
Bootcamp Method for Training General Purpose AI
Agents

Vincent Lombardi
School of EECS

Washington State University
Pullman, WA USA

vincent.lombardi@wsu.edu

Lawrence Holder
School of EECS

Washington State University
Pullman, WA USA
holder@wsu.edu

Abstract— General purpose agents have long been an ultimate
goal of AI research. One promising approach to this goal is to first
train an agent to use a variety of skills, called a skillnet agent, and
then allow the agent to learn how to choose the appropriate skill
instead of having to choose the appropriate low-level action. We
propose a method for training skillnet agents called Bootcamp that
helps agents efficiently learn basic skills in an environment. We
found that Bootcamp agents outperform skillnet agents trained
randomly on various tasks defined in the ViZDoom simulated
environment. We also found that skillnet agents outperform more
conventional reinforcement-based learning approaches such as
DQNs in ViZDoom.

Keywords—ViZDoom, Reinforcement Learning, Machine
Learning, Regular Research Paper

I. INTRODUCTION

Our objective is to make a general-purpose agent that can
solve or at least be easily trained on multiple different tasks
quickly and effectively. We specifically focused on
Reinforcement Learning (RL) agents. RL agents are AI agents
that learn tasks by performing them over and over while
receiving rewards based on their performance. In general, these
agents are inflexible which means that they often have to be
retrained from scratch for each new task. If we can shorten this
process by creating a general-purpose agent, this will make RL
agents significantly more useful.

Our main focus was on general video game play (GVGP) as
it allows us to test a wide variety of environments. We further
refined this to focus on the ViZDoom [1] environment where we
created a variety of tasks. ViZDoom was originally designed to
support AI agents through visual interaction, i.e., the simulator
provides a current image of the agent’s view, and then the agent
returns an action. However, we have modified the interface to
provide a feature vector, or sensor vector, that provides
additional information about the environment. This shift from
image-based to sensor-vector-based interfaces allows the agent
to receive more information about the environment and allows
our methods to apply to a larger number of environments.

In addition to the skillnet and Bootcamp approaches to the
ViZDoom tasks, we also approached these tasks with both a
DQN [2] and A3C [3] based approach. We found that skillnet

agents outperform DQN’s by a large margin. A skillnet agent is
an agent that uses pretrained skills to accomplish a complex task
rather than just using base actions. We further improved this by
taking a Bootcamp or structured approach to the agents training.
We found that a skillnet agent trained via a Bootcamp approach
outperformed a skillnet agent trained randomly. Furthermore,
we found that our Bootcamp agent can outperform similar
skillnet agents on more complex but related tasks.

II. RELATED WORK

A. Multi-Task Agents
Google Deepmind was able to create a generalized agent

(GATO) [4]. This agent used natural language processing
techniques to tokenize an environment. The advantage of this
approach is that it can process tasks with variable input and
output sizes. The downside to this method is that it needs training
data from other RL agents which might be hard to get. As a
result, this method is not as adaptable in novel situations. Google
Pathways is similar to GATO in that it is a way to set up a neural
network to remember multiple different tasks [5]. Pathways has
different parts of its network assigned to different skills and
therefore it does not always use its whole network. Our approach
does not break the network down by skill and therefore the
whole network is used every time. Unlike GATO our agent uses
no natural language processing and therefore does not require
the input to be tokenized.

General purpose agents often have issues learning new tasks
and remembering old ones. Du et al. [6] propose a solution for
this in the form of dreaming. Dreaming is where periodically the
agent is restored to a previous state so that it can attempt an old
environment with a new set of skills. Similarly Golden et al. [7]
propose interweaving previous tasks in an offline learning
period. Zhang et al. [8] address remembering old tasks during
new task training by maintaining stability in network layers.

A few studies have also mixed older tasks into the training
process of new tasks to improve performance. Silver et al. [9]
propose remembering old tasks in lifelong learning and
transferring important parts to new tasks. Saxena et al. [10]
propose interweaving similar older tasks into newer training
tasks to speed up learning.

B. Hierarchical Agents
Skillnets are explored more in depth in [11] where they were

used in ViZDoom. This agent used image-based learning and
was DQN based. This agent only had a navigation and combat
skill, so it did not use our Bootcamp approach. However, it does

This research was sponsored in parts by the Defense Advanced Research
Projects Agency (DARPA) and the Army Research Office (ARO) and was
accomplished under Cooperative Agreement Number W911NF-20-2-0004.
The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the DARPA or ARO, or the U.S. Government.

1

2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE)

979-8-3503-2759-5/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCE60160.2023.00007

show the validity of our approach to using skill agents. This
agent also was not trained for as long as our agent.

Hierarchical agents or agents with different levels of skills
are addressed in [12]. Similar ideas were explored as early as
1999 in [13]. Skills are somewhat similar to combo actions
introduced in [14]. These are where the agent essentially selects
an objective, and a few actions are carried out. Our skills are
more complex, but an agent has to continuously choose to use
them. Togelius and Yannakakis [15] present a paradigm for
general game play. Specifically, it talks about separating tasks
from games. The paper also touches on generating both levels
and entire games with AI.

