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Abstract                       

Exposure to environmental toxicants can lead to epimutations in the genome and an 

increase in differential DNA methylated regions (DMRs) that have been linked to increased 

susceptibility to various diseases. However, the unique effect of a particular toxicants on the 

genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle 

to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a 

previously validated hybrid deep-learning cross-exposure prediction model is trained per 

exposure and used to predict exposure-specific DMRs in the genome. Given these predicted 

exposure specific DMRs, a set of unique DMRs per exposure can be identified. Analysis of these 

unique DMRs through visualization, DNA sequence motif matching, and gene association 

reveals known and unknown links between individual exposures and their unique effects on the 

genome. The results indicate the potential ability to define exposure-specific epigenetic markers 

in the genome and the potential relative impact of different exposures.  Therefore, a 

computational approach to predict exposure specific transgenerational epimutations was 

developed and supported the exposure specificity of ancestral toxicant actions, as well is provide 

epigenome information on the DMR sites predicted.   
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Introduction 

 Epigenetics studies the alterations to subsequent protein expression and gene expression 

that do not change the DNA sequence [1].  Epigenetics is defined as “molecular processes and 

factors around DNA that regulate genome activity, independent of DNA sequence, and are 

mitotically stable.  Epigenetic changes typically involve the induction, repression, or silencing of 

gene expression through epigenetic modifications such as DNA methylation, non-coding RNA 

(ncRNA), chromatin structure, and histone modifications [2].  

One of the most studied epigenetic modifications of DNA is DNA methylation, but much 

remains to be learned about the underlying mechanisms.  DNA methylation refers to the addition 

of a methyl group to the fifth carbon of primarily cytosine at a CpG nucleotide site [3].  This 

process can modify gene expression without changing the DNA sequence.  In addition, studies 

show that DNA methylation influences the expression of genes and the regulation of protein 

binding [4].  These alterations in epigenetics develop gene expression patterns that can cause 

adverse clinical outcomes, such as allergies, obesity, schizophrenia, cancer, or Alzheimer’s 

disease, to name a few [5, 6].  

Although the DNA sequence does not change with environmental effects, the governing 

methylation dramatically alters in response to the environment [5].  Environmental epigenetics is 

the main molecular mechanism that helps to promote phenotypic and physiological alterations 

[7, 8].  Various environmental factors such as nutrition, stress, or exposure to toxicants can alter 

the epigenome [9].  In addition, environmental factors early in development can permanently 

change the cellular molecular function, impacting later life diseases or phenotypes [7]. 

Examples of transgenerational inheritance are well studied in the literature. Many 

environmental toxicants have been shown to correspond to the transgenerational inheritance of 

increased disease susceptibility.  For example, atrazine is a common herbicide in the US and can 
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cause the deterioration of multiple organs in animals [10].  Atrazine increases the risk of testis 

disease, kidney disease, prostate disease, and an altered age at puberty [11].  Glyphosate is 

another commonly used herbicide in the US that is capable of inducing the transgenerational 

inheritance of disease and germline (e.g., sperm) epimutations [12].  Pesticides increase the risk 

of developing neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, 

attention deficit hyperactivity disorder (ADHD), and amyotrophic lateral sclerosis (ALS) [13-

15].  DDT is a risk factor for obesity transgenerationally and also induces increased rates of 

testis, ovary, and kidney pathologies [16, 17].  Various environmental toxicant exposures 

increase the risk of different diseases.  Predicting regions of the genome susceptible to 

developing into transgenerational epimutations will improve the ability to diagnose and prevent 

these diseases.  

Previous work [18] shows that a hybrid deep machine learning (DL-ML) model can 

accurately predict a DNA region’s likelihood to be differentially methylated (DMR) as a result of 

ancestral exposure to nine environmental toxicants: atrazine [11], dichloro-diphenyl-

trichloroethane (DDT) [19], glyphosate [20], vinclozolin [21], pesticides permethrin and N,N-

diethyl-meta-toluamide (DEET) [22], dioxin [23],  jet fuel [24], methoxychlor [25], and plastics 

bisphenol A and phthalates [26].  The hybrid DL-ML model (see Figure 1) takes advantage of 

the deep learning network’s ability to learn complex features from input DNA sequences, while 

the ML model overcomes the weakness of the DL model due to fewer training examples by 

using the DL features as input to a boosted random forest classifier. Using the hybrid DL-ML-

based model helps identify DMRs across the whole genome beyond those revealed in the 

training samples.   
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However, learning a model to predict DMRs across all exposures can cause over-

generalization [18]. One approach to address over-generalization is to determine a core set of 

predictions, which is the intersection of the predictions made by several trained models, each 

randomly initialized. The number of trained models necessary to generate the core set is 

computed as the stopping point (see Table 1). Also, many of the DMRs for the aforementioned 

nine exposures are unique.  Therefore, another approach to address over-generalization is to 

learn individual models for each exposure.  In addition, the mechanism by which epigenetic 

effects are realized may involve a preponderance of DMRs rather than a specific DMR signature, 

which would lead to an over-generalized model if focused on finding such an elusive signature.  

An exposure-specific model specialized to the exposure can identify common and unique 

predicted DMRs not revealed in the training data.  Such a model also helps to recognize the 

toxicants to which an individual’s ancestors were exposed and allows for early preventative 

treatment to avoid more long-term severe outcomes. 
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Results 

The exposure specific models were used to identify DMRs unique to each exposure and 

common across multiple exposures. These DMR sets were analysed using four techniques: (1) 

visualize the location of the DMRs, (2) identify transcription factor matches in the DMRs, (3) 

identify genes associated with the DMRs, and (4) identify common motifs in the DMRs. The 

results of this analysis for the whole genome are provided in the supplemental materials. 

Supplemental Tables S1-S6 show the number of unique DMRs in each chromosome for each 

exposure. Supplementary Figures S1-S22 visualize the location of the unique DMRs in each 

chromosome for each exposure. Supplementary Tables S7-S28 list the transcription factor 

matches in each chromosome for each exposure. Supplementary Table S29-S50 list the genes 

associated with the unique DMRs in each chromosome for each exposure. Supplementary 

Figures S23-S44 show the common motifs found in each chromosome for each exposure. Given 

the size of the analysis results for the whole genome, only results for chromosome 7 are shown 

here to demonstrate the analysis in a succinct form. Chromosome 7 was chosen somewhat 

arbitrarily but demonstrates the types of conclusions that can be drawn from results on other 

chromosomes. 

Table 2 summarizes the data and results for each exposure for chromosome 7. Glyphosate 

and plastics exposures were not included in subsequent analysis due to their outlier properties. 

