
User-Centered System Decomposition:
Z-Based Requirements Clustering

Pei Hsia C.T. Hsu David C. Kung Lawrence B. Holder

Computer Science and Engineering Department
The University of Texas at Arlington

Arlington, Texas, USA

Abstract
Requzrements clusterzng (RC) provades a dzfferent ap-
proach t o s y s t e m decomposataon, b y enablang a s y s t e m t o
be pnrtataoned anto user-recognazable components, where
each component can be used, a lmos t andependently, t o
snizsfy part of the user’s needs. Requarements cluster-
m g as essentaal f o r a software development approach
called ancremental delavery (ID) A successful cluster-
zng of s y s t e m requarements produces a set of useful, us-
nble , and sema-andependent clusters that can be devel-
oped and delavered t o the c u s t o m e r s an ancrements. Thas
pnper presents a requarements clusterang process based
on ER modelang, scenaraos, and t h e f o r m a l specaficataon
noiataon Z.

1 Introduction
Reducing the complexity of large software systems is
one of the most important tasks in the entire soft-
ware development process. By applying the concept of
divide-and-conquer, systems can be decomposed into
lcss complex parts, so each part can be addressed
with less difficulty. Typically, a system is partitioned
into smaller functional components. Functional de-
composition applies the divide-and-conquer concept
from a system developer’s view and provides a per-
spcctive for system construction. Unfortunately, it is
usually not easy to map these functional parts onto
customer-recognizable components. Therefore, the cus-
tomers/users are left out of the system development
process because they do not understand the internal
dct ails. Furthermore, developers tend to concentrate
on the functional details and easily lose sight of the
ohjectives of the system and the goal of the product.

Incremental delivery transforms the major steps in
software development, such as requirements analysis,
system partitioning, and system integration, into a
user-centered perspective. It partitions a whole system

from its utility point of view and allows a system to
be grouped into usable subsystems (called increments).
Each subsystem is semi-independent from the rest of
the system and can be implemented, tested, and de-
livered to the customer separately in a well-defined se-
quence according to priority, precedence relation, and
other criteria. The delivered subsystems are immedi-
ately usable to the customer to fulfill part of his/her
requirements. A key factor to the success of ID is to
cluster requirements into increments in such a way that
each increment can operate without much functional
help from the other increments.

This paper presents a requirements clustering pro-
cess based on ER modeling, scenarios, and the formal
specification notation Z, and uses a simplified airline
scheduling and reservation system to illustrate the ap-
proach. The remainder of the paper is structured as
follows. Section 2 summarizes related work on require-
ments clustering and incremental delivery. Section 3
provides a brief explanation of some of the key con-
cepts and terms of the Z notation. Based on this, the
proposed requirements clustering process and a simpli-
fied airline scheduling and reservation system (ASR) is
presented in Section 4. Section 5 summarizes the paper
and our future work.

2 Related work

2.1 Incremental delivery
Traditionally, software systems have been considered a
monolithic piece: no part is separable from the rest, and
all software components must be present to achieve an
operational system. Recently, researchers and practi-
tioners have been advocating incremental development,
and even incremental delivery, to construct and deliver
software systems (e.g. [4], [7], [lo], [ll], [IS]). Incre-
mental delivery takes incremental development a step
further by providing software systems to end-users in

0-8186-7252-8196 $5.00 0 1996 IEEE
Proceedings of ICRE ’96

126

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

componeiits. Each delivered iiicrement supports a par-
tial set of requirements, and its functionalities are visi-
ble to the end-users. These new approa,ches are cort-
ceptually appealing, because they provllde both cuo-
tomers and management with an essential ingredient
which is conspicuously absent in the monolithic devel-
opment approach: progress visibility. Tlhe increment,s
that are delivered to the customers can be examined
for t,heir functionalities and provide a foretaste of the
things to come. At the same time, they serve as con-
crete progress achievements to the custorners, manage-
ment , and system developers themselves. Some addi-
tional advantages of ID are summarized in ([ll], [12],
[l 31, [15]). A somewhat similar approach to ID is called
evolutionary delivery (ED) [5]. In ED, a software devel-
opment project is divided into a carefullly-planned se-
qiience of releases. Early releases deliver the core func-
tionalities, while subsequent releases add on more capa-
bilities. ED differs from ID in that each release in ED
delivers a more complete set of system capabilities than
the previous releases, while in ID, the delivered incre-
ments are semi-independent of one another. Hough dis-
cussed a system development approach called rapid de-
livery [lo] , by identifying twelve issues concerning SYF-

