
Hybrid deep learning approach to improve 
classification of low‑volume high‑dimensional 
data
Pegah Mavaie1, Lawrence Holder1† and Michael K. Skinner2*† 

Introduction
With the progress of machine learning (ML) in the past few decades, ML has become 
a prominent solution for different applications including image classification [1], 
text mining [2], bioinformatics [3, 4], and activity recognition [5]. Learning accurate 
models requires generation of informative features. In many datasets, this process 
is labour intensive and requires significant domain knowledge to identify relevant 
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features. In the case of high-dimensional data, feature generation is even more chal-
lenging due to the high computation cost of evaluating the potentially exponential 
number of different feature sets. Another challenge in many settings (e.g., genomic 
datasets) is class imbalance due to the low frequency of phenomena of interest (e.g., 
disease states). Fewer training examples of the class of interest further complicates 
the learning process. One commonly-accepted relationship between sample size n 
and number of features or dimensions d to avoid overfit is for d <

√
n [6]. For the 

datasets used in this work (see Table 1), d >
√
n , so the use of a smaller number fea-

tures will tend to improve classification performance.
Deep learning (DL) as a part of machine learning has improved the predictive 

model performance since the early 2000s [7] by automatically extracting, analysing, 
and understanding useful information directly from the raw data. A major strength 
of deep learning networks (DNNs) is their ability to generate increasingly complex 
features as the inputs to one layer are combined using a variety of functions (e.g., con-
volution) and passed to the next layer. The result is a set of highly complex features 
that are used to perform the learning task. One of the advantages of deep learning 

Table 1 Summary of datasets and best predictive model

For each dataset, the number of available samples, number of classes, and number of features are shown. The Gene 
Promoter features use a one‑hot encoding of 57 base‑pairs, each one of four values [a, c, g, t]. The Best Predictive Model is 
shown along with the number of blocks and the feature extraction layer. The Best Accuracy for this model is also shown. The 
class frequencies are given in the last column

Dataset #Samples #Classes #Features Best predictive 
model

Best accuracy Class frequency

WISDM 27,452 6 320 Hybrid (1-block, layer: 
5)

0.793 Walk 4588

Upstairs 4416

Downstairs 4438

Sit 4678

Stand 4698

Jog 4634

HAR 10,299 6 561 Hybrid (5-blocks, layer: 
10–12)

0.925 Walk 1722

Upstairs 1544

Downstairs 1406

Sit 1777

Stand 1906

Lie 1944

Amazon 1000 2 100 Hybrid (3-blocks, 
layer: 5)

0.797 Review > 2 500

Review ≤ 2 500

Yelp 1000 2 100 Hybrid (3-blocks, 
layer: 2)

0.776 Review > 2 500

Review ≤ 2 500

IMDb 748 2 100 Hybrid (3-blocks, 
layer: 5)

0.797 Review > 2 374

Review ≤ 2 374

Gene Promoter 106 2 57 × 4 Hybrid (3-blocks, 
layer: 1)

0.952 Promoter 53

Non-promoter 53
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over machine learning is that it does not require manually extracted or handcrafted 
features and it tries to learn the data representation as part of the training phase.

On the other hand, using DL has its own challenges when it comes to the training of 
the network. First, DL networks usually require a large amount of data to train a strong 
classifier, compared to traditional ML algorithms. This is because the number of param-
eters that need to be learned is much higher than most other learning algorithms. Sec-
ond, DL requires significant hyperparameter tuning. Many of these hyperparameters are 
controlling the training of a DL model, and finding the best settings can take a consider-
able amount of time compared to other ML approaches.

The main contribution of this work is a method for combining deep and non-deep 
learning methods into a hybrid method illustrated in Fig. 1 that outperforms the indi-
vidual methods. The method proceeds by training a supervised DNN for feature extrac-
tion for the targeted classification task and using the extracted feature representation 
from the DNN for training a traditional ML classifier. This approach takes advantage of 
learning a data representation from raw data using DL methods. In addition, feeding the 
learned data representation to the ML classifier helps to decrease the demand of having 
large amounts of data for training the classifier. The hybrid approach can also help to 
increase the interpretability of the DL representation of the data. This is based in part 
on the increased interpretability of the classifications made by decision-tree-based clas-
sifiers, like XGBoost, and its ability to rank features by importance [8]. Interpretability 
of the DL features was also demonstrated by earlier work with the hybrid approach on 
epigenetic data in which DNA motifs based on the important XGBoost features were 
visualized [4]. The results on six different domains show that this hybrid approach can 
outperform DL or ML alone.

