Submitted to the Journal of the American Society for Information Science

Exploiting Parallelism in a Structural Scientific
Discovery System to Improve Scalability*

Gehad M. Galal, Diane J. Cook and Lawrence B. Holder
Department of Computer Science Engineering
University of Texas at Arlington
Box 19015, Arlington, TX 76019-0015
Email: {galal, cook, holder}@cse.uta.edu
Phone: (817) 272-3606
Fax: (817) 272-3784

Contact Author: Diane J. Cook

LThis work is supported by NASA grant NAS5-32337 and NSF grant IRI-9502260.

Galal 1

Exploiting Parallelism in a Structural Scientific
Discovery System to Improve Scalability

Abstract

The large amount of data collected today is quickly overwhelming researchers’ abil-
ities to interpret the data and discover interesting patterns. Knowledge discovery and
data mining approaches hold the potential to automate the interpretation process, but
these approaches frequently utilize computationally expensive algorithms. In particu-
lar, scientific discovery systems focus on the utilization of richer data representation,
sometimes without regard for scalability.

This research investigates approaches for scaling a particular KDD system, SUB-
DUE, using parallel and distributed resources. SUBDUE has been used to discover in-
teresting and repetitive concepts in graph-based databases from a variety of domains,
but requires a substantial amount of processing time. Experiments that demonstrate
scalability of parallel versions of the SUBDUE system are performed using CAD cir-
cuit databases and artificially-generated databases, and potential achievements and

obstacles are discussed.

1 Introduction

One of the barriers to the integration of scientific discovery methods into practical data
mining approaches is their lack of scalability. Many scientific discovery systems are motivated
from the desire to evaluate the correctness of a discovery method without regard to the
method’s scalability. As an example, our own SUBDUE system was developed to evaluate

the effectiveness of the minimum description length (MDL) principle to discover regularities

Galal 2

in a variety of scientific domains [?; ?].

Another factor is that some scientific discovery systems deal with richer data repre-
sentations that only degrade scalability. A number of linear, attribute-value-based ap-
proaches have been developed that discover concepts in databases and can address is-
sues of data relevance, missing data, noise, and utilization of domain knowledge [?; ?;
?]. However, much of the data being collected is structural in nature, requiring tools for
the analysis and discovery of concepts in structural data [?]. For example, the SUBDUE
system uses a graph-based representation of the input data that captures the structural in-
formation. Although the subgraph isomorphism procedure needed to deal with this data
has been polynomially constrained within SUBDUE, the system still spends a considerable
amount of computation performing this task.

The goal of this research is to demonstrate that KDD systems can be made scalable
through efficient use of parallel and distributed hardware. To accomplish this goal, we inves-
tigate several basic approaches that can be used to parallelize KDD systems and compare
the results of these approaches when applied to the SUBDUE discovery system.

Related approaches to scaling data mining and discovery systems have been pursued.
Parallel MIMD approaches to concept learning have included partitioning the data set among
processors [?; ?; 7] and partitioning the search space among available processors [?; ?; 7].
Data partitioning approaches have also been effective for certain limited approaches to data
mining [?; ?] and knowledge discovery [?] on SIMD architectures. Improving the scalability
of scientific discovery systems will help break down the barrier excluding these techniques

from practical data mining approaches.

Galal 3

| nput G aph Substructure

Figure 1: Example substructure in graph form.

2 Overview of SUBDUE

We have developed a method for discovering substructures in databases using the minimum
description length (MDL) principle introduced by ? [?] and embodied in the SUBDUE system.
SUBDUE discovers substructures that compress the original data and represent structural
concepts in the data. Once a substructure is discovered, the substructure is used to simplify
the data by replacing instances of the substructure with a pointer to the newly discovered
substructure. The discovered substructures allow abstraction over detailed structures in the
original data. Iteration of the substructure discovery and replacement process constructs a
hierarchical description of the structural data in terms of the discovered substructures. This
hierarchy provides varying levels of interpretation that can be accessed based on the specific
goals of the data analysis.

