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Abstract

Exposure to environmental toxicants can lead to epimutations in the genome and an
increase in differential DNA methylated regions (DMRs) that have been linked to increased
susceptibility to various diseases. However, the unique effect of a particular toxicants on the
genome in terms of leading to unique DMRs for the toxicants has been less studied. Oné¢’hugdle
to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a
previously validated hybrid deep-learning cross-exposure prediction model i§ trained per
exposure and used to predict exposure-specific DMRs in the genome. Given these predicted
exposure specific DMRs, a set of unique DMRs per exposure can beddentified. Analysis of these
unique DMRs through visualization, DNA sequence motifynatching, and gene association
reveals known and unknown links between individual exposures and their unique effects on the
genome. The results indicate the potential abilit§to define exposure-specific epigenetic markers
in the genome and the potential relative impactofidifferent exposures. Therefore, a
computational approach to predict eXposure specific transgenerational epimutations was
developed and supported the gxpestre specificity of ancestral toxicant actions, as well is provide

epigenome information efithe DMR sites predicted.
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Introduction

Epigenetics studies the alterations to subsequent protein expression and gene expression
that do not change the DNA sequence [1]. Epigenetics is defined as “molecular processes and
factors around DNA that regulate genome activity, independent of DNA sequence, and are
mitotically stable. Epigenetic changes typically involve the induction, repression, or silenéing of
gene expression through epigenetic modifications such as DNA methylation, non<goding RNA
(ncRNA), chromatin structure, and histone modifications [2].

One of the most studied epigenetic modifications of DNA is DNA methylation, but much
remains to be learned about the underlying mechanisms. DNA meth¥lation refers to the addition
of a methyl group to the fifth carbon of primarily cytosine“at a CpG nucleotide site [3]. This
process can modify gene expression without changing the DNA sequence. In addition, studies
show that DNA methylation influences the expgession of genes and the regulation of protein
binding [4]. These alterations in epigeneticSydévelop gene expression patterns that can cause
adverse clinical outcomes, such asWallergies, obesity, schizophrenia, cancer, or Alzheimer’s
disease, to name a few [5, 6].

Although the DNAysequence does not change with environmental effects, the governing
methylation dramaftically alters in response to the environment [5]. Environmental epigenetics is
the main moleculag mechanism that helps to promote phenotypic and physiological alterations
[7, 8]. WVarious environmental factors such as nutrition, stress, or exposure to toxicants can alter
the epigenome [9]. In addition, environmental factors early in development can permanently
change the cellular molecular function, impacting later life diseases or phenotypes [7].

Examples of transgenerational inheritance are well studied in the literature. Many
environmental toxicants have been shown to correspond to the transgenerational inheritance of

increased disease susceptibility. For example, atrazine is a common herbicide in the US and can
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cause the deterioration of multiple organs in animals [10]. Atrazine increases the risk of testis
disease, kidney disease, prostate disease, and an altered age at puberty [11]. Glyphosate is
another commonly used herbicide in the US that is capable of inducing the transgenerational
inheritance of disease and germline (e.g., sperm) epimutations [12]. Pesticides increase the risk
of developing neurodegenerative diseases, including Parkinson’s disease, Alzheimers diSease,
attention deficit hyperactivity disorder (ADHD), and amyotrophic lateral sclerosis“CALS) [13-
15]. DDT is a risk factor for obesity transgenerationally and also induces ghcteased rates of
testis, ovary, and kidney pathologies [16, 17]. Various environmental foxicant exposures
increase the risk of different diseases. Predicting regionshof the/ genome susceptible to
developing into transgenerational epimutations will improve the ability to diagnose and prevent
these diseases.

Previous work [18] shows that a hybrid%degp machine learning (DL-ML) model can
accurately predict a DNA region’s likelihood tozbe differentially methylated (DMR) as a result of
ancestral exposure to nine emvirommental toxicants: atrazine [11], dichloro-diphenyl-
trichloroethane (DDT) [19]4glyphesate [20], vinclozolin [21], pesticides permethrin and N,N-
diethyl-meta-toluamide/(DEET) [22], dioxin [23], jet fuel [24], methoxychlor [25], and plastics
bisphenol A and phthélates [26]. The hybrid DL-ML model (see Figure 1) takes advantage of
the deep learning ngtwork’s ability to learn complex features from input DNA sequences, while
the MLUmodel overcomes the weakness of the DL model due to fewer training examples by
usingsthe DL features as input to a boosted random forest classifier. Using the hybrid DL-ML-
based model helps identify DMRs across the whole genome beyond those revealed in the

training samples.
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However, learning a model to predict DMRs across all exposures can cause over-
generalization [18]. One approach to address over-generalization is to determine a core set of
predictions, which is the intersection of the predictions made by several trained models, each
randomly initialized. The number of trained models necessary to generate the core et is
computed as the stopping point (see Table 1). Also, many of the DMRs for the aforementiened
nine exposures are unique. Therefore, another approach to address over-genXQiion is to
learn individual models for each exposure. In addition, the mechanisthh epigenetic
effects are realized may involve a preponderance of DMRs rather th @IC DMR signature,
which would lead to an over-generalized model if focused on ng such an elusive signature.
An exposure-specific model specialized to the exposus identify common and unique
predicted DMRs not revealed in the training dat uch,a model also helps to recognize the
toxicants to which an individual’s ancestors posed and allows for early preventative

treatment to avoid more long-term severe outcomes.
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Results

