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Abstract— General purpose agents have long been an ultimate 
goal of AI research. One promising approach to this goal is to first 
train an agent to use a variety of skills, called a skillnet agent, and 
then allow the agent to learn how to choose the appropriate skill 
instead of having to choose the appropriate low-level action. We 
propose a method for training skillnet agents called Bootcamp that 
helps agents efficiently learn basic skills in an environment. We 
found that Bootcamp agents outperform skillnet agents trained 
randomly on various tasks defined in the ViZDoom simulated 
environment. We also found that skillnet agents outperform more 
conventional reinforcement-based learning approaches such as 
DQNs in ViZDoom.   

Keywords—ViZDoom, Reinforcement Learning, Machine 
Learning, Regular Research Paper 

I. INTRODUCTION 

Our objective is to make a general-purpose agent that can 
solve or at least be easily trained on multiple different tasks 
quickly and effectively. We specifically focused on 
Reinforcement Learning (RL) agents. RL agents are AI agents 
that learn tasks by performing them over and over while 
receiving rewards based on their performance. In general, these 
agents are inflexible which means that they often have to be 
retrained from scratch for each new task. If we can shorten this 
process by creating a general-purpose agent, this will make RL 
agents significantly more useful.  

Our main focus was on general video game play (GVGP) as 
it allows us to test a wide variety of environments. We further 
refined this to focus on the ViZDoom [1] environment where we 
created a variety of tasks. ViZDoom was originally designed to 
support AI agents through visual interaction, i.e., the simulator 
provides a current image of the agent’s view, and then the agent 
returns an action. However, we have modified the interface to 
provide a feature vector, or sensor vector, that provides 
additional information about the environment. This shift from 
image-based to sensor-vector-based interfaces allows the agent 
to receive more information about the environment and allows 
our methods to apply to a larger number of environments. 

In addition to the skillnet and Bootcamp approaches to the 
ViZDoom tasks, we also approached these tasks with both a 
DQN [2] and A3C [3] based approach. We found that skillnet 

agents outperform DQN’s by a large margin. A skillnet agent is 
an agent that uses pretrained skills to accomplish a complex task 
rather than just using base actions. We further improved this by 
taking a Bootcamp or structured approach to the agents training. 
We found that a skillnet agent trained via a Bootcamp approach 
outperformed a skillnet agent trained randomly. Furthermore, 
we found that our Bootcamp agent can outperform similar 
skillnet agents on more complex but related tasks. 

II. RELATED WORK 

A. Multi-Task Agents 
Google Deepmind was able to create a generalized agent 

(GATO) [4]. This agent used natural language processing 
techniques to tokenize an environment. The advantage of this 
approach is that it can process tasks with variable input and 
output sizes. The downside to this method is that it needs training 
data from other RL agents which might be hard to get. As a 
result, this method is not as adaptable in novel situations. Google 
Pathways is similar to GATO in that it is a way to set up a neural 
network to remember multiple different tasks [5]. Pathways has 
different parts of its network assigned to different skills and 
therefore it does not always use its whole network. Our approach 
does not break the network down by skill and therefore the 
whole network is used every time. Unlike GATO our agent uses 
no natural language processing and therefore does not require 
the input to be tokenized. 

General purpose agents often have issues learning new tasks 
and remembering old ones. Du et al. [6] propose a solution for 
this in the form of dreaming. Dreaming is where periodically the 
agent is restored to a previous state so that it can attempt an old 
environment with a new set of skills. Similarly Golden et al. [7] 
propose interweaving previous tasks in an offline learning 
period. Zhang et al. [8] address remembering old tasks during 
new task training by maintaining stability in network layers. 

A few studies have also mixed older tasks into the training 
process of new tasks to improve performance. Silver et al. [9] 
propose remembering old tasks in lifelong learning and 
transferring important parts to new tasks. Saxena et al. [10] 
propose interweaving similar older tasks into newer training 
tasks to speed up learning. 

B. Hierarchical Agents 
Skillnets are explored more in depth in [11] where they were 

used in ViZDoom. This agent used image-based learning and 
was DQN based. This agent only had a navigation and combat 
skill, so it did not use our Bootcamp approach. However, it does 
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show the validity of our approach to using skill agents. This 
agent also was not trained for as long as our agent.  

Hierarchical agents or agents with different levels of skills 
are addressed in [12]. Similar ideas were explored as early as 
1999 in [13]. Skills are somewhat similar to combo actions 
introduced in [14]. These are where the agent essentially selects 
an objective, and a few actions are carried out. Our skills are 
more complex, but an agent has to continuously choose to use 
them. Togelius and Yannakakis [15] present a paradigm for 
general game play. Specifically, it talks about separating tasks 
from games. The paper also touches on generating both levels 
and entire games with AI.  

