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Abstract 

Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 gener-
ation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural 
fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide 
dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenera-
tional generation were obtained and F1–F5 generations examined for male sperm epigenetic alterations and pathology in males and 
females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3–F5 generations were 
similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and 
prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-
based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but 
other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple 
generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.

Key words: Epigenetic; transgenerational; inheritance; sperm; vinclozolin; jet fuel; DDT; pathology; testis; obesity; review

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com

Introduction
In addition to the classic genetic inheritance mechanism, we 
now know the environment can promote a non-genetic inher-
itance process termed epigenetic transgenerational inheritance 
[1, 2]. The ability of environmental factors such as nutrition, 
temperature, stress, and toxicants to promote the epigenetic 
transgenerational inheritance in all organisms examined, from 
plants to humans, has been observed [3]. As with genetic inher-
itance and DNA sequence, epigenetic inheritance requires the 
germline transmission of epigenetic information between gener-
ations [4]. The sperm and/or egg with environmentally responsive 
epigenetic factors can be passed to the zygote and subsequent 
embryonic totipotent stem cells to impact all subsequent somatic 
cell types to influence later life phenotypic variation and disease 
[4]. Although high-density CpG DNA methylation is erased during 
early embryonic development, the transgenerational DNA methy-
lation regions (DMRs) are not erased and are retained to facilitate 
epigenetic inheritance [5]. All epigenetic mechanisms have been 

shown to be involved including DNA methylation, histone mod-
ification, non-coding RNA, and chromatin structure [6]. The ini-

tial observations were focused on DNA methylation in mammals 

[1]. One of the more common class of environmental exposures 

investigated has involved chemicals with an individual toxicant 

exposures assessed [2]. This includes the fungicide vinclozolin 

[1], pesticide DDT (dichlorodiphenyltrichloroethane) [7], herbicide 

glyphosate [8, 9], industrial contaminants jet fuel hydrocarbons 

[10], dioxins [11], and plastic-derived bisphenol A [12]. These 

individual toxicant exposures have promoted significant impacts 
on subsequent generations through epigenetic transgenerational 
inheritance mechanisms [2]. Since most natural populations are 
exposed generationally to different types of nutrition and toxi-
cant exposures, the question raised is what are the impacts of 
successive generation distinct exposures?

One of the best examples of multiple generation impacts is 

contemporary human population exposures. One of the first agri-
cultural compounds developed was DDT in the late 1940s and 
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used extensively in agriculture, and to rid North America and 
Europe of malaria, in the 1950s and 1960s [13]. Plastic compound 
exposures and hydrocarbon oil spills and jet fuel exposures were 
initiated in the 1960s and 1970s. Subsequently, in the late 1970s, 
1980s, 1990s, and 2000s, agricultural compounds such as the 
fungicide vinclozolin and herbicide glyphosate were introduced 
and persist today [14]. Since the 1950s, we now have four to five 
generations successively exposed to distinct environmental tox-
icants. Although the transgenerational actions of many of these 
individual toxicant exposures have been examined in mammalian 
models [15], the successive exposures of each generation have not 
been examined. Will the pathology and disease impact be com-
parable, additive, or differ due to each generation having a new 
distinct baseline exposure and epigenetics?

The current study experimental design used three successive 
generations of gestating female exposures during fetal gonadal 
sex determination, followed by three generations of no exposure to 
obtain the F5 generation to reveal the ultimate transgenerational 
phenotype for pathology and disease. The F0 generation gestat-
ing female was exposed to the agricultural fungicide vinclozolin, 
which is an anti-androgenic compound [16], and has been shown 
through a single exposure to promote the epigenetic transgenera-
tional inheritance of disease and pathologies [1, 17]. Vinclozolin is 
used in the fruit and vegetable industry as a fungicide currently 
and was developed in the 1970s [18]. The second successive expo-
sure of the F1 generation gestating female involved jet fuel (JP8) as 
an industrial hydrocarbon mixture, which is a toxicant that acts 
through the aryl hydrocarbon receptor (AHR) system. Jet fuel is 
used today and was introduced in the 1960s [19]. The toxicity of the 
hydrocarbon mixture jet fuel has been previously observed [20]. 
Jet fuel individually has also been demonstrated to promote the 
epigenetic transgenerational inheritance of a variety of patholo-
gies and diseases [21]. The third successive exposure of the F2 
generation-gestating female involved DDT. DDT is an estrogenic 
toxicant developed as a pesticide and used in agriculture in the 
1950s–1970s in North America and still used in India and now 
Africa [22]. The issue with DDT is it has a half-life of 25 years, 
so it will persist in the environment for the next 500 years [23]. 
A single exposure of DDT has also been shown to promote the 
epigenetic transgenerational inheritance of disease and pathology 
phenotypes [24]. The question addressed in the current study is 
“what are the sequential impacts of multiple distinct exposures 
on the transgenerational disease and pathology phenotypes.” One 
of the reasons these three exposures were selected is each acts at 
distinct receptor systems with vinclozolin on the androgen recep-
tor, jet fuel on the AHR receptor, and DDT on the estrogen receptor 
[15]. Therefore, a potential greater chance of additive or distinct 
forms of toxicity can be assessed. The question was if the multi-
ple exposures would become additive or plateau in regards to the 
sperm epigenetics and adult pathologies.

Previously, the integrated actions of DNA methylation, ncRNA, 
and histone modifications have been shown to be involved in epi-
genetic transgenerational inheritance [6]. This appears to involve 
ncRNA-directed DNA methylation and DNA methylation actions 
on histone retention and modifications in sperm [6]. Although the 
current study focused on the DNA methylation of sperm, all epi-
genetic mechanisms are anticipated to be involved. Previously, a 
number of different environmental toxicants have been shown 
to promote epigenetic transgenerational inheritance of pathology 
and disease through exposure-specific epigenetic alterations in 
the sperm [15]. Although similar disease is induced, the associated 
epigenetic alterations are exposure-specific and subsets of a larger 
set of DNA methylation associations with disease [15]. Therefore, 

exposure- and disease-specific epigenetic biomarkers appear to 
exist, and subsets of epigenetic alterations within a larger disease-
associated gene set appear to be involved with epigenetically 
inherited disease etiology observed [15]. Considering these pre-
vious observations with individual exposures, the current study 
investigated the influence of successive distinct toxicant expo-
sures, which may develop additive or unique epigenetic alter-
ations or pathology. All the previous pathologies associated with 
individual toxicant exposure were investigated and the effects 
with obesity had the highest levels of multigenerational impacts 
transgenerationally. Observations help elucidate the effects of 
several known multiple distinct environmental exposures that 
occurred in the human population and other species.

