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Abstract 
Much of the data collected during the monitoring of cyber and other infrastructures is structural in 
nature, consisting of various types of entities and relationships between them. The detection of 
threatening anomalies in such data is crucial to protecting these infrastructures. We present an 
approach to detecting anomalies in a graph-based representation of such data that explicitly 
represents these entities and relationships. The approach consists of first finding normative 
patterns in the data using graph-based data mining and then searching for small, unexpected 
deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, 
normative behavior. The approach is evaluated using several synthetic and real-world datasets. 
Results show that the approach has high true-positive rates, low false-positive rates, and is 
capable of detecting complex structural anomalies in real-world domains including email 
communications, cell-phone calls and network traffic. 

1. Introduction 
Maintaining the security of our infrastructure, whether physical or cyber, requires the ability to 
detect threats to the infrastructure. Modern threats are sophisticated, multifaceted, coordinated 
and attempt to mimic normal activity. Detecting such threats requires approaches that consider 
many different types of activities and the relationships between them. We describe an approach 
that represents the activities and relationships as a graph, mines the graph for normative patterns, 
and then searches for unexpected deviations to the normative patterns. These unexpected 
deviations may indicate the presence of a threat to the infrastructure being monitored. 

The ability to mine data represented as a graph has become important in several domains for 
detecting various structural patterns (Cook and Holder 2006). One important area of data mining 
is anomaly detection, particularly for fraud. However, less work has been done in terms of 
detecting anomalies in graph-based data. While there has been some previous work that has used 



statistical metrics and conditional entropy measurements, the results have been limited to certain 
types of anomalies and specific domains. 

In this chapter we present graph-based approaches to uncovering anomalies in domains where 
the anomalies consist of unexpected entity/relationship alterations that closely resemble non-
anomalous behavior. We have developed three algorithms for the purpose of detecting anomalies 
in all three types of possible graph changes:  label modifications, vertex/edge insertions and 
vertex/edge deletions. Each of our algorithms focuses on one of these anomalous types, using the 
minimum description length principle to first discover the normative pattern. Once the common 
pattern is known, each algorithm then uses a different approach to discover particular anomalous 
types. The first algorithm uses the minimum description length to find anomalous patterns that 
closely compress the graph. The second algorithm uses a probabilistic approach to examine 
pattern extensions and their likelihood of existence. The third algorithm analyzes patterns that 
come close to matching the normative pattern, but are unable to make some of the final 
extensions leading to the construction of the normative pattern. 

Using synthetic and real-world data, we evaluate the effectiveness of each of these algorithms 
in terms of each of the types of anomalies. Each of these algorithms demonstrates the usefulness 
of examining a graph-based representation of data for the purposes of detecting threats, where 
some individual or entity is cloaking their illicit activities through an attempt at closely 
resembling normal behavior. 

The next section describes the general area of graph-based learning and the algorithm 
underlying our ability to find normative patterns in graphs. Section 3 defines the problem of 
graph-based anomaly detection, and Section 4 presents the GBAD system, which consists of three 
variants for detecting different types of graph-based anomalies. Section 5 presents experimental 
results evaluating GBAD on several synthetic and real-world datasets related to threat detection. 
We discuss related work in section 6, and conclude in section 7. 

2. Graph-based Learning 
While not specific to anomaly detection, there are several approaches to handling the first stage of 
detecting anomalies, which is the discovery of the normative pattern in data represented as a 
graph. One approach called gSpan returns all frequent subgraphs in a database that is represented 
as a graph (Yan and Han 2002). Using a depth-first search (DFS) on the input graphs, the 
algorithm constructs a hierarchical search tree based upon the DFS code assigned to each graph. 
Then, from its canonical tree structure, the algorithm performs a pre-order traversal of the tree in 
order to discover the frequent subgraphs. 

Another approach is found in FSG, which is similar to gSpan in that it returns all of the 
frequent subgraphs in a database of transactions that have been represented as a graph 
(Kuramochi and Karypis 2004). However, unlike gSpan, FSG uses an Apriori-style breadth-first 
search. The algorithm takes the input graphs and performs a level-by-level search, growing 
patterns one edge at a time. The core of the FSG algorithm lies in its candidate generation and 
counting that are used to determine the frequent subgraphs. 

In order to mine large graphs for frequent subgraphs, Huan et al. proposed a maximal 
frequent subgraphs approach called SPIN as an improvement to gSpan (Huan et al. 2004). By 
mining only subgraphs that are not part of any other frequent subgraphs, they are able to reduce 
the number of mined patterns by orders of magnitude. This is accomplished by first mining all 
frequent trees from a graph, and then reconstructing all maximal subgraphs from the mined trees. 
Zeng et al. looked at the problem of dense graphs by mining the properties of quasi-cliques (Zeng 
et al. 2006). Using a system called Cocain, they propose several optimization techniques for 
pruning the unpromising and redundant search spaces. To help combat the computational 
complexity of subgraph isomorphism, Gudes et al. proposed a new Apriori-based algorithm using 
disjoint paths (Gudes et al. 2006). Following a breadth-first enumeration and what they called an 



“admissible support measure”, they are able to prune candidate patterns without checking their 
support, significantly reducing the search space. MARGIN is another maximal subgraph mining 
algorithm that focuses on the more promising nodes in a graph (Thomas et al. 2006). This is 
accomplished by searching for promising nodes in the search space along the “border” of frequent 
and infrequent subgraphs, thus reducing the number of candidate patterns. 

The goal of SUBDUE is to return the substructures that best compress the graph (Holder et al. 
1994). Using a beam search (a limited length queue of the best few patterns that have been found 
so far), the algorithm grows patterns one edge at a time, continually discovering which subgraphs 
best compress the description length of the input graph. The core of the SUBDUE algorithm is in 
its compression strategy. After extending each subgraph pattern by one edge, it evaluates each 
extended subgraph based upon its compression value (the higher the better). A list is maintained 
of the best substructures, and this process is continually repeated until either there are no more 
subgraphs that can compress or a user-specified limit is reached. 

While each of these approaches is successful at pattern discovery, we will use the SUBDUE 
compression evaluation technique as the basis for our underlying discovery of the normative 
patterns. While the gSpan application is not publicly available, there are a few reasons why we 
found FSG to not be an ideal candidate for our implementation. One reason for our choice of 
pattern learner lies with the format expected by the FSG application. SUBDUE can effectively 
discover normative patterns whether it is given all transactions or data as one entire graph, or if 
each transaction is defined as individual subgraphs. As a graph data miner, FSG shows the 
frequency of a pattern based upon the number of transactions defined in the graph input file. So, 
if a graph is not delineated by individual transactions, the frequency of every pattern is 1, and 
thus very difficult to determine which pattern is the most frequent. However, in some later work 
by Kuromachi and Karypis, they improve upon this with an approach called Grew that is able to 
better handle large graphs that consist of connected subgraphs (Kuromachi and Karypis 2004). 
Another reason we prefer SUBDUE lies in the FSG approach to determining the normative 
pattern based upon frequency. While tests on various graphs showed SUBDUE and FSG returned 
the same normative pattern, when the tests involved a graph where the normative pattern is not 
found across all transactions (e.g., noise), the frequent pattern is not found unless the FSG support 
percentile is reduced. The issue then is knowing what support percentile should be used for a 
specific run. Specifying 100% support will result in the normative pattern being lost if the pattern 
is not found in every transaction, while using a lower percentile may result in other (smaller) 
normative patterns being found. In short, SUBDUE allows us to find the normative pattern in data 
that may be less regular or contain some noise. As will be shown in the following section, this is 
critical to the success of discovering anomalies. 