Song et al. [16] created a similar hierarchical agent that 
played Doom called Starnet. This agent used imaged based 
systems to accomplish a wide variety of AI generated maps that 
ranged in difficulty. Starnet used a two-level hierarchical agent. 
They dealt with the sparse reward problem by rewarding agents 
for attacking, using tools, collecting resources, and even looking 
at enemies. Their agent like many others was image based and 
therefore differed drastically in implementation from our own 
agent. Starnet also is constructed with a distinct set of goals or 
options in mind which helps alleviate the delayed reward 
problem.  

The idea of a skillnet or network that can utilize multiple 
skills was explored by Zhang et al. [17]. In general, skillnets are 
agents that can accomplish multiple different tasks using smaller 
skill networks. Their skillnet focused on natural language 
processing and had access to multiple different skills. Not all of 
these skills are accessed at any one time.  

There are other examples of hierarchical learning in 
environments other than ViZDoom/Atari. Tessler et al. [18] 
describe an approach to playing Minecraft with a Hierarchical 
Deep Reinforcement Learning Network H-DRLN. Specifically, 
this agent used reusable skills to facilitate lifelong learning. This 
agent is very similar to ours in that it uses a pretrained navigation 
skill that is a Deep Skill Network (DSN). A DSN is an RL agent 
that has been trained to use a skill. 

C. Curriculum Learning 
Our technique is also similar to curriculum learning in [19] 

with a few differences. Curriculum learning is where you 
introduce an agent to new harder tasks as it trains. In this way it 
learns basic skills first. Mainly we do not scale our Bootcamp 
agent’s difficulty for individual tasks. Instead, we start with 
easy tasks first and then run the agent on harder tasks once it 
has learned how to do the easier ones. All these techniques help 
deal with sparse reward environments such as ViZDoom. 

An example of curriculum learning is Rho et al. [20] where 
an agent was trained how to box. Researchers started by making 
the agent stand, then walk, and finally, punch. One major 
difference with our approach is that the agent does not 
necessarily learn one skill before the others. In the boxing 
environment tasks are built off each other so it was hard for the 
agent to forget previous tasks or actions.  

Kodaka and Saitoh [21] talk about using curriculum learning 
in a top-down shooting game where an agent was trained on 

increasingly difficult tasks. The increase in difficulty was 
mainly in enemy aggression so there were no skills to be lost 
here unlike in our experiments. Zhang et al. [22] focused on 
curriculum learning in Starcraft II. The difficulty measure here 
was the in-game difficulty were at higher levels the in game AI 
was able to cheat. The agent also avoids forgetting skills at 
higher levels since higher levels still required skills from earlier 
levels. 

D. Actor Critic 
Advanced Actor Critic is a form of deep reinforcement 

learning that is quite common in both previous work and our 
own approach. It consists of two neural networks an actor and a 
critic. The actor picks and preforms actions while the critic 
learns to judge said actions. The two most common forms of this 
are Synchronous Advanced Actor Critic (A2C) [2] [23] and 
Asynchronous Advanced Actor Critic (A3C) [2] [3]. A2C 
creates one set of these networks while A3C creates multiple 
which periodically check in with a global policy to improve the 
quality and speed of learning. 

Proximal Policy Optimization or PPO [24] is similar to A2C, 
but it uses a different method for calculating the gradient. PPO 
uses a simplified version of TRPO that uses a penalty instead of 
a constraint to help compute the KL divergence. KL Divergence 
is how both agents measure how much the policy has changed.  
We used a single environment version of this as both a control 
and a modified Bootcamp agent.  

III. BOOTCAMP APPROACH 

  In order to improve the use of skills, we introduce the 
Bootcamp agent, where the agent is trained on alternating 
objectives so that it learns different tasks. We then put it in a test 
environment where it must combine multiple skills to complete 
the tasks. Our specific idea is to structure how we alternate 
objectives. As this is an A3C agent we have different instances 
start on different tasks teaching different skills. These agents 
then play a few rounds of their starting task and then move on to 
the next tasks and repeat the process in a loop. This way the 
agent will not overspecialize at any one objective. 

We also provide the Bootcamp agent with minimum 
objectives for each task, and the agent will retrain if it does not 
meet these objectives. Essentially if the Bootcamp agent does 
not complete a certain number of objectives of each type in the 
last quarter of training, it has to restart. This is a form of quality 
control that ensures that the skill has been taught. An objective 
is picking up an item or defeating an enemy, but it is not 
necessarily the same as winning. For example, if the task is to 
defeat multiple enemies, each enemy defeated counts regardless 
of if the agent wins. Similarly, if the objective is to pick up 
ammo, but the agent picks up health or defeats an enemy, these 
will also count even if the agent does not end up picking up the 
ammo. 

