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Abstract—The shape of the human brain is correlated with
many life events and psychological conditions. In this paper,
we use a graph-based approach to represent the shape of the
brain, including the shape of the ventricular system and shape
relative to the skull. This graph representation is applied to
classification of individuals based on level of cognitive impairment
due to Alzheimer’s Disease, level of education, and gender. The
portions of the graph which are important to each distinction are
found and visualized as an overlay on structural MR images. We
find that whole-brain analysis in this manner allows automatic
classification of images based on gender if the whole brain
is included, but not strictly based on the ventricular system.
Alzheimer’s Disease is found to strongly affect ventricle shape,
and education is found to correlate with the shape of the medial
longitudinal fissure and the Sylvian fissure, which may be due
to increases in overall brain mass due to education. Gender is
predicted primarily by information in the MRI regarding facial
structure and head shape. Finally, age is found to be easier to
classify than any of the above distinctions. The classifier is found
to have 90.9% accuracy differentiating scans of individuals 40
and younger from those from individuals 60 or older.

I. INTRODUCTION

Since the advent of brain imaging in the past half-century,
many correlations have been discovered between brain shape
and life events. For example, Maguire et al. found significant
structural changes in the hippocampi of taxi drivers [1]. Fur-
ther, Maguire et. al. determined that these structural changes
were not the result of innate navigational ability, but rather
acquired through use. In another example, Elsayed et al. [2]
found correlations between the shape of the corpus callosum
and musical ability. Elsayed et. al. were able to differentiate
scans of brains from musicians and non-musicians, with up
to 95% accuracy. Yet another example, by Nosarti et. al. [3]
correlates ventricular size, hippocampus size, overall brain
size, and other measures to premature birth, with the finding
that a number of gray matter structures are reduced in size at
adolescence in children born pre-term. All of these indicate
strong correlations between brain structure and life events.

Diseases can also affect brain shape. For example,
Alzheimer’s Disease is known to cause a decrease in hip-
pocampus size [4], as well as an increase in the size of the
ventricles [5]. Early detection of Alzheimer’s Disease may be
possible using brain structure as an indicator [5].

Discovering these correlations can be done manually, how-
ever an automatic process may be able to replace human labor.
In this paper, we focus on three areas: level of impairment
due to Alzheimer’s Disease, level of education, and gender.
MR images including information about these classifications

is available from the Open Access Structural Imaging Series
[6]. We represent the shape of the brain as a tree. Branches
correlating with the desired classification are found and used
to form a feature vector, which can then be classified using
a support vector machine. Our system can determine level of
education (0 years or ≥ 4 years) with 81.7% accuracy, gender
with 81.2% accuracy, and level of Alzheimer’s Disease with
80% accuracy (70% when controlling for age in the healthy
population). It can also determine age ≤ 40 or ≥ 60 in a
balanced dataset of 93 young and 93 old individuals free of
cognitive impairment with 90.9% accuracy.

Classification accuracy is an indication that the discov-
ered correlations are correct, but does not directly provide
information about brain structure. Besides classification, some
machine learning systems provide a useful description of
the criteria used for classification. For example, Subdue [7]
provides the most discriminating subgraph, determined by high
prevalence in one class and low prevalence in the other.

Instead of a single subgraph, our system uses a large
number of discriminating branches, which may be visualized
by highlighting the area of the MR image represented by
each of the branches, and viewing 2D slices of the MRI in
which the highlighting appears. Finding branches which are
discriminating in the training set does not guarantee that these
branches are also relevant to the classification in general. The
likelihood that a branch is relevant in general increases if,
having been found in the training set, it is also discriminating
in the test set. This likelihood increases further if the branch is
discovered in multiple folds of cross-validation. Using the idea
of cross-validation to determine a set of branches which are
likely to be relevant to the classification in general provides an
idea of what the ideal classification hypothesis would be, and
highlights areas which differentiate one class from the other.
Results of this process are shown overlaied on 2D images
of the brain. Alzheimer’s Disease is shown to correlate with
changes in the ventricular system, aging is shown to correlate
with many changes throughout the brain, level of education
is shown to correlate with many areas with concentrations in
the medial longitudinal fissure and Sylvian fissures, and the
accuracy on gender classification is revealed to be based on
head shape and facial features.