The exposure specific models were used to identify DMRs unique to each exposure and
common across multiple exposures. These DMR sets were analysed using four techniques: (1)
visualize the location of the DMRs, (2) identify transcription factor matches in the DMRs, (3)
identify genes associated with the DMRs, and (4) identify common motifs in the DMRSy, The
results of this analysis for the whole genome are provided in the supplementald materials.
Supplemental Tables S1-S6 show the number of unique DMRs in each ¢hromesome for each
exposure. Supplementary Figures S1-S22 visualize the location of the unique DMRs in each
chromosome for each exposure. Supplementary Tables S7-§28#fist jthe transcription factor
matches in each chromosome for each exposure. Supplementary /Table S29-S50 list the genes
associated with the unique DMRs in each chromosome for each exposure. Supplementary
Figures S23-S44 show the common motifs foundwin €ach chromosome for each exposure. Given
the size of the analysis results for the whole genome, only results for chromosome 7 are shown
here to demonstrate the analysisgin®a suc¢cinct form. Chromosome 7 was chosen somewhat
arbitrarily but demonstrates ghe typesfof conclusions that can be drawn from results on other
chromosomes.

Table 2 summarizes the data and results for each exposure for chromosome 7. Glyphosate
and plastics e€xposures were not included in subsequent analysis due to their outlier properties.

Table 3{showsithe location of the unique DMRs in the other seven exposures for chromosome 7.

Motif alignments for unique DMRs

After composing the unique DMR set for each exposure, the TOMTOM tool is used to

find the known motifs in the unique regions for each exposure [27]. Table 4 shows the matches
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found in the unique DMRs in each exposure for chromosome 7. Vinclozolin has only one motif
alignment with its unique DMRs (L8GDR2 ACACA), and so is no included in the table for
brevity. In the case of chromosome 7, each of these motifs had only one match to the unique
DMRs. In other chromosomes there were some cases of more than one match, but these, cases
were rare. The complete results for all chromosomes are included in SupplementaryJables,S7-
S28.

The results in Table 4 indicate several motifs that have known%as§o€iations to the
exposure. Atrazine is an herbicide that has been shown to have negative effécts on amphibians,
such as disrupting their endocrine systems and causing developmental abnormalities, cancer risk
and neurological problems [28]. Bdl1a is a gene in amphibians_that encodes a TF binding that
regulates the genes and has a role in cancer progressy[298lt is possible that exposure to atrazine
could affect the expression or activity of Bdl1aer its binding to DNA. Another transcription
factor match with unique DMRs of atrazine is Metf2c. Mef2c is known to play critical roles in the
development and function of mulfipléyorgans and tissues, including the heart, skeletal muscle,
and brain [30].

In regards to dibxins, some studies have suggested that exposure to it may be associated
with an increasedirisk of, Certain types of cancer [31], which may involve the dysregulation of
genes controlled by transcription factors like Zpf384. Egr3 (Early growth response 3) is a
transcription factor that plays a role in the regulation of gene expression in response to various
stimuld, such as growth factors, cytokines, and environmental toxins. Dioxins, which are highly
toxic environmental pollutants, have been shown to activate Egr3 in some studies [32].
Additional motifs shown in Table 4 may suggest previously unknown effects of the exposures on

the genome.
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Genes overlapping unique DMRs

Table 5 shows the overlapping genes associated with the unique DMRs in each exposure
for chromosome 7. DDT, atrazine, and vinclozolin do not have any overlapping genes.4Only a
sample of the genes overlapping dioxin are shown in this table for brevity. A compléteilist ofrall
overlapping genes for all chromosomes is included in the Supplementary Tables,S29-S50.

Previous studies show that there are several connectionsgamong the associated
overlapping genes and the exposures. As an example, Anti-Miill€fian“hermone (AMH) is an

important regulator of folliculogenesis in the ovary and can be dySgegwlated by dioxin [33].

Most repeated motifs in the unique DMRs

Figures 2-8 show the top five mostgepeated, motifs in the exposure specific DMRs for
chromosome 7. Results for the whole/g€nome are included in the Supplementary Figures S23-
S44. The focus here is on motifs that¥afe unique to one exposure. While DMRs require the
presence of CpGs, the motifs'discovered here are less likely to contain CpGs, since they are not
unique to a particular expoesure. The 1 kb DMRs may contain motifs that do not overlap with the
CpGs within the,DMR.

Thesmotif visualizations indicate some patterns specific to certain exposures. For
example,the.€common motifs in the DMRs unique to DDT (Figure 2) show a predominance of
the smaller ACA motif, which is associated with DNA-binding in the malaria parasite targeted
by the pesticide DDT [34]. The common motifs in the DMRs unique to jet fuel (Figure 6) show a
predominance of the smaller GTG motif, which is associated with increased DNA-binding of

TCF4 [35], and jet fuel (naphthalene) has been observed to inhibit the TCF4 binding [36]. The
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common motifs in the DMRs unique to atrazine (Figure 7) show a predominance of the smaller
TCT motif, which is associated with transcription of protein gene promoters [37], and atrazine

has been observed to impact the transcription and regulatory processes [38].

Common DMRs across all the exposures

The above analyses were performed on the common DMRs across all expogures. Table 6
shows the number of DMRs common to at least N exposures. The analysis fo€used on the DMRs

that were common among at least five (N=5) exposures.