t em segmentation strategies. Hepner [S] proposed a,n
ohjt=ct-oriented incremental delivery approach (OOID)
hnsed on Coad’s OOA and scenarios. OlOID identifies
similar functions by their relatedness to common ob-
jccts, services, and/or message connections. Scenarios
which relate to similar functions are clustered in the
same group. The increment implementation order is
then determined based on their interdependency.

2.2 Requirements clustering

Hsia and Yaung [12] proposed a RC algorithm based
on scenario-based prototyping. This algorithm consislts
of t,wo major steps. The first step generates an ini-
tial clustering from a set of scenarios, and the second
st.rp refines these clusters. The initial set of clusters is
derived from the scenarios obtained by scenario-based
prototyping [9] during requirements vallidation. The
second step generates a matrix of indicator functions
where the indicator functions represent the strength of
relations between any requirement pair.

The success of this algorithm dependls on identify
ing and assigning proper strengths to the relations in-
volved between any requirement pair. The strengtrh
assignments are based solely upon the developers’ un-
derstanding of the system, and are, therefore, subjec-
tive. The effort involved in the strength assignment

objective and mechanical strength assignment scheme,
the incurred overhead cannot be overlooked.

Hsia and Gupta [13] lessened the problem of subjec-
tivity involved in strength assignments by using IDEFl
[19] and a methodology for building data-dominant sys-
tems called Onion [6] . Software system development
using Onion normally consists of four major steps: 1)
create an IDEFl data model for the system; 2) identify
abstract data types (ADTs) from this model; 3) spec-
ify, implement , and verify each ADT; and 4) implement
user required functions, or external visible functions
(EVFs), using the above ADTs. EVFs are classified
into two categories: 1) modifying ADTs (T,,,); and 2)
accessing the content of ADTs (T,). The idea is that
any two EVFs in the T, category are grouped into the
same logical (cluster if they change one or more com-
mon ADTs. EVFs in the T, category do not change
the state of an ADT, so each such requirement is placed
in a cluster b,y itself. This algorithm tends to result in
a larger number of clusters. Besides, the total number
of clusters is fixed, and it may not be flexible enough
to fit in different development contexts.

3 Definitions
We will briefly explain some key concepts and terms
of the formal specification notation Z that are relevant
to our following discussion. Here, we assume that the
structuring of Z specifications follows the “Established
Strategy” [2], namely a Z specification consists of a
system state schema, an initial state schema, and a set
of operation schema.

The state schema describes all or some part of a sys-
tem state. It consists of a set of state components and
some constraining predicates that are defined based on
those components. Each state component is associated
with an implicit value at any given time after the sys-
tem’s initialization. Here at the abstract level, we need
to know nothing about the internal structures of the
state Components and their associated values. Hence,
we introduce given sets to model state components and
their associated values.

[COMPONENT, VALUE]

Predicates are normally built upon state compo-
nents. A predicate may refer to zero or more state
components. The same state component may appear
in one predicate more than once. However, for our pur-
pose, we do not need to distinguish them. Therefore, a
predicate can be modeled as

I Predicate 2 PCOMPONENT

lwtween any two requirements is non-trivial when the
number of requirements n become large. Without a m

The state of a system at any given time is deter-
mined by the states of all its components a t that time.

127

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

Components’ states are modeled as a function from
COMPONENT to VALUE.

I ComponentState COMPONENT -+ VALUE

A system’s state is thus a combination of its compo-
nents’ states.