The substructure discovery system represents structural data as a labeled graph. Objects
in the data map to vertices or small subgraphs in the graph, and relationships between
objects map to directed or undirected edges in the graph. A substructure is a connected
subgraph within the graphical representation. This graphical representation serves as input

to the substructure discovery system. Figure 7?7 shows a geometric example of such an input

Galal 4

Instance 1 Instance 2 Instance 3 Instance 4
i\ i) /A 2\

Figure 2: Instances of the substructure.

graph. The objects in the figure (e.g., T1, S1, R1) become labeled vertices in the graph, and
the relationships (e.g., on(T1,S1), shape(C1,circle)) become labeled edges in the graph.
The graphical representation of the substructure discovered by SUBDUE from this data is
also shown in Figure 77.

An instance of a substructure in an input graph is a set of vertices and edges from the
input graph that match, graph theoretically, to the graphical representation of the substruc-
ture. For example, the instances of the substructure in Figure ?? are shown in Figure ?7.

Figure 7?7 shows a sample input database containing a portion of a DNA sequence. In this
case, atoms and small molecules in the sequence are represented with labeled vertices in the
graph, and the single and double bonds between atoms are represented with labeled edges in
the graph. SUBDUE discovers substructure S; from the input database. After compressing
the original database using S;, SUBDUE finds substructure S;, which when used to compress
the database further allows SUBDUE to find substructure S3. Such repeated application of
SUBDUE generates a hierarchical description of the structures in the database.

The substructure discovery algorithm used by SUBDUE is a computationally-constrained
beam search. The algorithm begins with the substructure matching a single vertex in the
graph. Each iteration, the algorithm selects the best substructure and incrementally ex-

pands the instances of the substructure. The new unique substructures become candidates

o)
X o)
R
Q2%
/ —H— O/ 3 {
O=—P—H |
\ H N
0O HO—/P=O
\)
R TN
TR N,
/ \ O—H—N x4 \O
o= P\—(]-| H \
HO— P=0
A 4
CH2 (@]
\QNJ/ W ¢
<\ H— N
g /_{H 7 R
O=P— | \
\ H HO— P=0
0 /

Galal 5

&b o

-

o
o}
\

S = §:1>>C = 0_33
2
4 /

p

\
o
\
O

Figure 3: Sample results of Subdue on a protein sequence.

Galal 6

for further expansion. The algorithm searches for the best substructure until all possible sub-
structures have been considered or the total amount of computation exceeds a given limit.
Evaluation of each substructure is determined by how well the substructure compresses the
description length of the database.

Because instances of a substructure can appear in different forms throughout the database,
an inexact graph match is used to identify substructure instances. Subgraphs are considered
to be instances of a substructure definition if the cost of transforming the subgraph into
a graph that is isomorphic with the substructure definition does not exceed a user-defined
threshold. Transformations between graphs can include addition or deletion of vertices,
addition or deletion of edges, vertex label substitutions and edge label substitutions.

SUBDUE discovers substructures that compress the amount of information necessary to
conceptually describe the database. To allow SUBDUE to discover substructures of particular
interest to a scientist in a given domain, the user can direct the search with expert-supplied
background knowledge. Background knowledge can take the form of known substructure
models that may potentially appear in the database, or graph match rules to adjust the cost of
each inexact graph match test. Unlike other existing approaches to graph-based discovery [?;
?: 7, 7. ?], SUBDUE is effective at finding interesting and repetitive substructures in any
structural database with or without domain-specific guidance.

The results of the scalability study in section ?? are demonstrated on databases in two
different domains. The first type of database is the CAD circuit description of an A-to-D
converter provided by National Semiconductor. The graph representation of this database
contains 8,441 vertices and 19,206 edges. The second type of database is an artificially-

constructed graph in which an arbitrary number of instances of a predefined substructure

Galal 7

are embedded in the database surrounded by vertices and edges with random labels and
connectivity. The embedded substructure covers almost half of the graph and exhibits sig-
nificantly less variation in substructure instances than in the CAD database. The tested
artificial graph contains 1,000 vertices and 2,500 edges. To test scalability on even larger
databases while maintaining the characteristics of these two domains, we generate multiple
copies of the CAD and ART graphs and merge the copies together by arbitrarily connecting
the individual graphs, yielding a new larger graph. The term “n CAD” thus refers to a
graph consisting of n copies of the original CAD database with joining edges added, and
“n ART” refers to a graph consisting of n copies of the artificial database with additional
joining edges.