We used three types of agents in this experiment as shown in 
Table I. A Bootcamp agent is a skillnet and used our 
experimental approach. A Control-Skill is an agent which is a 
skillnet that did not use our experimental approach. Finally, we 
used a base agent or Control-Base agent which did not use skills. 
The skillnet agents usually had a choice between objectives 
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related to completing the tasks while the Control-Base agents 
had access to the direct actions themselves. 

TABLE I.  AGENT FEATURES 

Agents Order Asynchronous 
Quality 
Control Skill 

A3C Boot Y Y Y Y 

A3C Control-Skill  Y  Y 

A3C Control-Base  Y   
PPO Boot Y  Y Y 

PPO Control-Skill    Y 

DQN Control-Base     

 

We found that skillnets can have their skills atrophy. If a 
skillnet is trained in such a way that all skills are useful, it will 
be able to adapt to each task. If a skill has atrophied, then the 
agent will likely never regain use of it. As a result, we have to 
train the agents on multiple different tasks either at the same time 
or in quick succession. This is why we iterate over objectives in 
small batches instead of playing large numbers of episodes of 
each task before moving on to the others. 

For the A3C agent we did use a different number of tasks 
compared to the number of asynchronous agents or threads. We 
did this because the agent still might focus more on one task at a 
certain time by having a greater number of agents focus on the 
task. The hypothesis here was that this would help the agent 
learn more complex tasks along with easier tasks which it would 
otherwise focus on. Otherwise, the agent would focus on the 
easiest tasks at the expense of the harder ones. For example, if 
one task only required the agent to use one skill it might favor 
that over a task that required multiple. Note that the agent does 
change this focus as every single asynchronous agent will cycle 
through all of the tasks during training. 

The Control-Skill agent variants use the same number of 
threads or asynchronous agents but lack the order and quality 
checks. The Control-Base agent variants do not have skills, 
order, or quality control and may have a different input . The 
reason that the Control-Base agents have different inputs is that 
they might either need more information to carry out actions 
such as the locations of obstacles that a navigation skill would 
avoid. They also do not need input for when a certain skill is 
usable as they have no pretrained skills. The Control-Skill and 
Bootcamp agents should have the same inputs and outputs.  

For PPO we used only a single environment which meant 
that we were not able to have the agent do multiple tasks at the 
same time. We had to use a modified Bootcamp approach that 
still had the order and the quality control checks in place as 
shown in Table I. 

IV. DOMAIN 

We used six tasks total with the first three serving as the 
Bootcamp tasks. The purpose of these first three was to teach the 
agent how to use each skill or carry out each objective. The last 
three were meant to test how the agent would adapt its skills to 
a new environment. This meant that tasks 1-3 were not as 
difficult as the tasks 4-6 which were meant to test how the agent 
could apply its skills. Table II summarizes the six tasks used to 
evaluate our agents. Task 1 teaches combat and involves killing 

all enemies onscreen and has 2 enemies, 0-1 health packs, and 
0-1 ammo packs. Task 2 focuses on getting health and involves 
collecting all health packs. Task 2 has 0-1 enemies, 2 health 
packs, and 0-1 ammo packs. Task 3 is like task 2 except it 
focuses on getting ammo instead of health, so the objective is to 
pick up all of the ammo packs. Task 3 has 0-1 enemies, 0-1 
health packs, and 2 ammo packs.  

Task 4 involves 3 enemies, 3 health packs, and 3 ammo 
packs. Furthermore, the agents only start with enough ammo to 
kill one enemy. In this task ammo packs also give more bullets. 
The idea here is to see if the agent can apply its skills to a more 
difficult environment. More enemies means that the agent must 
use its combat skill more and likely will have to heal more often. 
The lack of starting ammo also means that the agent must use its 
ammo collecting skill to win. 

Task 5 is very similar except the ammo packs now give four 
shots instead of three and enemies respawn. The fact that 
enemies respawn makes task 5 much more difficult, because the 
agent could run out of ammo before killing all the enemies which 
should not be possible in the other tasks. More ammo was given 
per ammo pack to make up for the fact that the agent starts with 
the same amount of ammo as it does in task 4 even though it will 
likely face more enemies. 