Table 7 shows the locations in the whole genome of the ' DMRE common to at least five
exposures. Not surprisingly, the DMRs are uniformly distributed*within chromosomes and across
the whole genome. However, higher concentrations, aSywell as significant gaps can be observed
in some chromosomes. Table 8 shows the known ‘motifs found in the common DMRs in each
chromosome, and Table 9 shows thes6verlapping genes associated with the common DMRs.
Figures 9-12 show the top thfee smost’ repeated motifs among common DMRs for each
chromosome. These result§ tadicaté” potential common mechanisms by which most toxicants
affect the genome. Qbseryations can be contrasted to those in previous work [18] that identify
motifs in the feature$ extfacted from the DL network. Feature motifs do not necessarily represent
commonpattegns in DMRs, but can also represent patterns in non-DMRs that are useful to

discriminate them from DMRs.
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Discussion

A hybrid DL-ML approach that has previously shown success at predicting DMRs [18§]
was used to identify core sets of DMRs per exposure and then unique DMRs within these core
sets. Analysis shows that there are unique DMRs associated with each exposure, and the
exposure-specific models are a better solution to identify these unique DMRs.

Results in previous work show that the hybrid model has high accuracy%en the data
constructed from nine different exposures [18]. However, training only énemedel on DMRs
from all nine exposures results in high variance and large numbers \of prédicted DMRs. The
actual number of DMRs is likely fewer than the number predicted: This is addressed by
intersecting the predictions of several models to identify agoreset of DMRs that are predicted by
every model.

This paper focuses primarily on analyzing the unique DMRs in each exposure. The
unique DMR prediction in the whole genome 1S used to find biologically relevant features
through visualization of DMR locations, motif analysis, and gene associations. This can indicate
the unique effects of each toxicantion the formation of different DMRs. Analysis of the common
DMRs across most expOsutes was also presented. The presence of predicted exposure specific
DMRs suggests uch» DMRs could be used to assess exposures within individuals and
populations. (The presence of such transgenerational exposure specific biomarkers may allow in
the futute thefability to determine ancestral exposure and how that may impact an individual’s
healthan“the future. Further research on exposure epigenome predictions could be used as a
diagnostic tool for the area of toxicology and medicine.

The hybrid deep machine learning approach represents a new direction in the analysis of
genomic data. The presence of genomic phenomena is often based on a quantitative analysis of

laboratory results, e.g., in the case of this study, a DNA region is labeled as a DMR based on a
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threshold on the experimentally determined probability that the region is differentially
methylated. The choice of this threshold can significantly vary the number of regions labeled as
DMR. Using machine learning, a set of high-confidence DMRs can be used for training the ML
models, which can then make predictions about DMRs elsewhere in the genome. More analysis
is needed to confirm that the ML-based predictions are more accurate, but if so, this, appteach
reduces the need to precisely tune the confidence threshold, allows a more nuarieed §election of
DMRs rather than using a single threshold, and can identify DMRs that weould*het meet even
minimally restrictive thresholds due to inconsistencies in the experimental process. While other
ML approaches may be used for this purpose, the hybrid DL-Mk approach is uniquely suited for
two reasons. First, using the DL network to learn and extractMeatures relieves the analyst from
the burden of handcrafting features for ML. Secondgusingya non-DL classifier for the final DMR
prediction avoids the typical need for large datasets when using a DL classifier alone. Thus, the
hybrid DL-ML approach is uniquely positioned, to succeed at this new approach to ML based
analysis of genomic data.

The approach described insthi§ paper is focused on predicting exposure specific DMRs
versus all non-DMRsgn each model. However, one possible future direction is to view the
problem as a oneSyssfest, [€arning task by revising the definition of the negative samples. The
models can still betrained with DMRs in each exposure as the positive samples, but with the
DMRs 1 other exposures as the negative samples. In this case, the models would predict unique
exposure specific DMRs directly. Another future direction is to apply a similar approach to the
analysis of disease specific DMRs. Models can be trained on DMRs associated with each disease
versus non-DMRs or the DMRs from other diseases. Similar to the current approach, a core set

of predicted DMRs can be identified for each disease, and then the DMRs unique to each disease
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and common to all diseased can be isolated and analyzed. Several observations suggest the
environment has a significant impact on disease etiology [9]. Identifying exposure-specific and
disease-specific DMRs can lead to a diagnostic tool for predicting susceptibility to certain

diseases based on epigenetic mutations from ancestral exposures. However, more data is needed

from human studies and from alternative analysis methods to validate the clinical vi
approach. Future studies are needed to incorporate the use of computational ap& s such as
the hybrid deep learning to help facilitate future use of epimutations as bio or exposure
and disease. The procedure can be used on a variety of data sets, so\is ndt specific to DNA

methylation or the analysis used. Observations demonstrate t @deep learning approach

can be used as a prediction tool for further epigenome stu
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Methods

The goal is to first identify a DNA region’s susceptibility to develop an environmentally
induced transgenerational alteration (i.e., a DMR) for each individual exposure based on a hybrid
deep machine learning (DL-ML) model’s prediction. Then, the unique DMRs for each exposure
can be identified and their existence suggests unique effects of individual expoSures, and
potentially a means to detect ancestral exposure to the toxicants.