3. Graph-based Anomaly Detection 
Before we lay the groundwork for our definition of a graph-based anomaly, we need to put forth a 
framework for the definition of a graph. In general, a graph is a set of nodes and a set of links, 
where each link connects either two nodes or a node to itself. More formally, we use the 
following definitions (Gross and Yellen 1999) (West 2001): 

  
Definition:  A graph G = (V, E, L) is a mathematical structure consisting of three sets V, 

E and L. The elements of V are called vertices (or nodes), the elements of 
E are the edges (or links) between the vertices, and the elements of L are 
the string labels assigned to each of the elements of V and E.  

 
Definition:  A vertex (or node) is an entity (or item) in a graph. For each vertex there is a 

labeled vertex pair (v, l) where v is a vertex in the set V of vertices and l is 
a string label in the set L of labels. 



 
Definition:  An edge (or link) is a labeled relation between two vertices called its 

endpoints. For each edge there is a labeled edge pair (e, l) where e is an 
edge in the set E of edges and l is a string label in the set L of labels. 

 
Definition:   An edge can be directed or undirected. A directed edge is an edge, one of 

whose endpoints is designated as the tail, and whose other endpoint is 
designated as the head. An undirected edge is an edge with two unordered 
endpoints. A multi-edge is a collection of two or more edges having 
identical endpoints. 

 
Much research has been done recently using graph-based representations of data. Using 

vertices to represent entities such as people, places and things, and edges to represent the 
relationships between the entities, such as friend, lives and owns, allows for a much richer 
expression of data than is present in the standard textual or tabular representation of information. 
Representing various data sets, like telecommunications call records, financial information and 
social networks, in a graph form allows us to discover structural properties in data that are not 
evident using traditional data mining methods. 

The idea behind the approach presented in this work is to find anomalies in graph-based data 
where the anomalous subgraph (at least one edge or vertex) in a graph is part of (or attached to or 
missing from) a non-anomalous subgraph, or the normative pattern. This definition of an 
anomaly is unique in the arena of graph-based anomaly detection, as well as non-graph-based 
anomaly detection. The concept of finding a pattern that is “similar” to frequent, or good, 
patterns, is different from most approaches that are looking for unusual or “bad” patterns. While 
other non-graph-based data mining approaches may aide in this respect, there does not appear to 
be any existing approaches that directly deal with this scenario.  
 

Definition:  Given a graph G with a normative substructure S, a subgraph S’, and a 
difference d between S and S’, let C(d) be the cost of the difference and 
P(d) be the probability of the difference. Then the subgraph S’ is 
considered anomalous if 0 < A(S’) ≤ X, where X is a user-defined 
threshold and A(S’) = C(d) * P(d) is the anomaly score. 

 
The importance of this definition lies in its relationship to fraud detection (i.e., any sort of 

deceptive practices that are intended to illegally obtain or hide information). If a person or entity 
is attempting to commit fraud, they will do all they can to hide their illicit behavior. To that end, 
their approach would be to convey their actions to be as close to legitimate actions as possible. 
That makes this definition of an anomaly extremely relevant. 

For a graph-based anomaly, there are several situations that might occur: 
 
1. The label on a vertex is different than was expected. 
2. The label on an edge is different than was expected. 
3. A vertex exists that is unexpected. 
4. An edge exists that is unexpected. 
5. An expected vertex is absent. 
6. An expected edge between two vertices (or a self-edge to a vertex) is 

   absent. 
 

These same situations can also be applied to a subgraph (i.e., multiple vertices and edges), 
and will be addressed as such. In essence, there are three general categories of anomalies: 
modifications, insertions and deletions. Modifications would constitute the first two situations; 



insertions would consist of the third and fourth situations; and deletions would categorize the last 
two situations. 

4. GBAD Approach 
Most anomaly detection methods use a supervised approach, which requires a baseline of 
information from which comparisons or training can be performed. In general, if one has an idea 
what is normal behavior, deviations from that behavior could constitute an anomaly. However, 
the issue with those approaches is that one has to have the data in advance in order to train the 
system, and the data has to already be labeled (i.e., fraudulent versus legitimate). 

Our work has resulted in the development of three algorithms, which we have implemented in 
the GBAD (Graph-based Anomaly Detection) system. GBAD is an unsupervised approach, based 
upon the SUBDUE graph-based knowledge discovery system (Cook and Holder 2000). Using a 
greedy beam search and Minimum Description Length (MDL) heuristic, each of the three 
anomaly detection algorithms uses SUBDUE to provide the top substructure (subgraph), or 
normative pattern, in an input graph. In our implementation, the MDL approach is used to 
determine the best substructure(s) as the one that minimizes the following: 

 
)()|(),( SDLSGDLGSM +=  

 
where G is the entire graph, S is the substructure, DL(G|S) is the description length of G after 
compressing it using S, and DL(S) is the description length of the substructure.  

We have developed three separate algorithms:  GBAD-MDL, GBAD-P and GBAD-MPS. 
Each of these approaches is intended to discover all of the possible graph-based anomaly types as 
set forth earlier. The GBAD-MDL algorithm uses a Minimum Description Length (MDL) 
heuristic to discover the best substructure in a graph, and then subsequently examines all of the 
instances of that substructure that “look similar” to that pattern. The detailed GBAD-MDL 
algorithm is as follows: 
 
 

1. Given input graph G: 
2. Find the top-k substructures iS , that minimize ),( GS , 

where iS  is a subgraph of G. 

M i

3. Find all close-matching instances jI  of iS such that the cost 

),( ij SIC  of transforming jI  to match the graph structure of 

iS  is greater than 0. 

4. Determine anomalous value for each jI  by building the 

substructure definition jS , finding all exact matching 

instances of jS such that )( jIF  is the frequency of instances 

that match jI , and calculating the value 

),( j , where the lower the value, the more 

anomalous the instance. 

*)()( jj SIFIA = iIC

5. Output all jI  minimizing )( jIA . 

 
The cost of transforming a graph A into an isomorphism of a graph B is calculated by adding 

1.0 for every vertex, edge and label that would need to be changed in order to make A isomorphic 



to B. The result will be those instances that are the “closest” (without matching exactly) in 
structure to the best structure (i.e., compresses the graph the most), where there is a tradeoff in the 
cost of transforming the instance to match the structure, as well as the frequency with which the 
instance occurs. Since the cost of transformation and frequency are independent variables, 
multiplying their values together results in a combinatory value:  the lower the value, the more 
anomalous the structure. 

It should be noted that the value of substructure S will include the instances that do not match 
exactly. It is these inexact matching instances that will be analyzed for anomalousness. It should 
also be noted that we are only interested in the top substructure (i.e., the one that minimizes the 
description length of the graph), so k will always be 1. However, for extensibility, the k can be 
adjusted if it is felt that anomalous behavior may be found in more than one normative pattern. 

The GBAD-P algorithm also uses the MDL evaluation technique to discover the best 
substructure in a graph, but instead of examining all instances for similarity, this approach 
examines all extensions to the normative substructure (pattern), looking for extensions with the 
lowest probability. The subtle difference between the two algorithms is that GBAD-MDL is 
looking at instances of substructures with the same characteristics (i.e., size, degree, etc.), 
whereas GBAD-P is examining the probability of extensions to the normative pattern to 
determine if there is an instance that when extended beyond its normative structure is traversing 
edges and vertices that are probabilistically less likely than other possible extensions. 

The detailed GBAD-P algorithm is as follows: 
  

1. Find the top-k substructures iS , that minimize ),( GS , 

where iS  is a subgraph of G. 

M i

2. Compress G  by iS , and Find the top-k substructures again. 

3. Find all instances jI  that match the substructure iS . 

4. Create extended instances '
jI  that consist of an original 

instance with an additional extension of an edge and a 

vertex, such that '
jj II ⊆ , and '' II j ⊆ , where 'I is the set of 

all extended instances of iS . 

5. Determine anomalous value for each '
jI  by finding matching 

instances of '
jI in set 'I , and calculating the value 

of ''' /)( IIIA jj =  where '
jI is the cardinality of the set of 

instances that match '
jI , and 'I is the cardinality of the 

set of extended instances of iS .  