The map for tasks 1-5 is shown in Fig. 1. All five tasks use 
the same room layout but have randomly placed items such as 
heath, ammo, and obstacles. All 5 tasks have specifically 1 
obstacle alongside the normal walls that are present in the 
environment. They also have random enemy and player starting 
positions. To configure this for task 1 from Table II you would 
need to set it so that two enemies are guaranteed to appear. You 
would then make at most one health pack and one ammo pack 
spawn. You also would change the victory conditions to match 
the stated objective shown in Table II. 

Task 6 is a modified version of the standard Deadly Corridor 
task that comes with ViZDoom. This task involves running 
down a hallway lined with enemies to get an armor pickup. 
There are three types of enemies of varying levels of strength. In 
the base environment these enemies have a strict layout. There 
are also invisible walls between the enemies and the player that 
only allow bullets through. Enemies drop weapons and ammo 
when killed but these items are not supposed to be accessible 
though it is possible for the agent to pick up the weapons through 
the wall. Our modified version randomly determines which 
enemies spawn and what type they are. The enemies at the end 
of the corridor will always spawn as otherwise the environment 
would become too easy. We also removed the invisible walls to 
allow the agent to pick up ammo. The enemies are still locked in 
place even though the invisible walls are gone as their speed has 
been set to 0. Technically it is also possible for the agent to pick 
up weapons but there is no skill for this. In task 6 the health skill 
will pick up armor packs instead of health packs as there are no 
health packs in the environment. The reasoning behind task 6’s 
inclusion was to use a map that was different from the other 
tasks. As a result, the skills behave a bit differently and we 
wanted to test the agent’s adaptability. 

Task 6’s map is shown in Fig. 2 and comes with ViZDoom 
itself. You must modify the script so that enemies are only 
guaranteed to spawn at the end of the hallway and so that enemy 
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type is randomized. Fig. 2 specifically shows the original version 
of the task where enemies are placed directly on the map. In our 
version a script runs at the start of the game to randomly decide 
which enemies get to spawn. 

 

Fig. 1: General map for tasks 1-5. 

TABLE II.  DESCRIPTION OF TASKS 

Task Enemies Ammo 
(starting) 

Health Actions 
Per Game 

Condition 

1 2 0-1 (20) 0-1 1500 Defeat 
enemies 

2 0-1 2 (20) 0-1 1500 Collect 
ammo 

3 0-1 0-1 (20) 2 1500 Collect 
health 

4 3 3 (5) 3 2000 Defeat 
enemies 

5 3 
respawning 

3 (5) 3 2000 Defeat 
enemies 

6 2-6 0-6 (26) 1 
armor 

1500 Get armor 
pickup 

 

The DQN’s must be trained on easier versions of tasks 1-5. 
They are given much more ammo to start with, specifically 2000 
shots in task 1. There are no obstacles in the environment and all 
enemies spawn in the middle room. The reason we had to do this 
is that the DQN was unable to solve the original versions of these 
tasks when given a sensor vector. Even when given the wall 
information the DQN agent would not make forward progress. 
Learning to evaluate if it was going to hit a wall and hit an enemy 
appeared to be too much for the DQN. For task 4 the DQN still 
received the same amount of ammo as the other agents, but the 
enemy’s aggression was reduced to account for the fact that they 
now spawned in firing range of the player. Task 6 was the same 
for all agents however we used a different Control-Base agent 
that was purposely trained only on task 6 as the agents originally 
trained on tasks 1-3 did very poorly. Furthermore, due to a 
difference in input size we would have had import only part of 
the original agent which combined with its poor performance on 
other tasks led us to simply use a new agent.  

We also used an A3C and a PPO version of the Control-Base 
agent which had a similar reward function and setup as the DQN. 

For task 6 we trained our Control-Base agents from scratch, as 
task 6 required a different input size and the tasks 1-5 
counterparts were not very effective. 

 

 

Fig. 2: Map for task 6: The green arrow icon is the player, red arrow icons are 
enemies, and the green shield icon is the goal. The faded horizontal between the 
enemies and the main hallway are invisible barriers that block the player from 
crossing but allow bullets to pass through. 

V. SKILLS 

We have four skills present in tasks 1-5: combat, navigation, 
ammo collection, health pack collection. These skills correspond 
to different objectives but in the case of combat both the 
navigation and combat skills are required to complete the task.  

The combat skill checks if an agent can hit an enemy, turn 
and hit an enemy, or move left or right one step to hit an enemy. 
It also checks if obstacles/walls are blocking the agent’s line of 
sight towards an enemy. The combat skill specifically does not 
fire diagonally through doors as it was determined to be 
unreliable with our implementation. The skill also checks if the 
agent has enough ammo to fire but not if it has enough ammo to 
defeat its opponent. 