Figure ?? shows the substructures discovered from a CAD circuit with and without
background knowledge, and evaluates the results based on compression obtained with the
substructure, time required to process the database (measured in terms of number of graph
match nodes generated), a human rating of the substructure interestingness, and the number
of substructure instances found in the database. The interestingness of SUBDUE’s discovered
substructures are rated by a group of 8 domain experts on a scale of 1 to 5, where 1 means
not useful in the domain and 5 means very useful.

Figures 7?7 and ?? demonstrate two applications of SUBDUE. In addition to these exam-
ples, SUBDUE has been successfully applied with and without domain knowledge to databases
in domains including image analysis, CAD circuit analysis, Chinese character databases, pro-
gram source code, chemical reaction chains, Brookhaven protein databases, and artificially-

generated databases. Evaluation of these applications is described elsewhere [?; ?; 7.

Figure 4: CAD circuit-Discovered substructures.

Galal 9

3 Scaling KDD Systems

Although reaching the maximum performance of a given knowledge discovery system is
specific to the system itself, making use of parallel and distributed resources can significantly
affect the scalability of a KDD system. Parallelizing a knowledge discovery system is not
easy. The reason is that many KDD systems rely upon heuristics and greedy algorithms
to avoid the intractability inherent in an exhaustive approach. Both heuristics and greedy
algorithms share the potential of finding a suboptimal solution and, on closer inspection, a
sequentially oriented solution. In many cases KDD algorithms can perform better if they
are provided with enough history of the problem being solved, thus they will perform better
in a sequential approach.

In addition, knowledge discovery systems share the common parallelization problems. A
problem like matrix multiplication (in its standard form) is easily decomposable and thus
parallelizable with minimal synchronization and communication. In contrast, the knowl-
edge discovered in each step by KDD systems depends heavily on what has been discovered
in previous steps. Thus, we cannot decompose the work without increasing the synchro-
nization and communication between the parallel processors which usually results in poor
performance.

Two main approaches to designing parallel algorithms are the functional parallel approach
and the data parallel approach. In the functional parallel approach the algorithm steps are
assigned to different processors, while in a data parallel approach each processor applies the
same algorithm to different parts of the input data. In our discussion of parallelizing SUBDUE

we concentrate on distributed memory architectures because of the improved scalability of

Galal 10

such architectures compared to shared memory architectures.

3.1 Functional Parallel Approach—FP-SUBDUE

The main idea behind this algorithm is to divide SUBDUE’s search for candidate substructures
among processors. The search queue is maintained by one master processor which keeps track
of the best discovered substructures. The general description of the algorithm follows.
Each processor starts by discovering initial substructures large enough to obtain a non-
zero compression value and informing the master processor of the discovered substructures.
The master processor maintains a global search queue containing the substructure definitions.
When the master receives the results of an expansion step from a processor, it decides whether

to keep the expanded substructures according to the following criteria:

e If that substructure is already discovered, then the new substructure represents a

duplication of work and is discarded.

e If the substructure value is not one of the best M seen so far, then this substructure

is discarded.

e Otherwise the substructure is kept in the search queue.

Each slave processor keeps or deletes substructures as indicated by the master. If a slave
processor does not have any substructures in the global search queue then the master asks
another processor which has more than a threshold number of substructures to transfer a
substructure to the requesting processor. The algorithm stops when the global search queue

is empty or when a certain number of substructures are globally evaluated.