Data representation is a crucial factor of the performance in most ML methods 
[9]. For that reason, much of the actual effort in applying ML methods goes into the 

Fig. 1 Simplified diagram of the hybrid model. The raw features provided with the datasets are input 
to the DNN. Real-valued features are input directly, and categorical features are input using a one-hot 
encoding. Each CNN block consists of two CNN layers followed by a max pooling layer. Features are extracted 
from a CNN layer. The CNN blocks are followed by a flattening layer and two dense layers leading to the 
classification. The labeled examples are used for training the network, but the network is not used for the 
final label prediction, as indicated by the dashed box around the DL classifier layers. Features extracted from 
the CNN layer are input to the XGBoost ML classifier for training and final predictions
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design of feature extraction, preprocessing and data transformation steps. Representa-
tion learning is the acquisition of data representations that facilitate the extraction of 
relevant information for building classifiers and predicting outcomes. When using 
probabilistic models, a suitable representation commonly encompasses the posterior 
distribution of the explanatory factors that influence the input data. An appropriate rep-
resentation also serves as input for a supervised predictor [10]. Among feature extrac-
tion algorithms, Principal Components Analysis or PCA is one of the oldest and most 
widely used approaches [11, 12]. Unfortunately, the expressive power of linear features is 
limited; they cannot be stacked to form deeper, more abstract representations since the 
composition of linear operations yields another linear operation. Goodfellow et al. [13] 
have found that distributed and sparse representations are the typical ways to achieve 
more expressiveness compared to non-sparse representations such as PCA.

Hinton et al. [14] used a hierarchical set of features, using an unsupervised representa-
tion learning method to learn a transformation, where in each iteration of unsupervised 
representation learning, the method stacks one layer of weights to a deep neural net-
work. Then, the set of layers could be used as a combination for initializing a deep super-
vised predictor, such as a neural network classifier, or a deep generative model, such as a 
Deep Boltzmann Machine [9, 10, 15].

The topological structure of input dimensions, such as the layout of pixels in images, 
the structure of videos, and the sequential structure of text, can be utilized to define 
local receptive fields. These fields allow for computing low-level features from a subset 
of the input, with a sparse weight matrix and non-zeros only allowed for topologically 
local connections. The convolutional network is based on this idea and has been used for 
object recognition and image segmentation. The architecture of convolutional networks 
is argued to be used by mammalian brains for object recognition [16].

The representation extracted from the DL network can be fed into another neural net-
work classifier, or it can be used as features in a traditional ML classifier. Incorporating 
a traditional ML classifier can be helpful when there are limited examples for training a 
DL network. Results show that feature extraction from earlier layers in the DL network 
typically outperforms feature extraction from the last layer of the DL network, which is 
a common technique in hybrid approaches. Therefore, this hybrid approach can reduce 
the number of learning parameters and the complexity of the networks.

Related work
Previous work has shown that a hybrid approach can improve performance in several 
domains. Tsai and Wang [17] combine a neural network and a decision tree to predict 
stock prices. Wan et al. [18] replace the final layer of a neural network with decision 
trees, called neural-backed decision trees, which improves performance on image 
recognition tasks and takes advantage of the interpretability of decision tree classi-
fiers. Kong and Yu [19] use a random forest decision tree classifier to identify relevant 
features in the sparse learning scenario, where the number of features exceeds the 
number of training examples. The features are then input to a deep neural network 
to avoid overfitting. Their approach improved performance on gene expression clas-
sification tasks. Kontschieder et al. [20] use random forest decision trees to initially 
route data to an appropriate subnetwork, which reduces the variance in the data 
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before classification by the network. Their approach achieved state-of-the-art perfor-
mance on several image classification tasks. Grover et al. [21] use a hybrid approach 
to improve performance on modeling a set of weather variables. Their approach uses 
the outputs of traditional predictors of the variables as input to a neural network to 
refine those predictions. Wang et  al. [22] linearly combine the predictions of three 
models (neural network, support vector regression, and decision tree) to predict the 
outcomes of optimizations to a plasma arc process for reforming tar. Qaid et al. [23] 
develops deep- and transfer-learning techniques to detect COVID19 using Convolu-
tional Neural Networks (CNNs), transfer learning, and ML techniques. Akhtar et al. 
[24] use a CNN for generating a set of optimized features and use a Support Vector 
Machine (SVM) as the classifier.