The navigation skill is an A3C agent that was trained on the 
same map that tasks 1-5 use. It works by getting a set of 
coordinates and moving towards its objective. The agent will use 
this skill to navigate to adjacent rooms so sometimes an 
intermediate room needs to be picked if the final target is not in 
an adjacent room. This decision is made by the navigation skill 
and is implemented via a simple check to see if the final target 
room is an adjacent room. If it is not, the navigation skill will 
move to the central room which is adjacent to all other rooms. 
For example, if the agent was in the east room and needed to go 
to the north room the navigation skill would be used to navigate 
to the center room first before being told to go to the north room. 
The ammo and health skills are very similar to the navigation 
skill except they are given the coordinates for ammo packs and 
health packs instead of the center of each room respectively. 

The navigation agent also does have some more scripted 
behavior that helps it go through doors without getting stuck, but 
it is mainly an RL agent. It gets rewarded for getting closer to its 
objective and penalized for running into walls. In the case of task 
1-5 the navigation agent will also receive a reward for getting 
into the hallway sections.  

To train the A3C navigation skills we simply dropped the 
agent in the same map as the one we used for our tasks and gave 
it a point to move towards. We had it play around 2000 games 
of moving between rooms or moving towards a randomly 
selected point on the map to simulate items. Our agent was 
trained to also dodge obstacles which we added in later via 
curriculum training, but this is not required. The reward function 
is simple as we gave it a small reward for getting closer to its 
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goal and staying in the maps cross section so it could easily get 
through doors. For the ammo and health skills we did not include 
the cross-section part as the agent would always be told to move 
towards a point in its current room. To add a new skill, you just 
load in the middle part of the network and use a new input and 
output layer.  

Task 6 did not have a navigation skill as it would have been 
the same as the health skill. The combat skill like before turned 
to face enemies and fired upon them. The combat skill did not 
move left or right in task 6 as the agent had a finer control over 
its turning radius so moving left and right would be redundant. 
The ammo skill pointed the agent at an ammo pack and moved 
the agent towards it. The health skill pointed at the armor pack 
at the end of the hallway and drove the agent towards it. Since 
health and armor are similar, we chose simply to recycle the 
health skill for this instead of making a new skill or changing the 
pickup type. None of the task 6 skills were RL based so there 
was no training. This was due to the relative simplicity of 
navigation and shooting in the environment compared to the 
other tasks. 

VI. EVALUATION  

A. Training Methodology 
As shown in Table I three types of agents were used in this 

experiment, a Bootcamp agent, a Control-Skill agent, and a 
Control-Base agent. The agents are trained on a set of episodes 
sampled from tasks 1-3 (see Table II). Both the Control-Base 
and Control-Skill agents are trained from a random sample of 
the three training tasks until convergence. The Bootcamp agent 
is trained with a more structured curriculum from these tasks. 
Specifically, the Bootcamp agent does the tasks in groups of 
four. It does four combat games, then four ammo packs, and 
finally four health before looping back to combat. As we are 
using A3C, we stagger this so that each of the individual agents 
start 3 games ahead of the previous. If you have four threads, 
one will start at combat game 1, the second starts at combat game 
4, the third starts at ammo task 3, and the final thread starts at 
health game 2. Training episodes were generated at random with 
different seeds while the testing episodes were generated 
randomly using the same seed. The agent was trained on tasks 
1-3 at the same time so that it could learn to use all of its skills 
at the same time. 

The Bootcamp agent is trained for 2000 episodes and must 
eliminate 250 enemies in the last 500 training episodes to be 
considered successful. The Bootcamp agent also must collect 
150 ammo packs and health packs in the last 500 episodes. These 
criteria were determined with some trial and error as well as 
realistically determining roughly how many objectives the agent 
could potentially complete. We train the agent for 2000 episodes 
as we found that past 2000 the agent improved less. The reason 
that there are more required enemies is that eliminating enemies 
is more complicated than picking up items. The control agents 
do not have this requirement as it would give the control agents 
to much implicit information about the environment . Part of the 
Bootcamp approach is giving agents a quality control check to 
see if it makes a difference over the control. These agents will 
be tested for 1000 episodes that are randomly sampled from the 
training tasks with learning disabled. Their raw scores will be 
averaged over all episodes.  

Tasks 4-6 were our test tasks. Agents are trained and tested 
on task 4-6 for 1000 different episodes. Agents started with the 
weights from tasks 1-3 and were trained on tasks 4-6 
individually. A fresh agent was trained from the task 1-3 weights 
for each test task. The performance is averaged over 1000 
episodes along with the agents’ raw score and performance. Task 
5 is the same as task 4 except the agents can get more points for 
eliminating more enemies as the enemies respawn.  