Galal 11

4000 T T T T T 4000 T T T T T
i 2ART — | i 2ART — |
30 | TART - 350 - JART -
L 8 ART -- L 8ART ----
- 3000 SART - 3000 16 ART
@ 2500 | b ig/ 2500 | E
) L i 0 L i
g oaop g oy
c 1500 | E c 1500 | b
E 3
000 - 000F . -
0 e 0 Ly
4 6 8§ 10 12 14 16 4 6 8 10 12 14 16
processors # processors
Figure 5: Discovery time of 60 substruc- Figure 6: Discovery time of 70 substruc-
tures in 2, 4, 8, and 16 ART. tures in 2, 4, 8, and 16 ART.

Clearly the type of search employed in this parallel version differs from that of the se-
quential version. In FP-Subdue any substructure waiting for expansion can be expanded
regardless of whether it is the best substructure so far or not. The distribution of effort also
allows many substructures to be evaluated that would be discarded in serial SUBDUE due to
the limited beam length.

To demonstrate the speedup of FP-SUBDUE we test the algorithm on an nCUBE 2 using
4, 8, and 16 processors. Figures 7?7 through ?? show the resulting decrease in runtime as the
number of processors increases. A limit on performance improvement is reached in each case
because of the serial time required to generate and evaluate initial substructures before work
is distributed evenly among all processors. The amount of compression achieved may also
sometimes increase as the number of processors increases. For example, after 30 substructure
evaluations FP-SUBDUE discovered a substructure that is 21% better than any substructure
discovered by serial SUBDUE while still yielding a substantial speedup. This is due to the

fact that the beam width combined over all processors is greater than a single beam width

Galal 12

1400 T T T T T 1400 T T T T T
1CAD — 1CAD —
1200 ngD T 1200 28AD _
3CAD ---- 3CAD
~ 1000 - 4CAD -~ 7 ~ 1000 | 4CAD - 1
2 p ‘
S 800 . <800 | 1
e | :
s 60t - S 600 -
c N - c
S =}
R) S : =400 b :
200 | \‘\\\\\“‘ —————————————————————————— 4
) e —
4 6 8§ 10 12 14 16 4 6 8 10 12 14 16
processors # processors
Figure 7: Discovery time of 40 substruc- Figure 8: Discovery time of 60 substruc-
tures in 1, 2, 3, and 4 CAD. tures in 1, 2, 3, and 4 CAD.

on the serial machine, and thus a greater number of substructures can be considered.

It may seem that the comparison between this parallel version and the sequential version
is not logical as each effectively uses a different type of search, but we should note that if
the sequential version were to follow the same kind of search used by the parallel version
(for example select the next substructure to expand randomly from the search queue) then
the parallel version is guaranteed to give us a near linear speedup, discovering substructures

which are as good as those which would be discovered by the sequential version.

3.2 Dynamic Partitioning Approach—DP-SUBDUE

In the first data partitioning approach, Dynamic-Partitioning SUBDUE, each processor starts
evaluating a disjoint set of the input data. During discovery, each processor enlarges its set
as required by the discovered substructures. When DP-SUBDUE is run on a graph with
M vertex labels using P processors, processor ¢ begins processing a candidate substructure

corresponding to the ith unique label in the graph (i < M). Each processor receives a copy

Galal 13

Figure 9: Sample input graph.

of the entire input graph, and begins processing its assigned candidate substructures. Each
processor continues expanding and processing a portion of the possible substructures until
the combined number of processed substructures exceeds a given limit or until all processors
are idle.

Note that there exists a danger of replicating work across multiple processors. Consider
the input graph shown in Figure ??. If label V1 is assigned to processor 1 and V2 is assigned
to processor 2, both processors will expand this single-vertex substructure to the two-vertex
substructure highlighted in the figure. If label V3 is assigned to processor 3, eventually
all three processors will be working on the same candidate substructures. To prevent this
duplication of effort, DP-SUBDUE constrains processors expanding a substructure to only
include vertices with a label index greater than the processor ID. In the example scenario,
only processor 1 can generate the highlighted substructure.