I Systemstate 2 P Componentstate

Operation schemas, sometimes called state transi-
tion schemas, are used to define all the operations that
are applied to the system state. An operation schema
consists of a pre-condition and a post-condition. Both
the pre- and post-conditions contain a set of logically
conjuncted and/or disjuncted predicates. Operation
schemas and their pre and post-conditions are modeled
as

PreCond, PostCond : PPredrcate

Oper PreCond f+ PostCond

We categorize operation schemas into three main
types: 1) delta schemas, 2) xi schemas, and 3) util-
i ty schemas. A delta schema represents a successful
execution of an operation. The result of successfully
executing a delta schema will change the values of one
or more state components, namely components’ state
changes. Schema MakeReservatzon is an example of a
delta schema. A xi schema shows no changes of any one
of the state components. It normally specifies query re-
sults and describes situations that involves a reference
to any of the state components. Schema SeatAvazl-
able is an example of a xi schema. The third category
of operation schemas-utility schemas-are schemas that
do not refer to any one of the state components.

Delta and xi schemas relate to system state changes.
The difference between these two types of schemas is
that in delta schemas, the states of at least one of the
state components are changed, while none of the state
components change their states in xi schemas. These
two operation schemas are modeled as total functions
from Systemstate to Systemstate.

delta, xi : Systemstate 4 Systemstate

v s : Systemstate e delta s # s
x a s = s

A system specification typically includes these three
types of operation schemas. Delta schemas specify the
functional and behavioral aspects of a system’s require-
ments, while xi and utility schemas complement delta
schemas in specifying exceptional cases when the exe-
cution of a delta schema fails. The operation schemas
t h a t describe the successful cases and various excep-
tional cases are normally combined using schema con-
junction and schema disjunction to produce a complete
specification.

As previously mentioned, predicates refers to zero
or more state components to specify constraints, pre-
conditions, and/or post-conditions. We identify two
different types of state component references. First,
a predicate may use the current implicit values of the
state components. In this case, we call it a read refer-
ence, since no change of these components’ values are
made. Second, a predicate may refer to one or more
state components and change the values of these com-
ponents. Here, the reference to any one of the state
components is called a write reference. Both read and
write references refer to at least one state components.
Read and write references are modeled as partial func-
tions from Oper to PI COMPONENT. Functions write
and read return the set of state components that are
write-referenced and read-referenced by an operation
schema, respectively.

I write : Oper U PI COMPONENT

vs, s i : Systemstate; o p : Oper I s’ = delta s e
write o p = { c : COMPONENT; v , v i : VALUE I

(c ~ 2)) E s A (c ~ - + v ’) E s ‘ A v # v ’ e c }

read : Oper U PI COMPONENT

o p : OpeT; I s’ = (delta s U x i s)
read o p = { c : COMPONENT; p : Predicate I c E p

A (p E dom o p V (p E ran o p A c @ write o p)) e c }

The interrelatedness between a state component and
a schema is defined based on the number of read and
write references.

comp-op : COMPONENT x Oper 4

p : Predicate I c E p
A (p E d o m o p V p E r a n o p) e

comp-op(c, o p) = 2 * #(write o p) + #(read o p \ write o p)

4 The requirements clustering
process

The requirements clustering process consists of three
major activities. First, a set of scenarios is prepared
in an attempt to cover all of the possible ways that a
system can be used. Each scenario is represented as a
scenario tree. A data model of the system is then devel-
oped and represented as an ER diagram. Second, the
ER model is mapped into a Z state schema. A set of
related operation schemas is then identified and spec-
ified for each scenario. Third, a six-step requirements
clustering algorithm is used to further group together
strongly coupled operation schemas into clusters. A
schematic representation of the requirements cluster-
ing process is shown in Figure 1.

In this paper, we focus on activities two and three,
namely, how the ER model and scenarios can help

128

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

Entities with a single (key) attribute can simply be
modeled as given sets.

A binary relationship can be specified as either a
function or a relation from the key attribute of an en-
tity to the key attribute or the entity schema of another
entity. One-to-one relationships can be specified as in-
jections. For example, “a reservation takes a seat” is
modeled as an injection from RESID to Seat.

I take : RESID -+ Seat

Figure 1: The requirements c1usterin.g process

construct a Z specification and how related operation
schemas can be clustered into coherent increments. ,A
simplified airline scheduling and reservation system is
used to further illustrate the approach.

4.1 Constructing the system state

In general, a Z specification starts by defining the sys-
tem state schema along with the given sets and thie
global constants. ER modeling provides a simple way
to begin constructing the state schema. It helps thie
specifiers better understand the problem before jump-
ing into the details of the state schema specification.
A well-defined data model provides a better chance for
constructing a good state schema.