For tasks 4-6 we also measure the transfer learning metrics 
jumpstart and asymptotic performance. Jumpstart is how well 
the initial performance on a task can be improved by transfer 
learning. Asymptotic performance is how much the final 
performance on the task can be improved by transfer learning. 
For jumpstart we include only the first 200 episodes and for 
asymptotic performance we used the last 200.  

The skillnet agents use a neural network to select which 
objective it wants to carry out and then a skill executes it. In our 
case this selection component was an A3C agent. Our health, 
ammo, and basic navigation skills were implemented with A3C 
as well as some more scripted actions. The combat skill was 
implemented purely with scripted actions and simply calculates 
if an enemy can be hit from a current location. The combat skill 
also has the limited ability to turn the agent and move from side 
to side.   

For input the agent gets health, ammo, current angle, and its 
current coordinates. It also gets the targeted enemy’s current 
coordinates, relative distance, relative angle, and health. 
Targeted enemies are determined by whichever enemy closest 
or can be easily attacked. The agent gets the targeted ammo and 
health pack’s current coordinates and distance. It gets the 
number of enemies and ammo packs remaining. It also is 
notified if there is an ammo pack in range if the agent is less than 
200 meters from the ammo pack. 

B. Reward Function 
A skillnet agent receives -1 point per turn. It receives +1 for 

damaging enemies, and -2 for using the combat skill incorrectly. 
The agent also receives -2 for using the ammo or health skills if 
those skills are not useful at the time. An example of this is using 
the combat skill when no enemies are present. It receives +0.5 if 
using the ammo or health skills in their respective tasks. It 
receives +10 for completing the task in under 750 actions. 100 
points are given for kills with +20 for under 100 actions and +10 
if it is over 100 actions but under 400. The agent gets +10 points 
for ammo and health. It gets +50 for getting an item with the 
correct skill. It also gets +15 for getting an item during its 
assigned task. The agent also gets punished with -1 points for 
taking damage. The performance of the agent is somewhat 
sensitive to the choices of these parameters, so some tuning of 
the reward function is necessary to maximize agent 
performance. 

The DQNs differ in that they get no rewards or penalties for 
using the correct skills as they have none. The agents also get 
more points for completing the tasks. The reason the agents need 
to get more points for completing a task is that they are more 
likely to simply run away from a problem. Tasks 4 and 5 also 
receive different input as they do not get the +0.5 points for using 
correct skills. They also lack the +15 point reward for getting 
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items during their respective tasks. The A3C, A2C, and PPO 
Control-Base agents have a similar reward function to the DQN 
but with some different values. A3C, A2C, and PPO get 
rewarded less for completing the tasks as this improved their 
stability. A3C, A2C, and PPO all get +40 points for inflicting 
damage to enemies instead of the DQN’s +25 points. Otherwise, 
they get similar points to the skillnet agents for completing 
objectives. The DQN gets -300 points for dying and +500 points 
for winning. It also gets +200 points for completing and 
objective, i.e., defeating an enemy or getting and item. These 
values were determined through trial and error as well as testing. 

Previous attempts at designing the reward function gave a 
negative point for each action and a large positive reward at the 
end. After this method failed, we moved to reward the agent for 
killing enemies to give it partial credit. Next, we added rewards 
for getting health and ammo packs. For the Bootcamp 
specifically, we realized that the agent may not learn to use a 
skill that is used infrequently so we added small rewards for 
using a skill when it was appropriate. Finally, we added extra 
points for completing objectives quickly to emphasize the need 
to complete the task quickly. Overall, the motivation behind the 
reward function was to teach the agent how to use the skills. 

VII. RESULTS 

On the base set of tasks, we have seen that the Bootcamp 
agent outperforms the Control-Skill agent by a small but 
consistent margin. In general, the Bootcamp agent does 10% 
better than the Control-Skill agent in number of victories and 
performance score. This is shown in Table III where the average 
performance for the Bootcamp agent outperforms the control 
skill agent. The Bootcamp agent’s raw score is significantly 
better on the same set of tasks than the Control-Skill agent. The 
DQN Control-Base agent does worse on all three tasks. While 
the raw score for the DQN appears to be the highest of the three 
agent types, it is misleading due to the fact that the DQN has a 
different reward function. This is backed up by the DQN’s low 
number of wins which indicates that despite its high score it 
cannot effectively complete the tasks. The A3C agent performs 
similarly to the DQN.  