One hindrance to good performance from a parallel implementation is excessive idling of
processors. When a processor runs out of work, it requests work from a neighboring processor.

If the neighbor has a sufficient number of substructure candidates left, the neighbor passes

Galal 14

the highest-valued substructure and corresponding instances to the requesting processor. If
no work can be shared, the requesting processor continues to ask for work until work can be
shared or DP-SUBDUE finishes computation.

When a substructure is transferred to a requesting processor, the requesting processor
assumes the identity of the original processor. This means that the requesting processor can
now expand the substructure in all the ways originally permitted to the old processor. To
ensure that both processors do not generate the same substructures the original processor
keeps a list of all transferred substructures and makes sure that no substructure subsuming
a transferred substructure is ever expanded.

Quality control is also imposed on the processors in the DP-SUBDUE system. One
processor is designated as the master processor, and this master regularly receives status
information on each processor. This information includes whether the processor is active or
idle, the number of processed substructures, and the average value of candidate substruc-
tures. Using this information, at regular intervals the master computes the overall average
substructure value and sends this information to all processors. Each individual processor
then prunes from its list all substructure candidates whose value is less than the global av-
erage. In this way no processor is working on a poor substructure candidate that will not
likely affect the results of the system. The master processor also collects and sorts the final
list of best substructures found from each processor.

The partitions here are logical: the set of all instances of all the candidate substructures
discovered by a processor constitutes its partition. Thus, the partitions assigned to different
processors grow dynamically as the discovered substructures become more complex. Clearly,

this kind of partitioning will not cause any loss of information because the database itself is

Galal 15

not split.

Results from the DP-SUBDUE system indicate that very limited speedup can be achieved
by distributing the substructure expansion and evaluation. The work done to limit dupli-
cate work and to load balance the system consumes considerable time in processing and
communication. Also as SUBDUE uses a greedy approach many processors follow the same
expansion path resulting in a tendency among processors to generate duplicated work. In
addition, the memory requirements of this data partitioning approach are excessive because
the entire database is copied on each processor. The speedup achieved is very limited and

the results are not included in this paper.

3.3 Static Partitioning Approach—SP-SUBDUE

Although the DP-SUBDUE approach was not successful, the data partitioning idea itself is
very appealing in terms of both memory usage and speedup. Here we illustrate the static
partitioning approach to parallelize SUBDUE.

In SP-SUBDUE we partition the input graph into n partitions for n processors. Each
processor performs sequential SUBDUE on its local graph partition and broadcasts its best
substructures to the other processors. Each processor then evaluates the communicated sub-
structures on its own local partition. Once all evaluations are complete, a master processor
gathers the results and determines the global best discoveries.

The graph partitioning step is the most important step of the algorithm. The speedup
achieved as well as the quality of discovered substructures depends on this step. In partition-

ing the graph we want to balance the work load equally between processors while retaining

Galal 16

as much information as possible (edges along which the graph is partitioned may repre-
sent important information). SP-SUBDUE utilizes the Metis graph partitioning package [?].
Metis accepts a graph with weights assigned to edges and vertices, and tries to partition the
graph so that the sum of the weights of the cut edges is minimized and the sum of vertex
weights in each partition is roughly equal. We assign weights only to edges to ensure that
each partition will contain roughly the same number of vertices. The weight of each edge is
proportional to the frequency with which it appears in the graph. The motivation for this
weight assignment is that the frequently occurring edge labels are more likely to represent
useful knowledge. The run time of Metis to partition the CAD database is very small (ten
seconds on average) and is thus not included in the parallel run time.

Figures 7?7, 77, and ??7 graph the run time of SP-SUBDUE on the CAD and artificial
databases as the number of processors increases. The speedup achieved with the ART
database is always superlinear. This is because the run time of sequential SUBDUE is non-
linear with respect to the size of the database. Each processor essentially executes a serial
version of SUBDUE on a small portion of the overall database, so the combined run time is
less than that of serial SUBDUE. The speedup achieved with the CAD database is usually
close to linear and sometimes superlinear. Increasing the number of partitions always results
in a better speedup.