Table 3 shows the location of the unique DMRs in the other seven exposures for chromosome 7.  

 

Motif alignments for unique DMRs  

After composing the unique DMR set for each exposure, the TOMTOM tool is used to 

find the known motifs in the unique regions for each exposure [27].  Table 4 shows the matches 
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found in the unique DMRs in each exposure for chromosome 7. Vinclozolin has only one motif 

alignment with its unique DMRs (L8GDR2_ACACA), and so is no included in the table for 

brevity. In the case of chromosome 7, each of these motifs had only one match to the unique 

DMRs. In other chromosomes there were some cases of more than one match, but these cases 

were rare. The complete results for all chromosomes are included in Supplementary Tables S7-

S28.  

The results in Table 4 indicate several motifs that have known associations to the 

exposure. Atrazine is an herbicide that has been shown to have negative effects on amphibians, 

such as disrupting their endocrine systems and causing developmental abnormalities, cancer risk 

and neurological problems [28]. Bd11a is a gene in amphibians that encodes a TF binding that 

regulates the genes and has a role in cancer progress [29]. It is possible that exposure to atrazine 

could affect the expression or activity of Bd11a or its binding to DNA. Another transcription 

factor match with unique DMRs of atrazine is Mef2c. Mef2c is known to play critical roles in the 

development and function of multiple organs and tissues, including the heart, skeletal muscle, 

and brain [30].  

In regards to dioxins, some studies have suggested that exposure to it may be associated 

with an increased risk of certain types of cancer [31], which may involve the dysregulation of 

genes controlled by transcription factors like Zpf384. Egr3 (Early growth response 3) is a 

transcription factor that plays a role in the regulation of gene expression in response to various 

stimuli, such as growth factors, cytokines, and environmental toxins. Dioxins, which are highly 

toxic environmental pollutants, have been shown to activate Egr3 in some studies [32]. 

Additional motifs shown in Table 4 may suggest previously unknown effects of the exposures on 

the genome. 
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Genes overlapping unique DMRs 

Table 5 shows the overlapping genes associated with the unique DMRs in each exposure 

for chromosome 7. DDT, atrazine, and vinclozolin do not have any overlapping genes. Only a 

sample of the genes overlapping dioxin are shown in this table for brevity. A complete list of all 

overlapping genes for all chromosomes is included in the Supplementary Tables S29-S50.  

Previous studies show that there are several connections among the associated 

overlapping genes and the exposures. As an example, Anti-Müllerian hormone (AMH) is an 

important regulator of folliculogenesis in the ovary and can be dysregulated by dioxin [33]. 

 

Most repeated motifs in the unique DMRs 

Figures 2-8 show the top five most repeated motifs in the exposure specific DMRs for 

chromosome 7. Results for the whole genome are included in the Supplementary Figures S23-

S44. The focus here is on motifs that are unique to one exposure. While DMRs require the 

presence of CpGs, the motifs discovered here are less likely to contain CpGs, since they are not 

unique to a particular exposure. The 1 kb DMRs may contain motifs that do not overlap with the 

CpGs within the DMR. 

The motif visualizations indicate some patterns specific to certain exposures.  For 

example, the common motifs in the DMRs unique to DDT (Figure 2) show a predominance of 

the smaller ACA motif, which is associated with DNA-binding in the malaria parasite targeted 

by the pesticide DDT [34]. The common motifs in the DMRs unique to jet fuel (Figure 6) show a 

predominance of the smaller GTG motif, which is associated with increased DNA-binding of 

TCF4 [35], and jet fuel (naphthalene) has been observed to inhibit the TCF4 binding [36]. The 
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common motifs in the DMRs unique to atrazine (Figure 7) show a predominance of the smaller 

TCT motif, which is associated with transcription of protein gene promoters [37], and atrazine 

has been observed to impact the transcription and regulatory processes [38].  

Common DMRs across all the exposures 

The above analyses were performed on the common DMRs across all exposures. Table 6 

shows the number of DMRs common to at least N exposures. The analysis focused on the DMRs 

that were common among at least five (N=5) exposures.  

  

Table 7 shows the locations in the whole genome of the DMRs common to at least five 

exposures. Not surprisingly, the DMRs are uniformly distributed within chromosomes and across 

the whole genome. However, higher concentrations as well as significant gaps can be observed 

in some chromosomes. Table 8 shows the known motifs found in the common DMRs in each 

chromosome, and Table 9 shows the overlapping genes associated with the common DMRs. 

Figures 9-12 show the top three most repeated motifs among common DMRs for each 

chromosome. These results indicate potential common mechanisms by which most toxicants 

affect the genome. Observations can be contrasted to those in previous work [18] that identify 

motifs in the features extracted from the DL network. Feature motifs do not necessarily represent 

common patterns in DMRs, but can also represent patterns in non-DMRs that are useful to 

discriminate them from DMRs. 
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 Discussion  

A hybrid DL-ML approach that has previously shown success at predicting DMRs [18] 

was used to identify core sets of DMRs per exposure and then unique DMRs within these core 

sets.  Analysis shows that there are unique DMRs associated with each exposure, and the 

exposure-specific models are a better solution to identify these unique DMRs.  

Results in previous work show that the hybrid model has high accuracy on the data 

constructed from nine different exposures [18].  However, training only one model on DMRs 

from all nine exposures results in high variance and large numbers of predicted DMRs. The 

actual number of DMRs is likely fewer than the number predicted. This is addressed by 

intersecting the predictions of several models to identify a core set of DMRs that are predicted by 

every model.  

This paper focuses primarily on analyzing the unique DMRs in each exposure. The 

unique DMR prediction in the whole genome is used to find biologically relevant features 

through visualization of DMR locations, motif analysis, and gene associations. This can indicate 

the unique effects of each toxicant on the formation of different DMRs. Analysis of the common 

DMRs across most exposures was also presented.  The presence of predicted exposure specific 

DMRs suggests such DMRs could be used to assess exposures within individuals and 

populations.  The presence of such transgenerational exposure specific biomarkers may allow in 

the future the ability to determine ancestral exposure and how that may impact an individual’s 

health in the future.  Further research on exposure epigenome predictions could be used as a 

diagnostic tool for the area of toxicology and medicine.  