Song et al. [16] created a similar hierarchical agent that
played Doom called Starnet. This agent used imaged based
systems to accomplish a wide variety of AI generated maps that
ranged in difficulty. Starnet used a two-level hierarchical agent.
They dealt with the sparse reward problem by rewarding agents
for attacking, using tools, collecting resources, and even looking
at enemies. Their agent like many others was image based and
therefore differed drastically in implementation from our own
agent. Starnet also is constructed with a distinct set of goals or
options in mind which helps alleviate the delayed reward
problem.

The idea of a skillnet or network that can utilize multiple
skills was explored by Zhang et al. [17]. In general, skillnets are
agents that can accomplish multiple different tasks using smaller
skill networks. Their skillnet focused on natural language
processing and had access to multiple different skills. Not all of
these skills are accessed at any one time.

There are other examples of hierarchical learning in
environments other than ViZDoom/Atari. Tessler et al. [18]
describe an approach to playing Minecraft with a Hierarchical
Deep Reinforcement Learning Network H-DRLN. Specifically,
this agent used reusable skills to facilitate lifelong learning. This
agent is very similar to ours in that it uses a pretrained navigation
skill that is a Deep Skill Network (DSN). A DSN is an RL agent
that has been trained to use a skill.

C. Curriculum Learning
Our technique is also similar to curriculum learning in [19]

with a few differences. Curriculum learning is where you
introduce an agent to new harder tasks as it trains. In this way it
learns basic skills first. Mainly we do not scale our Bootcamp
agent’s difficulty for individual tasks. Instead, we start with
easy tasks first and then run the agent on harder tasks once it
has learned how to do the easier ones. All these techniques help
deal with sparse reward environments such as ViZDoom.

An example of curriculum learning is Rho et al. [20] where
an agent was trained how to box. Researchers started by making
the agent stand, then walk, and finally, punch. One major
difference with our approach is that the agent does not
necessarily learn one skill before the others. In the boxing
environment tasks are built off each other so it was hard for the
agent to forget previous tasks or actions.

Kodaka and Saitoh [21] talk about using curriculum learning
in a top-down shooting game where an agent was trained on

increasingly difficult tasks. The increase in difficulty was
mainly in enemy aggression so there were no skills to be lost
here unlike in our experiments. Zhang et al. [22] focused on
curriculum learning in Starcraft II. The difficulty measure here
was the in-game difficulty were at higher levels the in game AI
was able to cheat. The agent also avoids forgetting skills at
higher levels since higher levels still required skills from earlier
levels.

D. Actor Critic
Advanced Actor Critic is a form of deep reinforcement

learning that is quite common in both previous work and our
own approach. It consists of two neural networks an actor and a
critic. The actor picks and preforms actions while the critic
learns to judge said actions. The two most common forms of this
are Synchronous Advanced Actor Critic (A2C) [2] [23] and
Asynchronous Advanced Actor Critic (A3C) [2] [3]. A2C
creates one set of these networks while A3C creates multiple
which periodically check in with a global policy to improve the
quality and speed of learning.

Proximal Policy Optimization or PPO [24] is similar to A2C,
but it uses a different method for calculating the gradient. PPO
uses a simplified version of TRPO that uses a penalty instead of
a constraint to help compute the KL divergence. KL Divergence
is how both agents measure how much the policy has changed.
We used a single environment version of this as both a control
and a modified Bootcamp agent.

III. BOOTCAMP APPROACH

 In order to improve the use of skills, we introduce the
Bootcamp agent, where the agent is trained on alternating
objectives so that it learns different tasks. We then put it in a test
environment where it must combine multiple skills to complete
the tasks. Our specific idea is to structure how we alternate
objectives. As this is an A3C agent we have different instances
start on different tasks teaching different skills. These agents
then play a few rounds of their starting task and then move on to
the next tasks and repeat the process in a loop. This way the
agent will not overspecialize at any one objective.

We also provide the Bootcamp agent with minimum
objectives for each task, and the agent will retrain if it does not
meet these objectives. Essentially if the Bootcamp agent does
not complete a certain number of objectives of each type in the
last quarter of training, it has to restart. This is a form of quality
control that ensures that the skill has been taught. An objective
is picking up an item or defeating an enemy, but it is not
necessarily the same as winning. For example, if the task is to
defeat multiple enemies, each enemy defeated counts regardless
of if the agent wins. Similarly, if the objective is to pick up
ammo, but the agent picks up health or defeats an enemy, these
will also count even if the agent does not end up picking up the
ammo.

We used three types of agents in this experiment as shown in
Table I. A Bootcamp agent is a skillnet and used our
experimental approach. A Control-Skill is an agent which is a
skillnet that did not use our experimental approach. Finally, we
used a base agent or Control-Base agent which did not use skills.
The skillnet agents usually had a choice between objectives

2

related to completing the tasks while the Control-Base agents
had access to the direct actions themselves.