Other hybrid approaches have combined CNNs with the XGBoost classifier, as pro-
posed here, but by adding XGBoost after the last layer of the CNN, which does not con-
sider feature extraction from an earlier layer. Thongsuwan et al. [25] combine the two 
methods by adding XGBoost as the last layer of the CNN and show that the combined 
approach outperforms either method alone on several datasets. However, their method 
considers only the last layer of the CNN from which to extract features, but our results 
show that the last layer is usually not the best layer for feature extraction. Ren et al. [26] 
also combine the two methods by adding XGBoost after the last layer of the CNN and 
show performance competitive with other hybrid and non-hybrid approaches on two 
benchmark image datasets. Zivkovic et  al. [27] combine the two methods by adding 
XGBoost after the last of three dense layers in the CNN. Their approach does perform 
some parameter optimization, including the number of CNN layers, which effectively 
varies the last layer from which features are extracted, but without training the CNN 
along with additional deeper layers, as in our approach. Their approach showed superior 
performance on a COVID-19 X-ray image dataset. Li et al. [28] use features for XGBoost 
extracted from the output of a linear layer after the CNN layers. However, one novelty to 
their approach is the combination of features from the second CNN block along with the 
last layer, which together are input to the final linear layers of the CNN. Their approach 
outperformed competing approaches, including CNN and XGBoost alone, on a social 
media prediction task of user interest in posted images.

The hybrid approach has demonstrated success in numerous domains by combin-
ing the strengths of deep learning and traditional machine learning methods. Several 
combination approaches have been used, including sequential staging of the under-
lying methods, ensembles of parallel predictions, and integration of one method 
inside another. The hybrid approach proposed here is novel in that the traditional ML 
model is used as the basis for predictions, but the features used by the ML model are 
extracted from an internal layer of a DL model trained to perform the same predic-
tion task independent of the ML model training.

In this work, we propose a hybrid model for a general classification task that yields 
better performance in most of the cases compared to standalone ML or DL models. 
The hybrid approach trains a DL network to extract a data representation from the 
raw data and uses the extracted features for training an ensemble-based ML classifier. 
The model is used for supervised learning tasks, so the extracted data representation 
is with respect to the labels of the classification task.
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Results
The hybrid model is evaluated on six different datasets summarized in Table  1 and 
described in more detail in the Methods section. The results are shown in Figs. 2, 3, 4, 5, 
6, 7 and 8. Three different aspects of the hybrid model performance are assessed: (1) The 
performance of the predictive models, (2) the ability to add handcrafted features to the 
ML classifier besides CNN extracted representation, and (3) the reliability of the hybrid 
model on larger datasets. The first scenario measures the quality of the hybrid approach 
using different data representations. The accuracy score is used to evaluate the perfor-
mance of the predictive models using different sets of features. The models are trained 
using 80% of the dataset, and then the accuracy is computed by testing the model on the 
remaining 20%. The accuracy metric is used due to the generally balanced class distribu-
tion of the datasets, as shown in Table 1. The CNN model is used for feature extraction 
as a benchmark classifier to evaluate the power of the hybrid learner. Also, two different 
hybrid approaches are used as benchmark classifiers. Qaid et al. [23] uses a pre-trained 
Visual Geometry Group (VGG) model as the feature learner and an XGBoost as a classi-
fier (VGG + XGBoost), and we use another hybrid model that uses a VGG for data rep-
resentation and an SVM as the classifier (VGG + SVM). These benchmarks are modified 
to make the models applicable to these datasets. In addition, the parameters of the CNN 
are tuned to optimize performance. In iterative steps, convolutional blocks are added to 
the CNN, the model is retrained, and features are extracted from all the possible options 
to measure their effects on the performance. The addition of CNN blocks is terminated 
when accuracy no longer improves. Finally, the accuracy of the hybrid model is reported 
on the different datasets.

Fig. 2 Accuracy of different models on the WISDM dataset. The first position along the X-axis shows the 
accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid models, 
where features are extracted from different layers of the hybrid network. Asterisks in the legend indicate 
models not applied to this dataset
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Fig. 3 Accuracy of different models on the HAR dataset. The first position along the X-axis shows the 
accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid models, 
where features are extracted from different layers of the hybrid network. Asterisks in the legend indicate 
models not applied to this dataset

Fig. 4 Accuracy of different models on the Amazon dataset. The first position along the X-axis shows the 
accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid models, 
where features are extracted from different layers of the hybrid network. Asterisks in the legend indicate 
models not applied to this dataset
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Fig. 5 Accuracy of different models on the IMDb dataset. The first position along the X-axis shows the 
accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid models, 
where features are extracted from different layers of the hybrid network. Asterisks in the legend indicate 
models not applied to this dataset

Fig. 6 Accuracy of different models on the Yelp dataset. The first position along the X-axis shows the 
accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid models, 
where features are extracted from different layers of the hybrid network. Asterisks in the legend indicate 
models not applied to this dataset
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Another ability of the hybrid approach that can be assessed is that the handcrafted fea-
tures can be used in the ML classifier alongside the CNN-extracted features. Therefore, 
to evaluate the impact of adding handcrafted features, we compute the accuracy score 
for different CNN-extracted features with handcrafted features or without them using 
XGBoost and compare the accuracy of the model using those different types of features.