The hybrid deep machine learning approach represents a new direction in the analysis of 

genomic data. The presence of genomic phenomena is often based on a quantitative analysis of 

laboratory results, e.g., in the case of this study, a DNA region is labeled as a DMR based on a 
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threshold on the experimentally determined probability that the region is differentially 

methylated. The choice of this threshold can significantly vary the number of regions labeled as 

DMR. Using machine learning, a set of high-confidence DMRs can be used for training the ML 

models, which can then make predictions about DMRs elsewhere in the genome. More analysis 

is needed to confirm that the ML-based predictions are more accurate, but if so, this approach 

reduces the need to precisely tune the confidence threshold, allows a more nuanced selection of 

DMRs rather than using a single threshold, and can identify DMRs that would not meet even 

minimally restrictive thresholds due to inconsistencies in the experimental process. While other 

ML approaches may be used for this purpose, the hybrid DL-ML approach is uniquely suited for 

two reasons. First, using the DL network to learn and extract features relieves the analyst from 

the burden of handcrafting features for ML. Second, using a non-DL classifier for the final DMR 

prediction avoids the typical need for large datasets when using a DL classifier alone. Thus, the 

hybrid DL-ML approach is uniquely positioned to succeed at this new approach to ML based 

analysis of genomic data. 

The approach described in this paper is focused on predicting exposure specific DMRs 

versus all non-DMRs in each model.  However, one possible future direction is to view the 

problem as a one-vs-rest learning task by revising the definition of the negative samples.  The 

models can still be trained with DMRs in each exposure as the positive samples, but with the 

DMRs in other exposures as the negative samples. In this case, the models would predict unique 

exposure specific DMRs directly. Another future direction is to apply a similar approach to the 

analysis of disease specific DMRs. Models can be trained on DMRs associated with each disease 

versus non-DMRs or the DMRs from other diseases. Similar to the current approach, a core set 

of predicted DMRs can be identified for each disease, and then the DMRs unique to each disease 
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and common to all diseased can be isolated and analyzed. Several observations suggest the 

environment has a significant impact on disease etiology [9]. Identifying exposure-specific and 

disease-specific DMRs can lead to a diagnostic tool for predicting susceptibility to certain 

diseases based on epigenetic mutations from ancestral exposures. However, more data is needed 

from human studies and from alternative analysis methods to validate the clinical viability of the 

approach. Future studies are needed to incorporate the use of computational approaches such as 

the hybrid deep learning to help facilitate future use of epimutations as biomarkers for exposure 

and disease. The procedure can be used on a variety of data sets, so is not specific to DNA 

methylation or the analysis used. Observations demonstrate the hybrid deep learning approach 

can be used as a prediction tool for further epigenome studies.  
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Methods 

The goal is to first identify a DNA region’s susceptibility to develop an environmentally 

induced transgenerational alteration (i.e., a DMR) for each individual exposure based on a hybrid 

deep machine learning (DL-ML) model’s prediction.  Then, the unique DMRs for each exposure 

can be identified and their existence suggests unique effects of individual exposures and 

potentially a means to detect ancestral exposure to the  toxicants.  

The overall method consists of several steps for each exposure dataset: 1) define positive 

and negative samples for the training process; 2) train a hybrid DL-ML model to predict 

exposure-specific DMRs in the whole genome; 3) find the proper number of models to address 

model variance and indicate how many models are required to identify a core set of predicted 

DMRs; 4) train this number of hybrid DL-ML models and use these models to predict DMRs 

across the whole genome;  5) identify the core set of predicted DMRs, i.e., the DMRs predicted 

by all models; 6) extract the unique DMRs in the core sets for each exposure; and 7) search for 

known motifs, genes and transcription factors associated with these unique DMRs.  

The Skinner laboratory at Washington State University has produced several datasets 

based on the rat genome that identify the differentially methylated regions (DMRs) in the F3 

generation after exposure of the F0 generation to one of nine toxicants: atrazine [11], dichloro-

diphenyl-trichloroethane (DDT) [19], glyphosate [20], vinclozolin [21], pesticides permethrin 

and N,N-diethyl-meta-toluamide (DEET) [22], dioxin [23],  jet fuel [24], methoxychlor [25], and 

plastics bisphenol A and phthalates [26].  Vinclozolin is used as both an agricultural fungicide 

and pesticide.  Dioxin is a highly-toxic biproduct of the manufacture of chlorinated compounds, 

such as some herbicides, but also occurs naturally.  Atrazine and glyphosate are commonly used 

herbicides.  DDT is an insecticide that was used extensively in the 1950s and 1960s to combat 

insect-borne diseases such as malaria but has since been banned in the USA due to adverse 
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health and environmental effects.  Methoxychlor is an insecticide that was intended as a 

replacement for DDT, but was also banned in 2003 due to adverse health effects.  Jet fuel (JP-8) 

is a hydrocarbon mixture used commonly by the military, but has been found to be potentially 

toxic to the immune system, respiratory tract, and nervous system [39].  

In these studies, the F0 generation consisted of gestating female rats divided into 

‘control’ (no exposure) and ‘exposure’ (exposed to the toxicant) groups.  The offspring of the F0 

generation comprised the F1 generation.  Males and females in the control or exposure groups of 

the F1 generation were bred to obtain the F2 generation.  Then, the F2 generation rats were bred 

to obtain the F3 generation.  The initial direct exposure of the gestating female F0 generation rats 

also exposes the developing F1 generation fetus and the germ cells within the F1 generation, 

resulting in a direct exposure to the F2 generation.  Therefore, the F3 generation represents the 

first descendants with no direct exposure to the toxicant.  Identification of differentially 

methylated regions (DMRs) of the DNA between the control and exposure lineage F3 

generations indicates that the DMR was exposure-induced through epigenetic transgenerational 

inheritance [9]. 

The procedure for identifying DMRs in the transgenerational F3 generation involved a 

methylated DNA immunoprecipitation (MeDIP) procedure followed by next-generation 

sequencing (MeDIP-Seq).  The genome was divided into 1000bp regions, and DMRs with a 

specific pathology were identified.  A p-value was calculated for each of the 1000bp regions 

indicating the probability the region is not a DMR (non-DMR).  Those regions whose p-value < 

10
-6

 comprise the DMR set which constitutes the positive examples (DMRs) in the training 

examples used to train the hybrid DL-ML models. All molecular data has been deposited into the 

public database at NCBI under GEO #s: GSE113785 (vinclozolin), GSE114032 (DDT), 
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GSE98683 (atrazine), GSE155922 (jet fuel), GSE157539 (dioxin), GSE158254 (pesticides), 

GSE158086 (methoxychlor), GSE163412 (plastics), and GSE152678 (glyphosate). In previous 

work [18], all the DMRs from all these datasets were used to train the model. In this work, a 

separate model is trained on each dataset using only the DMRs from that dataset. 

