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Abstract

This paper describes a decision-theoretic ap-
proach to cooperative sensor planning between
multiple autonomous vehicles executing a mili-
tary mission. For this autonomous vehicle appli-
cation, intelligent cooperative reasoning must be
used to select optimal vehicle viewing locations
and select optimal camera pan and tilt angles
throughout the mission. Decisions are made in
such a way as to maximize the value of informa-
tion gained by the sensors while maintaining ve-
hicle stealth. Because the mission involves mul-
tiple vehicles, cooperation can be used to balance
the work load and to increase information gain.
This paper presents the theoretical foundations
of our cooperative sensor planning research and
describes the application of these techniques to
ARPA’s Unmanned Ground Vehicle program.

1 Introduction

Traditionally, research in multi-agent planning
and research in image understanding have been
pursued independently. The ARPA Unmanned
Ground Vehicle (UGV) program is pulling to-
gether these two technologies in order to au-
tonomously execute multi-vehicle missions. In
this paper we describe our component of ARPA’s
UGV program which combines decision theory,
sensor planning, and multi-agent planning with
cooperation to direct and focus sensors on-board
a unit of military vehicles.

We develop two capabilities for a unit of au-
tonomous vehicles based on these ideas of co-
operative sensor planning. The first capability
selects points along a path or in a bounded re-
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gion that provide optimal locations for vehicles
to observe a specified objective area. The sec-
ond capability selects optimal pan/tilt angles, or
a field of view, for each vehicle’s camera as it
moves in formation with the vehicle’s military
unit.

For both of these capabilities, we pursue a
decision-theoretic approach to the guidance of
sensing based on goals of the military mission.
These goals include such possibly-conflicting pri-
orities as maximizing the expected value of in-
formation obtained, avoiding exposure of one’s
presence to the enemy, and balancing sensor
planning and processing work between cooperat-
ing vehicles. Static and dynamic sensor planning
can be achieved in a principled manner using
the decision-making techniques developed in the
area of multiattribute utility and decision theo-
ries.

In this paper, we first describe ARPA’s Un-
manned Ground Vehicle program, list the capa-
bilities of the vehicles and sensors used in our
project, and review the principles of multiat-
tribute decision theory. Next, we describe our
Observation Point refinement system that selects
optimal vehicle positions for observation of a
specified area. Section 5 introduces a method of
using multi-agent planning techniques with deci-
sion theory to dynamically focus sensor attention
during a military mission. Finally, we review re-
lated work to date and conclude with directions
for future work.

2 Sensor Planning for Unmanned

Ground Vehicles

The United States armed forces continuously
seek to increase soldier effectiveness and surviv-



Figure 1: ARPA’s Autonomous Vehicle

ability in the face of increasingly lethal battle-
fields. The need exists to operate in environ-
ments that are hazardous because of enemy ac-
tions, to increase survivability, to enhance con-
tinuous operation, and to expand the radius of
reconnaissance / surveillance units. Unmanned
semi-autonomous ground vehicles can meet these
needs.

The goal of ARPA’s Unmanned Ground Vehi-
cle program is to develop and demonstrate field-
deployable semi-autonomous ground vehicles in-
corporating ARPA-sponsored technologies. The
capabilities that are currently being demon-
strated by these vehicles include autonomous
on-road and off-road navigation, obstacle avoid-
ance, path planning, formation control, target
detection and recognition, and cooperative sen-
sor planning.

A typical UGV task would be to cooperatively
plan a reconnaissance, surveillance, and target
acquisition (RSTA) task in which the vehicles
move in formation along a specified route. At
some point in the mission the vehicles may split
up and move to pre-computed spots from which
they can maximally view a specified objective
area while still maintaining stealth. The vehicles
would then reconvene and move in formation to
the objective area.

In this problem domain, planning for vehi-
cle movement and planning for sensor movement
must be performed in harmony. One reason for

this synchronization is the need to maintain 360
degree security around the platoon unit forma-
tion. Maintaining this security requires plan-
ning sensor directions to cover the entire area
surrounding the vehicles while minimizing du-
plicated work among separate vehicles.