The other motivation for the hybrid approach was that using an ML classifier reduces the 
demand for having extensive data samples that traditional DL models need to perform well. 
So, for better insight into the performance of the hybrid method, one can gradually increase 

Fig. 7 Performance of different models on the larger IMDb Extended dataset using different size training 
samples. The hybrid model achieves better accuracy at lower sample sizes, but the DL-alone model does 
achieve hybrid-level performance with sufficient samples

Fig. 8 Accuracy of different models on the Gene Promoter dataset. The first position along the X-axis shows 
the accuracy of all the non-hybrid models. The remaining positions show the performance of the hybrid 
models, where features are extracted from different layers of the hybrid network. Asterisks in the legend 
indicate models not applied to this dataset
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the number of training samples and monitor the accuracy until the CNN model chosen 
as our benchmark matches the performance of the hybrid model. For this experiment, a 
larger dataset with more training samples is needed, in this case, an extended version of the 
internet movie database (IMDb) dataset with 50,000 samples. The training sample size pro-
vided to each method is increased from 400 to 40,000 while monitoring the CNN accuracy 
and the hybrid accuracy. For choosing the right data representation from the CNN model, 
features are extracted from all the possible layers, XGBoost is then trained using each rep-
resentation, and the best accuracy score is reported.

Results for activity recognition models

Figure 2 shows the results for the WISDM dataset. The most informative data representa-
tion is extracted from the output of the sixth layer. Also, the best option for the feature 
learner model is a one-block CNN network. We increase the number of blocks for each 
model until the accuracy is not improved. The best feature representation for these activity 
recognition datasets lay on the upper layers which represent more high-level features. For 
this dataset, the DL-alone model with three blocks achieves similar accuracy to the hybrid 
model, but this occurs only for this dataset.

Figure  3 shows the performance of different models on the HAR dataset. The hybrid 
model outperforms other models. The best performance results from the features input to 
XGBoost that are extracted from the tenth layer of a five-blocks CNN model.

Results for sentiment analysis models

For sentiment analysis, Figs.  4, 5 and 6 show the results for Amazon, IMDb, and Yelp 
respectively. In each case the best performance is achieved by the hybrid approach with 
the three-block CNN and with features extracted from the seventh layer. In addition, the 
same experiments show that adding handcrafted features to the hybrid approach does not 
improve accuracy.

Figure 7 shows how increasing the number of training samples affects the performance 
of the DL-alone and hybrid models for the extended IMDb dataset. The DL-alone perfor-
mance increases with sample size. This is because the DL-alone model has 4.3 million train-
able parameters, and increasing the number of training samples results in a more robust 
classifier. As shown in the Fig. 7, the DL-alone and hybrid performance are comparable at 
larger sample sizes.

Results for genomic model

Figure 8 shows that the hybrid models far exceed the performance of other models, includ-
ing XGBoost with handcrafted features, whose accuracy is 0.51, and three-block CNN, 
whose accuracy is 0.47 and therefore not shown on the plot. Best performance is achieved 
by the hybrid approach using a three-block CNN and extracting features from one of the 
first three layers.

Discussion
Overall, the results show that the hybrid approach outperforms the DL network alone 
and the non-deep learning XGBoost ML approach. Furthermore, the use of handcrafted 
features either as additional inputs to the hybrid approach or with XGBoost does not 
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improve performance. This indicates that the features extracted from the DL network 
are superior to the handcrafted features. Yet the DL network trained alone, though it 
is using the same features, performs worse than the hybrid approach. This is due to the 
small sizes of the training sets (low volume). But as Fig. 7 shows, the performance of the 
DL network alone will likely reach the hybrid performance given enough training data.

The best predictive hybrid model for each dataset described in Table  1 yields some 
insights into the decision of the number of blocks to include in the hybrid model and the 
layer from which to extract the features. The WISDM dataset, having the highest num-
ber of training examples, needs only a one-block network to achieve best performance, 
but still a higher (deeper) layer from which to extract complex features built from the 
original 320 features. As observed in Fig. 2, the two-block CNN DL-alone network is still 
capable of achieving top performance without the hybrid approach. For the remaining 
datasets having fewer examples than the WISDM dataset, the hybrid approach is supe-
rior. The best hybrid models for the last four datasets in Table 1 require fewer blocks 
because they have fewer features; whereas the HAR dataset requires more blocks due to 
the much higher feature count. The WISDM dataset defies this trend due to the much 
higher sample size. Therefore, the number of blocks resulting in the best performance 
may be correlated with the number of features, as higher numbers of features require 
more blocks when fewer samples are available. Similarly, the feature extraction layer 
is deeper with higher dimensional datasets indicating that more complex features are 
needed to properly represent the data. The number of blocks in the best hybrid model 
may also be influenced by the number of classes in the dataset. Two-class problems are 
generally easier than six class problems, assuming similar sample volume and dimen-
sionality. So, the two-class problems tend to require few blocks (less deep networks), 
although this trend is confounded by the varying numbers for samples and features.