II. PREVIOUS WORK

Some previous work has been focused on the particular
problem of automatic recognition of Alzheimer’s Disease from
MRI data. For example, Klöppel et al. [8] consider each voxel
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to be a feature in a feature vector, and then use a support vector
machine to classify the resulting feature vectors. Cuingnet
et al. [9] discuss and compare 10 different methods using
a large dataset from 509 participants. As such, the study of
automatic detection of Alzheimer’s Disease is well-studied.
In contrast, our study of classification of Alzheimer’s Disease
is used to validate a general-purpose classifier, which is then
applied to level of education and gender, and can be applied
to other measures as well in the future. Although the system
can be used to classify scans depending on level of cognitive
impairment, the focus of this work is automatic discovery
of correlations in general rather than Alzheimer’s disease
classification.

The method by Klöppel et al. [8] differentiates discriminat-
ing vs. non-discriminating voxels, somewhat like the discrimi-
nating branches we propose below. However, a discriminating
branch may represent a variable number of voxels depending
on the length of the branch, and never represents as few as
one voxel.

Elsayed et al. [2] have used graph-based shape representa-
tion to classify MR images using the 2D shape of the corpus
callosum as it appears in a midsaggital section. Images were
classified as either from a musician, or a non-musician, with
up to 95% accuracy. Shape analysis was done by recursively
subdividing the image into 4 quadrants to form a quad-
tree, terminating a branch if the area to be subdivided was
sufficiently uniform in color. These trees were then classified
by a frequent sub-tree classification method. This current work
also represents shape using a tree of subdivisions.

Our previous work in this area [10] focused specifically
on the ventricular system, although classification methods are
similar. Also, no attempt was made previously to determine
which brain areas were found to be useful for classification,
merely that classification was possible using the methods
presented.

III. PUBLICLY AVAILABLE MRI DATA

Data is available from the Open Access Structural Imaging
Series (OASIS) project [6]. This is a dataset consisting of over
400 structural MR images, some of individuals with varying
levels of cognitive impairment. They are labeled according to
the degree of cognitive impairment due to Alzheimer’s disease.
The data is in the Mayo Clinic Analyze 7.5 format 1. The Nipy
library can be used to access this data from Python code [11].

IV. GRAPH REPRESENTATION

Prior to determining the graph representation of an image,
the image is trimmed such that the edges of the image touch
the skull, making centering consistent from one image to the
next. This process was done automatically by moving each
edge inward one voxel at a time until substantial light content
was found, and then terminating the procedure. This bounding
box is used as a means to consistently address location inside
the brain, in a manner somewhat similar to the “anchor points”
described by Megalooikonomou et al. in [12].

1http://www.grahamwideman.com/gw/brain/analyze/formatdoc.htm

The method of representing shape as a graph is described in
detail in [10]. In brief, the area to be represented is recursively
subdivided into 8 evenly-sized boxes. Subdivision is termi-
nated when the color of a box is sufficiently homogeneous.
These subdivisions form a tree, with each node representing
either a subdivision or a box which will not be subdivided
further. The maximum depth of the tree is limited in order
to limit the computational time required for analysis. Leaves
in the tree always correspond to boxes which are not further
subdivided, either due to homogeneous color or depth limita-
tion. Nodes are labeled to indicate a subdivision, or the reason
for a formed leaf (light even color, dark even color, depth
limitation). Edges are labeled in order to indicate which part of
3D space the division corresponds to, making each subdivision
and leaf locatable in an MR Image. This representation was
sufficient for classification of level of cognitive impairment
and level of education when applied only to the ventricular
system. Unlike the method in [10], there are no graphs which
cannot be processed due to difficulty discovering particular
structures.