The overall method consists of several steps for each exposure dataset: A)«define positive
and negative samples for the training process; 2) train a hybrid DL-ME model to predict
exposure-specific DMRs in the whole genome; 3) find the propefstimber of models to address
model variance and indicate how many models are requitedito identify a core set of predicted
DMRs; 4) train this number of hybrid DL-ML models“and use these models to predict DMRs
across the whole genome; 5) identify the core Sét, of predicted DMRs, i.e., the DMRs predicted
by all models; 6) extract the unique DMRs in‘the*core sets for each exposure; and 7) search for
known motifs, genes and transcriptiomfactors associated with these unique DMRs.

The Skinner laboratory at{ Washington State University has produced several datasets
based on the rat genom€ that identify the differentially methylated regions (DMRs) in the F3
generation after eXposure ‘of the FO generation to one of nine toxicants: atrazine [11], dichloro-
diphenyl-trichloroethane (DDT) [19], glyphosate [20], vinclozolin [21], pesticides permethrin
and N,N-diethyl-meta-toluamide (DEET) [22], dioxin [23], jet fuel [24], methoxychlor [25], and
plastics Bisphenol A and phthalates [26]. Vinclozolin is used as both an agricultural fungicide
and pesticide. Dioxin is a highly-toxic biproduct of the manufacture of chlorinated compounds,
such as some herbicides, but also occurs naturally. Atrazine and glyphosate are commonly used
herbicides. DDT is an insecticide that was used extensively in the 1950s and 1960s to combat

insect-borne diseases such as malaria but has since been banned in the USA due to adverse
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health and environmental effects. Methoxychlor is an insecticide that was intended as a
replacement for DDT, but was also banned in 2003 due to adverse health effects. Jet fuel (JP-8)
is a hydrocarbon mixture used commonly by the military, but has been found to be potentially
toxic to the immune system, respiratory tract, and nervous system [39].

In these studies, the FO generation consisted of gestating female rats divided§into
‘control’ (no exposure) and ‘exposure’ (exposed to the toxicant) groups. The off§prifig of the FO
generation comprised the F1 generation. Males and females in the control onexposure groups of
the F1 generation were bred to obtain the F2 generation. Then, the F2'generation rats were bred
to obtain the F3 generation. The initial direct exposure of the géstating female FO generation rats
also exposes the developing F1 generation fetus and the“germ _ce€lls within the F1 generation,
resulting in a direct exposure to the F2 generationgeTherefore, the F3 generation represents the
first descendants with no direct exposure to'\the ‘toxicant. Identification of differentially
methylated regions (DMRs) of the DNA between the control and exposure lineage F3
generations indicates that the DMR was exposure-induced through epigenetic transgenerational
inheritance [9].

The proceduregor identifying DMRs in the transgenerational F3 generation involved a
methylated DNA, wfimunoprecipitation (MeDIP) procedure followed by next-generation
sequencing (MeDIP-Seq). The genome was divided into 1000bp regions, and DMRs with a
specificipathology were identified. A p-value was calculated for each of the 1000bp regions
indicating the probability the region is not a DMR (non-DMR). Those regions whose p-value <
10° comprise the DMR set which constitutes the positive examples (DMRs) in the training
examples used to train the hybrid DL-ML models. All molecular data has been deposited into the

public database at NCBI under GEO #s: GSE113785 (vinclozolin), GSE114032 (DDT),
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GSE98683 (atrazine), GSE155922 (jet fuel), GSE157539 (dioxin), GSE158254 (pesticides),
GSE158086 (methoxychlor), GSE163412 (plastics), and GSE152678 (glyphosate). In previous
work [18], all the DMRs from all these datasets were used to train the model. In this work, a
separate model is trained on each dataset using only the DMRs from that dataset.

In these experiments, the number of DMRs meeting the p-value thresholdgis a ‘Small
fraction of the entire genome. However, regions that do not meet the p-value thgeshold are not
necessarily non-DMRs. Thus, we seek a definition of a non-DMR that makesgefise biologically
and ideally is close to the number of DMRs to create a balanced_training Set for the learning
model. Three constraints were considered for defining non-DMRS: (a) a region containing no
CpGs, (b) a region which is a CpG-island (CpG-density >%0%), and (c) a region whose p-value
is greater than a specific threshold. The regions satisfying,constraint (a) are non-DMRs because
differential methylation is not possible without,€pGs. The number of additional non-DMRs
added by including constraints (b) and_(c) wasytypically only 1-2% of the number of no CpG
non-DMRs from constraint (a), but theirjaddition as non-DMRs has a significant impact on
whole-genome prediction. JLhercfore, regions satisfying constraints (a) and (b) were used as
negative examples (nofi-DMRs) in the training set. The other constraint (c) was considered for
inclusion in the nén-DMR samples but resulted in decreased performance.

The hybrid DL-ML model detailed in [18] takes a 1000bp region of the DNA sequence as
input and produces a classification for the region as to whether it will be susceptible to
envirefimental exposure as evidenced by differential methylation. The method is a hybrid model
shown in Figure 1 and consists of a deep learning (DL) network that is trained using the dataset
and a traditional machine learning (ML) classifier that is also trained using the dataset, but with

the input region re-expressed using features extracted from a layer of the deep learning network.
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The 1000bp DNA sequences are input to the DL network using a one-hot encoding, i.e., a
5x1000 array, where each column indicates which base-pair (A,C,G,T,N) is present. The network
is trained using the training DMRs and non-DMRs. The training data is re-input to the trained
network, and the outputs of the first convolutional layer are used as new extracted features,to re-
express each training example. The re-expressed training data is then used to train the, XGBoost
classifier. The prediction of the XGBoost classifier is used as the final predictign@f DMR or
non-DMR. The trained hybrid model is used to classify each region across the/whele genome as
to whether a region is susceptible to form a DMR in response to_anjancestral environmental
induced exposure. The hybrid DL-ML method has been suceessful at identifying DMRs not
present in the training set [18]. The hybrid model has alsotbeen shown to outperform DL alone,
ML alone, and alternative approaches to DMR predietion il 8].