In these experiments, the number of DMRs meeting the p-value threshold is a small 

fraction of the entire genome.  However, regions that do not meet the p-value threshold are not 

necessarily non-DMRs.  Thus, we seek a definition of a non-DMR that makes sense biologically 

and ideally is close to the number of DMRs to create a balanced training set for the learning 

model. Three constraints were considered for defining non-DMRs: (a) a region containing no 

CpGs, (b) a region which is a CpG-island (CpG-density > 10%), and (c) a region whose p-value 

is greater than a specific threshold.  The regions satisfying constraint (a) are non-DMRs because 

differential methylation is not possible without CpGs.  The number of additional non-DMRs 

added by including constraints (b) and (c) was typically only 1-2% of the number of no CpG 

non-DMRs from constraint (a), but their addition as non-DMRs has a significant impact on 

whole-genome prediction.  Therefore, regions satisfying constraints (a) and (b) were used as 

negative examples (non-DMRs) in the training set.  The other constraint (c) was considered for 

inclusion in the non-DMR samples but resulted in decreased performance. 

The hybrid DL-ML model detailed in [18] takes a 1000bp region of the DNA sequence as 

input and produces a classification for the region as to whether it will be susceptible to 

environmental exposure as evidenced by differential methylation.  The method is a hybrid model 

shown in Figure 1 and consists of a deep learning (DL) network that is trained using the dataset 

and a traditional machine learning (ML) classifier that is also trained using the dataset, but with 

the input region re-expressed using features extracted from a layer of the deep learning network.  
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The 1000bp DNA sequences are input to the DL network using a one-hot encoding, i.e., a 

5x1000 array, where each column indicates which base-pair (A,C,G,T,N) is present. The network 

is trained using the training DMRs and non-DMRs. The training data is re-input to the trained 

network, and the outputs of the first convolutional layer are used as new extracted features to re-

express each training example. The re-expressed training data is then used to train the XGBoost 

classifier. The prediction of the XGBoost classifier is used as the final prediction of DMR or 

non-DMR. The trained hybrid model is used to classify each region across the whole genome as 

to whether a region is susceptible to form a DMR in response to an ancestral environmental 

induced exposure.  The hybrid DL-ML method has been successful at identifying DMRs not 

present in the training set [18]. The hybrid model has also been shown to outperform DL alone, 

ML alone, and alternative approaches to DMR prediction [18]. 

One issue with the hybrid approach is that the model’s prediction has high variance.  For 

example, two models trained on the same data can result in a significant difference in the set of 

DMRs predicted by the models.  The variance is due to randomness in the training process, such 

as random initial weights and shuffling of training data. Even though one hybrid model predicts 

far fewer DMRs than all possible regions (based on the number of regions with at least one 

CpG), a model predicts nearly 20% of the genome as DMRs.  There is a trade-off between two 

objectives for training the hybrid model, i.e., maintaining high model accuracy while avoiding 

overly general predictive models.  To address this issue, multiple models are trained, and a core 

set of DMRs predicted by all models is identified.  To find the proper number of trained models, 

a stopping point (S.P.) is defined, which indicates how many models are required to show a 

correlation among the core set of predicted DMRs.  Given that a single model predicts N DMRs, 

if a set of N 1000bp regions were repeated selected at random from the genome, the SP is 
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defined as the number of randomly-selected sets of regions that would need to be intersected 

together for the intersection to be empty. If the same number of models are trained and their 

predicted DMRs intersected, then any DMRs remaining would have high certainty of being 

DMRs; these DMRs comprise the core set. The process used to determine SP for each exposure 

is shown in Table 1.   

The next step is to define the core set of predicted DMRs as the intersection of the 

predicted DMRs from SP independently trained models.  After generating the core set of DMRs 

for each exposure, the unique set of DMRs for each exposure can be determined.  A unique 

DMR for an exposure is a region predicted as DMR in only that specific exposure.  Once the 

unique DMRs for each exposure are identified, these DMRs are further analyzed by visualizing 

their locations on the genome, identifying known motifs among the DMRs, identifying genes 

associated with the DMRs, and identifying recurring motif patterns in the DMRs. 

Table 2 summarizes the data and results for each exposure: the stopping point (S.P.), the 

number of positive training samples in chromosome 7 (Training DMRs), the average number of 

predicted DMRs by a model (Predicted DMRs), the number of DMRs in the core set 

(intersection of DMRs predicted by SP models), and the number of unique regions in each 

exposure based on the training DMRs and based on the core DMRs as predicted by the whole-

genome models. There were 6636 non-DMRs used for training in each exposure for chromosome 

7. Due to the high number of training and predicted DMRs for the plastics exposure, 

identification of the core set of DMRs was prohibitive in time (training 165 models), and the 

core set is likely to be very large, which would tend to obscure unique DMRs in other exposures. 

Therefore, the plastics exposure DMRs were excluded from subsequent analyses. On the other 

extreme, there were only a small number of training DMRs, predicted DMRs, and unique DMRs 
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for glyphosate. Table 2 shows only one unique core DMR for glyphosate on chromosome 7. For 

many chromosomes, there were zero DMRs for glyphosate. Therefore, the glyphosate exposure 

DMRs were also excluded from the analysis. 

After composing the unique DMR set for each exposure, the TOMTOM tool is used to 

find the known motifs in the unique regions for each exposure [27].  Previous studies showed 

that methylated DNA fragments prevent the binding of transcription factors (TF) [1, 2]. As an 

example, CpGs are able to prevent binding TFs [1]. Identifying TF motif matches in unique 

DMRs can help in predicting the potential downstream effects of DNA methylation changes on 

gene expression and cellular processes. For example, if a TF binding site is differentially 

methylated in a cancer cell, it may affect the expression of downstream genes involved in tumor 

growth and progression. To find the transcription factor (TF) binding specificities alignments, 

CisBP (Catalog of Inferred Sequence Binding Preferences) is used as the reference database 

(http://cisbp.ccbr.utoronto.ca/).  CisBP is an online database of transcription factor (TF) binding 

specificities.  CisBP currently incorporates data from over 700 species covering more than 300 

TF families, totalling more than 390,000 TFs (of which over 165,000 have at least one DNA 

binding motif).  This method maps motifs across and within species, using DNA binding domain 

similarity thresholds [40]. 

The next analysis is to identify genes overlapping the DMRs unique to each exposure. 

Gene overlap occurs when a known gene shares the same region of a nucleotide sequence in a 

genome [41], where in this case the sequence is a 1000bp DMR unique to a particular exposure.  

Rat gene locations were obtained from the Rat Genome Database (https://rgd.mcw.edu). This 

experiment provides insights into the functional implications of DNA methylation changes. 
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DMRs that overlap with genes are more likely to have functional consequences on gene 

expression and may be directly involved in disease development.   