When used for whole-brain analysis, a leaf at depth level 5 is
(in voxels) approximately 5*7*7, for an area of 245 voxels. At
depth 6, approximately 2.5*3.5*3.5, for an area of 16 voxels,
although it should be noted that our technique will use whole
voxels only, and so the decimal numbers are averages rather
than common amounts. The size in voxels varies due to scale
and head size variations from one image to the next. Most
of the experiments described in this paper use a maximum
depth of 5. Experiments with a depth of 6, did not improve
accuracy, however the computational requirements of the task
fully occupied a 296-processor cluster for several days on a
60-image dataset. An attempt to process a larger 100-image
dataset was abandoned after two weeks. Generation of the
trees themselves takes about a day using four threads on an
Intel Q6600 quad-core processor.

V. GRAPH CLASSIFICATION

Frequent Subgraph Classification involves finding a sub-
graph or set of subgraphs which are present in one class, but
not the other. In this particular case, the graphs to be classified
are trees. This allows for fast isomorphism testing to see if a
particular branch is in a particular tree, and is used to calculate
how many times a branch is present in the positive and
negative examples. Using only a single leaf per discriminating
branch, all possible discriminating branches can be enumerated
in linear time relative to the number of nodes in the tree.
The difference in prevalence of a branch between positive and
negative sets is used to calculate a score indicating suitability
of a branch for classification purposes. Branches which are
found to be useful for discriminating between classes are used
for classification. A tree is represented by a feature vector,
where each feature corresponds to a discriminating branch,
and indicates whether or not that particular branch is present
in the tree. These feature vectors are then classified by support
vector machine. We the libsvm [13] implementation. Details
including distribution of the process over a computing cluster
are given in [10].
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VI. DISCOVERING CORRELATIONS USING
DISCRIMINATING BRANCHES

Cross-validation has been shown to be an effective method
of evaluating the accuracy of machine-learning algorithms
[14]. In order to find a set of branches which are most
representative of the difference between classes, we apply a
similar idea to branch selection. The dataset is divided into
10 test and 10 training sets as in 10-cross validation. In each
fold, the 500 most discriminating branches from the training
set are evaluated on the test set, and branches which are
also discriminating on the test set are preserved. After all 10
folds have finished, branches appearing in the results of 5 or
more folds are considered to be representative of a difference
between the two classes under consideration. This process
requires computational time comparable to the classification
tests.

A limitation of this technique is that it does not allow
an exact visualization of the classification hypothesis. The
discriminating branches are used to generate features for a sup-
port vector machine, which may use them in any combination.
The contribution of the SVM to classification is not recognized
when discriminating branches are selected as above. This will
prevent display of any conjunctive hypothesis consisting of
multiple branches. However, by evaluating each branch indi-
vidually on the test set, the result may be more representative
of the differences between classes, even though it may not
accurately represent the criteria used for classification.

Because branches are eliminated which are not found to be
discriminating on the test set, higher classification accuracy is
expected to be accompanied by a larger set of branches which
were discriminating on the test set. This in turn produces
a larger set of results. Also, lack of consistency between
folds may indicate that the hypothesis used for classification,
while it may have resulted in reasonable accuracy on the
particular data on which it was evaluated, does not apply to
the classification in general. Conversely, if a discriminating
branch is found in many folds, it is likely to be relevant to
the classification in general. Quantifying this tendency is left
to future work, however it is noted in the results sections.

Once found, the area represented by the leaf of each
discriminating branch is marked on sections of the MRI Image
that contain area represented by that leaf. Because the leafs
represent area from a 3D image, not all boxes appear on every
2D slice.

VII. RESULTS AND DISCUSSION

All results were computed on a computing cluster at WSU.
The cluster consists of 296 Intel Xenon processors arranged in
nodes of 8 or 16 processors each. Processor frequency is not
consistent throughout the cluster, most nodes are between 2.0
and 2.4 ghz. The algorithm for discriminating branch discovery
is implemented using a custom map/reduce framework which
enables operation on clusters using Portable Batch System to
schedule jobs.

Maximum tree depth is fixed to 5 except as noted. In all
cases, no more than 500 discriminating branches were allowed
for any one fold of classification, to limit SVM overhead.