TABLE I. AGENT FEATURES

Agents Order Asynchronous
Quality
Control Skill

A3C Boot Y Y Y Y

A3C Control-Skill Y Y

A3C Control-Base Y
PPO Boot Y Y Y

PPO Control-Skill Y

DQN Control-Base

We found that skillnets can have their skills atrophy. If a
skillnet is trained in such a way that all skills are useful, it will
be able to adapt to each task. If a skill has atrophied, then the
agent will likely never regain use of it. As a result, we have to
train the agents on multiple different tasks either at the same time
or in quick succession. This is why we iterate over objectives in
small batches instead of playing large numbers of episodes of
each task before moving on to the others.

For the A3C agent we did use a different number of tasks
compared to the number of asynchronous agents or threads. We
did this because the agent still might focus more on one task at a
certain time by having a greater number of agents focus on the
task. The hypothesis here was that this would help the agent
learn more complex tasks along with easier tasks which it would
otherwise focus on. Otherwise, the agent would focus on the
easiest tasks at the expense of the harder ones. For example, if
one task only required the agent to use one skill it might favor
that over a task that required multiple. Note that the agent does
change this focus as every single asynchronous agent will cycle
through all of the tasks during training.

The Control-Skill agent variants use the same number of
threads or asynchronous agents but lack the order and quality
checks. The Control-Base agent variants do not have skills,
order, or quality control and may have a different input . The
reason that the Control-Base agents have different inputs is that
they might either need more information to carry out actions
such as the locations of obstacles that a navigation skill would
avoid. They also do not need input for when a certain skill is
usable as they have no pretrained skills. The Control-Skill and
Bootcamp agents should have the same inputs and outputs.

For PPO we used only a single environment which meant
that we were not able to have the agent do multiple tasks at the
same time. We had to use a modified Bootcamp approach that
still had the order and the quality control checks in place as
shown in Table I.

IV. DOMAIN

We used six tasks total with the first three serving as the
Bootcamp tasks. The purpose of these first three was to teach the
agent how to use each skill or carry out each objective. The last
three were meant to test how the agent would adapt its skills to
a new environment. This meant that tasks 1-3 were not as
difficult as the tasks 4-6 which were meant to test how the agent
could apply its skills. Table II summarizes the six tasks used to
evaluate our agents. Task 1 teaches combat and involves killing

all enemies onscreen and has 2 enemies, 0-1 health packs, and
0-1 ammo packs. Task 2 focuses on getting health and involves
collecting all health packs. Task 2 has 0-1 enemies, 2 health
packs, and 0-1 ammo packs. Task 3 is like task 2 except it
focuses on getting ammo instead of health, so the objective is to
pick up all of the ammo packs. Task 3 has 0-1 enemies, 0-1
health packs, and 2 ammo packs.

Task 4 involves 3 enemies, 3 health packs, and 3 ammo
packs. Furthermore, the agents only start with enough ammo to
kill one enemy. In this task ammo packs also give more bullets.
The idea here is to see if the agent can apply its skills to a more
difficult environment. More enemies means that the agent must
use its combat skill more and likely will have to heal more often.
The lack of starting ammo also means that the agent must use its
ammo collecting skill to win.

Task 5 is very similar except the ammo packs now give four
shots instead of three and enemies respawn. The fact that
enemies respawn makes task 5 much more difficult, because the
agent could run out of ammo before killing all the enemies which
should not be possible in the other tasks. More ammo was given
per ammo pack to make up for the fact that the agent starts with
the same amount of ammo as it does in task 4 even though it will
likely face more enemies.

The map for tasks 1-5 is shown in Fig. 1. All five tasks use
the same room layout but have randomly placed items such as
heath, ammo, and obstacles. All 5 tasks have specifically 1
obstacle alongside the normal walls that are present in the
environment. They also have random enemy and player starting
positions. To configure this for task 1 from Table II you would
need to set it so that two enemies are guaranteed to appear. You
would then make at most one health pack and one ammo pack
spawn. You also would change the victory conditions to match
the stated objective shown in Table II.

Task 6 is a modified version of the standard Deadly Corridor
task that comes with ViZDoom. This task involves running
down a hallway lined with enemies to get an armor pickup.
There are three types of enemies of varying levels of strength. In
the base environment these enemies have a strict layout. There
are also invisible walls between the enemies and the player that
only allow bullets through. Enemies drop weapons and ammo
when killed but these items are not supposed to be accessible
though it is possible for the agent to pick up the weapons through
the wall. Our modified version randomly determines which
enemies spawn and what type they are. The enemies at the end
of the corridor will always spawn as otherwise the environment
would become too easy. We also removed the invisible walls to
allow the agent to pick up ammo. The enemies are still locked in
place even though the invisible walls are gone as their speed has
been set to 0. Technically it is also possible for the agent to pick
up weapons but there is no skill for this. In task 6 the health skill
will pick up armor packs instead of health packs as there are no
health packs in the environment. The reasoning behind task 6’s
inclusion was to use a map that was different from the other
tasks. As a result, the skills behave a bit differently and we
wanted to test the agent’s adaptability.

Task 6’s map is shown in Fig. 2 and comes with ViZDoom
itself. You must modify the script so that enemies are only
guaranteed to spawn at the end of the hallway and so that enemy

3

type is randomized. Fig. 2 specifically shows the original version
of the task where enemies are placed directly on the map. In our
version a script runs at the start of the game to randomly decide
which enemies get to spawn.