The next step in the analysis is to identify repeated motifs in each set of exposure specific 

DMRs. The top five repeated motifs in each set of exposure specific unique DMRs were 

identified using the MEME-ChIP discovery tool (https://meme-suite.org). The default parameters 

in the web-based interface were used for all runs, except the motifs were input from the “CIS-BP 

2.00 Single Species DNA” for rattus norvegicus, and the number of motifs to find was set to five. 

The MEME tool’s default constraints on minimum width (6), maximum width (50), and E-value 

 0.05 were used. The MEME-ChIP tool searches for matches to a motif in both the forward 

primary sequence and the reverse complement sequence. But the motifs are visualized in the 

forward primary sequence order. These motifs can help to visualize distinct properties of the 

DMRs across different exposures. Computational methods for comparing motifs [42] may 

uncover more global patterns in the differences of motifs across different exposures. 

The final step of the analysis is to apply the previous analysis steps to the common DMRs 

across all the exposures. Identifying the common DMRs across all the exposures can provide 

insights into the shared pathways and biological processes affected by different exposures. Table 

6 shows the number of DMRs common to at least N exposures. None of the core DMRs are 

common to seven or more exposures. Since there were not any common DMRs across all the 

exposures, the DMRs that were common among at least five (N=5) exposures were studied.  

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023

https://meme-suite.org/


 

 
 

 

 

 
  

 

 20 

Funding 

This study was supported by John Templeton Foundation (50183 and 61174) 

(https://templeton.org/) grants to MKS. The funders had no role in study design, data collection 

and analysis, decision to publish, or preparation of the manuscript. 

 

 

Data Availability 

Data is uploaded as supplementary information. 

 

 

Ethics Statement 

NA 

 

 

Conflicts of Interests 

The authors have declared that no competing interests exist. 

 

 

Author Contributions 

PM Conceptualization, formal analysis, investigation, validation, wrote original draft, reviewed, 

edited manuscript. 

LH Conceptualization, formal analysis, investigation, supervision, validation, writing, reviewed 

and edited manuscript. 

MKS Conceptualization, formal analysis, funding acquisition, investigation, supervision, 

validation, writing, reviewed and edited manuscript. 

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 21 

References 

1. Breton C.V. and M. A.N., Air pollution and epigenetics: recent findings. Curr Environ 

Health Rep., 2014. 1(1): p. 35–45. 

2. Inbar-Feigenberg, M., et al., Basic concepts of epigenetics. Fertil Steril, 2013. 99(3): p. 

607-15. 

3. Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 

1987. 196(2): p. 261-82. 

4. Cedar, H., DNA methylation and gene activity. Cell, 1988. 53(1): p. 3-4. 

5. Jirtle, R.L. and M.K. Skinner, Environmental epigenomics and disease susceptibility. 

Nature Reviews Genetics, 2007. 8(4): p. 253-62. 

6. Waddington, C.H., The epigenotype. 1942. Int J Epidemiol, 2012. 41(1): p. 10-3. 

7. Skinner, M.K. and E.E. Nilsson, Role of environmentally induced epigenetic 

transgenerational inheritance in evolutionary biology: Unified Evolution Theory. 

Environ Epigenet, 2021. 7(1): p. dvab012, 1-12. 

8. Kratz, C.P., et al., Genetic and epigenetic analysis of monozygotic twins discordant for 

testicular cancer. Int J Mol Epidemiol Genet, 2014. 5(3): p. 135-9. 

9. Nilsson, E., I. Sadler-Riggleman, and M.K. Skinner, Environmentally Induced Epigenetic 

Transgenerational Inheritance of Disease. Environmental Epigenetics, 2018. 4(2): p. 1-

13, dvy016. 

10. Sanchez, O.F., et al., Profiling epigenetic changes in human cell line induced by atrazine 

exposure. Environ Pollut, 2020. 258: p. 113712. 

11. Thorson, J.L.M., et al., Epigenome-Wide Association Study for Atrazine Induced 

Transgenerational DNA Methylation and Histone Retention Sperm Epigenetic 

Biomarkers for Disease. Plos One, 2020. 15(12): p. 1-29, e0239380. 

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 22 

12. Kubsad, D., et al., Assessment of Glyphosate Induced Epigenetic Transgenerational 

Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Scientific 

Reports, 2019. 9(1): p. 6372. 

13. Martins, R. and M. Carruthers, Testosterone as the missing link between pesticides, 

Alzheimer disease, and Parkinson disease. JAMA Neurol, 2014. 71(9): p. 1189-90. 

14. Paul, K.C., et al., Organophosphate pesticide exposure and differential genome-wide 

DNA methylation. Sci Total Environ, 2018. 645: p. 1135-1143. 

15. Yan, D., et al., Pesticide exposure and risk of Parkinson's disease: Dose-response meta-

analysis of observational studies. Regul Toxicol Pharmacol, 2018. 96: p. 57-63. 

16. Skinner, M.K., et al., Ancestral dichlorodiphenyltrichloroethane (DDT) exposure 

promotes epigenetic transgenerational inheritance of obesity. BMC Medicine, 2013. 11: 

p. 228, 1-16. 

17. Nilsson, E.E., M. Ben Maamar, and M.K. Skinner, Role of epigenetic transgenerational 

inheritance in generational toxicology. Environ Epigenet, 2022. 8(1): p. dvac001 (1-9). 

18. Mavaie, P., et al., Predicting environmentally responsive transgenerational differential 

DNA methylated regions (epimutations) in the genome using a hybrid deep-machine 

learning approach. BMC Bioinformatics, 2021. 22(1): p. 575. 

19. King, S.E., et al., Sperm Epimutation Biomarkers of Obesity and Pathologies following 

DDT Induced Epigenetic Transgenerational Inheritance of Disease. Environ Epigenet, 

2019. 5(2): p. 1-15, dvz008. 

20. Ben Maamar, M., et al., Epigenome-wide association study for glyphosate induced 

transgenerational sperm DNA methylation and histone retention epigenetic biomarkers 

for disease. Epigenetics, 2021. 16(10): p. 1150-1167. 

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 23 

21. Nilsson, E., et al., Vinclozolin induced epigenetic transgenerational inheritance of 

pathologies and sperm epimutation biomarkers for specific diseases. PLoS One, 2018. 

13(8): p. 1-29, e0202662. 

22. Thorson, J.L.M., et al., Epigenome-Wide Association Study for Pesticide (Permethrin and 

DEET) Induced DNA Methylation Epimutation Biomarkers for Specific 

Transgenerational Disease. Environmental Health, 2020. 19(1): p. 109. 