6. Output '
jI  minimizing )( '

jIA  and where )( '
jIA  is less than a 

user acceptable threshold.  

7. Compress G by the graph structure of '
jI . 

8. Repeat step 1 and then start again at step 3. 
 

)( '
jIA is the probability that a given instance should exist given the existence of all of the 

extended instances. Again, the lower the value, the more anomalous the instance. Given that 



'I is the total number of possible extended instances,  '
jI  can never be greater, and thus the 

value of will never be greater than 1.0. )( '
jIA

The GBAD-MPS algorithm again uses the MDL approach to discover the best substructure in 
a graph, then it examines all of the instances of parent (or ancestral) substructures that are 
missing various edges and vertices. The value associated with the parent instances represents the 
cost of transformation (i.e., how much change would have to take place for the instance to match 
the best substructure). Thus, the instance with the lowest cost transformation (if more than one 
instance have the same value, the frequency of the instance’s structure will be used to break the 
tie if possible) is considered the anomaly, as it is closest (maximum) to the best substructure 
without being included on the best substructure’s instance list. 

The detailed GBAD-MPS algorithm is as follows: 
  

1. Find the top-k substructures iS , that minimize ),( GS , 

where iS  is a subgraph of G. 

M i

2. Find all ancestor substructures 'S such that iSS ⊆' . 

3. Find all instances 'I  of 'S . 
4. Determine the anomalous value for each instance 'I  as 

),'( iSIC . *)'(IF)'(IA =
5. Output 'I  as an anomalous instance if its anomalous value is 

less than a user specified threshold.  
 

By allowing the user to specify a threshold, we can control the amount of “anomalousness” 
that we are willing to accept. By our definition of an anomaly, we are expecting low 
transformation costs (i.e., few changes for the anomalous instance to match the normative 
substructure). 

5. Experimental Results 
We have performed several experiments evaluating GBAD on both synthetic and real-world data 
sets. Results on synthetic data show that GBAD is able to accurately detect different types of 
target anomalies with low false-positive rates. Results on real-world data show the types of 
anomalies that can be detected in data describing network intrusions, email communications, 
cargo shipments, cell-phone communications, and network traffic. 
 
5.1. Synthetic Data 
We constructed numerous synthetic graphs that were randomly generated based on the following 
parameters. 
 

• AV is the number of anomalous vertices in an anomalous substructure 
• AE is the number of anomalous edges in an anomalous substructure 
• V is the number of vertices in the normative pattern 
• E is the number of edges in the normative pattern 

 
Each synthetic graph consists of substructures containing the normative pattern (with V number 
of vertices and E number of edges), connected to each other by one or more random connections, 
and each test anomaly consists of AV number of vertices and AE number of edges altered. 



For modification anomalies:  an AV number of vertices and AE number of edges, from the 
same randomly chosen normative instance, have their labels modified to randomly-chosen, non-
duplicating labels (e.g., we do not replace a vertex labeled “X” with another vertex labeled “X”). 

For insertion anomalies:  randomly inserted AV vertices and AE edges, where the initial 
connection of one of the AE edges is connected to either an existing vertex in a randomly chosen 
normative instance, or to one of the already inserted AV vertices. 

For deletion anomalies:  randomly chosen AV vertices and AV edges, from a randomly 
chosen normative instance, are deleted along with any possible “dangling” edges (i.e., if a vertex 
is deleted, all adjacent edges are also deleted). 

Due to our definition of an anomaly, all tests will be limited to changes that constitute less 
than 10% of the normative pattern. Again, since anomalies are supposed to represent slight 
deviations in normal patterns, an excessive change to a pattern is irrelevant. However, in order to 
analyze the effectiveness of these approaches beyond the upper bounds, we will also perform 
some tests at deviations above 10%. 

Each of the above is repeated for each algorithm, varying sizes of graphs, normative patterns, 
thresholds,  iterations and sizes of anomalies (where the size of the anomaly is |AV| + |AE|). Also, 
due to the random nature in which structures are modified, each test will be repeated multiple 
times to verify its consistency. 

 
5.1.1. Metrics 
Each test consists of a single graph from which 30 randomly-altered graphs are generated. The 
output shown consists of the average of the results of running the algorithms against those 30 
graphs for the specified settings. The primary three metrics calculated are: 

 
1. Percentage of runs where the complete anomalous substructure was discovered. 
2. Percentage of runs where at least some of the anomalous substructure was discovered. 
3. Percentage of runs containing false positives. 

 
After the algorithm has completed, the first metric represents the percentage of success when 

comparing the results to the known anomalies that were injected into the data. If all of the 
anomalies are discovered for a particular run, that is counted as a success for that run. For 
example, if 27 out of the 30 runs found all of their anomalies, the value for this metric would be 
90.0. 

The second metric represents the percentage of runs where at least one of the injected 
anomalies was discovered. For example, if the anomaly consisted of 3 vertices and 2 edges that 
had their labels changed, and the run reported one of the anomalous vertices, then that run would 
be considered a success. Obviously, this metric will always be at least as high as the first metric. 

The last metric represents the percentage of runs that reported at least one anomaly that was 
not one of the injected anomalies. Since it is possible that multiple reported anomalous instances 
could have the same anomalous value, some runs may contain both correct anomalies and false 
ones. Further tuning of these algorithms may enable us to discover other measurements by which 
we could “break the tie” when it comes to calculating an anomalous score. 

 
5.1.2. Information Theoretic Results: GBAD-MDL 
Figures 1 and 2 show the effectiveness of the GBAD-MDL approach on graphs of varying sizes 
with random anomalous modifications. In these figures, the X axis represents the thresholds, the 
Y axis is the percentage of anomalies discovered, and the Z axis indicates the sizes of the 
normative patterns, graphs and anomalies. For example, “10/10/100/100-1v” means a normative 
pattern with 10 vertices and 10 edges in a graph with 100 vertices and 100 edges and an anomaly 
consisting of a modification to 1 vertex. (Only a portion of the results are shown for space 
reasons, and other tests showed similar results.) 



In the small synthetic test, when the threshold is high enough, (i.e., the threshold is equal to 
or higher than the percentage of change), it is clear that this approach was able to find all of the 
anomalies. The only time false positives are reported is when the threshold is 0.2. For a threshold 
of 0.2, we are basically saying that we want to analyze patterns that are up to 20% different. Such 
a huge window results in some noise being considered (along with the actual anomalies, as all of 
the anomalous instances are discovered). Fortunately, our definition of what is truly an anomaly 
would steer us towards observing runs with lower thresholds.  
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Figure 1. Percentage of GBAD-MDL runs where all anomalies discovered. 
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Figure 2. Percentage of GBAD-MDL runs where at least one anomaly is discovered. 

 
5.1.3. Probabilistic Results: GBAD-P 
Figure 3 shows the effectiveness of the GBAD-P approach on graphs of varying sizes with 
random anomalous insertions. It should be noted in this example that even though unrealistic 
anomaly sizes were used (representing 20-30% of the normative pattern), this approach is still 
effective. This same behavior can be observed in larger graphs as well. 

As a further experiment, we also tried this approach on different distributions, varying the 
number of vertices versus the number of edges (e.g., adding more edges than vertices by creating 
more edges between existing vertices), and also lessening the distribution difference between 



noise and anomalies. In all cases, the results were relatively the same, with never less than 
96.67% of the anomalous instances being found for anomalies of size 8 (40% of the normative 
pattern) or less, with the lowest discovery rate being 90% for an anomaly of size 10 (50% of the 
normative pattern). 
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Figure 3. GBAD-P results on anomalous insertions. 