Another motivation for controlling vehicle and
sensor movement together is active RSTA, or co-
ordinated recognition of enemy targets. Execut-
ing such a coordinated effort requires planning
of both vehicle positions and camera angles for
maximum coverage of the target while maintain-
ing formation security. A third reason that plan
generation is needed for both vehicle and sen-
sor movement is stealth navigation through un-
known terrain, and a fourth reason is that both
vehicle and sensor capabilities must be consid-
ered to cooperatively compute optimal observa-
tion point locations for individual vehicles.

Figure 2 illustrates several unit formations
that may be employed throughout a mission.
At planning time, each vehicle’s sensor space
is divided into individual fields of regard and
weighted to ensure complete 360 degree security
around the unit formation while keeping the ma-
jor focus of attention toward the objective area.

The camera suite on board the vehicles can
be controlled in terms of pan, tilt, zoom, and
focus. All of these parameters are controlled by
our systems as described in the remainder of this

paper.
3 Decision-Theoretic Foundations

Our approach to intelligent sensing behav-
ior during a military scouting mission is based
on the utility and decision theories. Our ba-
sic premise is that the guidance of sensing be-
havior be based on the rational trade-off be-
tween two conflicting priorities (or attributes) of
a military scouting mission: maximize the ex-
pected value of information obtained, and avoid
exposing one’s presence to the enemy. One of
the basic results in the multiattribute utility
theory states that if the attributes are utility-
independent then the global utility function is a
multiplicative function over the attributes con-
sidered [Keeney and Raiffa, 1976]. Thus, for our
case of a military scouting mission, the global
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function that the agent is attempting to maxi-
mize, U(A, S, P), of scanning an area A using a
sensor S from the position P, can be postulated
to have the following form:

U(A, S, P) =
kl UScan(Aa S; P) + kQUStealth (P, S)
+k1koUscan(A, S, P)Usteaitn (P, S),

(1)

where Ugcan(A, S, P) is the expected value of
information obtained during the sensing action,
and Usieqitn (P, S) is the expected utility of main-
taining stealth, i.e., remaining hidden from the
enemy while occupying the position P and using
the sensor S. Let us note that this value includes
not only the danger of being discovered due to
occupying an exposed location P, but also the
danger of using the sensor S that could itself be
detected by the enemy. The values of the con-
stants k1 and ke determine the relative weight
with which the desirable attributes of gaining
more information and remaining undetected can
be traded off against one another. These val-
ues can be made to reflect the parameters of a
particular military scouting mission at hand.

The following two subsections briefly describe
our proposed approach to calculating the values
of Uscan and Uggeqiep, during a military scouting
mission.

3.1 Determining the Utility of a Sensing
Action

The value of information, in general, is equal
to the difference between the expected value of
action when the system has the information and
the expected value of action without the infor-
mation. The resulting desirable behavior will be
an agent’s attempt to look for objects of greatest
concern and relevance to the overall military ob-
jective. The calculation of the expected value of
a sensing action has to include the likelihood that
the interesting object is located within the area
scanned, and that the sensor can successfully
recognize the object at that location. Follow-
ing Feldmann and Sproull [Feldman and Sproull,
1977], we propose that the general expression for

the value of scanning the area A, using sensor S,
from the position P, be:

UScan(Aa Sa P) =
[ P, ) P2, )V Tedady,
AT

(2)

where P1(z,y) is the probability that an object
located at (z,y) will be correctly identified from
the position P with the sensor S, P2j(z,y) is
the prior probability that an object of type k&
is located at (z,y), and the VI is the value of
information about the object of type k.

Intuitively, the probability P1(x,y) contains
information about the sensing ability of sensor
S given the current conditions (day, night, fog,
smoke, etc.), and the distance involved, i.e., how
well and how far the sensor can currently “see”.
The probability P2(z,y) contains the prior in-
formation as to where various kinds of objects
are likely to be located. This probability can
be initially derived from the prior Intelligence
Preparation of the Battlefield (IPB), commonly
used to assign a degree of interest to regions of
the terrain under consideration. This probabil-
ity is also continually updated as the sensing ac-
tions are performed, so that it correctly repre-
sents the up-to-date state of the system’s knowl-
edge about the environment. The updating func-
tion on which we will concentrate is Bayes’ rule;
however, other methods, including the Kalman
filter technique, will also be investigated.

