements.
If a detected target is moving, all other camera work is abandoned while the vehicle tracks
the detected target. Unit security is a cooperative task and the responsibility is shared by
all vehicles. If vehicle A needs to track a target, vehicle A hands off its security work to
another available vehicle (vehicle B). After tracking is complete, vehicle A finds the owner of
the shared security fields of regard (vehicle B may have handed the work over to yet another
vehicle) and resumes its original security work.

Shifting security work responsibilities from one vehicle to another is fairly straightforward.
A description of the fields of regard and their weights must be communicated from vehicle
A to vehicle B. Vehicle B adds the corresponding fields of view to the existing list, in effect
dividing the roulette wheel into a greater number of pieces. When the security work is
returned to vehicle A, the shared fields of view are removed from vehicle B’s list.

Health checks. Although it is not desirable for a vehicle to malfunction or be destroyed
during a mission, the success of the mission should not depend entirely on the health of
any one vehicle. To ensure that the goals of the mission are met, the leader of the unit

periodically performs health checks on the other vehicles. If a vehicle does not respond
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in a timely manner, the sensor plan is reconfigured for one less vehicle and new work is
partitioned among the unit. In this way, no work is lost because of a missing vehicle. As
long as one vehicle is remaining, the mission can be accomplished. If the vehicle comes back

to life, the plan can be reconfigured to include the revived vehicle.

7 Evaluation of Techniques

7.1 Evaluation of Observation Point Refinement

The purpose of the observation point refinement algorithm is to select observation points for
a set of vehicles that optimizes the cooperative viewing of an area of interest while minimizing
the risk of being viewed from the area of interest.

While this computation is crucial to the success of a RSTA mission, OP refinement
for multiple vehicles can also prove to be computationally expensive. In this section, we
demonstrate how the computation time and the utility of the selected observation point
change with the number of sample points considered.

For this experiment, we perform a uniform sampling strategy over the observation regions.
Two different problem sizes are considered. In the first problem size, two observation 250x250
meter areas are refined to select one point from each area. The two vehicles will be positioned
at these selected locations, both viewing the 250x250 meter area of interest. In the second
problem set, the observation regions and the area of interest cover a 500x500 meter area. For
both problem sets, the results are averaged over three randomly-selected sets of regions and
are compared to a single observation point located in the center of the observation areas.
These experiments are run for a two-vehicle case. In this situation, we look for an optimal
pair of points that produces the optimal combined result of visibility and stealth.

As Figure 5 indicates, both the utility of the observation point and the computation time
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Figure 5: Time and utility for OP refinement

increase with the number of sample points considered. There exist a number of implemented
methods that can save computation time without endangering performance. First, prior
probability values are often assigned to location points based on local factors such as elevation
and surrounding vegetation. The prior values help narrow down optimal observation points.
Second, an iterative refinement strategy has been implemented. Using this strategy, a coarse
sampling is first performed. A more refined sampling can then be collected surrounding the
most promising observation locations.

Field trials of the OP refinement system were conducted during the spring and summer
of 1995. In each trial, an operator selected an observation region and a suggested observation
point for each vehicle. The OP system refined the point, suggesting a different point in each
case. In each trial, the utility of the OP point was calculated as higher than the operator-
selected point. In addition, manual confirmation with line-of-sight testing verified that the

point selected by OP yielded better visibility and stealth than the operator-selected point.
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7.2 Evaluation of Dynamic Zone Security

The purpose of dynamic zone security is to achieve the stated mission goals in a cooperative
fashion. Two mission goals are prevalent among scouting missions: unit security and target
detection. The experiments described in this section evaluate the ability of the Multi-Agent
Dynamic Sensor Planning (MA-DSP) program to fulfill these goals.

All of the experiments in this section were run using the MissionLab simulator developed
at Georgia Tech University and adapted by UTA to include sensor operations. The Mission-
Lab program allows simulation of independent vehicles (controlled by separate processes)
while executing a military mission. Formation control, inter-vehicle communication, topol-
ogy, obstacle avoidance, and target detection are included in the simulator. A view of the
simulator is shown in Figure 6. In this simulation, four vehicles are moving in a diamond
formation. Targets T16, T3, T20, T7, T18, T13, T12, and T10 have been detected so far.