Fig. 3 and 4 show the average training performance for tasks 
1-3 and 4 respectively. This shows that the Skill agents overall 
learned better than the Control Base agents. It also shows the 
A3C Bootcamp learning the best in task 4. The reason that the 
graphs start at episode 200 instead of 0 is that it takes about 200 
episodes for the average performance to stabilize. Prior to 
episode 200 the graph looks erratic as outliers have a larger 
effect.  

The PPO Control-Base agent performed significantly better 
than the other base line agents possibly because the algorithm 
was better suited to the task and possibly due to be structurally a 
bit different in that its intermediate layers were smaller. The 
scores however are deceptive as the PPO Control-Base agent 
still was playing the same easier versions of all of the tasks that 
the other Control-Base agents played. PPO’s Control-Base agent 
did not do well at tasks 4-6 and was outclassed by the Bootcamp 
A3C agent.   

 

 

TABLE III.  TASKS 1-3 METRICS 

Average Wins Raw Perf 
A3C Boot 665.83 -839.25 0.65 

A3C Control-Skill 562.10 -1031.18 0.56 

A3C Control-Base 86.63 -1183.91 0.13 

PPO Boot  631.63 -787.37 0.63 

PPO Control-Skill 611.70 -789.26 0.61 

DQN Control-Base 51.83 -7.66 0.09 

 

The gap between the A3C Bootcamp and A3C Control-Skill 
agents was much larger in task 4 as shown in Table IV. This gap 
can be explained in part by the fact that the A3C Control-Skill 
agent did not have the same quality control checks that the 
Bootcamp agent was given. However, this still does not account 
for the entire gap, because even if we remove all of the trials 
based on Control-Skill agents that won less than 500 games, we 
still end up with 23 agents that average only 280 wins out of 
1000 compared to the Bootcamp’s 359/1000 average victories.  
This same pattern can be seen across all metrics, which still 
shows the gap. The Control-Base agents also did not do well at 
this task averaging close to 0 wins. 

For task 5 the gap between A3C Bootcamp and A3C 
Control-Skill was significantly smaller in large part due to the 
increased difficulty. Once again, the A3C Bootcamp agent 
outperformed the A3C Control-Skill agent in all metrics though 
by a narrower margin as shown in Table V. The Control-Base 
agents were unable to solve this task. While their raw scores 
seem high this is just a result of them dying quickly enough to 
not accumulate a large number of negative points. 

Task 6 experiments are the one time where the A3C 
Bootcamp agent did not do better than the A3C Control-Skill 
agents as shown in Table VI. We found that the Control-Skill 
agent won more games than its counterparts but did poorer or 
tied with other agents in other metrics. One explanation for this 
is that task 6 had one less skill and therefore the skill agents were 
not loaded completely. Adding a fourth skill to task 6 led to a 
marked drop in performance for all agents. The skill that was cut 
was the default task which did not have an input like the other 
skill to tell an agent when it was useful as it was always supposed 
to be useful. As the agent could not be easily informed of this 
change this could have led to unexpected results. The A3C 
Control-Base agent did win a few games but still did not perform 
as well as its counterparts. This can be explained by the fact that 
one somewhat effective strategy is to simply charge down the 
corridor at the goal. This will sometimes let you win and was 
adopted frequently by Control-Base A3C. 

We also compared our algorithm to a PPO based approach. 
The PPO Bootcamp agent did better than most other agents in 
tasks 1-3 with the exception of the Bootcamp A3C agent, the 
PPO skill agents had a higher raw score than the Bootcamp A3C 
agent but had a lower number of wins and lower average 
performance. The difference in results here is likely just that 
PPO was able to find a strategy that improved intermediate 
rewards at the expense of winning. The PPO Bootcamp agent 
did worse on tasks 4, 5, and 6 than the A3C Bootcamp agent.  
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TABLE IV.  TASK 4 METRICS 