Results
The experimental design involved the successive exposure of mul-
tiple generations to environmental toxicants followed by multiple 
unexposed multigenerational and transgenerational generations, 
Fig. 1A. The exposures for the F0, F1, and F2 generation females 
involved gestating females using daily intraperitoneal (IP) injec-
tions during fetal days E8–E14 of embryonic development, which 
correspond to the gonadal sex determination period of develop-
ment, to impact the germ-cell epigenetics. The daily IP injection 
for the F0 generation involved the anti-androgenic fungicide vin-
clozolin (100 mg/kg BW/day), which has a 25 mg/kg lowest observ-
able adverse effect level (LOAEL) [25]. The F1 generation expo-
sure involved the hydrocarbon mixture jet fuel (JP8) (500 mg/kg 
BW/day), which has a 1000 mg/kg/day LOAEL [26]. The F2 gener-
ation exposure involved the pesticide DDT (25 mg/kg/day), which 
has a 20 mg/kg BW/day LOAEL [27]. The subsequent unexposed 
F3, F4, and F5 generations were generated (Fig. 1A). All animals 
were aged to 1 year of age to collect sperm from the males for 
epigenetic analysis and to perform pathology analysis on both 
males and females. Pathology for the male evaluated the testis, 
prostate, kidney, and metabolic parameters of obesity. Pathol-
ogy for the females evaluated the ovary, kidney, and metabolic 
parameters of obesity. The analysis involved generational com-
parisons to assess the impacts of multigeneration exposures on 
epigenetics and pathology. There were approximately 16 breed-
ing pairs for each generation to maintain animal number to avoid 
any inbreeding. The number of offspring for each generation was 
approximately 130 with 50% male and female ratio. The number 
of animals for each generation pooled for the molecular analy-
sis were 5–7 F1 generation, 7–9 F2 generation, 6–9 F3 generation, 
9–10 F4 generation, and 8–9 F5 generation for a total of 6 pools 
for each generation epigenetic analysis. This reflects total animals 
for F1–36, F2–48, F3–48, F4–60, and F5–51. Sufficient numbers of 
animals and litters were used to avoid any inbreeding within the 
generations or colony (see “Methods” section).

The sperm collected were used to assess the generational 
impacts on sperm DNA methylation. Sperm were isolated from 
the cauda epididymis and fragmented to assess DNA methylation 
with methylated DNA immunoprecipitation (MeDIP), as previously 
described [28]. The differential DMRs between the control lineage 
and exposure lineage were identified, as previously described [28]. 
Control F0 generation lineage gestating females were exposed to 
the vehicle dimethyl sulfoxide (DMSO) only to compare with the 
toxicant exposure that we dissolved in DMSO as well, as previously 
described [1]. The control F1 generation offspring were then bred 
to generate the F2 generation and the F2 generation was used to 
generate the F3 generation and all aged to 1 year of age for sperm 
collection and pathology analysis. The F1 generation control was 
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Figure 1: DMR identification. The number of DMRs found using different P-value cutoff thresholds. The All-Window column shows all DMRs. The 
Multiple Window column shows the number of DMRs containing at least two nearby significant windows (1 kb each). The number of DMRs with the 
number of significant windows (1 kb per window) at a P-value threshold of P < 1e-04 for DMR is bolded. (A) Experimental design; (B) F1 generation 
1e-04; (C) F2 generation 1e-04; (D) F3 generation 1e-04; (E) F4 generation 1e-04; (F) F5 generation 1e-04

compared to the F1 generation multigeneration exposure lineage, 
the F2 generation control to the F2 generation multigeneration lin-
eage, and the F3 generation control compared to all subsequent 
F3, F4, and F5 generation exposure lineages for epigenetic and 
pathology analysis. The sperm epigenetic analysis is summarized 
in Fig. 1. The edgeR P-value is presented and the associated DMRs 
for each generation are presented for the F1 generation (Fig. 1B), F2 
generation (Fig. 1C), F3 generation (Fig. 1D), F4 generation (Fig. 1E), 
and F5 generation (Fig. 1F). The number of single window 1 kb DMR 

is presented and multiple-window adjacent 1 kb DMR is presented. 
The majority of DMRs identified were single-window DMRs, Fig. 1. 
All DMRs with an edgeR P < 1e-4 had an FDR < 0.1 in the F1 and 
F2 generation analyses. In the F3, F4, and F5 generations, only a 
portion of the P < 1e-4 DMRs had an FDR < 0.1 threshold. At edgeR 
P < 1e-05 all the generations had an FDR < 0.1, except the F4 gen-
eration which only had a portion of the FDR at <0.1 threshold. 
A principal component analysis of the DMR read depth demon-
strated a good separation between the control versus exposure 
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lineage samples when DMR sites were considered, Supplemen-
tary Fig. S1. The DMR names and characteristics are presented in 
Supplementary Tables S1–S5 for each generation.