 
5.1.4. Maximum Partial Substructure Results: GBAD-MPS 
For all tests, across all sizes of graphs and anomalies, the GBAD-MPS algorithm is able to 
discover all of the anomalous deletions while at the same time reporting no false positives. 
Initially, the results from the runs on the graph with 1000 vertices and 1000 edges, where the 
normative pattern consists of 30 vertices and 30 edges, were not good. However, when we 
increase the number of substructures (to analyze) to 100, and increase the anomalous threshold 
(i.e., cost of transformation * frequency) to 50.0, the results improve. So, a good rule of thumb is 
to choose an anomalous threshold based upon the size of the normative pattern. For instance, 
GBAD could be run first to determine the normative pattern, then based upon the size of the 
normative pattern, we can determine the maximum size of an anomaly (e.g., around 10%), choose 
a cost of transformation that would allow for the discovery of an anomaly that size, and then 
when we rerun the algorithm with the new threshold, the result is complete discovery.  

It should be noted that the reason the number of best substructures and the threshold had to be 
increased is that as the size of the anomaly grows (i.e., the number of vertices and edges deleted 
increases), the further away the cost of transformation for the anomalous instance is from the 
normative pattern. 

 
5.1.5. Performance 

 
One of the factors to consider in evaluating these algorithms is their respective performances.  

Table 1 represents the average running times (in seconds) for each of the algorithms against 
varying graph sizes for the anomaly types that were the most effectively discovered (i.e., the 
types of anomalies that each algorithm was targeted to discover).  Overall, the running times were 
slightly shorter for the non-targeted anomalies, as the algorithms for the most part did not have 
any anomalies to process. 

 



Table 1  Running-times of algorithms (in seconds). 

Graph Size 
(Normative 
Pattern Size) 
Algorithm 
(Anomaly Type) 

100v
100e

 (6) 

100v
100e
(20) 

1,000v
1,000e 

(20) 

1,000v
1,000e

(60) 

10,000v
10,000e

 (20) 

10,000v 
10,000e 

(60) 

GBAD-MDL  
(Modification) 

0.05-
0.08 

0.26-
15.80 

20.25-
55.20 

31.02-
5770.58 

1342.58-
15109.58 

1647.89-
45727.09 

GBAD-P    
(Insertion) 1.33 0.95 30.61 18.52 745.45 2118.99 

GBAD-MPS  
(Deletion) 0.14 0.07 4.97 75.59 242.65 813.46 

 
 

Because the GBAD-MDL algorithm uses a matching threshold, the performance of the 
algorithm is dependent upon the threshold chosen.  The higher the threshold, the longer the 
algorithm takes to execute, so there is a trade-off associated with the threshold choice.  Even on 
graphs of 10,000 vertices and 10,000 edges, the running times varied anywhere from 1342 
seconds to 45,727 seconds, depending upon the threshold chosen.  The GBAD-MDL algorithm is 
tractable given the input parameters.  Because of the graph matching that is performed, and the 
fact that the GBAD-MDL algorithm needs to examine more than just instances of the normative 
pattern, the user-defined threshold provides a means by which the threat detection analyst can 
decide how much of the entire graph they want to analyze.  The larger the graph, as well as the 
number of non-matching subgraphs one wants to analyze for anomalous structure, the greater the 
runtime for this algorithm.  Future work on this algorithm will involve a reduction in the number 
of graph matches by reducing the number of subgraphs that are relevant in terms of matching.  

The ability to discover the anomalies is sometimes limited by the resources allocated to the 
algorithm.  Given a graph where the anomalous substructure consists of the minimal deviation 
from the normative pattern, if a sufficient amount of processing time and memory is provided, all 
of these algorithms will discover the anomalous substructure with no false positives.  However, 
the ability to discover anomalies (per our definition) is also hampered by the amount of noise 
present in the graph.  The issue is that if noise is a smaller deviation from the normative pattern 
than the actual anomaly, it may score higher than the targeted anomaly (depending upon the 
frequency of the noise).  Of course, one might say that noise is an anomaly in that it is not 
normal; however, it is probably not an insider threat, which is the goal of these approaches. 

Now, the presence of noise does not eliminate the algorithms’ abilities to discover the 
anomalous substructure.  It only results in more false positives being detected if the anomalous 
score of the noisy structure is better than the desired anomalous substructure.  That is where 
another trade-off is necessary that can be found in most threat detection systems: adjusting 
thresholds to find a balance of false-positives versus true anomalies.  Future work in this area will 
include not only improved heuristics to reduce the number of graph matches that is performed, 
but also algorithmic changes to analyze the distribution of vertex and edge labels (especially 
numeric values) that will aid in the differentiation between seemingly similar labels, thereby 
reducing the effect of noise.    

 
 
5.2. Real-world Datasets 

 
5.2.1. Network Intrusion 



One of the more applied areas of research when it comes to anomaly detection can be found in the 
multiple approaches to intrusion detection. The reasons for this are its relevance to the real-world 
problem of networks and systems being attacked, and the ability of researchers to gather actual 
data for testing their models. Perhaps the most used data set for this area of research and 
experimentation is the 1999 KDD Cup network intrusion dataset (KDD Cup 1999).  

In 1998, MIT Lincoln Labs managed the DARPA Intrusion Detection Evaluation Program. 
The objective was to survey and evaluate research in intrusion detection. The standard data set 
consisted of a wide variety of intrusions simulated in a military network environment. The 1999 
KDD Cup intrusion detection dataset consists of a version of this data. For nine weeks, they 
simulated a typical U.S. Air Force local-area network, initiated multiple attacks, and dumped the 
raw TCP data for the competition.  

The KDD Cup data consists of connection records, where a connection is a sequence of TCP 
packets. Each connection record is labeled as either “normal”, or one of 37 different attack types. 
Each record consists of 31 different features (or fields), with features being either continuous 
(real values) or discrete. The graph representation consisted of a central “record” vertex with 31 
outgoing edges, labeled with the feature names, connecting to vertices labeled with the value for 
that feature. In the 1999 competition, the data was split into two parts: one for training and the 
other for testing. Groups were allowed to train their solutions using the training data, and were 
then judged based upon their performance on the test data.  

Since the GBAD approach uses unsupervised learning, we ran the algorithms on the test data 
so that we can judge our performance versus other approaches. Also, because we do not know the 
possible structural graph changes associated with network intrusions, we have to run all three 
algorithms to determine which algorithms are most effective for this type of data. Each test 
contains 50 essentially random records, where 49 are normal records and 1 is an attack record, so 
the only controlled aspect of the test is that there is only one attack record per data set. This is 
done because the test data is comprised of mostly attack records, which does not fit our definition 
of an anomaly, where we are assuming that anomalous substructures are rare. Fortunately, this 
again is a reasonable assumption, as attacks would be uncommon in most networks. 

Not surprisingly, each of the algorithms has a different level of effectiveness when it comes 
to discovering anomalies in intrusion detection data. Using GBAD-MDL, our ability to discover 
the attacks is relatively successful. Across all data sets, 100% of the attacks are discovered. 
However, all but the apache2 and worm attacks produce some false positives. 42.2% of the test 
runs do not produce any false positives, while runs containing snmpgetattack, snmpguess, 
teardrop and udpstorm attacks contribute the most false positives. False positives are even higher 
for the GBAD-P algorithm, and the discovery rate of actual attacks decreases to 55.8%. GBAD-
MPS shows a similarly bad false positive rate at 67.2%, and an even worse discovery rate at 
47.8%. 

It is not surprising that GBAD-MDL is the most effective of the algorithms, as the data 
consists of TCP packets that are structurally similar in size across all records. Thus, the inclusion 
of additional structure, or the removal of structure, is not as relevant for this type of data, and any 
structural changes, if they exist, would consist of value modifications. 