One issue with the hybrid approach is that'theumodel’s prediction has high variance. For
example, two models trained on the same data“ean result in a significant difference in the set of
DMRs predicted by the models. Fhe variance is due to randomness in the training process, such
as random initial weights and shuffling of training data. Even though one hybrid model predicts
far fewer DMRs thangall possible regions (based on the number of regions with at least one
CpG), a model prediets nearly 20% of the genome as DMRs. There is a trade-off between two
objectives for training the hybrid model, i.e., maintaining high model accuracy while avoiding
overly general predictive models. To address this issue, multiple models are trained, and a core
set ofDMRs predicted by all models is identified. To find the proper number of trained models,
a stopping point (S.P.) is defined, which indicates how many models are required to show a
correlation among the core set of predicted DMRs. Given that a single model predicts N DMRs,

if a set of N 1000bp regions were repeated selected at random from the genome, the SP is
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defined as the number of randomly-selected sets of regions that would need to be intersected
together for the intersection to be empty. If the same number of models are trained and their
predicted DMRs intersected, then any DMRs remaining would have high certainty of being
DMRs; these DMRs comprise the core set. The process used to determine SP for each exposure
is shown in Table 1.

The next step is to define the core set of predicted DMRs as the int@gseetion of the
predicted DMRs from SP independently trained models. After generating the£ofeset of DMRs
for each exposure, the unique set of DMRs for each exposure can be detegrmined. A unique
DMR for an exposure is a region predicted as DMR in only that specific exposure. Once the
unique DMRs for each exposure are identified, these DMRs awe_fiirther analyzed by visualizing
their locations on the genome, identifying knowngmotifSyamong the DMRs, identifying genes
associated with the DMRs, and identifying recurting motif patterns in the DMRs.

Table 2 summarizes the data and result$yfor each exposure: the stopping point (S.P.), the
number of positive training samplés imchromosome 7 (Training DMRs), the average number of
predicted DMRs by a model (Predicted DMRs), the number of DMRs in the core set
(intersection of DMRg  predicted by SP models), and the number of unique regions in each
exposure based ofy the€ training DMRs and based on the core DMRs as predicted by the whole-
genome models. There were 6636 non-DMRs used for training in each exposure for chromosome
7. Duetto the high number of training and predicted DMRs for the plastics exposure,
identification of the core set of DMRs was prohibitive in time (training 165 models), and the
core set is likely to be very large, which would tend to obscure unique DMRs in other exposures.
Therefore, the plastics exposure DMRs were excluded from subsequent analyses. On the other

extreme, there were only a small number of training DMRs, predicted DMRs, and unique DMRs
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for glyphosate. Table 2 shows only one unique core DMR for glyphosate on chromosome 7. For
many chromosomes, there were zero DMRs for glyphosate. Therefore, the glyphosate exposure
DMRs were also excluded from the analysis.

After composing the unique DMR set for each exposure, the TOMTOM tool is used to
find the known motifs in the unique regions for each exposure [27]. Previous studies showed
that methylated DNA fragments prevent the binding of transcription factors (TE) [15.2]. As an
example, CpGs are able to prevent binding TFs [1]. Identifying TF motifmatéhes in unique
DMRs can help in predicting the potential downstream effects of DN A, methylation changes on
gene expression and cellular processes. For example, if a BF binding site is differentially
methylated in a cancer cell, it may affect the expression ofidowmstream genes involved in tumor
growth and progression. To find the transcriptiongtactor®(TF) binding specificities alignments,
CisBP (Catalog of Inferred Sequence Binding ‘Preferences) is used as the reference database
(http://cisbp.ccbr.utoronto.ca/). CisBP is an online database of transcription factor (TF) binding
specificities. CisBP currently incérposates data from over 700 species covering more than 300
TF families, totalling moreghan 3904000 TFs (of which over 165,000 have at least one DNA
binding motif). This m€thod maps motifs across and within species, using DNA binding domain
similarity thresholds J40],

The next analysis is to identify genes overlapping the DMRs unique to each exposure.
Gene overlap Joccurs when a known gene shares the same region of a nucleotide sequence in a
genotat [41], where in this case the sequence is a 1000bp DMR unique to a particular exposure.

Rat gene locations were obtained from the Rat Genome Database (https://rgd.mcw.edu). This

experiment provides insights into the functional implications of DNA methylation changes.
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DMRs that overlap with genes are more likely to have functional consequences on gene
expression and may be directly involved in disease development.

The next step in the analysis is to identify repeated motifs in each set of exposure specific
DMRs. The top five repeated motifs in each set of exposure specific unique DMRs, were

identified using the MEME-ChIP discovery tool (https://meme-suite.org). The defaultparameters

in the web-based interface were used for all runs, except the motifs were input from the “CIS-BP
2.00 Single Species DNA” for rattus norvegicus, and the number of motifs toyfitdwas set to five.
The MEME tool’s default constraints on minimum width (6), maximum, width (50), and E-value
< 0.05 were used. The MEME-ChIP tool searches for matchésyto a motif in both the forward
primary sequence and the reverse complement sequence. ‘Butatheé motifs are visualized in the
forward primary sequence order. These motifs cafishelp™to visualize distinct properties of the
DMRs across different exposures. Computational methods for comparing motifs [42] may
uncover more global patterns in the differences of motifs across different exposures.