The genomic chromosomal locations of the DMRs are pre-
sented in Fig. 2 for each generation. The chromosomal number 
and size of chromosome are presented with red arrowheads indi-
cating the locations of the DMRs and black boxes clusters of DMRs, 
Fig. 2. The DMRs have a genome-wide distribution. The CpG den-
sity of the DMRs is presented in Fig. 3 for each generation. The CpG 
densities are generally 1–3 CpG/100 bp. Therefore, these are pri-
marily lower density CpG desert densities, as previously described 
[29]. The DMR length was found to be primarily 1 kb with some at 
3–4 kb, Fig. 4. All the specific DMR statistics and characteristics 
are presented in Supplementary Tables S1–S5 for each genera-
tion. A comparison of the DMRs at each generation indicated 
the highest number in the F1 generation with reductions to the 
lowest number in the F4 generation and rebound in the trans-
generational F5 generation, Fig. 1. An overlap of the DMRs with 
an extended overlap for the P < 1e-04 DMR sets is compared with 
other generations with a reduced statistical cut-off of P < 0.05 and 
presented in Fig. 5. The F1 generation had the highest number of 
DMRs, but lower overlap with subsequent generations. The F3 gen-
eration, F4 generation, and F5 transgenerational generation had 
the highest overlap (∼40–60%), with generally <20% overlap with 
the previous F1–F2 generations, Fig. 5A. Similar observations are 
found with the P < 1e-04 and P < 1e-05 statistical cut-off DMRs. At 
P < 1e-04 there are no DMRs present in all generations, Fig. 5B. 
At the reduced extended overlap statistics there were 92 DMRs 
common between the F1 generation considering the F5 genera-
tion DMRs, Fig. 5A and D, and 370 DMRs common between the 
F5 generation considering the F1 generation DMRs, Fig. 5A and C. 
These common DMRs are presented in Supplementary Tables S6
and S7.

Previously, studies with a single exposure of the F0 genera-
tion gestating female for each of the DDT [6], jet fuel [15], and 
vinclozolin [30] toxicants have been reported. A Venn diagram 
overlap of the individual exposure transgenerational F3 genera-
tion DMRs with the multiple generation exposure F5 generation 
DMRs is presented in Fig. 5E. There was a minimal overlap between 
the transgenerational DMRs of the single exposures and the mul-
tiple generation exposure, Fig. 5E. Therefore, considering different 
experimental design, negligible overlap was observed and the 
presence of multiple generational exposure generated new trans-
generational DMRs. This is important to consider in final data 
interpretation.

For each generation DMR names, chromosomal locations, 
fold change, and statistics are presented in Supplementary 
Tables S1–S5. DMR information is also presented for gene asso-
ciations. The DMR identified with gene associations found are 
presented in the Supplementary Tables. The gene-associated DMR 
are DMRs that are within 10 kb of a gene to include the proximal 
and distal promoter regions, Fig. 6A. The DMR gene associations 
for the conserved DMRs of the F1–F5 generations demonstrate 
numerous metabolism pathway associations and functional gene 
categories, Fig. 6B. Therefore, a variety of functional category 
genes are associated with the conserved set of DMRs following a 
multiple generation exposure.

The initial pathology analysis used the paraffin-fixed sections 
stained with hematoxylin and eosin and manual microscopic his-
tology analysis. This involved evaluations by three different indi-
viduals blinded to the generation and exposure lineage. Images of 
a predetermined portion of each tissue section were assessed and 
used to score the various tissue pathologies present, Fig. 7A–E. 

For the testis, the tubule atrophy and vacuoles were identified 
pathologies. For the ovary, the large and small cysts, primor-
dial, pre-antral, antral follicle number, and total follicle num-
ber were identified for pathologies. For the kidneys, the cysts, 
reduced glomerulus and thickened Bowman’s capsule patholo-
gies were identified. For the prostate, glandular atrophy, vacuoles, 
and collapsed gland pathologies were identified, Fig. 8. Tumors 
were identified and generally involved mammary tumors, as pre-
viously described [30]. Obesity or metabolic parameters were 
also assessed including animal weights, abnormal fat content, 
and adipocyte size [31]. The most accurate obesity assessment 
involved isolation of adipocytes from the gonadal fat pads and 
analysis of adipocyte size, as previously described [32]. Exam-
ples of each of the tissue pathologies identified are presented in 
Supplementary Fig. S2–S6. The analysis of each generation’s male 
and female manual pathologies is presented in Fig. 7A–E. The dif-
ferent manual tissue pathology analyses are presented for each 
generation and compared to the different control F1, F2, and F3 
generation lineage. For the male testis, pathology in the F1 gener-
ation was high, then declined and increased at each generation 
to the F5 generation. For the male kidney, there was a gradual 
increase in pathology to the F4 generation then maintained. The 
male prostate pathology was sporadic with highest at the F4 and 
F5 generation, Fig. 7A–C. For the female ovary there was negli-
gible change with the highest at the F2 generation, Fig. 7E, the 
female kidney the highest was at the F5 generation, Fig. 7D, and 
the female tumor at high levels in the F3, F4, and F5 generations, 
Fig. 9B.

For the obesity analysis, a statistical increase was observed 
in several parameters assessed including average weight, aver-
age body mass index (BMI), and adipocyte size, Fig. 10. Similar 
observations were obtained for both males and females, which 
demonstrated that adipocyte size was the least variable param-
eter, so was used in the subsequent analysis, Fig. 10E–H. Observa-
tions with the obesity demonstrated a decreased trend in the F1 
generation, Fig. 10G. The frequencies of obesity were very high in 
the multigeneration exposure F4 generation and F5 transgenera-
tional animals, Fig. 10G and H. A statistical increase was observed 
for average weight, BMI, and adipocyte area animals, Fig. 10. Pre-
viously, we have shown that there can be litter mates with and 
without obesity on the same diet and exercise regimen, such that 
altered food consumption is not anticipated to be a major factor, 
but rather there is susceptibility for obesity on the same diet [31]. 
An example of the size of the non-obese and obese animals is pre-
sented in Supplementary Figure S2. Generally, higher pathology 
was observed in the F4 and F5 generations. The presence of mul-
tiple pathologies was assessed. In females, there was an increase 
in those having multiple diseases in the F3 and F5 generations, 
Fig. 9D.