Simpler feature generation methods, like PCA, may provide similar performance to 
the hybrid approach in some cases, but the goal here is to avoid having different meth-
ods for different datasets. For example, in the case of the Gene Promoter results in Fig. 8, 
while the best performing features are extracted from early layers, the features from 
these layers are still complex, non-linear features compared to the linear orthogonal 
features computed by PCA. Also, PCA is an unsupervised method; whereas, the hybrid 
approach learns features in a supervised setting. So, the features will be more correlated 
to the class rather than merely maximizing variance. Still, a comparison between CNN-
XGBoost and PCA-XGBoost would help to identify when, and to what extent, the com-
plexity of the CNN is needed.

Although an advantage of the hybrid approach is less dependence on handcrafted 
features, performance on the HAR dataset compared to the WISDM dataset provides 
a good example of the benefits of handcrafted features. Both datasets have the same 
classes and collect similar low-level sensor data. But the HAR dataset uses derived fea-
tures (total acceleration, body acceleration, total angular velocity, and both time and fre-
quency domain features). The WISDM dataset uses only the original acceleration and 
rotation features. Accuracy on the HAR dataset (Fig. 3) is generally higher in the 89%-
92% range compared to the similar task on the WISDM dataset with accuracies ranging 
from 75 to 80% (Fig. 2). Still, the hybrid accuracy at 92% was able to improve upon the 
89% accuracy of the non-hybrid DL-alone (four-block CNN). In the other four datasets 
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(Amazon, IMDb, Yelp, Gene Promoter), models with and without handcrafted features 
are compared directly. In each case, the best hybrid model without handcrafted features 
outperforms both the hybrid and non-hybrid models with handcrafted features. There-
fore, the hybrid approach can improve performance whether the data is represented 
using raw or handcrafted features, which reduces the user’s burden for both manually 
generating features and choosing the best type of machine learning model for the task.

Conclusions
The hybrid learning approach extracts features from a deep network and uses them 
within a non-deep learning method to perform classification. Results from several 
domains show that this hybrid approach outperforms standalone deep and non-deep 
learning methods. Hybrid models were trained with different parameters to find the best 
set of data representations. Even though the feature extraction layer resulting in the best 
performing model varies across different datasets, the results show that extracting fea-
tures from higher levels can perform well. Table 1 shows the summary of all the datasets 
and the performance of the best models. Results show that there is at least one data rep-
resentation that outperforms an ML or DL baseline model for all tested datasets.

Since the best model in each dataset varies in terms of the size of the underlying DL 
network and the layer from which features are extracted, a next step in this work is to 
identify a method for estimating these optimal parameters based on properties of the 
dataset. More generally, there is a need to identify the types of datasets for which the 
hybrid model is superior, especially datasets for which increasing numbers of training 
examples does not close the performance gap between the hybrid model and DL alone. 
The initial results indicate that the hybrid model will be superior for small, sequence-
based, high-dimensional datasets.

Methods
Representation learning using a DNN requires a large set of training examples [10]. This 
is the main motivation for this study to use a DNN as a representation learner and a tra-
ditional ML algorithm as a classifier. A DNN is trained on the original training examples, 
but for the classification task, an ML classifier uses the output from a layer of the DNN 
as the feature set. The ML model is fit on re-expressed input which is extracted from 
the DNN. Choosing the right layer for extracting the data representation is vital in the 
performance of the ML model. The proposed hybrid model shown in Fig. 1 is a general 
approach that can be used in different classification domains. This framework contains 
two main components: a Deep Neural Network (DNN) and a traditional ML classifier, 
described below.

The hybrid approach is evaluated on six datasets summarized in Table 1. Each data-
set requires some modifications to the models based on the original features used to 
describe the data and the number of classes to choose from for classification. Each data-
set and the associated modifications are also described below.