23. Ben Maamar, M., et al., Transgenerational disease specific epigenetic sperm biomarkers 

after ancestral exposure to dioxin. Environ Res, 2020. 192: p. 110279. 

24. Ben Maamar, M., et al., Epigenome-wide association study for transgenerational disease 

sperm epimutation biomarkers following ancestral exposure to jet fuel hydrocarbons. 

Reprod Toxicol, 2020. 98: p. 61-74. 

25. Nilsson, E., et al., Epigenome-Wide Association Study (EWAS) for Potential 

Transgenerational Disease Epigenetic Biomarkers in Sperm Following Ancestral 

Exposure to the Pesticide Methoxychlor  Environmental Epigenetics, 2020. 6(1): p. 1-25, 

dvaa020. 

26. Thorson, J.L.M., et al., Ancestral plastics exposure induces transgenerational disease-

specific sperm epigenome-wide association biomarkers. Environ Epigenet, 2021. 7(1): p. 

1-13, dvaa023. 

27. Gupta, S., et al., Quantifying similarity between motifs. Genome Biol, 2007. 8(2): p. R24. 

28. Boffetta, P., et al., Atrazine and cancer: a review of the epidemiologic evidence. Eur J 

Cancer Prev, 2013. 22(2): p. 169-80. 

29. Carrión, D.V., et al., The role of the Bub1 gene in aneuploidy and cancer progression. 

Cancer Res, 2004. 64(April): p. 994–995. 

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 24 

30. Wang, X., et al., Chlorpyrifos exposure induces lipid metabolism disorder at the 

physiological and transcriptomic levels in larval zebrafish. Acta Biochim Biophys Sin 

(Shanghai), 2019. 51(9): p. 890-899. 

31. Cole, P., et al., Dioxin and cancer: a critical review. Regul Toxicol Pharmacol, 2003. 

38(3): p. 378-88. 

32. Hsu, E.L., et al., A proposed mechanism for the protective effect of dioxin against breast 

cancer. Toxicol Sci, 2007. 98(2): p. 436-44. 

33. Bedenk, J., E. Vrtacnik-Bokal, and I. Virant-Klun, The role of anti-Mullerian hormone 

(AMH) in ovarian disease and infertility. J Assist Reprod Genet, 2020. 37(1): p. 89-100. 

34. Campbell, T.L., et al., Identification and genome-wide prediction of DNA binding 

specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog, 

2010. 6(10): p. e1001165. 

35. Khund-Sayeed, S., et al., 5-Hydroxymethylcytosine in E-box motifs ACAT|GTG and 

ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4. Integr Biol 

(Camb), 2016. 8(9): p. 936-45. 

36. Tian, W., et al., Structure-based discovery of a novel inhibitor targeting the beta-

catenin/Tcf4 interaction. Biochemistry, 2012. 51(2): p. 724-31. 

37. Parry, T.J., et al., The TCT motif, a key component of an RNA polymerase II transcription 

system for the translational machinery. Genes Dev, 2010. 24(18): p. 2013-8. 

38. Platero, A.I., et al., Transcriptional organization and regulatory elements of a 

Pseudomonas sp. strain ADP operon encoding a LysR-type regulator and a putative 

solute transport system. J Bacteriol, 2012. 194(23): p. 6560-73. 

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 25 

39. Mattie, D.R. and T.R. Sterner, Past, present and emerging toxicity issues for jet fuel. 

Toxicol Appl Pharmacol, 2011. 254(2): p. 127-32. 

40. Lambert, S.A., et al., Similarity regression predicts evolution of transcription factor 

sequence specificity. Nat Genet, 2019. 51(6): p. 981-989. 

41. Schlub, T.E., J.P. Buchmann, and E.C. Holmes, A Simple Method to Detect Candidate 

Overlapping Genes in Viruses Using Single Genome Sequences. Mol Biol Evol, 2018. 

35(10): p. 2572-2581. 

42. Gupta, S., et al., Quantifying similarity between motifs. Genome Biology, 2007. 8(2): p. 

R24. 

 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/advance-article/doi/10.1093/eep/dvad007/7456207 by guest on 01 D

ecem
ber 2023



 

 
 

 

 

 
  

 

 26 

Table and Figure Legends 

 

Table 1. Method for finding the stopping point (S.P.) for each exposure. S.P. is computed as the 

minimal number of random subsets of the predicted DMRs, that when intersected together, result 

in the empty set. S.P. represents the number of models that must be training, and their DMR 

predictions intersected, to arrive at a core set of predicted DMRs that exclude noisy predictions 

due to variance in the models.  

 

Table 2. The stopping point, the number of training DMRs, the average number of predicted 

DMRs in one model, the core set of DMRs, and the unique regions in each exposure for the 

training DMRs and the core set of predicted DMRs, all for chromosome 7. The same 6636 non-

DMRs were used for training in each exposure. 

 

Table 3. Location of the unique DMRs on chromosome 7 for each exposure. 

 

Table 4. Transcription factor matches found in the unique DMRs in each exposure for 

chromosome 7. The TOMTOM tool is used to find the known motifs in the unique regions for 

each exposure. Vinclozolin has only one motif alignment with its unique DMRs 

(L8GDR2_ACACA), and so is not included for brevity. 

 

Table 5. Overlapping genes associated with the unique DMRs in each exposure for chromosome 

7. Rat gene locations were obtained from the Rat Genome Database (https://rgd.mcw.edu) and 

aligned with the predicted unique DMRs. None were found in the unique DMRs for DDT, 

atrazine and vinclozolin. 
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Table 6. The number of core DMRs common to at least N different exposures for each 

chromosome. A total of seven exposures are used for this analysis; glyphosate and plastics are 

excluded. None of the core DMRs are common to all seven (N=7) exposures on any 

chromosome. Some core DMRs are present in six (N=6) different exposures, and as expected the 

number of common core DMRs increases as the constraint on the number of common exposures 

declines. Note that the N exposures that each core DMR has in common does not need to be the 

same N exposures, but any N of the seven exposures. 

 

Table 7: The locations of the common DMRs (common to N=5 exposures) on each chromosome 

in the whole genome. 

 

Table 8. Transcription factor matches found in the common DMRs (common to N=5 exposures) 

on each chromosome in the whole genome. The TOMTOM tool is used to find the known motifs 

in the common DMRs. 

 

Table 9. Overlapping genes associated with the common DMRs (common to N=5 exposures) on 

each chromosome in the whole genome. Rat gene locations were obtained from the Rat Genome 

Database (https://rgd.mcw.edu) and aligned with the common DMRs. No known genes 

overlapped the common DMRs in chromosomes 4, 6, X and Y. 