Although the manual pathology was adequate to assess the 
general trends in specific pathology, the variability of the obser-
vations in the control slide pathology between generations and 
pathologies was a concern. In addition, the reliance on sub-
sections (i.e. portions) of the histology sections was a concern. 
An alternate approach the laboratory has developed involves an 
artificial intelligence (AI) protocol involving Deep Learning (DL) 
histology analysis that examines the entire section area as well 
as adjacent general sections [33]. For this DL histology, all the dif-
ferent sub-pathologies identified by manual analysis were used 
for training of the DL histology algorithms to identify all the 
sub-pathologies in the entire section and adjacent sections. The 
training DL system involved the placing of tiled areas on the slide 
where pathologies are predicted to be, in order to quantitate the 
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Figure 2: DMR chromosomal locations. (A) F1 generation 1e-04; (B) F2 generation 1e-04; (C) F3 generation 1e-04; (D) F4 generation 1e-04; (E) F5 
generation 1e-04
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Figure 3: DMR CpG density. (A) F1 CpG density; (B) F2 CpG density; (C) F3 CpG density; (D) F4 CpG density; (E) F5 CpG density

pathology incidence and allow a more accurate section wide anal-
ysis of the pathologies. Examples of the tiled pathology sub-types 
for the tissues are presented in Supplementary Figs S3–S6. The 
testis sub-types involved testis atrophy and vacuoles, Fig. 8 and 
Supplementary Fig. S3. Prostate sub-types involved atrophy, vac-
uoles, and hyperplasia, Fig. 8 and Supplementary Fig. S4. The ovary 
sub-types involved small cysts, large cysts, and follicle number 

alterations, Fig. 8 and Supplementary Fig. S5. The kidney sub-
types involved reduced glomeruli, thickened Bowman’s capsules, 
and cysts, Fig. 8 and Supplementary Fig. S6. Obesity and tumors 
were not assessed with the DL histology analysis, but are outlined 
in the manual pathology, Figs 9 and 10. Application of this DL 
histology analysis in the different generation histology sections 
demonstrated the same general trends of the manual pathology 
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Figure 4: DMR length. (A) F1 DMR length; (B) F2 DMR length; (C) F3 DMR length; (D) F4 DMR length; (E) F5 DMR length

observed, but since full section areas are assessed, a more accu-
rate pathology analysis is expected, as previously described [34]. 
The male testis pathology demonstrated a trend for an increase 
in the F5 generation, Figs 7F and 8. The male kidney pathology 
demonstrated a significant increase in the F5 generation, Figs 7H 
and 8. The male prostate pathology demonstrated negligible effect 
in the F5 generation, Figs 7G and 8. The female ovary DL pathol-
ogy demonstrated negligible effect in the F5 generation, Figs 7J 

and 8. The female kidney DL pathology demonstrated a signif-
icant increase in the F5 generation, Figs 7I and 8. A statistical 
Fisher’s exact test demonstrated that the DL histology analysis 
was more accurate for all tissues, Figs 7–8, than the manual his-
tology pathology analysis. The successive vinclozolin, jet fuel, 
and DDT toxicant exposures on multiple generations for some 
diseases such as obesity and testis pathology, appear more addi-
tive transgenerationally. Other diseases, such as kidney appear 
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Figure 5: DMR overlaps. (A) DMR overlap P < 10-4 with P < 0.05 in other generations in male sperm; (B) DMR overlap P < 10-4 male sperm; and (C)
extended overlap for F5 generation (D) extended overlap DMRs for F1 generation, and (E) DMR single exposure overlaps

to plateau at an intermediate level. In addition, the multiple 
disease frequency was also increased in the transgenerational 
generations, in particular in females, Fig. 9C–F.

Discussion
Most organisms, including humans, have different generations 
that each has distinct exposures to impact the populations phe-
notypes and pathology characteristics. For humans, the 1800s and 
early 1900s had nutrition limitations (i.e. caloric restrictions) and 
air pollution (i.e. wood and coal burning) as prominent environ-
mental exposures [35]. In the last 50–75 years, the exposures for 
humans and most organisms have changed to include a signif-
icant level of environmental toxicants [36]. The initial toxicant 
exposures involved DDT in the 1950s and 1960s, followed by 

plastics starting in the 1970s, dioxin/2,3,7,8-tetrachlorodibenzo-
p-dioxin in the 1960s and 1970s, and then fungicide vinclo-
zolin and herbicides glyphosate (Roundup) and atrazine in the 
1980s and still used currently [37]. Other environmental expo-
sures include increased stress and climate change elements such 
as temperature [38–40]. Although a more appropriate toxicant 
exposure sequence involves DDT [22], followed by dioxin [41] or 
plastics [42], and then vinclozolin [18] or glyphosate [43] would 
be more accurate timing for humans, the focus of the current 
study was to examine exposures that have toxicants with distinct 
receptor-mediated systems. Therefore, the current study exam-
ined the successive generational exposures of vinclozolin (anti-
androgen), followed by jet fuel hydrocarbons (AHR receptor), and 
then DDT estrogenic toxicant (estrogen receptor). Following the
multiple-generation gestating female exposure of F0 generation 
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Figure 6: DMR gene association pathway analysis. (A) Number of DMR-associated genes in each gene category. (B) Gene pathway analysis. KEGG 
pathway identifier numbers and names are presented. The number of DMR-associated genes that fall into each pathway is indicated in parentheses ()

to vinclozolin, F1 generation jet fuel, and F2 generation DDT, all 
F1–F4 generations and transgenerational F5 generation were ana-
lyzed for sperm epigenetics, as well as male and female pathology.

The multigenerational exposures to distinct toxicants (i.e. F0 
generation vinclozolin, F1 generation jet fuel, and F2 generation 
DDT) promoted epigenetic variation in the sperm DNA methy-
lation, which in part mediates the epigenetic transgenerational 
inheritance to the F5 generation. The highest level of epigenetic 
change was observed in the F1 generation, then declined at each 
generation to the F4 generation and then increased in the F5 gener-
ation. The minimal overlap between the sperm DMRs in the F1–F3 

generations suggest a continual baseline reprogramming of the 
epigenetics. Following this, more overlap was observed between 
the F3, F4, and F5 generations. The same control F3 generation 
was used for the subsequent generations to help compare and 
normalize the epigenetics and pathology analysis. This common 
control may partially explain the increased overlap in DMRs for 
these generations. Although some of the F5 generation sperm 
DMRs were similar with all generations, overall, the distinct gen-
eration toxicant exposures appeared to continually reprogram the 
baseline epigenetics of the sperm. The potential plateau of the 
epigenetic reprogramming observed in the transgenerational F5 
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Figure 7: pathology. (A) Testis disease; (B) prostate disease; (C) prostate disease; (D) male kidney disease; (E) ovary disease; (F) testis pathologies DL 
results; (G) prostate pathologies DL results; (H) male kidney individual pathologies DL results; (I) female kidney pathologies DL results; and (J) ovary 
pathologies DL results. Statistical differences were determined by Fisher’s exact tests. F3, F4, and F5 are compared to F3 Control. * P < 0.05. ** P < 0.01
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Figure 8: DL individual tissue sub-pathologies. (A) DL testis individual pathologies; (B) DL prostate individual pathologies; (C) DL male kidney 
individual pathologies; (D) DL female kidney individual pathologies; and (E) ovary individual pathologies. Statistical differences were determined by 
Fisher’s exact tests. * =P < 0.05. *** =P < 0.001

generation appeared to stabilize more than the previous altered 
exposure generations. The specific DMR characteristics were sim-
ilar in regard to size, CpG density, and genome-wide localization 
at all generations. The set of DMR that overlapped throughout the 
different generations were characterized and shown, Supplemen-
tary Table S1 for the F1 generation DMR in the F5 generation, and 
Supplementary Table S5 for the F5 generation DMR in the F1 gener-
ation. The generational biological variations assessed were disease 
and pathology.