A. Alzheimer’s Disease

Using a dataset of 60 individuals, 30 with CDR ≥ 1.0 and 30
healthy individuals, the system obtains an accuracy of 80%.
However, this accuracy is reduced when controlling for the
age of individuals. The youngest person in the OASIS dataset
with cognitive impairment is 62, and the youngest healthy
individual is 18. Using a dataset of 30 individuals with CDR ≥
1.0 and 30 healthy individuals of at least age 62, the accuracy
is reduced to 70%. This indicates that the system is able to find
a correlation which is due to Alzheimer’s Disease rather than
age. The 80% accuracy without age control is up from 79.33
when classification is based on the third and lateral ventricles
alone [10]. Processing on this 60-example dataset finishes in
less than half an hour.

Including individuals with CDR 0.5, the system is unable
to perform classification when healthy individuals under 62
are excluded. If individuals are randomly selected to form
the healthy population without controlling for age, the system
obtains an accuracy of 77.18%, up from 74.2% when using the
ventricular system alone [10]. This indicates some ability to
find correlation with age is present, even though the system can
only distinguish cognitive impairment from age once it reaches
CDR 1.0. This dataset includes a total of 198 examples, and
requires a few hours to process depending on cluster load.

To test accuracy based on age alone, a dataset was con-
structed of 93 healthy individuals under age 40, and 93 healthy
individuals over age 60, resulting in overall accuracy of 90.9%.
Given this result, brain shape changes related to aging appear
easier to detect than changes related to Alzheimer’s Disease.

The branches represent locations dispersed through 3D
space, and showing all of them on a single 2D slice is not
possible. Figure 1 shows a representative sample. Most of the
branches shown represent a location in the ventricular system,
confirming that the ventricular system is strongly affected
by this disease. This is consistent with findings such as [5]
describing correlations between ventricular enlargement and
progression of Alzheimer’s disease. Note that some of the
locations of importance change in content between the CDR
1.0 individual and the healthy individual. The boxes represent
3D space, and so in some cases a content of a box may change
between images, but the change may not be apparent on the
particular 2D section shown. Most of the ventricular system is
inferior to the horizontal section from figure 1, and so boxes
which extend downward to this area may include areas of CSF.

Accuracy on the dataset of CDR ≥ 1.0 vs. CDR 0 without
age control was decreased to 78.33% when the trees were
expanded to a maximum of 6 levels deep. This may be due
to overfitting, assigning undue importance to exact details
in the training set which are not upheld in the test set. It
may also have been due to the number of discriminating
branches discovered and discarded. On most experiments with
a maximum depth of 5, no more than 1,000 discriminating
branches were discovered per fold, whereas on the level 6
experiment generated approximately 7,000 branches per fold.

Most discriminating branches were found in at least one
fold. Specific counts were:

1: 27
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Fig. 1. Counterclockwise from upper left: (a) Horizontal section of the brain showing areas represented by discriminating branches found in at least 5 folds.
The larger box on the right of the image indicates a branch which is shorter than the maximum allowed depth. (b) Same as a, except in an individual with
CDR 1.0. (c) Saggital section offset laterally from the center showing the same in a healthy individual. (d) Same as c, except in an individual with CDR 1.0.

2: 304
3: 49
4: 29
5: 15
6: 9
7: 5
8: 4
9: 2

Although this does show commonality between folds,
greater commonality is shown on other datasets (education,
gender, age). This may reflect the lower accuracy on the
Alzheimer’s dataset compared to the others. No branches were
common to all 10 folds. Using the dataset of individuals below
40 and over 60 (with no cognitive impairment), higher counts
are obtained:

1: 29
2: 276

3: 97
4: 42
5: 42
6: 18
7: 36
8: 28
9: 23

10: 10

These higher counts indicate a more consistent set of
discriminating branches in the age dataset compared to the
Alzheimer’s dataset. Figure 2 shows areas represented by
discriminating branches. Areas important to age classifica-
tion in some cases overlap with those for Alzheimer’s clas-
sification, with many areas around the ventricular system.
However, for age classification areas are more widespread,
ranging throughout the cortex, and many areas found to be
discriminating for Alzheimer’s disease are not duplicated in
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Fig. 2. Discriminating branch locations from the age dataset. Shown on a 74-year old brain (left) and a 21 year old brain (right). The differing width of the
pictures is not due to image scaling, but rather reflects the differing shape of the area remaining after cropping out the parts of the MRI which do not contain
tissue.