 

Figure 1. Architecture of the hybrid DL-ML model. The model consists of two components: a 

deep neural network (DNN) and a traditional ML classifier. The DMR sequence is input using a 

5x1000 one-hot encoding, which is fed into two CNN blocks, each consisting of two 1D CNNs 

followed by a max pooling layer. The output of the last block is flattened, then passed to two 
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dense layers, and then passed into a SoftMax layer that makes an internal prediction. After the 

DNN is trained, the output of the first CNN block is used as features to the ML classifier, in this 

case XGBoost. The XGBoost classifier makes the final prediction as to whether the input 

sequence is a DMR. 

 

Figure 2. Top-five most repeated motifs in the unique DMRs for DDT in chromosome 7. The 

motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 

MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 3. Top-five most repeated motifs in the unique DMRs for vinclozolin in chromosome 7. 

The motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 

MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 4. Top-five most repeated motifs in the unique DMRs for pesticide in chromosome 7. 

The motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 
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MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 5. Top-five most repeated motifs in the unique DMRs for methoxychlor in chromosome 

7. The motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), 

using default web parameters, except the motifs were input from the “CIS-BP 2.00 Single 

Species DNA” database for rattus norvegicus, and the number of motifs to find was set to five. 

The MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 6. Top-five most repeated motifs in the unique DMRs for jet fuel in chromosome 7. The 

motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 

MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 7. Top-five most repeated motifs in the unique DMRs for atrazine in chromosome 7. The 

motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 

MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 
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Figure 8. Top-five most repeated motifs in the unique DMRs for dioxin in chromosome 7. The 

motifs were identified using the MEME-ChIP discovery tool (https://meme-suite.org), using 

default web parameters, except the motifs were input from the “CIS-BP 2.00 Single Species 

DNA” database for rattus norvegicus, and the number of motifs to find was set to five. The 

MEME tool’s default constraints on motif minimum width (6), maximum width (50), and E-

value  0.05 were used. 

 

Figure 9. Top three motifs found in the common DMRs (common to N=5 exposures) for 

chromosomes 1-6. Motifs were identified using the MEME-ChIP discovery tool (https://meme-

suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 

Single Species DNA” database for rattus norvegicus, and the number of motifs to find was set to 

three. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 

and E-value  0.05 were used. 

 

Figure 10. Top three motifs found in the common DMRs (common to N=5 exposures) for 

chromosomes 7-12. Motifs were identified using the MEME-ChIP discovery tool (https://meme-

suite.org), using default web parameters, except the motifs were input from the “CIS-BP 2.00 

Single Species DNA” database for rattus norvegicus, and the number of motifs to find was set to 

three. The MEME tool’s default constraints on motif minimum width (6), maximum width (50), 

and E-value  0.05 were used. 
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Figure 11. Top three motifs found in the common DMRs (common to N=5 exposures) for 

chromosomes 13-18. Motifs were identified using the MEME-ChIP discovery tool 

(https://meme-suite.org), using default web parameters, except the motifs were input from the 

“CIS-BP 2.00 Single Species DNA” database for rattus norvegicus, and the number of motifs to 

find was set to three. The MEME tool’s default constraints on motif minimum width (6), 

maximum width (50), and E-value  0.05 were used. 

 

Figure 12. Top three motifs found in the common DMRs (common to N=5 exposures) for 

chromosomes 19, 20 and X. No motifs were found in chromosome Y. Motifs were identified 

using the MEME-ChIP discovery tool (https://meme-suite.org), using default web parameters, 

except the motifs were input from the “CIS-BP 2.00 Single Species DNA” database for rattus 

norvegicus, and the number of motifs to find was set to three. The MEME tool’s default 

constraints on motif minimum width (6), maximum width (50), and E-value  0.05 were used. 
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Table 1 

Finding the right number of models for exposure 

1. N = # DMRs predicted by one trained hybrid model for exposure 

2. R = all regions in genome 

3. SP = 0 

4. Repeat 

a. R’ = randomly choose N regions from all regions in genome 

b. R = R intersect R’ 

c. SP = SP + 1 

5. Until R is empty 

6. Return stopping point S.P. 
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Table 2  

Exposure S.P. Training 

DMRs 

Predicted 

DMRs 

Core set 

DMRs 

Unique 

Training 

DMRs 

Unique 

Core 

DMRs  

DDT  6 1543 14370 3184 520 525 

Atrazine  2 243 697 258 112 74 

Methoxychlor 3 423 12476 4474 222 258 

Glyphosate 1 5 4 4 5 1 

Vinclozolin  2 220 1375 978 70 58 

Jet Fuel  27 1973 78122 21899 776 2282 

Pesticide 15 1145 55819 15259 314 1069 

Dioxin  79 2431 90910 35634 1264 12760 

Plastics  165 12504 134884 n/a 10295 n/a 
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Table 3 

DDT 

 

Atrazine 

 

Methoxychlor 

 

Glyphosate

 

Vinclozolin

 

Jet Fuel 

 

Pesticide 

 