To compare results of these databases and databases not created by merging together
smaller components, we also graph the run time of SP-SUBDUE on artificial graphs created
from scratch, not by merging together smaller graphs. These artificial graphs range in size
from 1,000 vertices to 4,000 vertices (the number of edges is double the number of vertices),

and the run times are shown in Figure ??. This particular experiment is run on a network

Galal 17

3000 T T T T T T 800 T T T T T T
s 1CAD — 700 |- 2ART — |
2500 | 2CAD -~ 4 ART ----
3CAD - 600 L 8 ART ----]
~ \ 4CAD - ~ ;
o 2000 o 0
@ ! 5CAD g/ 500 + .
[0} Lo i 0 L i
E 1500 | | £ 400
5 wo0f . 5 W00]
200 _\\\ i
500 100 L |
0] 0 \;;:‘:;;::I_Z,’Li‘_:”L
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
processors # processors

Figure 10: CAD database total evaluation Figure 11: 2, 4, and 8 ART database total

time. evaluation time.

of Pentium PCs using PVM.

Now we turn our attention to the quality of the substructures discovered by SP-SUBDUE.
The quality of a substructure is measured in terms of the amount of compression it affords
in the original input graph. If the graph G, is the graph G compressed using substructure

s, then compression is defined as

size(G) — size(G)
size(G)

compression =

Tables ?? and ?? show the compression achieved for the CAD and ART databases as
well as the non-merged artificial graphs when processed by a different number of processors.
Regarding the CAD database compression results, we find that a small number of partitions
almost always results in a superior compression to that of the sequential version. The
reason behind that is the nature of the CAD database. As with many real-world databases,
the CAD databases contains many diverse substructures. Treating the entire database as a

single partition will result in throwing away good substructures because of the limited search

Galal 18

9000 T T T T T T ° “: T
8000 |- 16 ART — | 14 [t mﬁ
\ 32 ART ---- H 2000 Vertices
7000 4 - e |
g 6000 |- | el]
= 5000 F 1 8
g \ o sl B
E oo} |] E
c \\ o 6 |
2 30 | - 5 :
2000 f\ - Y |
0 ! SE—— \\T\""-*»::ﬁl.':Jj'j',",';'_";';t:;:;—;—_,—;—:_::
2 4 6 8 10 12 14 16 4 8 12 16
processors # processor s

Figure 12: 16 and 32 ART database total Figure 13: Artificial graph total evaluation

evaluation time. time.

beam. When the database is partitioned among several processors, each processor will have
a greater chance to deepen the search into the database, because the number of embedded
substructures is reduced, resulting in higher-valued global substructures.

Regarding the ART database results, it is clear that the best compression achieved is
the sequential version compression. This is expected because of the high regularity of the
database. As mentioned before the ART database has one substructure embedded into
it, thus partitioning the database can only cause some instances of this substructure to
be lost because of the edge cuts, so we cannot get better compression by partitioning. The
compression achieved with a small number of partitions is very close to that of the sequential
version. The artificial graphs realize improved results from using an increased number of
processors due to the increased beam width.

Because the data is partitioned among the processors, SP-SUBDUE can also utilize the
increased memory resources of a network of workstations using communication software

such as the Parallel Virtual Machine (PVM) system [?]. We implemented SP-SUBDUE on a

Table 1: CAD database compression results by number of processors.

Database 1 2 4 8 16
1 CAD || .0746 | 0.156095 | 0.112458 | 0.028686 | 0.019010
2 CAD || .0746 | 0.082348 | 0.123302 | 0.034331 | 0.017073
3 CAD | .0746 | 0.060023 | 0.050129 | 0.033402 | 0.033586
4 CAD | .0746 | 0.101977 | 0.042417 | 0.048962 | 0.026821
5 CAD || .0746 | 0.079247 | 0.065364 | 0.032131 | 0.017944

Table 2: ART database compression results by number of processors.