In order to better understand the effectiveness of the GBAD algorithms on intrusion detection 
data, we will compare our results with the graph-based approaches of Noble and Cook (Noble and 
Cook 2003).  They proposed two approaches to discovering anomalies in data represented as a 
graph.  Their anomalous substructure detection method attempts to find unusual substructures 
within a graph by finding those substructures that compress the graph the least, compared to our 
GBAD-MDL approach which uses compression to determine which substructures are closest to 
the best substructure (i.e., the one that compresses the graph the most).  In their results, they use 
the inverse of the ratio of true anomalies found over the total number of anomalies reported, 
where the lower the value (i.e., a greater percentage of the reported anomalies are the network 
attacks), the more effective the approach for discovering anomalies.   



The other approach presented is what they call anomalous subgraph detection.  The objective 
with this method is to compare separate structures (subgraphs) and determine how anomalous 
each subgraph is compared to the others.  This is similar to our approaches in that the minimum 
description length is used as a measurement of a substructure’s likelihood of existence within a 
graph.  However, in order to implement this approach, the graph must be divided into clearly 
defined subgraphs so that a proper comparison can be performed. The basic idea is that every 
subgraph is assigned a value of 1, and the value decreases as portions of the subgraph are 
compressed away.  In the end, the subgraphs are ranked highest to lowest, with the higher the 
value (i.e., closest to, or equal to, 1), the more anomalous the subgraph.  While this works well on 
intrusion detection data, their approach is restricted to domains where a clear delineation (i.e., 
subgraphs) must be defined.  In other words, the delineation occurs when a graph can be sub-
divided into distinct subgraphs, with each subgraph representing a common entity.  For example, 
in domains like terrorist or social networks, this type of delineation may be difficult and 
subjective. 

Using the same set of KDD Cup intrusion detection data as set forth previously, we can 
compare GBAD-MDL (since it performed the best on this set of data) to both of these 
approaches, using the same anomalous attack ratios used by Noble and Cook.  The ratio used in 
their work is an inverse fraction of correctly identifying the attacks among all of the attacks 
reported.  For example, if 10 anomalies are reported, but only 1 of them is the actual attack, then 
the fraction is 1/10, and the inverse is the score of 10, where obviously the lower the score the 
better.  Their anomalous substructure detection method achieves an average anomalous ratio of 
8.64, excluding the snmpgetattack and snmpguess attacks, while using the same scoring ratio, 
GBAD-MDL generates an average of 7.22 with snmpgetattack and snmpguess included.  In 
Noble and Cook’s paper, both the snmpgetattack and snmpguess attacks were excluded from the 
anomalous substructure detection approach results because they had high average attack values of 
around 2211 and 126 respectively (i.e., too many false positives).  However, GBAD-MDL is 
much more successful at discovering these two attack types, as their respective averages are 8.55 
and 7.21.  Then, for their anomalous subgraph detection approach, they get an average ranking of 
4.75, whereas the GBAD-MDL algorithm is able to achieve a better average ranking of 3.02.  
Figure 4 shows the ranking results for each of the different attack types. 
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Figure 4.  Average anomalous ranking using GBAD-MDL on KDD intrusion detection 
data. 

 

These results, when compared to the ones presented in Noble and Cook’s paper (Noble and 
Cook 2003), not only show an overall average improvement, but also again show a significant 
improvement when it comes to effectively discovering the snmpgetattack and snmpguess attacks, 
which both had values over 20 using the anomalous subgraph detection approach, whereas the 
GBAD-MDL algorithm was under 10 for both attack types.  It should also be noted that the false 
positives are mostly due to the fact that we have to increase the anomalous threshold in order to 
detect some of the anomalous patterns.  Unlike our assumption that anomalies are small 
deviations from the normative pattern, several of the attack records are actually large deviations 
from the norm.  
 
5.2.2. Enron E-mail 
One of the more recent domains that has become publicly available is the data set of e-mails 
between management from the Enron corporation. The Enron e-mail dataset was made public by 
the Federal Energy Regulatory Commission during its investigation. After subsequent data 
integrity resolutions, as well as the removal of some e-mails due to requests from affected 
employees, William Cohen at CMU put the dataset on the web for researchers. From that dataset, 
Shetty and Adibi further cleaned the dataset by removing duplicate e-mails, and putting the final 
set into a publicly available database (http://www.isi.edu/~adibi/Enron/Enron.htm). This dataset 
contains 252,759 messages from 151 employees distributed in approximately 3000 user-defined 
folders.  

This Enron e-mail database consists of messages not only between employees but also from 
employees to external contacts. In addition to providing the e-mails, the database also consists of 

http://www.isi.edu/%7Eadibi/Enron/Enron.htm


employee information such as their name and e-mail address. However, since we do not have 
information about their external contacts, we decided to limit our graph to the Enron employees 
and just their correspondences, allowing us to create a more complete “social” structure. In 
addition, since the body of e-mails consists of many words (and typos), we limited the textual 
nature of the e-mails to just the subject headers. From these decisions, we created a graph 
consisting of the structure shown in Figure 5. The message vertex can have multiple edges to 
multiple subject words, and multiple recipient type edges (i.e., TO, CC and BCC) to multiple 
persons. Running the GBAD algorithms on this data set produced the small normative pattern 
shown in Figure 6. 

person

<last name>

<first name> <e-mail address>

lastName

firstName
email

message

<word>

<month>

subjectWord

month

sender
<recipientType>

<day> <year>

yearday

 

Figure 5. Graphical representation of Enron e-mail. 

 
 

message 2001
year

 

Figure 6. Normative pattern from Enron e-mail data set. 

This was an expected normative pattern because most of the e-mail was from the year 2001, 
with little regularity beyond the fact that messages were sent. Considering the small size of the 
normative pattern, we did not run the GBAD-MDL and GBAD-MPS algorithms, as clearly 



nothing of importance would be derived from a modification or deletion to this normative pattern. 
However, running the GBAD-P algorithm resulted in the substructure shown in Figure 7. 

 

message

Targets

10

subjectWord

month

1

2001

year

day

 

Figure 7. Results from running GBAD-P on Enron e-mail data set. 

It is interesting to point out that 859 messages were sent on October 1, 2001, and of all of the 
messages in the data set, this was the only one with a subject of “Targets”, and 1 of only 36 
messages in the entire dataset that had the word “Targets” anywhere in its subject line, and no 
messages anywhere that were a response to this message. 

Also, analyzing just the transfer of e-mails between the employees, GBAD has been able to 
discover various anomalous patterns as they relate to specific individuals. For instance, in the 
case of Enron employee Mark Taylor (one of the employees with a high volume of e-mail traffic), 
the normative pattern consists of sending e-mails to three other employees. While the employees 
that are involved in e-mails with Mr. Taylor varies, the GBAD-P algorithm identified one 
instance as anomalous because it included a link to another employee, Tana Jones, who was not 
found anywhere else to have been part of a correspondence that contained this normative pattern 
associated with Mr. Taylor. While Ms. Jones is involved in many e-mails in the Enron dataset, the 
structural anomaly associated with the normative pattern of communication for Mr. Taylor 
results in GBAD detecting this instance of an anomalous substructure. 
 
5.2.3. Cargo Shipments 
One area that has garnered much attention recently is the analysis and search of imports into the 
United States. A large number of imports into the U.S. arrive via ships at ports of entry along the 
coast-lines. Thousands of suspicious cargo, whether it be illegal or dangerous, are examined by 
port authorities every day. Due to the volume, strategic decisions must be made as to which cargo 
should be inspected, and which cargo will pass customs without incident; a daunting task that 
requires advanced analytical capabilities to maximize effectiveness and minimize false searches. 

Using shipping data obtained from the Customs Border and Protection Agency 
(http://www.cbp.gov/), we are able to create a graph-based representation of the cargo 
information where row/column entries are represented as vertices, and labels convey their 

http://www.cbp.gov/


relationships as edges. Figure 8 shows a portion of the actual graph that we used in our 
experiments. 
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Figure 8. Example graph of cargo information. 
 