The final step of the analygis ist@ apply the previous analysis steps to the common DMRs
across all the exposures. Idéntifyingsthe common DMRs across all the exposures can provide
insights into the shared pathways and biological processes affected by different exposures. Table
6 shows the nuniberfof DMRs common to at least N exposures. None of the core DMRs are
common to seven Or more exposures. Since there were not any common DMRs across all the

exposures, the DMRs that were common among at least five (N=5) exposures were studied.
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Table and Figure Legends

Table 1. Method for finding the stopping point (S.P.) for each exposure. S.P. is computed as the
minimal number of random subsets of the predicted DMRs, that when intersected together, result
in the empty set. S.P. represents the number of models that must be training, and theit DMR
predictions intersected, to arrive at a core set of predicted DMRs that exclude noify predictions

due to variance in the models.

Table 2. The stopping point, the number of training DMRs, th¢ avesage number of predicted
DMRs in one model, the core set of DMRs, and the unique regions in each exposure for the
training DMRs and the core set of predicted DMRs, allfferschsomosome 7. The same 6636 non-

DMRs were used for training in each exposure.

Table 3. Location of the unique DMRS on‘¢hromosome 7 for each exposure.

Table 4. Transcription factog, matches found in the unique DMRs in each exposure for
chromosome 7. ThesTOMTOM tool is used to find the known motifs in the unique regions for
each exposurem Vinclozolin has only one motif alignment with its unique DMRs

(LSGDR2"ACACA), and so is not included for brevity.

Table)S. Overlapping genes associated with the unique DMRs in each exposure for chromosome
7. Rat gene locations were obtained from the Rat Genome Database (https://rgd.mcw.edu) and
aligned with the predicted unique DMRs. None were found in the unique DMRs for DDT,

atrazine and vinclozolin.
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Table 6. The number of core DMRs common to at least N different exposures for each
chromosome. A total of seven exposures are used for this analysis; glyphosate and plastics are
excluded. None of the core DMRs are common to all seven (N=7) exposures on any
chromosome. Some core DMRs are present in six (N=6) different exposures, and as expected the
number of common core DMRs increases as the constraint on the number of commonsexposures
declines. Note that the N exposures that each core DMR has in common does ndtneéd to be the

same N exposures, but any N of the seven exposures.

Table 7: The locations of the common DMRs (common to N=5%xposures) on each chromosome

in the whole genome.

Table 8. Transcription factor matches found in the ‘¢ommon DMRs (common to N=5 exposures)
on each chromosome in the whole genome. &he TOMTOM tool is used to find the known motifs

in the common DMRs.

Table 9. Overlapping genes associatéd with the common DMRs (common to N=5 exposures) on
each chromosome in,the whole genome. Rat gene locations were obtained from the Rat Genome
Database (https://fgd.mew.edu) and aligned with the common DMRs. No known genes

overlappedsthe,common DMRs in chromosomes 4, 6, X and Y.

Figure 1. Architecture of the hybrid DL-ML model. The model consists of two components: a
deep neural network (DNN) and a traditional ML classifier. The DMR sequence is input using a
5x1000 one-hot encoding, which is fed into two CNN blocks, each consisting of two 1D CNNs

followed by a max pooling layer. The output of the last block is flattened, then passed to two
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dense layers, and then passed into a SoftMax layer that makes an internal prediction. After the
DNN is trained, the output of the first CNN block is used as features to the ML classifier, in this
case XGBoost. The XGBoost classifier makes the final prediction as to whether the input

sequence is a DMR.

Figure 2. Top-five most repeated motifs in the unique DMRs for DDT in chromoséme 7. The
motifs were identified using the MEME-ChIP discovery tool (https://méme-stite.org), using
default web parameters, except the motifs were input from the “CISsBP 2.00 Single Species
DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The
MEME tool’s default constraints on motif minimum width (6),#maximum width (50), and E-

value < 0.05 were used.

Figure 3. Top-five most repeated motifs,in thetunique DMRs for vinclozolin in chromosome 7.
The motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using
default web parameters, exéept the hotifs were input from the “CIS-BP 2.00 Single Species
DNA” database for rattus/norvegicus, and the number of motifs to find was set to five. The
MEME tool’s defaulf constraints on motif minimum width (6), maximum width (50), and E-

value < 0.05 were used.

Figure 4. Top-five most repeated motifs in the unique DMRs for pesticide in chromosome 7.
The motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using
default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The
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MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value < 0.05 were used.

Figure 5. Top-five most repeated motifs in the unique DMRs for methoxychlor in chromesome
7. The motifs were identified using the MEME-ChIP discovery tool (https://memes=suite-org),
using default web parameters, except the motifs were input from the “CIS-BP 2,00 Single
Species DNA” database for rattus norvegicus, and the number of motifs_to“fiid Was set to five.
The MEME tool’s default constraints on motif minimum width (6), maXimum width (50), and E-

value < 0.05 were used.