Deep neural network classifier

The role of the DNN component is to learn a representation of the input data by con-
structing complex features guided by supervised training on the target learning task. The 
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convolutional neural network (CNN) was chosen in this work due to its success in mul-
tiple, diverse domains and its strength in generating complex features. CNNs are used in 
many domains such as image classification [29], object recognition [30], activity recogni-
tion [31], and many other applications. CNNs have multiple abstractions of levels that use 
a non-linear model to transform the original data into higher abstract levels and non-linear 
functions. The proposed CNNs in this work contain several convolutional blocks and fully 
connected layers. A CNN has a hierarchical architecture. Starting from the input signal x , 
each subsequent layer xj is computed as:

where ρ is a non-linearity operator and Wj is a linear operator.
Each convolutional block consists of two convolutional layers followed by a max-pooling 

layer. These layers serve to generate new complex features based on the input sequence and 
reduce the dimension of the previous convolutional layer for input into the next convolu-
tional layer. These blocks allow features to be constructed independently of their position 
in the input sequence. Convolutional layers are using ReLU as their activation function. The 
output of ReLU function is computed as:

A batch-normalization layer is used after each convolutional layer. This step regulates the 
value of activation. The learning rate can be safely increased to accelerate the learning pro-
cess, reduce overfitting, avoid activation function saturation and gradient vanishing, and 
increase the stability of the network [32]. For each convolutional layer, we need to decide 
the number of filters and the kernel size. The first convolutional layer does not use padding, 
but the second one uses padding to conserve the size of the output.

After two convolutional layers, a max-pooling layer is used to reduce the number of fea-
tures and the spatial dimension of the activation maps without loss of information. It also 
helps to prevent overfitting. At the end of each block, a dropout layer randomly drops neu-
rons from the network and further helps the network to overcome the overfitting problem 
by reducing the number of parameters.

After the convolution-max-pooling blocks, there is a classifier block, which contains two 
dense layers and a classifier layer. Dense layers connect all the neurons in one layer to all 
neurons of the next layer. Dense layers combine high dimensional feature maps and map 
them into one dimensional vectors. They also use error back-propagation based on cor-
relation to the final classification. The first dense layer contains 256 nodes, and the second 
dense layer contains 128 nodes. The classifier layer is a dense layer whose outputs are fed 
to a SoftMax activation function to make the final classification. The SoftMax function for 
input vector z and k classes is computed as:

The loss function is binary cross-entropy (BCE) which is computed as:

xj = ρWjxj−1

Relu(x) = max(0, x)

σ(zi) =
ezi

k
j=1 e

zj

BCE = −(ylog(p)+
(

1− y
)

log(1− p))
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where y is the binary indicator of the correct classification and p is the predicted prob-
ability of the class. To prevent overfitting the validation loss value is monitored. If the 
value does not decrease after 10 epochs the training process is terminated.

Machine learning classifier

Traditional ML methods have two advantages over DL methods. First, ML methods 
typically require significantly fewer training examples than DL methods to achieve simi-
lar performance. This is mainly due to ML methods’ inherent representational bias (e.g., 
decision trees) and requirement for user-provided features that serves to narrow the 
space of potential ML models compared to the much larger space of potential DL mod-
els. However, fewer training examples are needed to learn a representative set of features 
by the DL model, and these features can then be extracted for use in the ML model; 
thus, satisfying the requirement for relevant features. Second, traditional ML methods 
typically provide more interpretation behind a particular classification. For example, a 
decision tree can provide the sequence of decisions made to reach the final classification.

Another challenge for both ML and DL methods is class imbalance, where one class 
occurs with much higher frequency than another class in the data. Two main approaches 
to address class imbalance are bagging and boosting. In the bagging method, multiple 
models are generated based on random samples of the training data or the feature set. 
The final classification is based on a majority vote of all the models [33]. Random For-
est [34] is one of the best performing bagging methods. Random Forest constructs an 
ensemble of decision trees, where each tree is built using a random subset of the avail-
able features.

The boosting approach to class imbalance also constructs an ensemble of models, 
but in a sequence, where each model in the sequence is biased to avoid the errors made 
by the previous model. XGBoost [35] is one of the best performing boosting methods. 
XGBoost constructs an ensemble of decision trees and uses gradient boosting, where 
new models are biased toward predicting the gradient in the errors of previous mod-
els. Several studies have shown that XGBoost typically outperforms Random Forest, 
so XGBoost is used here as the ML classifier component of the hybrid approach. As an 
added benefit, since the member models of an XGBoost ensemble are decision trees, 
XGBoost can provide a ranking of features based on a feature’s information gain, i.e., 
ability to partition the data into more homogeneous sets. This importance ranking on 
features helps to identify which properties of the data are most highly correlated with 
the classification.

XGBoost was chosen based partly on its superiority on imbalanced problems, since 
that was an issue in our previous epigenetics dataset [4]. XGBoost was also chosen due 
to its use of decisions trees that support feature selection, better interpretation of the 
classifications, and generally good performance on diverse domains. But the class imbal-
ance strength is not exercised in this study to focus on the systematic evaluation of the 
hybrid nature of the approach. Additional future experimentation including imbalanced 
datasets would be instructive.

Let us assume that the features for training the XGBoost classifier are extracted from 
the output of the second convolutional layer. The new representation for the input fea-
tures y is computed as:
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 where F  is the number of filters, yi is the output corresponding to the jth convolution 
filter, Wj is the weights of the jth filter, and bj is the jth bias.