Fig. 3. Midsaggital and horizontal views showing discriminating branches from the education dataset. Note the large number of discriminating branches
describing areas in the medial longitudinal fissure.

the aging result. Because the system was able to differentiate
impaired individuals from healthy individuals even when age
is controlled, it is expected that the classification criteria will
differ.

In the OASIS dataset, all cognitively-impaired participants
had at least a year of higher education. Alley et al. [15]
found that greater education results in higher performance on
intelligence tests in old age, and that verbal memory perfor-
mance declined faster on well-educated participants. Wilson
et al. [16] observed that highly-educated participants showed
an increased rate of cognitive decline due to Alzheimer’s
disease. Given this, there may be some effect due to the level
of education of the OASIS dataset participants. The sample

size of participants showing impairment is also small. 28
participants in the OASIS dataset exhibit CDR 1.0, and only
2 exhibit CDR 2.0.

B. Education

Using a dataset of 198 individuals, 99 of which have 4
or 5 years of education and 99 of which have 0, we obtain
a classification accuracy of 81.7%, up from 77.9% when
considering only the ventricular system [10]. This dataset is
constructed from the OASIS dataset by random selection, and
does not exclude individuals based on cognitive status or age.
Balancing groups by age or cognitive impairment level could
affect results. Figure 3 shows some discriminating branch
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Fig. 4. Horizontal and coronal views from the education dataset showing
highlighted areas in the Sylvian fissure.

locations from the education dataset. Overall effect appears to
be widespread, with many diverse locations considered to be
useful for classification. Many more branches were discovered
by more than 5 folds compared with the Alzheimer’s dataset.
Specific counts were:

1: 23
2: 305
3: 72
4: 35
5: 54
6: 18
7: 19
8: 10
9: 11

10: 1

Education is known to affect the aging brain. Coffey et al.
[17] found a correlation between brain size and education in

elderly participants, of which there are many in the OASIS
dataset. Correlations have also been found in non-elderly
participants, for example, the hippocampus enlargement in taxi
drivers found by Meguire et al. [1].

Figure 4 shows correlations discovered in the area of the
lateral fissure on the education dataset. It is possible that
correlations here are due to brain mass differences changing
the amount of CSF in the lateral fissure. The same correlations
are present in the age dataset to a lesser extent, and not at
all in the Alzheimer’s dataset. In addition, a large number
of correlations appear in the medial longitudinal fissure, as
seen in the midsaggital section in figure 3. Moving laterally
away from the medial longitudinal fissure sharply decreases
the number of correlating areas found.

It is worth noting that the system cannot tell differences in
brain size except as related to skull size (that is, it does not use
any measure of overall head size). However, the system can
utilize the amount of cranial CSF by finding discriminating
branches representing the area between the skull and gray
matter. Figure 3 shows some discriminating branches in the
cranial CSF, but the majority describe locations in the cortex.
A few describe locations outside the skull, which presumably
change relative to head shape.

Despite the branch selection procedure outlined above,
branches are only guaranteed to be present in greater quantity
in one class than the other in the data provided, not to have
any biological significance. As such, results are a piece of
evidence about correlations only, and concluding that head
shape is related to education would require further evidence
beyond that provided in figure 3.

C. Gender

Using a dataset of 308 individuals, 154 male and 154
female, the system is capable of 81.2% accuracy. Processing
time is less than 6 hours. Using only the ventricular system,
it was not possible to classify MR images based on gender
[10]. Figure 5 shows locations represented by discriminating
branches. Most of these are outside the ventricular system, and
in fact many are outside the skull itself on the example shown
in figure 5. Further areas are located in the facial regions. In
the coronal section in figure 5, a concentration of branches
is found on the lower right of the image. These appear to
represent some sort of facial feature. Because the images could
not be classified correctly using only the ventricular system, it
is not surprising that no discriminating branches are apparent
in that region.