Figure 6. Top-five most repeated motifs in the uniGue,DMRs for jet fuel in chromosome 7. The
motifs were identified using the MEME-ChIP\discovery tool (https://meme-suite.org), using
default web parameters, except the metifs were input from the “CIS-BP 2.00 Single Species
DNA” database for rattus norvegicus,%and the number of motifs to find was set to five. The
MEME tool’s default constfaints enfmotif minimum width (6), maximum width (50), and E-

value < 0.05 were used.

Figure 7, Lop-five most repeated motifs in the unique DMRs for atrazine in chromosome 7. The
motifs were ddentified using the MEME-ChIP discovery tool (https://meme-suite.org), using
default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species
DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The
MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value < 0.05 were used.
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Figure 8. Top-five most repeated motifs in the unique DMRs for dioxin in chromosome 7. The
motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using
default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species
DNA” database for rattus norvegicus, and the number of motifs to find was set toyfiveN\The
MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value < 0.05 were used.

Figure 9. Top three motifs found in the common DMRs (Gemmon’to N=5 exposures) for
chromosomes 1-6. Motifs were identified using the MEME:-ChlR/discovery tool (https://meme-
suite.org), using default web parameters, except thesmotifs were input from the “CIS-BP 2.00
Single Species DNA” database for rattus norvegicus, and the number of motifs to find was set to
three. The MEME tool’s default constraints on‘motif minimum width (6), maximum width (50),

and E-value < 0.05 were used.

Figure 10. Top threefmofifs found in the common DMRs (common to N=5 exposures) for
chromosomes 7-12y Motifs were identified using the MEME-ChIP discovery tool (https://meme-
suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00
Single Species DNA” database for rattus norvegicus, and the number of motifs to find was set to
threei{The MEME tool’s default constraints on motif minimum width (6), maximum width (50),

and E-value < 0.05 were used.
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Figure 11. Top three motifs found in the common DMRs (common to N=5 exposures) for
chromosomes 13-18. Motifs were identified using the MEME-ChIP discovery tool
(https://meme-suite.org), using default web parameters, except the motifs were input from the
“CIS-BP 2.00 Single Species DNA” database for rattus norvegicus, and the number of motifs to

find was set to three. The MEME tool’s default constraints on motif minimu 1dthy(6),

N\
KC

Figure 12. Top three motifs found in the common DMRs (co% =5 exposures) for

maximum width (50), and E-value < 0.05 were used.

chromosomes 19, 20 and X. No motifs were found in chrom Motifs were identified
using the MEME-ChIP discovery tool (https://meme-suit Qing default web parameters,
except the motifs were input from the “CIS-BP 2 ingle Species DNA” database for rattus
norvegicus, and the number of motifs to fin %to three. The MEME tool’s default

constraints on motif minimum width ( aximum width (50), and E-value < 0.05 were used.
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Table 1

Finding the right number of models for exposure

a. R’ =randomly choose N regions from all regions in genome

1. N =# DMRs predicted by one trained hybrid model for exposure
2. R =all regions in genome
3. SP=0
4. Repeat
b. R =R intersect R’
c. SP=SP+1
5. Until R is empty

6. Return stopping point S.P.
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Table 2

Exposure S.P. | Training | Predicted | Coreset | Unique | Unique
DMRs DMRs DMRs Training | Core
DMRs DMRs
DDT 6 1543 14370 3184 520 525
Atrazine 2 243 697 258 112 74
Methoxychlor 3 423 12476 4474 222 258
Glyphosate 1 5 4 4 5 1
Vinclozolin 2 220 1375 978 70 58
Jet Fuel 27 1973 78122 21899 776 2282
Pesticide 15 1145 55819 15259 314 1069
Dioxin 79 2431 90910 35634 1264 12760
Plastics 165 12504 134884 n/a 10295 n/a
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Table 3

Downloaded from https://academic.oup.com/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 December 2023

X

DDT

7

7

7
7

Atrazine
Methoxychlor
Glyphosate
Vinclozolin
Jet Fuel
Pesticide
Dioxin

7

7
7
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Table 4

DDT Atrazine Methoxychlor Jet Fuel | Pesticide Dioxin
Zfp110 Cic Z{p523 K16 Pou2f2 Prdm6 Bhlhe3 Zpfa22 Srebf2
Mecom  |Zzz3 Z{p354a  |Zfp580 Zbtb37 Lin54 Nfib Zpf287  |Foxp2
Tcf712 Rbpj Bdlla Z{p641 Z{p90 Z{p189 Nfia Zpf384 Z{p212
Mef2d Cdcsl Z{p513 K14 Glis3 Foxil Nfx1 Prdm6 RGD1304587
[rf8 Tbx4 Mef2c Glis2 Rara E2f7 Lin54 Prdm4 Rest
Gatal Mga Stat2 KI1f3 Cdx4 Neurodl |Hmg20b |Zbtb26 Egr3
Trpsl Tbx5 Z{p449 Cdx2 rdml Mef2d Pitx1 Ztp3
Gata2 Tbx1 Rrebl Z{p382 Znf354b | Poudf2 Zfp189 Nr5al
Gata4 Tbx6 Sp4 Mynn Ztp4l Scrtl Zbtbl2 Nr2f2
Gata6 Nfactc3 Dbx1 Gli3 Neutod1™ | Nrbal Nr4al
Etv2 [kzf3 Zfp410 Glil Yyl Bcl6 Esrrg
Vdr Zbb48 Zscanl0  |Gli2 Gli3 Ztp829 Esrl
Thra Nr3cl Ztp770 Rel Klfl Ztp513 Nr4a2
Thrb Esrra Ztp787 Ar K19 Zp410 Rarb
Zbtb12 Sox10 Nr2e3 Zp24 Ebfl Ctcf Nr2el
Smad4 Z{p283 Nhlhl Ztp143 Zp128 Ztpl Rxra
Myrf Hox6 Nr5a2 Etsl Myrf Thrb Rxrb
Jund Mxf1 rSal Tbx2 Sox10 Thra Rarg
Mzfl Onecut2 Esrl Sox14 Zfp524 Zp281 Ppard
Jun Foxp2 Esrrg Sox9 Znf454 KIfS Nr2fl
Atf7 Rxrb Sox13 Nhlhl Zfp467 Nr2e3
Sox2 Sox6 Ascll KIf16 Spil
Tbx20 KIf10 Ntkb2
Zbtb26 KIif11 GI3
Dpf3 Kif14 Nfe2
Rfx5 KIf12 Nwurod1
Rrebl Sp3 Bhlhal5
Elf Znf354b | Stohl
Etl E2f8 Runx1
Ets2 E2f7 Mycn
Zscanl0 | Foxk2 Foxal
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Table 5