The version of XGBoost used in this work is Python version available at https:// github. 
com/ dmlc/ xgboo st. The default parameters are used with no optimization due to the 
overall intent to provide a general-purpose hybrid solution that does not rely on optimi-
zation per dataset.

Activity recognition datasets

Data collected from body-worn sensors give scientists a better insight to study human 
behaviour [5]. But extracting features and data processing for these signal-type data are 
expensive. Here we consider two activity recognition datasets to evaluate the hybrid 
approach. The two activity recognition datasets used are HAR and WISDM, summa-
rized in Table 1.

The first dataset for evaluating the performance of the model is the WISDM human 
activity recognition dataset from University of California at Irvine (UCI) [36]. The full 
dataset contains accelerometer and gyroscope data collected from 51 test subjects, some 
from smartphones and some from smartwatches, performing 18 different activities. 
From this dataset we used just the accelerometer data taken from the smartphone users 
conducting six of the most frequent activities in the data: sitting, standing, upstairs, 
downstairs, walking, jogging. For each activity, the acceleration for the x, y, and z-axis 
was captured with a timestamp. Thirty-six people were involved in the data collection 
process. The data contains six different labels and 27,452 samples. We split the data into 
two subsets for this experiment: 80% randomly chosen for training (20% of the training 
data is for validation), and the remaining 20% for testing. Training sample size is 20,868, 
and the testing sample size is 6,584. As part of the pre-processing step, we convert all the 
features into normalized floating-point numbers and convert the string class labels to 
integers. There are two parameters for creating each sample from continuous data: the 
number of steps for one time segment (time-period), which is set to 80, and the steps to 
take from one segment to the next (time-step), which in this experiment is 40. If these 
two values are equal, then there is no overlap between the segments. The time step of 80 
results in 80 * 4 = 320 features per example.

The second chosen data set is Human Activity Recognition (HAR) using smartphones 
dataset from UCI [36]. The data is collected among a group of 30 volunteers within 
an age bracket of 19–48 years. Each person wore a smartphone at their waist and per-
formed six different activities: walking, walking downstairs, walking upstairs, standing, 
sitting, lying down. The raw accelerometer and gyroscope data taken over a 2.56 s time 

y1 = I ∗Wj + bjforj = 1, 2, . . . , F

y1′ = ReLU(y1)

y2 = y1′ ∗Wj + bjforj = 1, 2, . . . , F

y2′ = ReLU(y2)

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
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window were processed into 561 features for each example. We split the data into two 
subsets for this experiment: 80% randomly chosen for training (20% of the training data 
is for validation), and the remaining 20% for testing. The training samples are 7352 and 
the testing samples are 2947. In the pre-processing phase, all the features are converted 
to floating point numbers and normalized. The labels are converted to integers.

The CNN model used for the activity recognition datasets consists of several convo-
lutional blocks and a dense block. For the first convolutional block, 64 filters are used, 
and the size of each filter is 3. As we add another convolutional block during our experi-
ments, we double the number of filters and keep the kernel size the same. The first con-
volutional layer does not use padding, but the second one uses padding to conserve the 
size of the output. The activation function for each convolutional layer is the Rectified 
Linear Unit (ReLU).

The main network architecture follows the general approach as defined in our earlier 
work [3, 4]. A batch-normalization layer is used after each convolutional layer. After two 
convolutional layers, a max-pooling layer is used to generalize the model; the pooling 
size for the max-pooling layer is 2. At the end of each block, a dropout layer is added 
to the DNN. The dropout rate is 0.4. After the convolution-max-pooling blocks is the 
classifier block, which contains a flattening layer, two dense layers, and a classifier layer. 
The first dense layer contains 256 nodes, and the second dense layer contains 128 nodes. 
Feature weights using error back-propagation are based on correlation to the final clas-
sification. The classifier layer is a dense layer with an output node for the label. SoftMax 
is used for the activation function. The loss function is binary cross-entropy, and the 
network optimizer is the Adam optimizer.

Sentiment analysis datasets

Sentiment analysis, or opinion mining, is the task of finding the opinion of the writer. 
Sentiment analysis is one of the most popular research areas in natural language pro-
cessing (NLP) [37]. We evaluate the effectiveness of the hybrid model on three data sets: 
Amazon, IMDb, and Yelp. These datasets are originally extracted from [38] and summa-
rized in Table 1.

In the pre-processing phase for these datasets, we use the tokenization technique. 
Tokenization is a method to segregate a particular text into small chunks or tokens. A 
tokenizer function is used for vectorizing a text corpus [39]. Each text input is converted 
into a sequence of integers that has a coefficient for each token. The tokenizer function 
is fitted on the text with 10,000 maximum words, and each sample at most contains 100 
words.