The value of information V I;.(¢) about the ob-
ject of type k, reflects the importance of knowing
the location of an object of type k. The kinds
of objects the system may be interested in in-
clude the various kinds of enemy forces in the
area (tanks, HMMWYVs, trucks, etc.), the loca-
tions of friendly forces and other scouting vehi-
cles, and the locations of navigational obstacles
and other relevant elements of the terrain.

As an example, let us examine in more de-
tail the value of information about the locations
of obstacles. The value of this information rep-
resents the effectiveness of the vehicle moving
through a terrain when the locations of all of
the obstacles are known a priori vs. the vehicle
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Figure 3: Vehicle paths chosen with (solid line)
and without (dashed line) prior knowledge of ob-
stacle locations

having to deal with the obstacles as they are en-
countered (see Figure 3). In the first case (the
solid line in the figure), the vehicle can plan the
best path beforehand. The length of this path
is likely to be greater than the straight-line dis-
tance, with the ratio of the two reflecting the ex-
tent to which the environment is cluttered with
obstacles. Let us call the average value of this
ratio the obstruction coefficient, OC'. If, on the
other hand, the vehicle is moving through un-
known territory, it has to circumvent the obsta-
cles as they are encountered, and the length of
the generated path will likely be greater than in
the case above (the dashed line in the figure).
Let us call the average ratio of such a path to
the length of the straight-line distance a maze
coefficient, MC. The obstruction and maze co-
efficients, therefore, statistically summarize the
effectiveness of the vehicle movement through
known and unknown territory, respectively. The
value of information about the obstacles is thus
proportional to the difference MC' — OC. Using
these statistical factors, the vehicle can maintain
its current estimate of the value of information
about the obstacles.

Typically, the value of information about other
kinds of objects can be input to the system di-
rectly by the operators. The example detailed
in this section describes the value of informa-
tion with respect to a path-planning goal. In the
UGV mission, information value also relates to
the goal of locating and identifying enemy tar-
gets. For the UGV project, specifications could
serve to guide the particular scouting mission,
detailing what information is of interest and to
what extent.

3.2 Utility of Maintaining Stealth

We can postulate that the utility of maintain-
ing the stealth of the scouting vehicle is the nega-
tive of the expected cost, ECp;s.(P, S), of being
discovered by the enemy:

Usteatth (P, S) = —ECpisc(P, S). (3)

The expected cost of being discovered is the
probability pp;sc(P, S) of being discovered while



at position P and using sensor S, multiplied by
the cost itself:

ECDisc(Pa S) = pDisc(Pa S)CDisc(P)- (4)

The probability of the vehicle being discov-
ered, ppisc(P, S), depends on the location of the
enemy forces relative to the location P and their
line of sight, and on the detectability of the sen-
sor used. Thus, the same location can be safe
or dangerous, depending on whether the enemy’s
expected position allows for a clear line of sight of
this location. Also, some sensors can be safer due
to the fact that they are more difficult to detect
by the enemy. Thus, the probability ppisc(P, S)
can be computed from prior information about
the possible locations of the enemy forces, and
from an estimate of detectability of the sensor
used.

The cost of being discovered by the enemy at
the given location is also a combination of sev-
eral factors. There is the immediate danger that
the given vehicle will become a target of enemy
forces, as well as the danger associated with how
the information about the location of the vehicle
could be used by the enemy to harm and obstruct
the mission of other friendly forces.

The exact algorithms for computing pp;sc(P)
and Cpjs.(P) remain among the active research
areas within the UGV project. The obvious
question is the appropriate level of detail that
should be included in these calculations. Our
strategy in answering this question will begin by
examining the elements of the very rigorous and
detailed view, as outlined above, and proceed by
successive approximations to find the sensitivity
of the resulting performance to the details ne-
glected, given the real-time control requirements
of the modern battlefield.