While we were not given any labeled data from the CBP, we can draw some results from 
simulations of publicized incidents. Take for instance the example from a press release issued by 
the U.S. Customs Service. The situation was that almost a ton of marijuana was seized at a port in 
Florida (US Customs Service 2000). In this drug smuggling scenario, the perpetrators attempt to 
smuggle contraband into the U.S. without disclosing some financial information about the 
shipment. In addition, an extra port is traversed by the vessel during the voyage. For the most 
part, the shipment looks like it contains a cargo of toys and bicycles from Jamaica. 

When we run all three algorithms on this graph, GBAD-MDL is unable to find any 
anomalies, which makes sense considering none of the anomalies are modifications. When the 
graph contains the anomalous insertion of the extra traversed port, the GBAD-P algorithm is able 
to successfully discover the anomaly. Similarly, when the shipment instance in the graph is 
missing some financial information, GBAD-MPS reports the instance as anomalous. 

There are many different non-graph-based machine learning approaches to anomaly 
detection.  In order to compare our results to a non-graph-based approach, we chose perhaps the 
most popular approach to anomaly detection - the class of approaches known as clustering.  The 
idea behind clustering is the grouping of similar objects, or data.  Clustering is an unsupervised 
approach whose goal is to find all objects that are similar where the class of the example is 
unknown (Frank and Witten 2005).  From an anomaly detection perspective, those objects that 
fall outside a cluster (outliers), perhaps within a specified deviation, are candidate anomalies.  
Due to the popularity of this approach, and the fact that it is an unsupervised approach (like 



GBAD), we evaluate the effectiveness of the simple k-Means clustering approach on the cargo 
shipment data using the WEKA tool (WEKA).  For the simple k-Means approach 
(SimpleKMeans), given a set of n data points in d-dimensional space Rd, and an integer k, the 
problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared 
distance from each data point to its nearest center (Kanungo et al. 2000). 

First, we randomly select 200 cargo records and generate a graph from the chosen records.  
Second, we run the graph through SUBDUE to determine the normative pattern in the graph.  
Then, we generate multiple anomalies of each of the anomaly types (modifications, insertions and 
deletions), where each of the induced anomalies is similar to the real-world examples mentioned 
earlier (e.g., change in the name of a port), and the anomaly is part of a normative pattern.  Only 
choosing anomalies that are small deviations (relative to the size of the graph), all three of the 
GBAD algorithms are able to successfully find all of the anomalies, with only one GBAD-MDL 
test and one GBAD-P test reporting false positives. 

Using these same 200 records, we then convert the data into the appropriate WEKA format 
for the k-Means algorithm.  For each of the tests involving what were vertex modifications in the 
graph, and are now value or field modifications in the text file, the k-Means algorithm is able to 
successfully find all of the anomalies.  Similar to how we have to adjust GBAD parameters, we 
have to increase the default WEKA settings for the number of clusters and the seed, as the 
defaults do not produce any anomalous clusters on the cargo test set which consists of 12 
attributes for 200 records.  By increasing the number of clusters to 8 and the seed to 31, we are 
able to discover the anomalous modifications, as shown in the example in Figure 9. 

 

 

Figure 9.  Results from k-Means clustering algorithm on cargo data with anomalous 
modification. 

 



In these tests, a cluster is considered anomalous if it contains only a single instance. 

However, for insertions and deletions, the k-Means approach is not effective, but in some 
ways, that is to be expected.  The k-Means algorithm assumes that every specified record is of the 
same length.  So, in order to simulate anomalous insertions, extra attributes must be added to 
represent the extra vertices, where the values for those attributes are NULL, unless an anomalous 
insertion is present.  Yet, despite the additional non-NULL attribute when the anomaly is present, 
the k-Means algorithm never reports an anomalous cluster for any of the tests.  When we increase 
the number of clusters and the seed, it only increases the number of false positives (i.e., clusters 
of single instances that are not the anomalous instances).  This is surprising in that we would have 
assumed that the unique value for an individual attribute would have been discovered.  However, 
again, we are attempting to simulate a structural change, which is something that the k-Means 
algorithm (or other traditional clustering algorithms) is not intended to discover. 

Similarly, we can only simulate an anomalous deletion by replacing one of the record’s 
attributed values with a NULL value.  Again, at first, we would have considered this to be the 
same as a modification, and clearly identifiable by the k-Means algorithm.  But, the algorithm 
was unable to find the anomalous deletion in any of the tests, which leads us to believe that the 
presence of a NULL value has an effect on the functionality of the k-Means algorithm.  The 
importance of these tests is to show that for some anomalies (specifically modifications) 
traditional machine learning approaches like clustering are also effective, and at the same time, 
the inability to discover anomalous insertions and deletions further justifies the use of an 
approach like GBAD for structural anomalies.  In addition, approaches like k-Means are only able 
to report the anomalous record – not the specific anomaly within the record.  

The use of the k-Means clustering algorithm for anomaly detection and intrusion detection 
has been reported in other research efforts (Portnoy 1999)(Caruso and Malerba 2004).  For more 
information on how the WEKA tools work, please refer to the WEKA website (WEKA). 

We also compared our algorithms against a traditional non-graph-based anomaly detection 
approach found in the commercially available application called Gritbot, from a company called 
RuleQuest (http://www.RuleQuest.com/).  The objective of the Gritbot tool is to look for 
anomalous values that would compromise the integrity of data that might be further analyzed by 
other data modeling tools.   

There are two required input files for Gritbot: a .names file that specifies the attributes to be 
analyzed, and a .data file that supplies the corresponding comma-delimited data.  There are 
several optional parameters for running Gritbot, of which the most important is the "filter level".  
By default, the filter level is set at 50%.  The lower the filter level percentage, the less filtering 
that occurs, resulting in more possible anomalies being considered.   

In order to compare Gritbot to our GBAD algorithms, we gave Gritbot the same cargo data 
files used in the previous experiments (formatted to the Gritbot specifications).  Using the default 
parameters, no anomalies were reported.  We then lowered the filter level to 0 (which specifies 
that all anomalies are requested).  In every case, anomalies were reported, but none of the 
anomalies reported were the ones we had injected into the data set.  So, we increased the number 
of samples from 200 shipments to ~1000 shipments, so that Gritbot could infer more of a 
statistical pattern, and then randomly injected a single modification to the country-of-origin 
attribute.  In the cargo data files, all of the country-of-origins were "JAPAN", except for the 
randomly selected records where the value was changed to "CHINA".  Again, Gritbot did not 
report this anomaly (i.e. 1020 cases of "JAPAN" and one case of "CHINA"), and instead reported 
a couple of other cases as anomalous.   

While we consider the existence of a record with "CHINA" as anomalous, Gritbot does not 
view that as an anomaly.  The issue is that Gritbot (and this is similar to other outlier-based 
approaches), does not treat discrete attributes the same as numeric attributes.  This is because 
Gritbot views continuous distributions (such as "age") as a much easier attribute to analyze 



because the distribution of values leads to certain expectations.  While discrete distributions are 
more difficult because there is not a referential norm (statistically), it limits the tool’s ability to 
provide its user with a comprehensive list of anomalies.  That is not to say that Gritbot will not 
discover anomalous discrete values - it will if it can determine a statistical significance.  For 
example, we found (when examining by hand) records that contained a significant number of 
identical attribute values (e.g., COUNTRY, FPORT, SLINE, VESSEL).  In our data set, 
approximately 250 out of the approximately 1,000 records had identical SLINE values.  
When we arbitrarily modified the SLINE value of one of these cases from "KLIN" to "PONL" 
(i.e., another one of the possible SLINE values from this data set), Gritbot did not report the 
anomaly.  When we changed it to "MLSL", Gritbot still did not report it.  However, when we 
changed it to "CSCO", Gritbot reported that case as being anomalous (albeit, not the most 
anomalous).  Why?  This behavior is based on what Gritbot can determine to be statistically 
significant.  Of all of the ~1,000 records, only 1 has an SLINE value of "MLSL", and only 3 have 
a value of "PONL".  However, there are 123 records with an SLINE value of "CSCO".  Thus, 
Gritbot was able to determine that a value of "CSCO" among those ~250 records is anomalous 
because it had enough other records containing the value "CSCO" to determine that its existence 
in these other records was significant.  In short, the behavior depends upon the definition of what 
is an anomaly.   