Semmens et al. [22] propose a mapping scheme that
allows ER diagrams to be mapped into Z rjtate schemas.
For our purpose, we use a slightly different mapping
scheme. First, types are declared for each attribute.
These types are then specified as given sets. An en-
f r f y schema is introduced to include all the non-key
attributes of an entity. Each entity is then specified as
either a partial or a total function from itri key attribute
to the entity schema. For example, as shown in Figure
3 , ent8ity ‘Flight’ is specified as an entity schema and
R partial function (injection) from its key attribute t,o
the entity schema.

Flight --

schema

aarlrne :AIRLINE
orrgin, dest : AIRPORT
date : DATE
depTime, arrTime : TIME
craft : CRAFT

I flight : FID >+$ Flight

One-to-many or many-to-one relationships can be
specified as either partial or total functions. As shown
in Figure 3, the many-to-one relationship ‘reserved-by’
between ‘Reservation’ and ‘Passenger’ can be specified
in one of the following two ways:

reservedby : RESID -+ Passenger
reserve : SSN -++ RESID

The choice between these two relies on the specifier’s
decision on which one leads to a simple and better en-
suing operation specification.

Figure 2 shows the ER diagram of the ASR system.
The state schema is constructed by mapping from the
ER diagram. The specification of the state schema is
included in the appendix.

4.2 Scenario-based specification
A system seldom exists on its own. It is either a part
of a larger system under which the system cooperates
with other systems to achieve a broader goal, or it is an
autonomous working unit that can be used by its users
independently. The external entities, either other peer
systems or the users, that a system interacts with are
called agents.
Types of interactions
The interaction between a system and its agents can
be thought of as a restricted form of human conversa-
tion. The basic unit of interaction is a speech act [l]. A
speech act, in general, has two components: a proposi-
tional content, and an illocutionary point (force). The
propositional content specifies what is being requested,
warned aboul,, ordered, etc. Each type of speech act
has a point or a purpose essential to its being a speech
act of that type.

Based on the illocutionary point, Searle ([20], [21])
classified speech acts into five categories: assertives,
directives, commissives, expressives, and declaratives.
The purpose of an assertive speech act is for the speaker
to “tell how things are” to the hearer. A directive is
a speech act where the speaker gets the hearer to do
something. Commissive speech acts are to commit the
speaker to do something. The expressive speech acts
are to express the speaker’s feelings and attitudes. A

129

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

declarative is to bring about changes in the world by
saying so.
Constructang operation schemas usang scenarzos
Rpcently, scenarios has been actively used in many ar-
ras , especially in the areas of human computer interac-
tion and software engineering (e.g., [3], [17], [18]). So
far, there is no clear consensus about the definition of
scenarios. Here, we define scenarios as sequences of in-
teractions in terms of speech acts between a system and
its agents. The definition of scenarios in terms of the
theory of speech act suggests a systematic procedure
for constructing operation schemas. The procedure is
divided into three steps. First, each scenario is repre-
sented as a scenario tree [14]. Each node in the scenario
tree represents a state, while an edge indicates an oc-
cnrrence of an event. Here, we consider only the events
(or system-agent interactions) and do not consider the
details of the states. The labels of all the nodes are,
therefore, suppressed. Second, all the transition cen-
tcrs (TCs) within each scenario must be identified. A
lrnnsataon center is a node that represents the focus of
the interaction between a system and its agents. It in-
dicates system’s (re) actions and will possibly trigger
the transition of its states to fulfill agent’s requests. To
locate transition centers, look for

0 commissives from system to agents, and

0 nodes with outdegree greater than 1, or at least
one of its outgoing paths result in a system state
change.

Third, the scope of each operation schema must be
dct,ermined. A transition center is the center for a set
of potentially related operation schemas. To determine
the scope (or the granularity) of each operation schema,
we start from the transition center and look for the in-
piit boundary and the output boundary by traversing
upward and downward, respectively, along a path in
the scenario tree. Each path between an input bound-
ary and an output boundary is a potential operation
schema.