4 Decision-Guided Observation Point
Refinement

The observation-point refinement algorithm
(OP) is used to select optimal observation points
from which vehicles can observe a specified area
of interest. OP is provided with polygonal de-
scriptions of the area to be observed (area of in-

terest) and the selected regions where the vehi-
cles will perform observation. OP will return a
sorted list of observation-point sets (a set con-
tains a single observation point for each vehicle),
where each set is rated by its visibility /stealth
measure.

The OP framework applies decision-theoretic
techniques to guide observation point refine-
ment. Here, we are applying the basic idea to
select an observation point so as to optimize the
expected value of the information obtained using
the sensors from that location, while maintain-
ing stealth. When selecting an observation point,
therefore, an agent should trade off the expected
value of information acquired on one hand, and
the dangers of revealing the agent’s presence, on
the other hand. In accordance with the mul-
tiattribute utility formulation discussed in the
previous section, we use Equation 2 to rate the
suitability of candidate vehicle locations, given
an area of interest to be scanned, and given the
suit of sensors on board the vehicle.

In our implementation we assume that a sen-
sor can successfully recognize an object if there
exists a clear line of sight between the sensor and
object and if the object is within the sensor’s
range. The likelihood of recognizing the object
decreases with the increase in obstructions (such
as vegetation) between the sensor and the object.
The likelihood of recognizing an object increases
as the number of vehicles that can view the ob-
ject increases. Prior information as to where var-
ious kinds of objects are likely to be located can
be initially derived from the prior Intelligence
Preparation of the Battlefield (IPB).

The stealth of a vehicle is inversely propor-
tional to the ability of an enemy, assumed to
be located inside the area of interest, to sense
and identify the vehicle at the observation point.
While visibility of a potential target inside the
area of interest is measured from the top of the
vehicle (where the sensor is located), the visi-
bility of a vehicle is measured with respect to
the center of the vehicle. Figure 4 shows sample
observation points for two vehicles looking at a
single point inside an area of interest. Although
the bottom vehicle can see the point, the vehicle
itself is also clearly seen, yielding a high visibil-
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Figure 4: Optimal Observation Point

ity value and a low stealth value. On the other
hand, the top vehicle positions itself behind the
crest of a hill, so it cannot be seen well from the
area of interest point. The point can be viewed
from the vehicle, though a tree along the path
impedes visibility.

Three types of operations are executed by OP.
All three operations rely on the formulae de-
scribed earlier.

Selection of observation points within an area.
For this operation, observation regions are se-
lected by the user for each vehicle. OP then col-
lects sample points within each region, and com-
putes visibility /stealth measures for each combi-
nation of observation points. The sorted list of
sets is returned to the user to be integrated into
the mission plan.

Selection of observation points along a path.
Although an explicit observation task is often
integrated into the mission plan, the operator
may desire for vehicles to scan an area of interest
throughout the entire plan, from a variety of van-
tage points along the specified mission route. As
a result, OP can be used to sample points along
a specified path and select a set of these points
that maximizes information gain and informa-
tion value. The entire formation would stop at
these locations to scan the area of interest.

Division of objective area among vehicles. The
current efficiency of target recognition algo-
rithms prevents a quick perusal of the objective
area by unmanned ground vehicles. Therefore,
the work must be divided as efficiently as possi-

ble among the vehicles involved in the mission.
Given a polygonal description of the area of in-
terest, OP divides the polygon into separate con-
tiguous regions, one per vehicle. These regions
are selected to maximize visibility of the region
by the vehicles while also trying to balance the
work load between vehicles.

To date, the objective area is split into sep-
arate regions along lines parallel to the x or y
axis. In the future, piecewise linear regression
algorithms [Weiss and Kulikowski, 1990] can be
used to yield a more effective split.

All of these operations can be computation-
ally expensive because of the large number of
rays that must be traced. The procedure can be
made more efficient by reducing the number of
sample points considered within the observation
regions and within the area of interest. The num-
ber of sample points is reduced by either utilizing
a coarse-grain sampling technique or by selecting
sample points with the highest prior probability.
Once a few potential observation points are se-
lected, the selected points can be refined recur-
sively using a more detailed sampling. Parallel
processing techniques can also be used to im-
prove efficiency by calculating visibility /stealth
measures for individual points in parallel.