Gritbot's approach to anomaly detection is common among many other outlier-based data 
mining approaches.  However, in terms of finding what we would consider to be anomalous 
(small deviations from the norm), Gritbot's approach typically does not find the anomaly. 
 
5.2.4. Internet Movie Database (IMDb) 
Another common source of data mining research is the Internet Movie Database 
(http://www.imdb.com/). This database consists of hundreds of thousands of movies and 
television shows, with all of the credited information such as directors, actors, writer, producers, 
etc. In their work on semantic graphs, Barthelemy et al. proposed a statistical measure for 
semantic graphs and illustrated these semantic measures on graphs constructed from terrorism 
data and data from the IMDb (Barthelemy et al, 2005). While they were not directly looking for 
anomalies, their research presented a way to measure useful relationships so that a better ontology 
could be created. Using bipartite graphs, Sun et al. presented a model for scoring the normality of 
nodes as they related to the other nodes (Sun et al, 2005). Using the IMDb database as one of 
their datasets, they analyzed the graph for just anomalous nodes. 

In order to run our algorithms on the data, due to the voluminous amount of information, we 
chose to create a graph of the key information (title, director, producer, writer, actor, actress and 
genre) for the movies from 2006. Running the GBAD algorithms on this data set produced the 
normative pattern shown in Figure 10. 
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Figure 10. Normative pattern from graph representation of movie data. 
 

This pattern is not surprising, as movies typically consist of multiple actors and actresses. 
However, because of the size of the database, we chose a beam width that would produce 
seemingly relevant substructures within a reasonable amount of time. For instance, all of our runs 
are made with a default beam width of 4, resulting in reasonable running-times of approximately 
15 minutes each. In contrast, with a beam width of 7, the running-times are nearly tripled. 
However, this does result in some additional elements being discovered, like another producer 
and more actors, so there is always the trade-off of time versus knowledge discovery. One may 
also wonder why some of the other movie elements like director and writer were not discovered. 
(Even with the aforementioned beam width increase they are not discovered.)  This is due to the 
fact that several genres are reality shows, which do not require directors and writers, and many 
documentaries do not have writers credited in the IMDb.  

Running the GBAD-MDL and GBAD-MPS algorithms on the IMDb data produced a variety 
of anomalies that all scored equally. The GBAD-MDL algorithm reported a single anomalous 
instance where an actor label was replaced by an anomalous actress label. The GBAD-MPS 
algorithm reported multiple anomalous instances consisting of a writer replacing an actor, a writer 
replacing the producer, another genre replacing the producer, a director replacing the producer, 
another actor replacing the producer and another actress replacing the producer. For the GBAD-P 
algorithm, the anomalous extension consisted of the title of the movie. Considering every movie 
has a different title (in most cases), this was an expected anomalous extension.  
 
5.2.5. VAST Cell-phone Data 
As part of the IEEE Symposium on Visual Analytics Science and Technology (VAST), the 
VAST challenge each year presents a contest whereby the goal is to apply visual analytics to a 
provided set of derived benchmark data sets. For the 2008 challenge 
(http://www.cs.umd.edu/hcil/VASTchallenge08/), contestants are presented with four mini-

http://www.cs.umd.edu/hcil/VASTchallenge08/


challenges, in addition to the grand challenge of addressing the complete data set. Yet, while the 
goal of the challenge is to target new visual analytics approaches, it is still possible to apply these 
graph-based anomaly detection algorithms to the same data sets. For instance, one of the data sets 
consists of cell-phone traffic between inhabitants of the fictitious island of Isla Del Sueño. The 
data consists of 9,834 cell-phone calls between 400 people over a 10-day period. The mini-
challenge is to describe the social network of a religious group headed by Ferdinando Cattalano 
and how it changes over the 10-day period. The graph of the cell-phone traffic is represented as 
shown in Figure 11. 

 

 
 
Figure 11. Graph representation of a cell-phone call from the VAST dataset. 

 
Applying the GBAD algorithms to this information results in several structural anomalies 

within the data, especially when particular individuals are analyzed in terms of their calling 
patterns. For instance, when we look at the calling patterns of individuals who correspond with 
Ferdinando Cattalano, identified in the challenge as ID 200, one notices several anomalous 
substructures, including some who contact Ferdinando on days that are out of the ordinary, and 
even some individuals who call others outside of their normal chain of cell-phone calls. In 
addition, a graph of the social network of phone usage (i.e., a phone call between two individuals 
indicating a social interaction), was also applied to the GBAD approaches, yielding additional 
anomalous behavior between targeted persons. From these results we are able to determine the 
members of the normative social network surrounding Ferdinando and how the network begins to 
breakdown after about day 6. 
 
5.2.6. CAIDA 
The Cooperative Association for Internet Data Analysis (CAIDA), is a publicly available 
resource for the analysis of IP traffic. Through a variety of workshops, publications, tools, and 
projects, CAIDA provides a forum for the dissemination of information regarding the 
interconnections on the internet. One of the core missions of CAIDA is to provide a data 
repository to the research community that will allow for the analysis of internet traffic and its 
performance (http://www.caida.org/data/). Using GBAD, we analyzed the CAIDA AS 
(Autonomous Systems) data set for normative patterns and possible anomalies. The AS data set 
represents the topology of the internet as the composition of various Autonomous Systems. Each 
of the AS units represents routing points through the internet. For the purposes of analysis, the 
data is represented as a graph, composed of 24,013 vertices and 98,664 edges, with each AS 
depicted as a vertex and an edge indicating a peering relationship between the AS nodes. The 
normative pattern for this graph is depicted in Figure 12. After running GBAD-P on the AS 
graph, the anomalous substructure discovered is shown in Figure 13. 
 



 

  
 
Figure 12. Normative pattern discovered in the CAIDA dataset. 
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Figure 13. Anomalous pattern discovered in the CAIDA dataset, where the crucial 
anomalous component is the central “provider” edge (emphasized). 



 
This example shows the advantage of using a graph-based approach on a complex structure. 

While the data indicates many provider/customer relationships, of which the norm is a particular 
AS being the provider to three different customers, this single substructure indicates an unusual 
connection between two ASes. Such a complex structure would probably be missed by a human 
analyst, and shows the potential of an approach like GBAD to find these complex anomalies in 
network traffic data. 
 
5.3. Other Domains 
Since 9/11, one of the more common domains used in data mining consists of terrorist activity 
and relationships. Organizations such as the Department of Homeland Security use various 
techniques to discover the inherent patterns in the network representation of known terrorists and 
their relations (Kamarck 2002). Much research has been applied to not only understanding 
terrorist networks (Sageman 2004), but also discovering the patterns that discriminate the 
terrorists from the non-terrorists (Taipale 2003). Much of this area of research has also been 
applied to what is known as social network analysis, which is a more general term for the 
measuring and mapping of relationships between people, places and organizations (Mukherjee 
and Holder 2004). 

Through the Evidence Assessment, Grouping, Linking, and Evaluation (EAGLE) program, 
under the auspices of the Air Force Research Lab (AFRL), we have been able to gather counter-
terrorism data. While the data is simulated, it does represent scenarios based on input from 
various intelligence analysts (Holder et al. 2005). The data represents different terrorist 
organization activities as they relate to the exploitation of vulnerable targets. Our goal is to use 
this data as another example of real-world data to further validate the effectiveness of this 
approach. If a terrorist can be distinguishable from a non-terrorist by a small deviation in a 
normative pattern, we should be able to discover actual terrorist instances within a network of 
people and relationships. 