Fig. 1: General map for tasks 1-5.

TABLE II. DESCRIPTION OF TASKS

Task Enemies Ammo
(starting)

Health Actions
Per Game

Condition

1 2 0-1 (20) 0-1 1500 Defeat
enemies

2 0-1 2 (20) 0-1 1500 Collect
ammo

3 0-1 0-1 (20) 2 1500 Collect
health

4 3 3 (5) 3 2000 Defeat
enemies

5 3
respawning

3 (5) 3 2000 Defeat
enemies

6 2-6 0-6 (26) 1
armor

1500 Get armor
pickup

The DQN’s must be trained on easier versions of tasks 1-5.
They are given much more ammo to start with, specifically 2000
shots in task 1. There are no obstacles in the environment and all
enemies spawn in the middle room. The reason we had to do this
is that the DQN was unable to solve the original versions of these
tasks when given a sensor vector. Even when given the wall
information the DQN agent would not make forward progress.
Learning to evaluate if it was going to hit a wall and hit an enemy
appeared to be too much for the DQN. For task 4 the DQN still
received the same amount of ammo as the other agents, but the
enemy’s aggression was reduced to account for the fact that they
now spawned in firing range of the player. Task 6 was the same
for all agents however we used a different Control-Base agent
that was purposely trained only on task 6 as the agents originally
trained on tasks 1-3 did very poorly. Furthermore, due to a
difference in input size we would have had import only part of
the original agent which combined with its poor performance on
other tasks led us to simply use a new agent.

We also used an A3C and a PPO version of the Control-Base
agent which had a similar reward function and setup as the DQN.

For task 6 we trained our Control-Base agents from scratch, as
task 6 required a different input size and the tasks 1-5
counterparts were not very effective.

Fig. 2: Map for task 6: The green arrow icon is the player, red arrow icons are
enemies, and the green shield icon is the goal. The faded horizontal between the
enemies and the main hallway are invisible barriers that block the player from
crossing but allow bullets to pass through.

V. SKILLS

We have four skills present in tasks 1-5: combat, navigation,
ammo collection, health pack collection. These skills correspond
to different objectives but in the case of combat both the
navigation and combat skills are required to complete the task.

The combat skill checks if an agent can hit an enemy, turn
and hit an enemy, or move left or right one step to hit an enemy.
It also checks if obstacles/walls are blocking the agent’s line of
sight towards an enemy. The combat skill specifically does not
fire diagonally through doors as it was determined to be
unreliable with our implementation. The skill also checks if the
agent has enough ammo to fire but not if it has enough ammo to
defeat its opponent.

The navigation skill is an A3C agent that was trained on the
same map that tasks 1-5 use. It works by getting a set of
coordinates and moving towards its objective. The agent will use
this skill to navigate to adjacent rooms so sometimes an
intermediate room needs to be picked if the final target is not in
an adjacent room. This decision is made by the navigation skill
and is implemented via a simple check to see if the final target
room is an adjacent room. If it is not, the navigation skill will
move to the central room which is adjacent to all other rooms.
For example, if the agent was in the east room and needed to go
to the north room the navigation skill would be used to navigate
to the center room first before being told to go to the north room.
The ammo and health skills are very similar to the navigation
skill except they are given the coordinates for ammo packs and
health packs instead of the center of each room respectively.

The navigation agent also does have some more scripted
behavior that helps it go through doors without getting stuck, but
it is mainly an RL agent. It gets rewarded for getting closer to its
objective and penalized for running into walls. In the case of task
1-5 the navigation agent will also receive a reward for getting
into the hallway sections.

To train the A3C navigation skills we simply dropped the
agent in the same map as the one we used for our tasks and gave
it a point to move towards. We had it play around 2000 games
of moving between rooms or moving towards a randomly
selected point on the map to simulate items. Our agent was
trained to also dodge obstacles which we added in later via
curriculum training, but this is not required. The reward function
is simple as we gave it a small reward for getting closer to its

4

goal and staying in the maps cross section so it could easily get
through doors. For the ammo and health skills we did not include
the cross-section part as the agent would always be told to move
towards a point in its current room. To add a new skill, you just
load in the middle part of the network and use a new input and
output layer.

Task 6 did not have a navigation skill as it would have been
the same as the health skill. The combat skill like before turned
to face enemies and fired upon them. The combat skill did not
move left or right in task 6 as the agent had a finer control over
its turning radius so moving left and right would be redundant.
The ammo skill pointed the agent at an ammo pack and moved
the agent towards it. The health skill pointed at the armor pack
at the end of the hallway and drove the agent towards it. Since
health and armor are similar, we chose simply to recycle the
health skill for this instead of making a new skill or changing the
pickup type. None of the task 6 skills were RL based so there
was no training. This was due to the relative simplicity of
navigation and shooting in the environment compared to the
other tasks.