Average Wins Raw Perf Jump 
start 

Asymp 
Perf 

A3C Boot 358.97 -2002.55 0.46 0.53 0.48 

A3C Control-Skill 218.13 -2179.76 0.36 0.42 0.37 

A3C Control-Base 0.03 -1004.95 0.03 0.03 0.03 

PPO Boot  296.87 -1214.86 0.30 0.31 0.35 

PPO Control-Skill 342.10 -1240.99 0.34 0.28 0.36 

DQN Control-Base 0.00 -199.57 0.00 0.01 0.01 

TABLE V.  TASK 5 METRICS 

Average Wins Raw Perf Jump 
start 

Asymp 
Perf 

A3C Boot 144.03 -1975.27 0.22 0.23 0.29 

A3C Control-Skill 72.67 -2066.88 0.13 0.14 0.21 

A3C Control-Base 0.00 -973.02 0.00 0.00 0.00 

PPO Boot 91.43 -1282.39 0.11 0.07 0.09 

PPO Control-Skill 93.73 -1289.84 0.10 0.05 0.11 

DQN Control-Base 0.00 -196.42 0.00 0.00 0.00 

TABLE VI.  TASK 6 METRICS 

Average Wins Raw Perf Jump 
start 

Asymp 
Perf 

A3C Boot 122.17 -2070.58 0.37 0.40 0.41 

A3C Control-Skill 130.13 -2027.56 0.35 0.40 0.42 

A3C Control-Base 39.20 -396.16 0.27 0.28 0.28 

PPO Boot  346.40 -873.46 0.50 0.41 0.50 

PPO Control-Skill 352.77 -848.57 0.46 0.42 0.50 

DQN Control-Base 0.00 -252.15 0.01 0.03 0.04 

VIII. DISCUSSION 

The Bootcamp approach can be used to quickly help an agent 
adapt to different tasks. We focused on action-oriented domains 
where the agent’s decisions can affect the environment. 
Furthermore, for the Bootcamp approach to work, the domain 
needs to be complex enough to allow for skills. The OpenAI 
Gym’s Cartpole task is an example of an environment that is not 
complicated enough as the overall objective is too simple to 
reasonably break down, because the objective is merely to 
balance the pole. OpenAI Gym’s Mountain Car is similar in that 
there is no real side objective as all the agent does is move left 
and right to gain speed.  

The choice of which information to provide to the agent is 
typically straightforward. For environments where you control a 
character on screen you would need to give the agent its basic 
information such as coordinates, angle, and resources such as 
ammo and health. You also need to give it the coordinates of 
objects that it can interact with and identify them by type such 
as enemies and health. As long as the navigation skill is 
competent, you do not need to give the agent the coordinates of 
permanent obstacles. In Atari Asteroids for example you would 
give the agent the speed and health of each type of asteroid. 
Environments like Angry Birds are very different, but you would 
still give the agent basic information about each bird and the 
location of the pigs as well as the obstacles. Generally speaking, 
it is better if the input can filter out objectives that are impossible 
to reach or irrelevant. For example, in ViZDoom if the combat 
agent thinks it can attack an enemy, we give the detailed 
information only for that enemy. A skillnet agent gets to choose 

between attacking or pursuing another objective, while the 
individual skills figure out how to do this in the most efficient 
way. 

 

Fig. 3: Tasks 1-3 Training Performance 

 

 

Fig. 4: Task 4 Training Performance 

Determining the reward function for a new domain requires 
some trial an error but is based on how difficult the domain’s 
objectives are and how often the skills are used. The less a skill 
is used the more the agent should be rewarded for using it. 
Objectives can usually be determined by when an action 
involves removing or adding something to the environment. 
There should not be too many actions that are rewarded while 
completing an objective. For example, moving towards a 
position in the environment is not completing an objective but 
completion occurs when the agent actually reaches the  position. 
Objectives are defined as something a skill is attempting to 
accomplish, so successfully using a skill leads to a large reward. 

IX. CONCLUSION 

In this paper we propose the Bootcamp skill-based approach 
to designing agents and hypothesize that the correct training and 
use of skills results in agents that are more general purpose, 
capable of solving different tasks. We implemented this 
approach using the A3C method to create a generalist ViZDoom 
agent that can use sensor vectors instead of images. The use of 
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A3C, ViZDoom, and sensor-vector based inputs are part of the 
experimental apparatus used to evaluation our hypothesis. 
Furthermore, we proposed a method of structured training that 
improves skillnet agent performance in novel environments. We 
found that skillnet agents outperform DQNs and that Bootcamp 
agents outperform the average skillnet agent. 

One weakness with this approach is that it depends on the 
skills given to the agent. Skills may not always generalize to 
other environments, and the agent might have a substantial 
learning curve. Furthermore, the skillnet is still dependent on 
having a comparable environment. For example, the Bootcamp 
agent based on ViZDoom will have no idea what to do if placed 
in a Cartpole like environment.  

Note that specialized agents can outperform the Bootcamp 
agent in certain scenarios. For task 4 if you trained a specialized 
skillnet from scratch with the same reward function, the agent 
will perform similar to the Bootcamp agent especially if it is 
trained longer. But one of the benefits of the Bootcamp agent 
approach is to remove this need to train a specialized agent for 
each new task. 

For future work, we would like to apply the approach to 
image-based environments such as Obstacle Tower [25], ALE, 
or even more ViZDoom tasks. There are also many policy 
optimization techniques that could be further explored such as 
proximal policy optimization (PPO) [24] which could help 
improve performance.  
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