Another domain worth investigating is data from the Financial Crimes Enforcement Network 
(FinCEN, http://www.fincen.gov). The purpose of FinCEN is to analyze financial transactions for 
possible financial crimes including terrorist financing and money laundering. Again, if illegal 
transactions consist of small deviations from normal transactions, we should be able to uncover 
genuine fraudulent activity within a network of people and their related monetary dealings. 

Similar techniques could be applied to a myriad of domains, including telecommunications 
call records and credit card transactions. In short, any data source where transactions and 
relationships can be represented structurally as a graph, and possible anomalous behavior consists 
of minor deviations from normal patterns, these approaches to graph-based anomaly detection 
could prove to be a viable alternative to more traditional anomaly detection methods. In addition, 
by analyzing the effectiveness of our algorithms against real-world, labeled data sets, we can 
establish a baseline of comparison that can be used in subsequent anomaly detection endeavors.  

 

6. Related Work 
Recently there has been an impetus towards analyzing multi-relational data using graph-theoretic 
methods. Not to be confused with the mechanisms for analyzing “spatial” data, graph-based data 
mining approaches are an attempt at analyzing data that can be represented as a graph (i.e., 
vertices and edges). Yet, while there has been much written as it pertains to graph-based intrusion 
detection (Staniford-Chen et al. 1996), very little research has been accomplished in the area of 
graph-based anomaly detection. 

In 2003, Noble and Cook used the SUBDUE application to look at the problem of anomaly 
detection from both the anomalous substructure and anomalous subgraph perspective (Noble and 



Cook 2003). They were able to provide measurements of anomalous behavior as it applied to 
graphs from two different perspectives. Anomalous substructure detection dealt with the unusual 
substructures that were found in an entire graph. In order to distinguish an anomalous 
substructure from the other substructures, they created a simple measurement whereby the value 
associated with a substructure indicated a degree of anomaly. They also presented the idea of 
anomalous subgraph detection which dealt with how anomalous a subgraph (i.e., a substructure 
that is part of a larger graph) was to other subgraphs. The idea was that subgraphs that contained 
many common substructures were generally less anomalous than subgraphs that contained few 
common substructures. In addition, they also explored the idea of conditional entropy and data 
regularity using network intrusion data as well as some artificially created data.  

(Lin and Chalupsky 2003) took a different approach and applied what they called rarity 
measurements to the discovery of unusual links within a graph. Using various metrics to define 
the commonality of paths between nodes, the user was able to determine whether a path between 
two nodes was interesting or not, without having any preconceived notions of meaningful 
patterns. One of the disadvantages of this approach was that while it was domain independent, it 
assumed that the user was querying the system to find interesting relationships regarding certain 
nodes. In other words, the unusual patterns had to originate or terminate from a user-specified 
node. 

The AutoPart system presented a non-parametric approach to finding outliers in graph-
based data (Chakrabarti 2004). Part of Chakrabarti’s approach was to look for outliers by 
analyzing how edges that were removed from the overall structure affected the minimum 
descriptive length (MDL) of the graph. Representing the graph as an adjacency matrix, and using 
a compression technique to encode node groupings of the graph, he looked for the groups that 
reduced the compression cost as much as possible. Nodes were put into groups based upon their 
entropy.  

In 2005, the idea of entropy was also used by (Shetty and Adibi 2005) in their analysis of 
a real-world data set: the famous Enron scandal. They used what they called “event based graph 
entropy” to find the most interesting people in an Enron e-mail data set. Using a measure similar 
to what Noble and Cook had proposed, they hypothesized that the important nodes (or people) 
were the ones who had the greatest effect on the entropy of the graph when they were removed. 
Thus, the most interesting node was the one that brought about the maximum change to the 
graph’s entropy. However, in this approach, the idea of important nodes did not necessarily mean 
that they were anomalous. 

In the December 2005 issue of SIGKDD Explorations, two different approaches to graph-
based anomaly detection were presented. Using just bipartite graphs, (Sun et al. 2005) presented 
a model for scoring the normality of nodes as they relate to the other nodes. Again, using an 
adjacency matrix, they assigned what they called a “relevance score” such that every node x had a 
relevance score to every node y, whereby the higher the score the more related the two nodes. The 
idea was that the nodes with the lower normality score to x were the more anomalous ones to that 
node. The two drawbacks with this approach were that it only dealt with bipartite graphs and it 
only found anomalous nodes, rather than what could be anomalous substructures. In (Rattigan 
and Jensen 2005), they also went after anomalous links, this time via a statistical approach. Using 
a Katz measurement, they used the link structure to statistically predict the likelihood of a link. 
While it worked on a small dataset of author-paper pairs, their single measurement just analyzed 
the links in a graph. 

In (Eberle and Holder 2006), we analyzed the use of graph properties as a method for 
uncovering anomalies in data represented as a graph. While our initial research examined many 
of the basic graph properties, only a few of them proved to be insightful as to the structure of a 
graph for anomaly detection purposes: average shortest path length, density and connectedness. 
For a measurement of density, we chose to use a definition that is commonly used when defining 
social networks (Scott 2000). For connectedness, we used a definition from (Broder et al. 2000). 



Then, for some of the more complex graph properties, we investigated two measurements. First, 
there is the maximum eigenvalue of a graph (Chung et al. 2003). Another, which was used in 
identifying e-mail “spammers”, is the graph clustering coefficient (Boykin and Roychowdhury 
2005). We tested these approaches on the aforementioned cargo data when injecting one of two 
real-world anomalies related to drugs and arms smuggling. No significant deviations are seen 
using the average shortest path or eigenvalue metrics. However, there are visible differences for 
the density, connectedness and clustering coefficient measurements. One issue with this approach 
is that while graphs are indicated as anomalous, this does not identify the specific anomaly within 
what could be a very large graph. However, the algorithms presented in this work rectify that 
problem by not only indicating a graph contains an anomaly, but more importantly, they identify 
the specific anomaly and its pertinent structure within the graph. 

7. Conclusions 
The purpose of this chapter was to present an approach for discovering the three possible graph 
anomalies: modifications, insertions and deletions. Using a practical definition of fraud, we 
designed algorithms to specifically handle the scenario where the anomalies are small deviations 
to a normative pattern. We have described three novel algorithms, each with the goal of 
uncovering one of the specified anomalous types. We have validated all three approaches using 
synthetic data. The tests verified each of the algorithms on graphs and anomalies of varying sizes, 
with the results showing very high detection rates with minimal false positives. We further 
validated the algorithms using real-world cargo data and actual fraud scenarios injected into the 
data set. Despite a less regular set of data, normative patterns did exist, and changes to those 
prevalent substructures were detected with 100% accuracy and no false positives. We also 
compared our algorithms against a graph-based approach using intrusion detection data, again 
with better discovery rates and lower false positives. We also looked at other real-world datasets 
where we were able to show unusual patterns in diverse domains. In short, the GBAD algorithms 
presented here are able to consistently discover graph-based anomalies that are comprised of the 
smallest deviation of the normative pattern, with minimal false positives. 

There have been many approaches to anomaly detection over the years, most of which have 
been based on statistical methods for determining outliers. As was shown here, recent research in 
graph-based approaches to data mining have resulted in new methods of anomaly detection. This 
work shows promising approaches to this problem, particularly as it is applied to threat detection. 
However, there are still many avenues to be explored. One avenue is to detect anomalies in 
weighted graphs, where the relational edges are associated with weights reflecting the extent of 
the relationship (e.g., trust). Another avenue is to detect anomalies in graphs changing over time 
both in terms of their attributes and structure. Techniques for detecting anomalies in real-time 
within such data are crucial for securing our cyber-infrastructure against modern, sophisticated 
threats. 
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