In the first experiment, we evaluate the ability of MA-DSP to maintain 360 degree security
around the unit. To do this, we divided the area around the unit into 36 equal parts. An
ideal sensor plan would spend an equal amount of time in each area. The actual distribution
of camera snapshots is compared to the ideal distribution, and the deviation is graphed
below. The performance of MA-DSP is compared to two other methods: random selection
and continuous scan. The results for each technique are averaged over three independent
trials. The performance is measured for each of the four formations introduced in Figure 2.

The results of this experiment are shown in Figures 7 and 8. When a single vehicle is
used, continuous scan performs well because the mission runs long enough to allow a single
complete scan around the vehicle. However, as the number of vehicles increases, uniform and
complete coverage around the formation becomes more difficult. Because of the multi-agent
planning involved in our system, MA-DSP outperforms the other methods as the number of

vehicles increases. This is due to the ability of MA-DSP to balance the work evenly between
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Figure 6: MissionLab simulator
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Figure 7: MA-DSP security results for line and diamond formations
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vehicles, reducing redundant work and preventing vehicles from obscuring each other’s views.

In the second experiment, we demonstrate the ability of MA-DSP to detect enemy targets
during a mission. Once again, we compare MA-DSP to random selection and continuous
scan. In this experiment, we randomly place 20 targets over the mission area. The results
are averaged over three independent distributions of targets, and three trials are run per
distribution. The results are graphed in Figures 9 and 10.

Again, MA-DSP outperforms the other methods because of the systematic coverage of
the area outside the unit. Non-cooperative methods tend to spend time looking at already-
searched areas and at each other. The best results overall occur in the line, diamond, and
wedge formations. The column formation does not perform target detection as well as other
formations, because less area is covered by the unit as a whole. However, column formations
are necessary for some maneuvers such as on-road navigation.

Field trials of the dynamic zone security algorithm were conducted using two vehicles
during the spring and summer of 1995. The two vehicles were able to successfully maintain

360 degree coverage around the unit formation using MA-DSP. On-board target detection
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algorithms were not available at that time, so target detection was simulated.

8 Conclusions

In this paper we present a cooperative sensor planning system that unifies research from
active vision and sensor planning, decision theory, and multi-agent planning and communi-
cation.

The work described in this paper has been implemented in the context of the ARPA Un-
manned Ground Vehicle program and successfully used on-board a unit of two HMMW Vs.
Although the work to date demonstrates effective cooperative decision-guided sensor plan-
ning, there are a number of avenues we plan to pursue in the future.

First, we would like to extend this research to investigate methods of controlling vehi-
cle navigation as well as sensor pointing. A decision-theoretic system can most effectively
collect information when both navigation and sensors are under the same control. This
decision-theoretic approach to navigation and sensor planning can be applied to a variety of
domains such as assembly, target retrieval (as with Camus’ work), planetary and underwater
exploration, and automated highways.

Another important extension of this project is to add temporal reasoning to the sensor
planning algorithm. In general, the probability of a given object existing at a specified
location should increase if the object has been captured with a sensor, but should decrease
as time passes since the object was last perceived. Thus, if a vehicle detects a target at one
point in the mission, the target is not guaranteed to remain at the same location through
the rest of the mission, and the associated probabilities should be continuously adjusted.

The probabilities used for the utility measures in this work are static; that is, the prob-

ability distributions collected before the mission begins are used throughout the mission.
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However, new information is constantly being received that should be used to update the
probabilities. Such information includes information from a human operator, information
from other vehicles, new terrain features, and changes in mission goals. We are currently
investigation methods of automatically updating probability maps for use in the cooperative
sensor planning system.

Finally, from our existing work in this research area we have found that calculating sensor
utility factors for several vehicles over a large area is computationally very expensive. As
more and more factors are included in the decision process, this computational burden will
increase. However, considering each set of sensor parameters in great detail is not always
profitable — some decisions will quickly show themselves to be wasteful or inappropriate
for a given task. Directing and limiting the search and calculations involved in cooperative

sensor planning is a future research direction for this project.
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