5 Dynamic Zone Security

The cooperative RSTA planning system is
used to cooperatively maintain 360-degree cam-
era security around a moving unit formation and
to cooperatively search for targets. Both capa-
bilities use a decision-theoretic approach to se-
lect the current camera field of view throughout
mission execution. In this section we describe
the field of view selection method and coopera-
tive reasoning methods that are central to coop-
erative sensor planning.

5.1 Decision-Based Field Of View Se-
lection

Zone security is accomplished by defining mul-
tiple fields of regard for each vehicle according
to the current formation (line, wedge, diamond,
column) and the vehicle’s position in the forma-
tion. Weights assigned to each field of regard



allow the vehicle to spend more time looking in
higher-interest areas.

Each vehicle’s field of regard is divided into in-
dividual fields of view (FOV). With each field of
view is associated a location (in terms of pan/tilt
angles or a world coordinate focus location), a
weight indicating the priority of the FOV, and
the desired angular width of the FOV. Each time
the camera is ready to move to a new location,
the weights of the fields of view are updated and
the current FOV is selected.

The weights of each individual field of view
are adjusted dynamically. As we mentioned, the
value of a particular field of view area A viewed
with sensor S from position P can be calculated
as

UScan(Aa S, P) =
A
k

(5)

where P1(z,y) is the probability that an object
located at (x,y) will be correctly identified from
the position P with the sensor S, P2y(z,y) is
the prior probability that an object of type k is
located at (z,y), and VI is the value of infor-
mation about the object of type k.

There are several factors that affect P1 and
P2, including security, continuity, focus of at-
tention, and terrain reasoning. A priority of a
multi-vehicle reconnaissance mission is to main-
tain 360-degree security around the unit at all
times. The computational demands of current
target detection and recognition algorithms pre-
vent rapid processing of each image frame. Be-
cause each vehicle cannot quickly scan the entire
area around the unit, vehicles must make use of
teamwork to effectively divide the work. Each
vehicle is assigned the portion of the unit secu-
rity that can best be handled from that position
in the unit formation.

The second factor is continuity. Continuity
ensures smooth motion of the camera pan/tilt,
because fields of view that neighbor the cur-
rent FOV are more heavily weighted than other
fields of view. Continuity is important when the
camera pan/tilt motion is slow, when informa-
tion shared between neighboring fields of view

is useful for the target detection/recognition al-
gorithms, and when pan/tilt limits prevent easy
movement between non-neighboring views.

The third factor affecting FOV weights is
focus of attention.  Prior probabilities can
be established for target locations based on
database information, and these probabilities
can be updated as vehicles detect potential tar-
gets throughout the mission. Any region identi-
fied as a high-probability region will received in-
creased priority in the FOV-selection algorithm.

Finally, terrain reasoning can be used to dy-
namically update FOV weights. Military vehi-
cles often make use of terrain for maximal stealth
as well as ease of navigation. These terrain fea-
tures will thus affect the probability that a target
is located in a given region. For example, target
vehicles are more likely to be found along tree
lines than in an open field. In addition, vehi-
cles are less likely to be found on a steep slope,
where the vehicle would be unstable. Figure 5
demonstrates this type of terrain reasoning.

On the other hand, terrain obstructions can
limit the amount of information obtainable from
a FOV, and thus the corresponding weight
should be decremented. Figure 5 demonstrates
a case in which a tree obstructs the view from
the vehicle, and the weight of the correspond-
ing FOV is decremented accordingly. Because
the terrain surrounding the unit changes as the
unit moves along the specified route, the terrain-
based weights must be updated dynamically
throughout the mission. Each of these four fac-
tors can contribute much or little to the overall
values of P1 and P2, depending on how heavily
the user weights each parameter.

When a new field of view is requested, a bi-
ased roulette wheel is spun. Roulette wheel
methods have proven to be effective in a va-
riety of adaptive algorithm applications [Gold-
berg, 1989]. Using this selection method, poten-
tial fields of view are assigned a portion of the
wheel corresponding to their fraction of the to-
tal possible weight. The probability of selecting
a given FOV is proportional to the FOV’s share
of the roulette wheel.