VI. EVALUATION

A. Training Methodology
As shown in Table I three types of agents were used in this

experiment, a Bootcamp agent, a Control-Skill agent, and a
Control-Base agent. The agents are trained on a set of episodes
sampled from tasks 1-3 (see Table II). Both the Control-Base
and Control-Skill agents are trained from a random sample of
the three training tasks until convergence. The Bootcamp agent
is trained with a more structured curriculum from these tasks.
Specifically, the Bootcamp agent does the tasks in groups of
four. It does four combat games, then four ammo packs, and
finally four health before looping back to combat. As we are
using A3C, we stagger this so that each of the individual agents
start 3 games ahead of the previous. If you have four threads,
one will start at combat game 1, the second starts at combat game
4, the third starts at ammo task 3, and the final thread starts at
health game 2. Training episodes were generated at random with
different seeds while the testing episodes were generated
randomly using the same seed. The agent was trained on tasks
1-3 at the same time so that it could learn to use all of its skills
at the same time.

The Bootcamp agent is trained for 2000 episodes and must
eliminate 250 enemies in the last 500 training episodes to be
considered successful. The Bootcamp agent also must collect
150 ammo packs and health packs in the last 500 episodes. These
criteria were determined with some trial and error as well as
realistically determining roughly how many objectives the agent
could potentially complete. We train the agent for 2000 episodes
as we found that past 2000 the agent improved less. The reason
that there are more required enemies is that eliminating enemies
is more complicated than picking up items. The control agents
do not have this requirement as it would give the control agents
to much implicit information about the environment . Part of the
Bootcamp approach is giving agents a quality control check to
see if it makes a difference over the control. These agents will
be tested for 1000 episodes that are randomly sampled from the
training tasks with learning disabled. Their raw scores will be
averaged over all episodes.

Tasks 4-6 were our test tasks. Agents are trained and tested
on task 4-6 for 1000 different episodes. Agents started with the
weights from tasks 1-3 and were trained on tasks 4-6
individually. A fresh agent was trained from the task 1-3 weights
for each test task. The performance is averaged over 1000
episodes along with the agents’ raw score and performance. Task
5 is the same as task 4 except the agents can get more points for
eliminating more enemies as the enemies respawn.

For tasks 4-6 we also measure the transfer learning metrics
jumpstart and asymptotic performance. Jumpstart is how well
the initial performance on a task can be improved by transfer
learning. Asymptotic performance is how much the final
performance on the task can be improved by transfer learning.
For jumpstart we include only the first 200 episodes and for
asymptotic performance we used the last 200.

The skillnet agents use a neural network to select which
objective it wants to carry out and then a skill executes it. In our
case this selection component was an A3C agent. Our health,
ammo, and basic navigation skills were implemented with A3C
as well as some more scripted actions. The combat skill was
implemented purely with scripted actions and simply calculates
if an enemy can be hit from a current location. The combat skill
also has the limited ability to turn the agent and move from side
to side.

For input the agent gets health, ammo, current angle, and its
current coordinates. It also gets the targeted enemy’s current
coordinates, relative distance, relative angle, and health.
Targeted enemies are determined by whichever enemy closest
or can be easily attacked. The agent gets the targeted ammo and
health pack’s current coordinates and distance. It gets the
number of enemies and ammo packs remaining. It also is
notified if there is an ammo pack in range if the agent is less than
200 meters from the ammo pack.

B. Reward Function
A skillnet agent receives -1 point per turn. It receives +1 for

damaging enemies, and -2 for using the combat skill incorrectly.
The agent also receives -2 for using the ammo or health skills if
those skills are not useful at the time. An example of this is using
the combat skill when no enemies are present. It receives +0.5 if
using the ammo or health skills in their respective tasks. It
receives +10 for completing the task in under 750 actions. 100
points are given for kills with +20 for under 100 actions and +10
if it is over 100 actions but under 400. The agent gets +10 points
for ammo and health. It gets +50 for getting an item with the
correct skill. It also gets +15 for getting an item during its
assigned task. The agent also gets punished with -1 points for
taking damage. The performance of the agent is somewhat
sensitive to the choices of these parameters, so some tuning of
the reward function is necessary to maximize agent
performance.

The DQNs differ in that they get no rewards or penalties for
using the correct skills as they have none. The agents also get
more points for completing the tasks. The reason the agents need
to get more points for completing a task is that they are more
likely to simply run away from a problem. Tasks 4 and 5 also
receive different input as they do not get the +0.5 points for using
correct skills. They also lack the +15 point reward for getting

5

items during their respective tasks. The A3C, A2C, and PPO
Control-Base agents have a similar reward function to the DQN
but with some different values. A3C, A2C, and PPO get
rewarded less for completing the tasks as this improved their
stability. A3C, A2C, and PPO all get +40 points for inflicting
damage to enemies instead of the DQN’s +25 points. Otherwise,
they get similar points to the skillnet agents for completing
objectives. The DQN gets -300 points for dying and +500 points
for winning. It also gets +200 points for completing and
objective, i.e., defeating an enemy or getting and item. These
values were determined through trial and error as well as testing.