Dioxin Jet Fuel Methoxychlor Pesticide
Atxnl0  |Acvrll Candl Gzmm Phldal Best3
Baz2a Adcy6 Dbx2 Npff Pphinl Cnn2
Bik Adm2 Gtsf2 Sppl2b R3hdm2 |Cyp2bl
Bin2 Akap81 [lvbl Spryd3 Rapgef3  |[Endou
Btgl Amh Mtss1 Tssk5 Tac3 Fzrl
Card10 Apof Olr1045-ps Zfp707 Tmeml17 [Kif2la
Ccn4 Apollla Olr1073 Tspan31 [Map2
Cct2 Apol3 Ptprq Zc3h10
Cdc34 Apol9a RGD1560979 Ztp7
Cdc42epl |Arc RGD1561871 Znf7
Cdk17 Arfgap3 RGD1565356
Cdpfl Arhgap45 Scyl2
Celf5 Arhgap8 Tafa2
Celsrl Arhgef25 Themo6
Cenpm Arsa Tmemo65
Cfap54 Asapl Tph2
Chadl Asicl
Cradd Cryl
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Table 6

# Core DMRs Common to N Exposures

Chr
N=1 N=2 N=3 N=4 =5 =6 N=
1 37504 26982 18883 4989 372 11 0
2 29388 22191 15659 4315 285 4 0
3 24534 17511 12018 2717 176 5 0
4 23642 16616 11175 2897 226 10 0
5 22512 17591 12315 3385 199 6 0
6 19812 13654 9008 2450 143 7 0
7 19487 15410 10921 2665 132 5 0
8 20241 14038 9056 1850 109 7 0
9 16106 12457 8230 1931 162 8 0
10 18806 13521 9135 1639 113 2 0
11 10973 8608 5750 1440 115 3 0
12 10717 8119 6859 990 55 6 0
13 13947 11022 7718 2018 155 6 0
14 13883 11739 8242 1846 165 5 0
15 13445 11132 7314 1678 112 7 0
16 11733 9798 6532 1521 91 4 0
17 12355 10514 7774 146% 99 4 0
18 11576 8942 5940 1467 152 1 0
19 10121 7583 5300 1106 70 4 0
20 8177 7602 651l 1183 70 1 0
X 12470 8625 6772 3229 241 2 0
Y 314 254 292 194 9 0 0
Total 361743 273909 191404 46977 3251 108 0
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Table 7

Downloaded from https://academic.oup.com/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 December 2023
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Table 8

Chr Overlapping genes Chr Overlapping Genes
1 Tbx20 12 Zbtb26
2 Z{p287 13 Foxa3

Sox10 Zfp287

Hnf4a Zfp182

Zfp105 Foxp2

3 Z1p287 Prdm6

Zfp879 14 Tbx20

Prdm6 Zfp105

Zfp105 15 Zfp105

Zbtb26 16 Foxgl

4 Foxrl FOXQ1 RA

Ztp287
Sox10
Zfp105
5 Tbx20
Zfp105

Zbtb26 17 _ =) Msantd3

6 Foxgl Tbx20

FoxI2 Zfp105

Sox10 Zbtb26

7 Nr1d2 Prdm6

Zbtb26 Zfp105

8 Sp3 Zbtb26
Tbx20

Z1p287 20 Tbx20

Kl Ztp24

X Hdx

Zfp287

tb Zfp182

8 Z{p422

9 bx20 Y Z1p449
10 Foxfl
Tbx20
Nr1d2
Zp105
11 Rrebl
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Table 9

Chr Overlapping genes Chr Overlapping Genes
1 Ascl3 11 Pcnp
Ganab Tra2b
Irx1 12 Ache
L3mbtl3 Stag3
Syvnl Vom2r-ps91
Trnas-gcu3 Vps37b
2 Anp32e 13 Glrx2
Bhlhe22 Nsll
Cect3 14 Noal
Khdc4 15 Kctd9
Lysmd1 M
Plrgl
Ppid
Trnar-ucu3
3 Naifl
Snap23
Zp341
4 -
5 Trnas-agal

Orcl

Pcdhgb?

Prdmé6

Rpsl14

19

Dhx38

Dus2

Hook2

Nip7

Slc9a5

Pou5fl

Trnal-uag2

Trnar-ucu4
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Figure 3
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Figure 5
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Figure 7

Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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