Consistency between folds was higher on this dataset than
any other. Specific counts were:

1: 24
2: 322
3: 102
4: 63
5: 36
6: 25
7: 24
8: 27
9: 16
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Fig. 5. From top, Midsaggital, horizontal, and coronal sections showing
discriminating branch locations for gender determination.

10: 14
The brain is known to differ in structure between males

and females [18]. Also, brain changes happen differently
throughout life between the two genders [19], which may
affect the OASIS dataset considering the large number of
elderly participants. However, in general more discriminating
branches were found corresponding to head shape or facial
features.

Facial features in the OASIS dataset have been reduced
to prevent identification of any participants in the study [6].
However, it appears enough features remain to identify gender
of the participants. This is not a violation of the participant’s
privacy, because gender is a labeled attribute in the set,
and thus determining it adds no information which was not
already known. However, it is interesting that even the reduced
facial features proved useful for distinguishing the gender of
participants.

Our accuracy in gender determination is not as high as
existing results automatically classifying gender based on
pictures of the face. As a comparison, Baluja et al. ob-
tained 90% accuracy determining gender from a 20*20 pixel
grayscale image [20]. However, that our program is taking into
account facial features is simply an unintended consequence of
allowing the entire MR image to be evaluated by the program,
rather than an intended result of the experiment.

Other findings such as [21] also show gender-based cranial
differences. In [21], Gur et al. measure factors such as total
gray matter volume, total white matter volume, CSF volume,
and head size. Significant gender-based differences are found.
Because the system does not distinguish between white and
gray matter, it cannot discover some of these differences at
this time.

We are aware of no existing system that automatically
classifies MR images based on gender, whether using facial
features, head shape, or brain structure.

D. Socioeconomic status

Hackman et al. noted cognitive and electrical activity
correlations with socioeconomic status [22]. Socioeconomic
status is an attribute in the OASIS dataset. Unfortunately, the
system proved unable to distinguish between individuals with
maximal and minimal socioeconomic status. This does not pre-
clude a structural correlation with socioeconomic status, only
indicates that one cannot be found as easily as correlations
with gender, education, aging, and Alzheimer’s disease.

VIII. FUTURE WORK

At present, our program does not incorporate gray vs.
white matter distinction. Adding this capability may increase
correlations which can be discovered. In particular, it may
enable automatic discovery of gender-based characteristics as
identified in [21].

The current work is intended as a component of a larger
system which would more completely represent the brain in
graph form. Currently, at least two approaches exist to forming
a graph of connected neural components. Eguı́luz et al. use
functional MRI activation levels in order to link areas of the
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brain with correlated activation in [23]. This produces a graph
where two nodes are linked if the areas they represent activate
at the same times. This is considered to be a functional brain
network [24]. A different approach is taken by Hagmann et
al. in [25]. A graph is formed of the structure of the brain,
indicating which neural component is connected to which
other neural component by analysis of white matter. This
forms a structural brain network [24].

Trees as used in this paper may be incorporated into a
network representing neural connections, to add information
about physical properties of each neural component to the
graph. A discriminating subgraph found in such a graph
could include details of the shape of several components, and
potentially discover correlations involving a number of items
which are not obviously related.

IX. CONCLUSION

This work was intended to explore the utility of representing
the shape of the entire brain using a graph, and the ability of
frequent subgraph mining to discover discriminating pieces
of the graph. The system was able to successfully classify
individuals based on gender, age, level of education, and
degree of cognitive impairment due to Alzheimer’s disease.
This demonstrates the versatility of the method. We are aware
of no previous work on automatically determining gender
based on MR images. We also provided a branch selection
method similar to cross-validation which finds branches in the
training set, and evaluates branches in the test set by how
consistently each branch is discovered. Branches evaluated
in this manner can be used to highlight areas the program
has found useful for classification, which may be used to find
correlations between brain structure and function or life events.
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