The Amazon reviews dataset rates products on a scale from 1 to 5, but the dataset is 
used as a binary classification dataset [36, 40]. If a review is higher than 2, it will be con-
sidered a positive sample, and otherwise, it is a negative sample. The dataset has 1000 
samples that are randomly extracted from Amazon reviews, and the label distribution 
is balanced [36, 38]. We use 80% of the data for training (20% of the training data is for 
validation) and the remaining 20% for the testing process.

The IMDb movie review sentiment dataset was originally introduced by Maas et  al. 
[41]. The dataset rates movies on a scale from 1 to 5, but the dataset is used as a binary 
classification problem [36, 38]. If a review is higher than 2.5, it will be considered a 



Page 17 of 20Mavaie et al. BMC Bioinformatics          (2023) 24:419  

positive sample, and otherwise, it is negative sample. The dataset contains 748 samples. 
We split the data into two subsets for this experiment: 80% randomly chosen for training 
(20% of the training data is for validation), and the remaining 20% for testing. Another 
version of the IMDb reviews dataset is used that contains 50,000 data samples [41]. This 
dataset is used to gradually increase the size of training samples and monitor the perfor-
mance of the hybrid model comparing to the CNN.

The Yelp reviews dataset [42] contains restaurant reviews on a scale from 1 to 5, but 
the dataset is used as a binary classification problem. If a review is higher than 2.5, it 
will be considered a positive sample, and otherwise, it is negative sample. There are 1000 
samples [36, 38]. The label distribution is balanced, so there are 500 positive and 500 
negative samples. We split the data into two subsets for this experiment: 80% randomly 
chosen for training (20% of the training data is for validation), and the remaining 20% for 
testing.

Several modifications were made to the models in order to process the sentiment anal-
ysis datasets. Before the convolutional blocks, we add an embedding at the top of the 
network. Since the input shape is larger and protecting the temporal information can 
be a problem, we choose each filter’s size as 5. In the first convolutional block, 64 filters 
are used, and the size of each filter is 5. As we add another convolutional block during 
our experiments, we double the number of filters and keep the kernel size the same. The 
activation function for each convolutional layer is “ReLU”. After two convolutional lay-
ers, a max-pooling layer is used. The pooling size for the max-pooling layer is 3. At the 
end of each block, a dropout layer is added to the DNN. The dropout rate is 0.4.

After the convolution-max-pooling blocks is the classifier block, which contains a 
flattening layer, two dense layers, and a classifier layer. The first dense layer contains 64 
nodes, and the second dense layer contains 1 node. The classifier layer is a dense layer 
with an output node for the label. Sigmoid is used for the activation function. The loss 
function is binary cross-entropy, and the network optimizer is the RMSprop optimizer.

Genomic dataset

Machine learning continues to improve our ability to analyze genomic datasets, but 
typically requires many handcrafted features. Deep learning has also been successfully 
applied to such datasets but suffers in the face of typically small datasets. Therefore, our 
hybrid approach is well-suited to such domains. As an example, we evaluate the hybrid 
approach on a gene promoter dataset [36]. The gene promoter dataset is a small dataset 
with 106 samples. It is a binary dataset that shows whether a 57 base-pair DNA sequence 
is a member or non-member of the class of sequences with biological promoter activ-
ity. This dataset contains 53 positive instances and 53 negative instances. Each of the 57 
base-pairs is one of [a, c, g, t]. We split the data into two subsets for this experiment: 80% 
randomly chosen for training (20% of the training data is for validation), and the remain-
ing 20% for testing. The dataset properties are summarized in Table 1.

For the genomic dataset the data is one-hot encoded and the input shape for the DNA 
sequences is 57 × 4. We can reduce the size of filters and choose the filter size as 3. In 
the first convolutional block, 64 filters are used, and the size of each filter is 3. As we add 
another convolutional block during our experiments, we double the number of filters 
and keep the kernel size the same. The activation function for each convolutional layer is 
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“ReLU”. After two convolutional layers, a max-pooling layer is used. The pooling size for the 
max-pooling layer is 2. At the end of each block, a dropout layer is added to the DNN. The 
dropout rate is 0.4.

After the convolution-max-pooling blocks is the classifier block, which contains a flatten-
ing layer, two dense layers, and a classifier layer. The first dense layer contains 64 nodes, and 
the second dense layer contains 1 node. The classifier layer is a dense layer with an output 
node for the label. SoftMax is used for the activation function. The loss function is binary 
cross-entropy, and the network optimizer is the Adam optimizer. We use validation set for 
choosing the best optimizer and for the CNN model in genomic model, Adam optimizer 
seems the best option.
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