Once a field of view is selected, the width of
the field of view is dynamically computed to fit



Figure 5: FOV adjustment based on terrain

the corresponding terrain. A sampling of rays is
collected that centers around the FOV direction.
Each ray is traced to the point where the ray in-
tersects the ground, and average distance to the
ground is calculated for the FOV. If the average
ray length is greater than the sensor range, the
camera elevation is adjusted slightly or the view
is re-selected, based on current terrain features.
The width of the FOV is then computed in such
a way that the amount of pixel information per
FOV is constant, as given by the formula

NumDesiredPixel
ViewWidth = tan™}( umDesiredPixels

AverageRayLength )
Figure 5 demonstrates how the hill forces the ray
lengths for the top FOV to be short and thus the
width will be greater than for the other fields of
view.

5.2 Multi-Vehicle Cooperative Reason-
ing

For a military RSTA mission, multiple vehicles
must be utilized. The use of multiple vehicles in-
creases the chance of a successful mission because
of the increased robustness, increased security,
and increased number of observation points for
scouting an area.

Multi-agent planning and coordination is a fo-
cus of much attention in AI reasoning [Briggs
and Cook, 1995; Durfee and Montgomery, 1991;
Ephrati et al., 1995; Moses and Tennenholtz,
1990; Moses and Tennenholtz, 1991; Rosenschein

and Zlotkin, 1994; von Martial, 1992]. As au-
tomation of intelligent tasks increases, the need
arises for heterogeneous agents to work in a com-
mon environment. While the need for multi-
agent planning algorithms is apparent, the de-
velopment of algorithms which meet each agent’s
goals in a timely fashion, avoid deadlock, and do
not incur heavy communication costs provides a
challenging task.

Cook [Cook, 1994] describes three types of
multi-agent control schemes: central control, dis-
tributed control, and local control (no communi-
cation). Central control is shown to be effective
when communication is reliable, and local con-
trol is effective if no communication is needed;
otherwise, distributed control is necessary.

Our cooperative sensor planning system has
elements of all three control schemes. The ini-
tial partitioning of the fields of regard and the
weighting of each of the four selection factors
is controlled by a central force: the mission
leader. The selection of each FOV and the dy-
namic updating of weights and view widths is
performed at a local level. Distributed coordi-
nation schemes, while often the most robust, are
also very complex. This section describes the
distributed cooperation that is necessary to our
cooperative sensor planning system.

There are several tasks that required dis-
tributed decision-making and coordination, in-
cluding:

e target confirmation,
e security handoff, and

e health checks.

Target confirmation. For every target that ve-
hicle A detects, vehicle A asks for confirmation
from all other vehicles. All other vehicles that
are available to help and are in line of sight of
the potential target interrupt their work to fo-
cus on the target region. All target detection
information is passed to the requesting vehicle.

Security handoff. If a detected target is sta-
tionary, target detection and recognition can be
down quickly enough to maintain the integrity



of the unit security camera movements. If a de-
tected target is moving, all other camera work is
abandoned while the vehicle tracks the detected
target. Unit security is a cooperative task and
the responsibility is shared by all vehicles. If ve-
hicle A needs to track a target, vehicle A hands
off its security work to another available vehicle
(vehicle B). After tracking is complete, vehicle A
finds the owner of the shared security fields of re-
gard (vehicle B may have handed the work over
to yet another vehicle) and resumes its original
security work.

Sharing security work is fairly straightforward.
A description of the fields of regard and their
weights must be communicated from vehicle A
to vehicle B. Vehicle B adds the corresponding
fields of view to the existing list, in effect divid-
ing the roulette wheel into a greater number of
pieces. When the security work is returned, the
shared fields of view are removed from vehicle
B’s list.