Dioxin 
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Table 4 

DDT  Atrazine  Methoxychlor  Jet Fuel  Pesticide  Dioxin  

Zfp110 Cic  Zfp523  Klf6    Pou2f2  Prdm6   Bhlhe3   Zpf422   Srebf2  

Mecom  Zzz3  Zfp354a  Zfp580  Zbtb37  Lin54   Nfib   Zpf287   Foxp2  

Tcf7l2  Rbpj  Bd11a  Zfp641  Zfp90  Zfp189   Nfia  Zpf384  Zfp212   

Mef2d  Cdc5l  Zfp513  Klf4   Glis3   Foxi1   Nfx1   Prdm6  RGD1304587 

Irf8  Tbx4  Mef2c  Glis2  Rara   E2f7  Lin54   Prdm4   Rest  

Gata1  Mga  Stat2  Klf3  Cdx4   Neurod1   Hmg20b   Zbtb26   Egr3  

Trps1  Tbx5    Zfp449  Cdx2  rdm1    Mef2d   Pitx1   Zfp3  

Gata2  Tbx1     Rreb1  Zfp382   Znf354b   Pou4f2   Zfp189   Nr5a1  

Gata4  Tbx6     Sp4  Mynn  Zfp41    Scrt1   Zbtb12   Nr2f2  

Gata6   Nfactc3        Dbx1  Gli3   Neurod1   Nr6a1   Nr4a1  

Etv2  Ikzf3        Zfp410  Gli1   Yy1   Bcl6   Esrrg  

Vdr  Zbb48        Zscan10   Gli2   Gli3   Zfp829   Esr1  

Thra  Nr3c1        Zfp770  Rel   Klf1   Zfp513   Nr4a2  

Thrb  Esrra        Zfp787  Ar   Klf9   Zfp410   Rarb  

Zbtb12  Sox10        Nr2e3  Zfp24   Ebf1   Ctcf   Nr2e1  

Smad4  Zfp283        Nhlh1  Zfp143   Zfp128   Zfp1   Rxra  

Myrf  Hox6        Nr5a2  Ets1   Myrf   Thrb  Rxrb  

Jund  Mxf1        Nr5a1  Tbx2    Sox10   Thra   Rarg  

Mzf1  Onecut2        Esr1  Sox14    Zfp524   Zfp281   Ppard  

Jun   Foxp2        Esrrg  Sox9   Znf454   Klf5   Nr2f1  

Atf7         Rxrb  Sox13   Nhlh1   Zfp467   Nr2e3  

        Sox2  Sox6    Ascl1   Klf16   Spi1  

           Tbx20   Klf10   Nfkb2  

           Zbtb26   Klf11   Gl3  

           Dpf3   Klf14   Nfe2  

           Rfx5   Klf12   Nwurod1  

           Rreb1   Sp3   Bhlha15  

           Elf   Znf354b   Stoh1  

           Et1   E2f8   Runx1   

           Ets2   E2f7   Mycn  

           Zscan10   Foxk2   Foxa1 
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Table 5 

Dioxin  Jet Fuel  Methoxychlor  Pesticide  

Atxn10  Acvrl1  Cand1  Gzmm  Phlda1  Best3  

Baz2a  Adcy6  Dbx2  Npff  Pphln1  Cnn2  

Bik  Adm2  Gtsf2  Sppl2b  R3hdm2  Cyp2b1  

Bin2  Akap8l  Ilvbl  Spryd3  Rapgef3  Endou  

Btg1  Amh  Mtss1  Tssk5  Tac3  Fzr1  

Card10  Apof  Olr1045-ps  Zfp707  Tmem117 Kif21a  

Ccn4  Apol11a  Olr1073    Tspan31  Map2k2  

Cct2  Apol3  Ptprq    Zc3h10  Pdxp  

Cdc34  Apol9a  RGD1560979   Zfp7  Pglyrp2  

Cdc42ep1  Arc  RGD1561871    Znf7   

Cdk17  Arfgap3  RGD1565356      

Cdpf1  Arhgap45  Scyl2      

Celf5  Arhgap8  Tafa2      

Celsr1  Arhgef25  Them6      

Cenpm  Arsa  Tmem65      

Cfap54  Asap1  Tph2      

Chadl  Asic1        

Cradd  Cry1        
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Table 6 

Chr # Core DMRs Common to N Exposures 

N=1 N=2 N=3 N=4 N=5 N=6 N=7 

1 37504 26982 18883 4989 372 11 0 

2 29388 22191 15659 4315 285 4 0 

3 24534 17511 12018 2717 176 5 0 

4 23642 16616 11175 2897 226 10 0 

5 22512 17591 12315 3385 199 6 0 

6 19812 13654 9008 2450 143 7 0 

7 19487 15410 10921 2665 132 5 0 

8 20241 14038 9056 1850 109 7 0 

9 16106 12457 8230 1931 162 8 0 

10 18806 13521 9135 1639 113 2 0 

11 10973 8608 5750 1440 115 3 0 

12 10717 8119 6859 990 55 6 0 

13 13947 11022 7718 2018 155 6 0 

14 13883 11739 8242 1846 165 5 0 

15 13445 11132 7314 1678 112 7 0 

16 11733 9798 6532 1521 91 4 0 

17 12355 10514 7774 1467 99 4 0 

18 11576 8942 5940 1467 152 1 0 

19 10121 7583 5300 1106 70 4 0 

20 8177 7602 6511 1183 70 1 0 

X 12470 8625 6772 3229 241 2 0 

Y 314 254 292 194 9 0 0 

Total 361743 273909 191404 46977 3251 108 0 
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Table 7 

Chr Visualization 
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Table 8 

Chr Overlapping genes Chr Overlapping Genes 

1 Tbx20 12 Zbtb26 

2 Zfp287 13 Foxa3 

Sox10 Zfp287 

Hnf4a Zfp182 

Zfp105 Foxp2 

3 Zfp287 Prdm6 

Zfp879 14 Tbx20 

Prdm6 Zfp105 

Zfp105 15 Zfp105 

Zbtb26 16 Foxg1 

4 Foxr1 FOXQ1_RAT 

Zfp287 Foxa3 

Sox10 Foxl2 

Zfp105 Nr1d1 

5 Tbx20 Nr1d2 

Zfp105 Foxp2 

Zbtb26 17 Msantd3 

6 Foxg1 Tbx20 

Foxl2 Zfp105 

Sox10 Zbtb26 

7 Nr1d2 18 Prdm6 

Zbtb26 Zfp105 

8 Sp3 Zbtb26 

Tbx20   

Zfp287 20 Tbx20 

Klf9 Zfp24 

Klf4 X Hdx 

Prdm6 Zfp287 

Zbtb26 Zfp182 

Zfp28 Zfp422 

9 Tbx20 Y Zfp449 

10 Foxf1   

Tbx20   

Nr1d2   

Zfp105   

11 Rreb1   
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Table 9 

Chr Overlapping genes Chr Overlapping Genes 

1 Ascl3 11 Pcnp 

Ganab Tra2b 

Irx1 12 Ache 

L3mbtl3 Stag3 

Syvn1 Vom2r-ps91 

Trnas-gcu3 Vps37b 

2 Anp32e 13 Glrx2 

Bhlhe22 Nsl1 

Cct3 14 Noa1 

Khdc4 15 Kctd9 

Lysmd1 Mrpl57 

Plrg1 16 Ing1 

Ppid Jund 

Trnar-ucu3 Klf2 

3 Naif1 Mak16 

Snap23 Mpv17l2 

Zfp341 Ncoa4 

4 - Sap30 

5 Trnas-aga1 17 Gmnn 

Orc1 Msrb2 

6 - 18 Chmp1b 

7 Dusp6 Mtmr1 

Hoxc12 Pcdhgb7 

Polr2e Prdm6 

Tnrc6b Rps14 

8 Chrna5 19 Dhx38 

Fez1 Dus2 

Npat Hook2 

Plekho2 Nip7 

Trnar-acg2 Slc9a5 

9 Dazl 20 Pou5f1 

Klhdc3 X - 

10 Trnal-uag2 Y - 

Trnar-ucu4   
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