Previous attempts at designing the reward function gave a
negative point for each action and a large positive reward at the
end. After this method failed, we moved to reward the agent for
killing enemies to give it partial credit. Next, we added rewards
for getting health and ammo packs. For the Bootcamp
specifically, we realized that the agent may not learn to use a
skill that is used infrequently so we added small rewards for
using a skill when it was appropriate. Finally, we added extra
points for completing objectives quickly to emphasize the need
to complete the task quickly. Overall, the motivation behind the
reward function was to teach the agent how to use the skills.

VII. RESULTS

On the base set of tasks, we have seen that the Bootcamp
agent outperforms the Control-Skill agent by a small but
consistent margin. In general, the Bootcamp agent does 10%
better than the Control-Skill agent in number of victories and
performance score. This is shown in Table III where the average
performance for the Bootcamp agent outperforms the control
skill agent. The Bootcamp agent’s raw score is significantly
better on the same set of tasks than the Control-Skill agent. The
DQN Control-Base agent does worse on all three tasks. While
the raw score for the DQN appears to be the highest of the three
agent types, it is misleading due to the fact that the DQN has a
different reward function. This is backed up by the DQN’s low
number of wins which indicates that despite its high score it
cannot effectively complete the tasks. The A3C agent performs
similarly to the DQN.

Fig. 3 and 4 show the average training performance for tasks
1-3 and 4 respectively. This shows that the Skill agents overall
learned better than the Control Base agents. It also shows the
A3C Bootcamp learning the best in task 4. The reason that the
graphs start at episode 200 instead of 0 is that it takes about 200
episodes for the average performance to stabilize. Prior to
episode 200 the graph looks erratic as outliers have a larger
effect.

The PPO Control-Base agent performed significantly better
than the other base line agents possibly because the algorithm
was better suited to the task and possibly due to be structurally a
bit different in that its intermediate layers were smaller. The
scores however are deceptive as the PPO Control-Base agent
still was playing the same easier versions of all of the tasks that
the other Control-Base agents played. PPO’s Control-Base agent
did not do well at tasks 4-6 and was outclassed by the Bootcamp
A3C agent.

TABLE III. TASKS 1-3 METRICS

Average Wins Raw Perf
A3C Boot 665.83 -839.25 0.65

A3C Control-Skill 562.10 -1031.18 0.56

A3C Control-Base 86.63 -1183.91 0.13

PPO Boot 631.63 -787.37 0.63

PPO Control-Skill 611.70 -789.26 0.61

DQN Control-Base 51.83 -7.66 0.09

The gap between the A3C Bootcamp and A3C Control-Skill
agents was much larger in task 4 as shown in Table IV. This gap
can be explained in part by the fact that the A3C Control-Skill
agent did not have the same quality control checks that the
Bootcamp agent was given. However, this still does not account
for the entire gap, because even if we remove all of the trials
based on Control-Skill agents that won less than 500 games, we
still end up with 23 agents that average only 280 wins out of
1000 compared to the Bootcamp’s 359/1000 average victories.
This same pattern can be seen across all metrics, which still
shows the gap. The Control-Base agents also did not do well at
this task averaging close to 0 wins.

For task 5 the gap between A3C Bootcamp and A3C
Control-Skill was significantly smaller in large part due to the
increased difficulty. Once again, the A3C Bootcamp agent
outperformed the A3C Control-Skill agent in all metrics though
by a narrower margin as shown in Table V. The Control-Base
agents were unable to solve this task. While their raw scores
seem high this is just a result of them dying quickly enough to
not accumulate a large number of negative points.

Task 6 experiments are the one time where the A3C
Bootcamp agent did not do better than the A3C Control-Skill
agents as shown in Table VI. We found that the Control-Skill
agent won more games than its counterparts but did poorer or
tied with other agents in other metrics. One explanation for this
is that task 6 had one less skill and therefore the skill agents were
not loaded completely. Adding a fourth skill to task 6 led to a
marked drop in performance for all agents. The skill that was cut
was the default task which did not have an input like the other
skill to tell an agent when it was useful as it was always supposed
to be useful. As the agent could not be easily informed of this
change this could have led to unexpected results. The A3C
Control-Base agent did win a few games but still did not perform
as well as its counterparts. This can be explained by the fact that
one somewhat effective strategy is to simply charge down the
corridor at the goal. This will sometimes let you win and was
adopted frequently by Control-Base A3C.

We also compared our algorithm to a PPO based approach.
The PPO Bootcamp agent did better than most other agents in
tasks 1-3 with the exception of the Bootcamp A3C agent, the
PPO skill agents had a higher raw score than the Bootcamp A3C
agent but had a lower number of wins and lower average
performance. The difference in results here is likely just that
PPO was able to find a strategy that improved intermediate
rewards at the expense of winning. The PPO Bootcamp agent
did worse on tasks 4, 5, and 6 than the A3C Bootcamp agent.