Health checks. Although it is not desirable for
a vehicle to malfunction or be destroyed during
a mission, the success of the mission should not
depend entirely on the health of any one vehi-
cle. To ensure that the goals of the mission are
met, the leader of the unit periodically performs
health checks on the other vehicles. If a vehicle
does not respond in a timely manner, the sensor
plan is reconfigured for one less vehicle and new
work is partitioned among the unit. In this way,
no work is lost because of a missing vehicle. As
long as one vehicle is remaining, the mission can
be accomplished. If the vehicle comes back to
life, the plan can be reconfigured to include the
revived vehicle.

6 Conclusions

In this paper we present a cooperative sensor
planning system that unifies research from active
vision and sensor planning, decision theory, and
multi-agent planning and communication.

Work on active vision has been well estab-
lished in the field. Bajcsy [Bajcsy, 1988] in-
troduced the idea of active perception as ap-
plied to controlling a sensor at any level of
abstraction, from controlling the focus of the
physical device (as we are doing) to controlling

the semantic interpretation of information re-
turned from the sensor. Active vision research
has also made use of decision-theoretic tech-
niques to measure the utility of gathering in-
formation [Aloimonos et al., 1988; Bajcsy, 1988;
Krotkov, 1989], but has not been applied to this
type of military application where both static
and dynamic decision making is necessary to
achieve the overall mission objectives. Litera-
ture in the cognitive science community shows
that this decision-theoretic approach to sensor
planning is also demonstrated in human percep-
tion and information-gathering [Boff et al., 1986;
Shaw and Shaw, 1977].

Although active vision techniques have been
used to make centralized decisions about sen-
sor movements, there is very little work that
allows decentralized sensor planning decisions.
Multi-agent planning and negotiation techniques
are common in the Al literature, but have not
been integrated into computer vision work. This
paper describes a project that uses ideas from
multi-agent planning and from sensor planning
to allow centralized allocation of major tasks,
local control of individual sensor direction, and
distributed cooperation between intelligent per-
ceptual agents.

The work described in this paper has been
implemented in the context of the ARPA Un-
manned Ground Vehicle program and suc-
cessfully used on-board a unit consisting of
two HMMWVs. Although the work to date
has demonstrated effective cooperative decision-
guided sensor planning, there are a number of
avenues we plan to pursue in the future.

Ballard and Brown [Ballard and Brown, 1992]
and Bajcsy and Campos [Bajcsy and Campos,
1992] both emphasize that learning is an im-
portant part of active perception. To date, the
probabilities associated with each aspect of ter-
rain reasoning, security, and stealth have been
hard-coded. Future extensions of this project
will learn the value of information and proba-
bilities of each aspect of the mission from ex-
perience. One method of learning probability
values is through the use of adaptive proba-
bilistic networks, a subset of belief nets that
can learn individual probability values and dis-



tributions using gradient descent [Pearl, 1988;
Russell and Norvig, 1995; Spiegelhalter et al.,
1993].

Another important extension of this project is
to add temporal reasoning to the sensor planning
algorithm. In general, the probability of a given
object existing at a specified location should in-
crease if the object has been captured with a
sensor, but should decrease as time passes since
the object was last perceived. Thus, if a vehicle
detects a target at one point in the mission, the
target is not guaranteed to remain at the same
location through the rest of the mission, and the
associated probabilities should be continuously
adjusted.

In addition, there are a number of ways in
which the effectiveness of sensor planning could
be improved with additional communication.
For example, at each step in the plan one agent
could communicate all the information it has
gathered to other agents in the unit, thus im-
proving every vehicle’s utility database. How-
ever, communication is very costly and commu-
nicating large amounts of information between
spacially-separated entities will decrease the ve-
hicles’ stealth as well as slow down mission ex-
ecution. A future priority of this project is to
investigate methods of optimizing the tradeoff
between minimizing communication and maxi-
mizing cooperation.

Finally, from our existing work in this research
area we have found that calculating sensor util-
ity factors for several vehicles over a large area
is computationally very expensive. As more and
more factors are included in the decision process,
this computational burden will increase. How-
ever, considering each set of sensor parameters in
great detail is not always profitable — some deci-
sions will quickly show themselves to be wasteful
or inappropriate for a given task. Directing and
limiting the search and calculations involved in
cooperative sensor planning is a future research
direction for this project.
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