Input and output boundaries are open to interpreta-
tion. Different specifiers may select different points in
the path as boundary locations. When looking for the
input boundary, we suggest commissives from agents to
system or directives from system to agents while com-
missives or assertives from system to agents are poten-
tial output boundary locations. As shown in Figure 2,
two TCs, labeled as TC1 and TC2, are identified. For
TC1, one input boundary (11) and two output bound-
aries (011 and 0 1 2) are chosen. Likewise, the input and
output boundaries for TC2 are chosen as 12 and 0 2 1

and 0 2 2 , respectively. There are four different paths:

1) I1 to 011; 2) 11 to 0 1 2 ; 3) I2 to 0 2 1 ; and 4) 12
to 0 2 2 . These four paths suggest four potential op-
eration schemas: 1) SeatAvailable, 2) NoSeatAvai lable ,
3) MakeReservat ion, and 4) Reservat ionExis t . The op-
eration schemas that are derived from a scenario tree
are referred to as a scenario schema group. Scenario
schema groups are further classified into two types:
delta schema group and xi schema group. A delta
schema group includes at least one delta schema, while
a xi schema group does not. The eleven scenarios and
their associated scenario schema groups of the ASR sys-
tem are listed in the appendix.

4.3 The requirements clustering algo-
rithm

The final activity of the requirements clustering pro-
cess is a six-step RC algorithm:

Step 1: Construct the component-delta (CD) matrix.
A CD matrix is constructed by assigning an integer
CD, = c o m p - o p (i , j) to entry (i , j) where state com-
ponent a is referenced by delta schema group j. CDij
represents a syntactical measure of the interdependency
(CD coupling) between a state component and a delta
schema group.

The CD matrix for the ASR system is shown in Fig-
ure 4(a). To explain how this matrix is constructed,
let us examine the (passenger ,S6) entry of the ma-
trix. One read reference (in Reserva t ionEx i s t) and one
write reference (in MaAeReservatzon) of the state com-
ponent passenger are identified in delta schema group
S 6 . Therefore, the CDpassenger,S6 entry of the matrix
is assigned to be 3 to indicate the coupling strength be-
tween delta schema group S6 and the state component
passenger.

Step 2: Construct the delta-delta (DD) coupling indi-
cator matrix.
The DD coupling indicator matrix is constructed based
on the CD matrix. The (i j) entry of the DD matrix is
assigned an integer DD, derived from the CD matrix.
That is

where n = number of state components. The value of
DD, indicates the relative strength of interdependency
between delta schema groups i and j .

The DD coupling indicator matrix for the ASR sys-
tem is shown in Figure 4(b). The value of the DDi, en-
try is determined by looking at columns i and j of the
CD matrix. It is derived by summing up the minimum

130

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

positive values of CDk, and CDI, , for k = I. to the num-
ber of state components (11 in this example). For ex-
ample, D D s l , s ~ = mzn(4,5) + min(3,2) + mzn(2,2) C
mm(3,2) + min(2,2) = 12

Strp 3: Build the DD coupling spectrum.
By scanning through the DD matrix for different val-
lips of D D , ’s, a sequence of integers ranging from the
highest D D , to the lowest one is identified and are re-
frrred to as the D D coupling spectrum. A higheic value
of DD, represents a higher degree of coupling between
delta schema group z and j . The DD coupling spectrum
provides a road map for selecting the desired number of
clusters. Each element in the DD spectrum is rlEferred
to as a D D coupling strength l eve l [. The DD coupling
spectrum for the ASR system is <14,12,8,7,5,3,2>.

Stcp 4: Cluster delta schema groups.
For a chosen (, cluster delta schema groupis z and j with
the value of D D , greater than or equal to e. The result
is a set of clusters in which the delta schema groups
wit,hin each cluster have DD coupling strength level of
at least E . Any value in the DD coupling ispectriim can
he chosen as a reference DD coupling strength level (
for clustering related delta schema groups. By choosing
a smaller value of [, delta schema groups tend to be
clustered together. This will lead to a smaller number
of clusters because each cluster will cover more delta
schema groups. In the ASR system, let us assume that
the DD coupling strength level [is set to 12. The RC
algorithm will produce three clusters:

0 ASRl = (S1,S2)
ASR2 = (S3)
ASR3 = {S6,S8)

Stcp 5: Cluster the remaining xi schema groups.
For the rest of the xi schema groups, two options are
possible:

1. Each xi schema group can be an independent clus-
ter of its own.

2. Assign a xi schema group G to a cluster L, which
includes a delta schema group 0, that has the
largest value of GD, . The value of GD, , inclicating
the coupling strength between xi schema group G
and cluster L , is determined by

where MG is the set of state compoiients that are
referenced by G . In case of a tie, compare the
second-highest GD, .