6

TABLE IV. TASK 4 METRICS

Average Wins Raw Perf Jump
start

Asymp
Perf

A3C Boot 358.97 -2002.55 0.46 0.53 0.48

A3C Control-Skill 218.13 -2179.76 0.36 0.42 0.37

A3C Control-Base 0.03 -1004.95 0.03 0.03 0.03

PPO Boot 296.87 -1214.86 0.30 0.31 0.35

PPO Control-Skill 342.10 -1240.99 0.34 0.28 0.36

DQN Control-Base 0.00 -199.57 0.00 0.01 0.01

TABLE V. TASK 5 METRICS

Average Wins Raw Perf Jump
start

Asymp
Perf

A3C Boot 144.03 -1975.27 0.22 0.23 0.29

A3C Control-Skill 72.67 -2066.88 0.13 0.14 0.21

A3C Control-Base 0.00 -973.02 0.00 0.00 0.00

PPO Boot 91.43 -1282.39 0.11 0.07 0.09

PPO Control-Skill 93.73 -1289.84 0.10 0.05 0.11

DQN Control-Base 0.00 -196.42 0.00 0.00 0.00

TABLE VI. TASK 6 METRICS

Average Wins Raw Perf Jump
start

Asymp
Perf

A3C Boot 122.17 -2070.58 0.37 0.40 0.41

A3C Control-Skill 130.13 -2027.56 0.35 0.40 0.42

A3C Control-Base 39.20 -396.16 0.27 0.28 0.28

PPO Boot 346.40 -873.46 0.50 0.41 0.50

PPO Control-Skill 352.77 -848.57 0.46 0.42 0.50

DQN Control-Base 0.00 -252.15 0.01 0.03 0.04

VIII. DISCUSSION

The Bootcamp approach can be used to quickly help an agent
adapt to different tasks. We focused on action-oriented domains
where the agent’s decisions can affect the environment.
Furthermore, for the Bootcamp approach to work, the domain
needs to be complex enough to allow for skills. The OpenAI
Gym’s Cartpole task is an example of an environment that is not
complicated enough as the overall objective is too simple to
reasonably break down, because the objective is merely to
balance the pole. OpenAI Gym’s Mountain Car is similar in that
there is no real side objective as all the agent does is move left
and right to gain speed.

The choice of which information to provide to the agent is
typically straightforward. For environments where you control a
character on screen you would need to give the agent its basic
information such as coordinates, angle, and resources such as
ammo and health. You also need to give it the coordinates of
objects that it can interact with and identify them by type such
as enemies and health. As long as the navigation skill is
competent, you do not need to give the agent the coordinates of
permanent obstacles. In Atari Asteroids for example you would
give the agent the speed and health of each type of asteroid.
Environments like Angry Birds are very different, but you would
still give the agent basic information about each bird and the
location of the pigs as well as the obstacles. Generally speaking,
it is better if the input can filter out objectives that are impossible
to reach or irrelevant. For example, in ViZDoom if the combat
agent thinks it can attack an enemy, we give the detailed
information only for that enemy. A skillnet agent gets to choose

between attacking or pursuing another objective, while the
individual skills figure out how to do this in the most efficient
way.

Fig. 3: Tasks 1-3 Training Performance

Fig. 4: Task 4 Training Performance

Determining the reward function for a new domain requires
some trial an error but is based on how difficult the domain’s
objectives are and how often the skills are used. The less a skill
is used the more the agent should be rewarded for using it.
Objectives can usually be determined by when an action
involves removing or adding something to the environment.
There should not be too many actions that are rewarded while
completing an objective. For example, moving towards a
position in the environment is not completing an objective but
completion occurs when the agent actually reaches the position.
Objectives are defined as something a skill is attempting to
accomplish, so successfully using a skill leads to a large reward.

IX. CONCLUSION

In this paper we propose the Bootcamp skill-based approach
to designing agents and hypothesize that the correct training and
use of skills results in agents that are more general purpose,
capable of solving different tasks. We implemented this
approach using the A3C method to create a generalist ViZDoom
agent that can use sensor vectors instead of images. The use of

7

A3C, ViZDoom, and sensor-vector based inputs are part of the
experimental apparatus used to evaluation our hypothesis.
Furthermore, we proposed a method of structured training that
improves skillnet agent performance in novel environments. We
found that skillnet agents outperform DQNs and that Bootcamp
agents outperform the average skillnet agent.

One weakness with this approach is that it depends on the
skills given to the agent. Skills may not always generalize to
other environments, and the agent might have a substantial
learning curve. Furthermore, the skillnet is still dependent on
having a comparable environment. For example, the Bootcamp
agent based on ViZDoom will have no idea what to do if placed
in a Cartpole like environment.

Note that specialized agents can outperform the Bootcamp
agent in certain scenarios. For task 4 if you trained a specialized
skillnet from scratch with the same reward function, the agent
will perform similar to the Bootcamp agent especially if it is
trained longer. But one of the benefits of the Bootcamp agent
approach is to remove this need to train a specialized agent for
each new task.

For future work, we would like to apply the approach to
image-based environments such as Obstacle Tower [25], ALE,
or even more ViZDoom tasks. There are also many policy
optimization techniques that could be further explored such as
proximal policy optimization (PPO) [24] which could help
improve performance.