The generational pathology induced from the successive gen-
erational exposure initially was evaluated using a classic manual 
pathology procedure previously described for each of the individ-
ual exposures induced transgenerational disease [1, 7, 8, 10–12]. 
The histological features evaluated for each tissue are shown in 
Supplementary Figs S3–S8 and involved evaluation of predeter-
mined portions of each tissue section to assess the pathology 
present, Fig. 7A–E. The different pathologies observed in the testis, 
ovary, kidney (male and female), and prostate, as well as the pres-
ence of obesity (male and female), tumors, and multiple disease 
are presented in Figs 7–10. Although the manual pathology has 
the disadvantage of not assessing the entire section, similar trends 

with the AI-based DL histology were observed, Figs 7 and 9. Exam-
ples of additive pathology frequency with the multiple distinct 
exposures are the obesity and testis, Figs 7 and 10. Therefore, some 
pathology and disease appeared to plateau and not be additive 
with each exposure (e.g. kidney), but others did appear to become 
additive (e.g. obesity), Figs 7–10. Clearly, more detailed pathology 
would be useful. For example, assessment of additional metabolic 
parameters such as glucose tolerance or insulin resistance, but 
these are beyond the scope of the current study and require future 
studies.

Recently, a more advanced pathology analysis has been devel-
oped by our laboratories to improve the accuracy of the pathology 
analysis with AI [34]. A large number of AI-based pathology pro-
cedures have recently been developed [44]. A DL histology was 
developed that used slides with the absence or presence of defined 
pathologies to train the DL histology procedures for all the tis-
sues and histology assessed [34]. The major advantage with DL 
histology is the entire section is examined, including sequential 
sections of tissues to then use the trained DL histology AI tool to 
identify and quantitate the pathology and disease. In addition, this 
process can be done in weeks rather than the multiple months or 
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Figure 9: Multigen study other pathologies. (A) Male tumors; (B) female tumors; (C) multiple disease (male); (d) multiple disease (female); (E) DL 
pathology for multiple disease (male); and (F) DL pathology for multiple disease (female). Statistical differences were determined by Fisher’s exact 
tests. F3, F4, and F5 are compared to F3 control. * P < 0.05. *** P < 0.001

years needed for the manual histology analysis. The testis, ovary, 
kidney, prostate, and multiple disease pathologies were identi-
fied with the DL pathology, Figs 7 and 8. Observations were found 
to be more accurate and did show similar trends as the manual 
pathology. The DL histology AI approach is more accurate and less 
time consuming, so will likely be the predominant approach in the 
future for general pathology.

Multigenerational exposure to distinct toxicant exposures pro-
moted transgenerational inheritance of higher disease frequency 

for nearly all the different diseases examined. The sperm epige-
netics had overlap in the F3 generation, F4 generation, and F5 
transgenerational generation, but in prior generations each expo-
sure promoted a more distinct epigenetic change that was gener-
ally not overlapped. Those DMRs that do overlap are presented and 
discussed. Observations indicate each distinct exposure promotes 
a reset and unique baseline epigenetics, likely due to the distinct 
actions of each exposure. Therefore, the epigenetic programming 
is more complex and dynamic, which appears to be due more to 
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Figure 10: Obesity parameters. (A) Average weight in multigen and control females; (B) Average weight in multigen and control males; (C) Average BMI 
in multigen and control females; (D) Average BMI in multigen and control males; (E) Average adipocyte area in multigen and control females; (F)
Average adipocyte area in multigen and control males; (G) Obesity disease in females; and (H) Obesity disease in males. Statistical differences 
determined by Student’s t-test for A–F. Statistical differences were determined by Fisher’s exact tests for G and H. F1 compared to F1 Control. F3, F4, 
and F5 are compared to F3 Control. * P < 0.05. ** P < 0.01. *** P < 0.001
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the distinct actions of each of the exposures. A simple additive 
response was not observed. The pathology response was also more 
complex and not simply additive. Examples of the non-additive 
response are the kidney and ovary pathology, which appeared 
to plateau. In contrast, others such as obesity were compared 
and more additive with each generation’s exposure. Therefore, 
successive generations with distinct exposures do impact future 
generations with an increased magnitude of epigenetic transgen-
erational inheritance of disease. A potential explanation is that 
some pathologies reach a maximum rate and so plateau, and oth-
ers have the capacity to become additive such as obesity. This is 
likely linked to the epigenetics within the effected cell types in 
the tissues associated with the pathologies. Future multigenera-
tional studies of this phenomenon will likely help elucidate these 
phenomena that are relevant to the human population today.

Observations indicate multigenerational distinct exposures 
need to be considered to assess the potential future generation 
impacts from ancestral exposures on disease susceptibility, and 
the magnitude of the multiple generation distinct toxicant expo-
sures. The current study suggests this will not simply be an 
additive response, but more complex with some pathology becom-
ing additive (e.g. obesity), while others may plateau. However, 
the magnitude of the impact of multigeneration exposures on the 
transgenerational pathology promoted a high level of pathology 
and increase epigenetic programming alterations. A more accu-
rate sequence of successive distinct exposures in humans would 
be DDT, followed by dioxin, followed by plastics, followed by agri-
cultural compounds (e.g. glyphosate), and then stress to assess 
the multiple generation exposure impacts. The current observa-
tions demonstrate that successive disease generational exposure 
will impact and likely lead to higher frequency pathologies. In 
addition to the need to consider epigenetic-mediated toxicol-
ogy, the generational toxicology from multiple generation expo-
sures needs to be considered to correlate the human exposure 
at each generation with the anticipated generational toxicology. 
The ethics of knowing that our exposures today will impact our 
future generations’ health and pathology, raises issues of environ-
mental justice around generational toxicology not currently being
considered [45].