Database 1 2 4 8 16
2 ART 5639 | 0.543554 | 0.545256 | 0.564162 | 0.626758
4 ART 5415 | 0.519963 | 0.321946 | 0.296317 | 0.225197
8 ART 5418 | 0.518611 | 0.501251 | 0.310067 | 0.257190
16 ART 5407 | 0.514947 | 0.504967 | 0.497538 | 0.303339
32 ART D187] 0.507182 | 0.495180 | 0.492651 | 0.490307
1000 Vertices || .4863333 | 0.625407 | 0.657534 | 0.686661 | 0.720487
2000 Vertices || 0.529667 | 0.630894 | 0.667301 | 0.693533 | 0.701346
4000 Vertices || 0.530667 | 0.629072 | 0.660352 | 0.681551 | 0.700110

Galal 19

Galal 20

Table 3: CAD databases distributed version speedups by number of processors.

Database 2 4 8 14

1 CAD | 1.48|3.37| 7.99 | 18.73

2 CAD | 1.88|3.52 | 13.64 | 28.69

3CAD | 1.98|5.54 | 14.76 | 33.79

4 CAD | 2.58 | 8.81 | 15.81 | 47.18

5 CAD | 2.13 | 6.25 | 23.27 | 52.58

network of 14 Pentium PCs using PVM. The speedup results are given in Tables 77 and 77.

3.4 Comparison

We have described implementations of one functional parallel and two data parallel ap-
proaches for improving the scalability of SUBDUE with parallel and distributed resources.
When comparing the benefits of the three approaches, DP-SUBDUE is discarded because of
poor run time and heavy memory requirements. FP-SUBDUE can prove effective in discov-
ering substructures in very large databases with many embedded substructures due to its
unique search algorithm. The reason that the other versions will not discover some of the
substructures discovered by FP-SUBDUE is merely because of the limited search queue size
(i.e., we can always discover the same substructures by controlling the run time parameters
of serial SUBDUE and SP-SUBDUE).

SP-SUBDUE is the most interesting approach of all. By partitioning the database ef-

fectively, SP-SUBDUE proves to be a highly scalable system. SP-SUBDUE can handle huge

Galal 21

Table 4: ART databases distributed version speedups by number of processors.

Database 2 4 8 14

2 ART | 4.34|12.76 | 31.42 | 63.8

4 ART | 2.08 | 15.69 | 56.56 | 139.33

8 ART || 2.57 | 6.09 | 48.45 | 162.38

16 ART | 2.87 | 9.96 | 20.53 | 171.09

32 ART | 3.16 | 10.31 | 34.12 | 82.99

databases using fewer resources (processing power and memory) than would have been re-
quired by the sequential version to handle the same database while discovering substructures
of equal or better quality. One of our databases contains 2 million vertices and 5 million
edges, yet SP-SUBDUE is able to process the database in less than three hours. The easy
availability of SP-SUBDUE is greatly improved by porting the system to distributed sys-
tems. The minimal amount of communication and synchronization that is required make
SP-SuBDUE ideal for distributed environments. Using the portable message passing interface

provided by PVM allows the system to run on heterogeneous networks.

4 Conclusions

The increasing structural component of today’s databases requires data mining algorithms
capable of handling structural information. The SUBDUE system is specifically designed
to discover knowledge in structural databases. SUBDUE offers a method for integrating

domain independent and domain dependent substructure discovery based on the minimum

Galal 22

description length principle. However, the computational expense of a discovery system such
as SUBDUE can deter wide-spread application of the algorithms.

In this paper, we analyze the ability of SUBDUE to scale to large databases. The described
parallel and distributed implementations of SUBDUE allow us to investigate methods for im-
proving the scalability of scientific discovery systems. We are currently exploring methods for
improving the scalability of additional discovery methods. In particular, we have developed
SIMD and MIMD implementations of the AutoClass discovery system [?], and will research
methods of combining the parallel linear-based AutoClass discovery system with the struc-
tural approach of parallel SUBDUE. A hybrid linear / structural system will be implemented

and used to discover concepts in a variety of earth and space science databases.