REFERENCES

[1] M. Kempka, M. Wydmuch, G. Runc, J. Toczek and W. Jaskowaski,
"ViZDoom: A Doom-based AI Research Platform," in Proceedings of
IEEE Conference of Computational Intelligence in Games 2016,
Santorini, 2016.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver and K. Kavukcuoglu, "Asynchronous Methods for Deep
Reinforcement Learning," in ICML, New York, 2016.

[3] "A3C," [Online]. Available: https://paperswithcode.com/method/a3c.

[4] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G.
Barth-Maron, M. Gimenez, Y. Sulsky, J. Kat, J. T. Springenberg, T.
Eccles, J. Bruce, A. Razavi, A. Edwards and N. Heess, "A Generalist
Agent," Transactions on Machine Learning Research, 2022.

[5] J. Dean, "Introducing Pathways: A next-generation AI architecture,"
Google, 28 Oct. 2021. [Online]. Available:
https://blog.google/technology/ai/introducing-pathways-next-
generation-ai-architecture/.

[6] Y. Du, G. Warnel, A. Gebremedhin, P. Stone and M. E. Taylor, "Lucid
Dreaming for Experience Replay: Refreshing Past States with the
Current Policy," Neural Computing and Applications, vol. 34, no. 3,
2020.

[7] R. Golden, J. E. Delanois, P. Sanda and M. Bazhenov, "Sleep prevents
catastrophic forgetting in spiking neural networks by forming a joint
synaptic weight representation," PLOS Computational Biology, vol. 18,
pp. 1-31, 18 Nov. 2022.

[8] B. Zhang, Y. Guo, Y. Li, Y. He, H. Wang and Q. Dai, "Memory Recall:
A Simple Neural Network Training Framework Against Catastrophic
Forgetting," IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 5, pp. 2010-2022, 2 Aug. 2022.

[9] D. L. Silver, Q. Yang and L. Li, "Lifelong Machine Learning Systems:
Beyond Learning Algorithms," AAAI Spring Symposium - Technical
Report, Mar. 2013.

[10] R. Saxena, J. L. Shobe and B. L. McNaughton, "Learning in Deep
Neural Networks and Brains With Similarity-Weighted Interleaved
Learning," Proceedings of the National Academy of Sciences, vol. 119,
pp. 1-11, 27 June. 2022.

[11] N. C. Abildgaard and T. L. Jacobsen, "Solving Complex Problems with
Deep Multi-Level Skill Hierarchies," Aalborg University, 2021.

[12] A. Levy , G. Konidaris, R. Platt and K. Saenko, "Learning Multi-Level
Hierarchies with Hindsight," in ICLR, 2019.

[13] F. Davesne and C. Barret, "Reactive Navigation of a Mobile Robot
Using a Hierarchical Set of Learning Agents," in Proceedings 1999
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients (Cat. No.99CH36289), 1999.

[14] S. Huang, H. Su, J. Zhu and T. Chen, "Combo-Action: Training Agent
for FPS Game with Auxiliary Tasks," in Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

[15] J. Togelius and G. N. Yannakakis, "General General Game AI," in 2016
IEEE Conference on Computational Intelligence and Games (CIG),
Santorini, Greece , 2016.

[16] S. Song, J. Weng, H. Su, D. Yan, H. Zou and J. Zhu, "Playing FPS
Games With Environment-Aware Hierarchical Reinforcement
Learning," in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, (IJCAI-19), 2019.

[17] F. Zhang , D. Tang, Y. Dai, C. Zhou, S. Wu and S. Shi, "SkillNet-NLU:
A Sparsely Activated Model for General-Purpose Natural Language
Understanding," arXiv, 7 Mar. 2022.

[18] C. Tessler, S. Givony , T. Zahavy, D. J. Mankowitz and S. Mannor, "A
Deep Hierarchical Approach to Lifelong Learning in Minecraft," in
AAAI, 2017.

[19] Y. Wu and Y. Tian, "Training Agent for First-Person Shooter Game
with Actor-Critic Curriculum Learning," in International Conference on
Learning Representations, 2017.

[20] H. Rho, Y. Yu and K. Lee, "Learning to Box: Reinforcement Learning
using Heuristic Three-step Curriculum Learning," in 2022 22nd
International Conference on Control, Automation and Systems
(ICCAS), 2022.

[21] I. Kodaka and F. Saitoh, "A Study on Application of Curriculum
Learning in Deep Reinforcement Learning : Action Acquisition in
Shooting Game AI as Example," in 2021 IEEE 12th International
Workshop on Computational Intelligence and Applications (IWCIA),
Hiroshima, Japan, 2021.

[22] D. Zhang, W. Bao, W. Liang, G. Wu and J. Cao, "A Curriculum
Learning Based Multi-agent Reinforcement Learning Method for
Realtime Strategy Game," in 2022 8th International Conference on Big
Data and Information Analytics (BigDIA), 2022.

[23] "A2C," [Online]. Available: https://paperswithcode.com/method/a2c.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov,
"Proximal Policy Optimization Algorithms," arXiv, 2017.

[25] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper , E. Teng , H. Henry , A.
Crespi , J. Togelius and D. Lange, "Obstacle Tower: A Generalization
Challenge in Vision, Control, and Planning," in IJCAI, 2019.

8