Methods
Animal Studies and Breeding
As previously described [21, 46–51], female and male rats of an 
outbred strain Hsd:Sprague Dawley SD (Harlan) were fed ad lib 
with a standard rat diet and ad lib tap water. All animal cages 
were housed in the same room and environment with gestat-
ing females and females with litters being housed individually 
within cages. Conditions were designed to minimize differences 
that would cause maternal effects. The breeding of unrelated 
males and females at 70–100 days of age within specific expo-
sure lineages (interbreeding) was used to optimize the maternal 
and paternal lineage contributions to the phenotypes observed 
[30]. No inbreeding within the colonies was performed. Previous 
studies have demonstrated inbreeding suppression of epigenet-
ics [52–54]. Sixteen unrelated breeding pairs made up the treated 
lineage F0 generation, so that offspring of subsequent genera-
tions could be bred at the F1, F2, F3, and F4 generations without 
inbreeding. The numbers of breeding pairs, offspring, and sex are 
presented in Supplementary Table S6. Therefore, F1 through F5 
generation pups were not inbred. Timed-pregnant F0, F1, and F2 
generation females were mated and on embryonic days 8 through 
14 (E8–E14) of gestation were daily administered IP injections of 

the treatment compound (vinclozolin 100 mg/kg) (Chem Service 
Inc., West Chester, PA, USA) as previously described [24]. Simi-
larly, pregnant F1 females were treated with jet fuel hydrocarbons 
(250 mg/kg JP8), and F2 females were treated with 25 mg/kg DDT 
(Chem Service Inc.). The F3 and F4 generations were bred without 
additional treatments during gestation. The F5 generation animals 
are considered transgenerational, as neither they nor the germ 
cells that produced them were directly exposed to these toxicants 
[55]. For control lineage animals, F0 generation pregnant females 
were treated with vehicle DMSO (Sigma-Aldrich) from E8–E14, the 
F1 and F2 generations were not treated during pregnancy, and 
the F3 generation rats were considered to be the control lineage 
transgenerational generation. No sibling or cousin breeding was 
used to avoid any inbreeding artifacts. All animals were aged to 
1 year for pathology and epigenetic analysis. Animals were euth-
anized by use of a CO2 chamber, followed by cervical dislocation 
as a secondary method. All experimental protocols for the pro-
cedures with rats were pre-approved by the Washington State 
University Animal Care and Use Committee (IACUC approval # 
2568 & 6931). All methods were performed in accordance with the 
relevant IACUC and ARRIVE guidelines and regulations.

Epididymal Sperm Collection
The protocol used is as previously described [56]. Briefly, the epi-
didymis was dissected free of fat and connective tissue, then, after 
cutting open the cauda, placed into 6 ml of phosphate buffer saline 
(PBS) for 20 min at room temperature. The tissue was then minced, 
the released sperm pelleted at 4ºC by centrifuging at 3000g for 
10 min, then resuspended in 250 μL NIM buffer and stored at −80ºC.

DNA Isolation
For molecular analysis, an appropriate amount of rat sperm sus-
pension (∼50 μL) was used for DNA extraction. Previous studies 
have shown mammalian sperm heads are resistant to sonica-
tion, unlike somatic cells [57, 58]. Somatic cell contamination and 
debris were removed by brief sonication (Fisher Sonic Dismem-
brator, model 300, power level 25), which destroys the somatic 
cells, then centrifugation and washing 1–2 times in 1× PBS. The 
resulting purified sperm pellet was resuspended in 820 μL DNA 
extraction buffer and 80 μl 0.1 M DTT added, then incubated at 
65∘C for 15 min. Proteinase K (80 μl of 20 mg/ml) was added and the 
sample was incubated at 55∘C for 2-3 h under constant rotation. 
Protein was removed by addition of protein precipitation solu-
tion (300 μl, Promega A795A), incubation for 15 min on ice, then 
centrifugation at 13 500g for 30 min at 4∘C. One milliliter of the 
supernatant was precipitated with 2 μl of GlycoBlue (Invitrogen, 
AM9516) and 1 ml of cold 100% isopropanol at −20∘ overnight. After 
incubation, the sample was spun at 13 500g for 30 min at 4∘C, then 
washed with 70% cold ethanol. The pellet was air-dried for ∼5 min 
then resuspended in 100 μl of nuclease free water.

MeDip
Sperm DNA from individual animals were obtained and pooled 
with 5–10 different animals DNA samples, with equal amounts 
of DNA from each animal present in each pool. The number 
of animals per pool for each generation is presented in Supple-
mentary Table S6B. The DNA samples were prepared as previ-
ously described [56]. Genomic DNA was sonicated and run on 
1.5% agarose gel for fragment-size verification. The sonicated 
DNA was then diluted with 1× TE buffer to 400 μl, then heat-
denatured for 10 min at 95˚C, and immediately cooled on ice 
for 10 min to create single-stranded DNA fragments. Then 100 μl 
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of 5× IP buffer and 5 μg of antibody (monoclonal mouse anti-
5-methyl cytidine; Diagenode #C15200006) were added, and the 
mixture was incubated overnight with rotation at 4˚C. The fol-
lowing day magnetic beads (Dynabeads M280 Sheep anti-Mouse 
IgG; Life Technologies 11201D) were pre-washed as per manu-
facturer’s instructions, and for each sample 50 μl of beads were 
added to the 500 μl of DNA–antibody mixture from the overnight 
incubation, then incubated for 2 h with rotation at 4˚C. After 
this incubation, the samples were washed three times with 1× 
IP buffer using a magnetic rack. The washed samples were then 
resuspended in 250 μl digestion buffer (5 mM Tris PH 8, 10.mM 
EDTA, 0.5% SDS) with 3.5 μl Proteinase K (20 mg/ml), and incu-
bated for 2–3 h on a rotator at 55˚C. DNA clean-up was performed 
using a Phenol–Chloroform–Isoamyl–Alcohol extraction, and the 
supernatant precipitated with 2 μl of GlycoBlue (20 mg/ml), 20 μl 
of 5 M NaCl and 500 μl ethanol at −20˚C for one to several hours. 
The DNA precipitate was pelleted at 13 500g for 30 min at 4∘C, 
washed twice with 70% ethanol, then dried and resuspended in 
20 μl H2O. DNA concentration was measured in a Qubit apparatus 
(Life Technologies) with the ssDNA analysis kit (Molecular Probes 
Q10212).

MeDIP-Seq Analysis Sequencing Libraries
MeDIP DNA was used to create libraries for next generation 
sequencing (NGS) using the NEBNext Ultra II RNA Library Prep 
Kit for Illumina (E770L, New England Biolabs, San Diego, CA, 
USA) starting at step 1.4 of the manufacturer’s protocol to gener-
ate double-stranded DNA from the single-stranded DNA resulting 
from MeDIP. After this step, the manufacturer’s protocol was fol-
lowed indexing each sample individually with NEBNext Multiplex 
Oligos for Illumina. The WSU Spokane Genomics Core sequenced 
the samples on the Illumina HiSeq 2500 at PE50, with a read 
size of ∼50 bp and ∼6–22 million reads per pool, with most at 
12 million reads. Twelve libraries were run in one lane. Reagent 
information and commercial kits are listed in Supplementary
Table S7.

Statistics and Bioinformatics
The DMR identification and annotation methods follow those pre-
sented in previous published papers [51, 56]. Data quality was 
assessed using the FastQC program (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The data were cleaned and fil-
tered to remove adapters and low-quality bases using Trimmo-
matic [59]. The reads for each MeDIP sample were mapped to the 
Rnor 6.0 rat genome using Bowtie2 [60] with default parameter 
options. The mapped read files were then converted to sorted BAM 
files using SAMtools [61]. The MEDIPS R package [62] was used to 
calculate differential coverage between disease and non-disease 
sample groups. The edgeR P-value [63] was used to determine 
the relative difference between the two groups for each genomic 
window. Windows with an edgeR P-value less than the selected 
P < 1e-04 threshold were considered as DMR. The site edges were 
extended until no genomic window with an edgeR P < 0.1 remained 
within 1000 bp of the DMR. The edgeR P-value was used to assess 
the significance of the DMR identified. A false discovery rate (FDR) 
analysis for each comparison was performed and provided FDR 
P < 0.1 for the F1 and F2 generations, Supplementary Tables S1–S4. 
A portion of the DMRs at P < 1e-4met an FDR < 0.1 threshold in the 
F3, F4, and F5 generations. The DMR associated genes were anno-
tated using the biomaRt R package [64] to access the Ensembl 
[65] database. Genes were sorted into categories by converting 
Panther [66] protein classifications into more general groups. 
All molecular data has been deposited into the public database 

at NCBI (GEO # GSE244603) and R code computational tools 
available at GitHub (https://github.com/skinnerlab/MeDIP-seq) 
and www.skinner.wsu.edu. All bioinformatics tools and molec-
ular data deposit information is presented in Supplementary
Table S7.

Manual Pathology Analysis
Histopathology Examination and Disease Classification
The oversight of the pathology analysis involved the co-author, 
Dr Eric Nilsson, DVM/PhD, with over 20 years of pathology anal-
ysis in rats [51, 67]. The Washington Animal Disease Diagnostic 
Laboratory (WADDL) at the Washington State University College 
of Veterinary Medicine has board certified veterinary pathologists 
and assisted in initially establishing the criteria for the pathol-
ogy analyses and identifying parameters to assess [68]. WADDL 
performed full necropsies as required on animals that died prior 
to the time of scheduled sacrifice at one year, and performed 
tumor classifications in the current study. Upon dissection, a brief 
examination of abdominal and thoracic organs was performed to 
look for obvious abnormalities. The tissues evaluated histologi-
cally were selected from previous literature showing them to have 
pathology in transgenerational models [1, 21, 24, 46, 48–51, 68, 69], 
with an emphasis on reproductive organs. Histopathology readers 
were trained to recognize the specific abnormalities evaluated for 
this study in rat testis, ventral prostate, ovary, and kidney (see fur-
ther). Three different pathology readers were used for each tissue 
that were blinded to the treatment groups. A set of quality control 
(QC) slides was generated for each tissue and was read by each 
reader prior to evaluating any set of experimental slides. These QC 
slide results are monitored for reader accuracy and concordance. 
Previous studies by the laboratory help confirm and validate the 
pathology analysis [1, 21, 24, 46, 48–51, 68, 69].

As previously described [70], testis histopathology criteria 
included the presence of vacuoles in the seminiferous tubules, 
azoospermic atretic seminiferous tubules, and “other” abnormali-
ties including sloughed spermatogenic cells in center of the tubule 
and a lack of a tubule lumen. As previously described [67, 71], 
prostate histopathology criteria included the presence of vacuoles 
in the glandular epithelium, atrophic glandular epithelium, and 
hyperplasia of prostatic gland epithelium. Kidney histopathol-
ogy criteria included reduced size of glomerulus, thickened Bow-
man’s capsule, and the presence of proteinaceous fluid-filled 
cysts >50 μm in diameter. As previously described [72], ovarian 
features quantified included primordial follicles, developing pre-
antral follicles, antral follicles, small cystic structures (50–250 μm 
in diameter) and large cysts (>250 μm in diameter). A cut-off was 
established to declare a tissue “diseased” based on the mean num-
ber of histopathological abnormalities ±1.5 standard deviations 
from the mean of control group tissues, as assessed by each of 
the three individual observers blinded to the treatment groups. 
This number (i.e. >1.5 standard deviations) was used to classify 
rats into those with and without testis, prostate, ovary, or kidney 
disease in each lineage. A rat tissue section was finally declared 
“diseased” only when at least two of the three observers marked 
the same tissue section “diseased”.

Obesity was assessed with an increase in adipocyte size (area), 
BMI, and abdominal adiposity, as previously described [24, 48, 
73–75]. BMI was calculated with weight (g)/length (cm)2 with the 
length of the animal measured from the nose to the base of the 
tail. Gonadal fat pad slides were imaged using a Nikon Eclipse 
E800 microscope (10×) with an AVT Prosilica GE1050C Color GigE 
camera. Five field of view image captures were taken per slide in 
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varying parts of the fat pad. Adipocyte size was measured con-
verting pixels into microns using Adiposoft [61]. Measurements of 
the 20 largest cells from each image for a total of 100 were aver-
aged as hypertrophic cells are the most metabolically relevant and 
susceptible to cell death [62]. Obesity and lean phenotypes were 
determined utilizing the mean of the control population males 
and females, and a cut off of 1.5 standard deviations above and 
below the mean.

Statistical Analyses for Pathology
As previously described [47], for results that yielded continuous 
data (age at puberty, weight at euthanization, sex ratio, litter 
size, fertility rate, and parturition abnormality), treatment groups 
were analyzed using Student’s t-test. For results expressed as the 
proportion of affected animals that exceeded a predetermined 
threshold (testis, prostate, kidney, or ovary disease frequency, 
tumor frequency, lean/obese frequency), groups were analyzed 
using Fisher’s exact test.

DL Histology Pathology Analysis
The DL model is designed for segmenting and classifying gigapixel 
histology images. In the case of this study, the resolution 
range of all the whole slide images (WSI) is ∼(80 000–120 000) 
× (30 000–80 000) pixels. The approach used for the DL anal-
ysis is built on top of the current deep histology models by 
taking advantage of state-of-the-art DL practices and methods 
such as transfer learning, spatial attention, and memory effi-
cient bootstrap-aggregating. Notably, tiling is the most promi-
nent method that transpires across all recent work in gigapixel 
histology segmentation.

Tiling is the process in which a sliding window is used to extract 
patches of a large image. This method is used to break up an 
image into a grid-like structure where the tiles can be classified 
individually and then patched back together. Without tiling, using 
DL for gigapixel image classification or segmentation is not pos-
sible since the computational overhead would be unachievable. 
Tiling the gigapixel WSIs was done by using a sliding window of 
size 256 × 256 pixels. This tile size is the nearest power of 2 that is 
optimal for minimizing computational overhead and maximizing 
information perception. The DL model is designed to classify what 
pathologies are present in each individual tile. Using this infor-
mation, the tiles classifications can be merged back together to 
recreate the original WSI with pathology segmentations.

The model used for tile classification was built using the latest 
standard practices for high precision image classification. Google’s 
EfficientNetV2 models [76] were implemented for the convolu-
tional backbone to the neural network. The EfficientNetV2 archi-
tecture provides the best performance while also minimizing the 
number of trainable parameters. To utilize the effectiveness of 
transfer learning, the pretrained ImageNet [77] weights are used 
instead of training from scratch, as that has been shown to sig-
nificantly improve training time and classification performance. 
For the output of the model, seven ensemble classifier blocks are 
used for prediction. The classifier blocks take the output of the 
CNN backbone where attention is used, followed by global aver-
age pooling and finally a fully connected layer used for prediction. 
Averaged voting is used to include the effectiveness of all seven 
ensemble classifiers. Sigmoid activations are used for the classifi-
cation rather than SoftMax since multiple classes can be present 
in one tile, making this a multilabel problem, not a multiclass 
problem. Additionally, empirical results show that using sigmoid 
activations is the best way to handle training a model on heavily 

imbalanced data. The model outputs a set of probabilities for each 
tile, where the probabilities correspond to each of the possible 
classes (all pathologies and one class for normal non-pathology 
tissue). A confidence threshold of 0.95 is used to determine which 
classes are present in each tile. This is how the raw tile counts are 
computed for further analysis.

DL Histology Informatics
Given the ability to accurately classify individual tiles in a whole-
tissue slide, a method analogous to the manual instance counting 
was devised to determine if an animal is diseased or not. Since the 
number of predicted tiles for each class is available, the total area 
of each pathology as a ratio to the total area of tissue can be com-
puted. This is better than simply using the tile counts to compute 
statistics because the size of the images may vary, so this is the 
normalization process to compute the relative amount of pathol-
ogy in an image. For a given pathology p, the area ratio is referred 
to as Rp. With this ratio, we have the normalized area which can be 
used to compute group statistics. Recall that the determining fac-
tor for an animal being diseased using the manual counts depends 
solely on the mean of any amount of pathology being 1.5 standard 
deviations higher than the mean of the same pathology count in 
the control group. The same procedure can be replicated using the 
area ratios of the pathologies rather than the instance counts. The 
mean 𝜇 and standard deviation 𝜎 of the area ratios of the con-
trol group are computed for each pathology. The area ratios of the 
experimental group can then be standardized by subtracting each 
area ratio by 𝜇 and then dividing by 𝜎. Now that the experimental 
values are standardized relative to the control group, the classifi-
cation can be made to determine if any whole-slide tissue sample 
taken from the experimental group belongs to a diseased animal 
as follows: 

Diseased (P) =
⎧{
⎨{⎩

True,
(Rp−𝜇p)

𝜎p
≥ 𝛿, ∃p ∈ P

False, otherwise

In the equation above, P represents the set of pathologies that 
belong to any one image. 𝛿 is the threshold on the number of 
standard deviations which must be met or exceeded by the stan-
dardized area ratio for the statement to become true. In other 
words, if the area ratio Rp for any pathology p in the given image is 
𝛿 standard deviations above the mean of the control group, then 
the entire image belongs to the diseased class. In this case, 𝛿 = 2
resulted in final predictions that aligned more closely to the man-
ual counts that used 𝛿 = 1.5. This is likely due to noise in the DL 
predictions due to a constant but low false-positive rate. For this 
reason, the higher WSI threshold is justified. Finally, the Fisher’s 
exact test is used to show significant differences between the 
disease frequencies found in the control group versus the exper-
imental group. The amount of significance is determined by the 
P-values for each individual group categorized by the following 
levels: (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001.

Ethics
All study protocols for the procedures with rats were pre-approved 
by the Washington State University Animal Care and Use Commit-
tee (IACUC approval # 2568 & 6931). All methods were performed 
in accordance with the relevant guidelines and regulations.
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Both sexes within the animal model were assessed.
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