The choice between Options (a) and (b) is soinewhat
application-dependent. However, to better control the

number of clusters, we suggest Option (b) and make
the adjustment of the final number of clusters during
the last step.

The remaining xi schema groups, and the state com-
ponents they reference for the ASR system are listed in
Figure 4(c). Here, we choose Option (b), namely, as-
sign a xi schema group G to a cluster L , which has the
largest value of GD, . The remaining xi schema groups
and the clusters to which they are assigned are listed in
Figure 4(c). The result of the requirements clustering
algorithm before the final adjustment is

e ASRl = (Sl, S2, S7, S9, S10, S l l }
ASR2 = (S3)
ASR3 = {S4,S5,SS,SS}

ASRl represents a subsystem that deals with the
details of flights. It supports both the airline company
and the travel agent’s operations. The airline com-
pany can schedule a new flight and cancel a scheduled
flight. A travel agent may find a flight, request a seat
price, and request the arrival and departure times of
a flight. ASR2 includes a single delta schema group
S3. It allows the airline company to change the air
fare. ASR3 mainly focuses on the operations that are
related to seat reservations. It supports the operations
of both the airline company and the travel agents. A
travel agent can make or cancel a reservation, while the
airline company is interested in requesting how many
reservations have been made and who made the reser-
vations in a flight.

Step 6: Consider making a final adjustment.
Steps 1 to 5 are mechanical, namely without any in-
volvement of human judgment and decision except de-
ciding on the value of I . The final number of clusters
derived from the previous five steps need not perfectly
reflect customer’s and/or developer’s needs. Adjust-
ment of the total number of clusters may be conducted
by considering such factors as “a pre-determined num-
ber of clusters based on customers’ needs,” “a short-
est time-to-market delivery strategy,” “a cost-effective
number of clusters for minimizing future maintenance
effort and cost [15].

In considering making the final adjustment, ASRl
can be further divided into two clusters:

ASR4: (S1, S2)
0 ASRs: (S7, S9, S10, S11)

ASR4 represents a subsystem that are related to the
operations of the airline company. ASRs somehow re-
lates to travel agents’ operations. These two clusters,
interested in by different user groups, are coupled by
referencing similar sets of state components. Strong

13 1

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

coupling indicates a possible increase of the extra code
[151 in making these two clusters semi-independent of
rach other. This is the point that the developers and
1 he customers have to decide in making the final adjust-
ment, by considering customer’s needs and the future
software maintenance.

ASRB includes a single delta schema group S3 (i.e.,
change fare). I t becomes an independent cluster, be-
caiise it has a loose coupling with other delta schema
groiips. As we can expect, it could be a small cluster
compared with the size of other clusters. To save fu-
tiire maintenance efforts, adjustment may be needed to
produce a final set of clusters that has a uniform clus-
tcr size distribution [15]. S3 can be included in ASR4,
liecause only the airline company can change the fare.
After making the final adjustment, the RC algorithm
produces three clusters:

0 ASR3: (S4, S5, S6, S8)
e ASR4: (Sl ,S2,S3}
0 ASRF;: (S7, S9, S10, S11)

As illustrated in the results of the example, the final
niimber of clusters and the content of each cluster can
I,r decided mechanically by Steps 1 to 5 of the RC algo-
rithm. However, they can be adjusted to meet specific
iiccds. Basically, the DD coupling spectrum provides
a road map for choosing from the desired number of
cliisters. Any DD coupling strength level can be chosen
to produce different number and contents of clusters.
’I’his process is mechanical and coarse-grained in na-
t i i re . The final number of clusters and the contents of
cnch cluster may be fine-tuned by considering factors
of interest to fit specific purposes.

5 Concluding Remarks
W v have presented a requirements clustering process
hased on ER modeling, scenarios, and the formal spec-
ification notation Z. A simplified airline scheduling and
reservation system has been used as an example to illus-
trate the proposed approach. The RC process provides
a flexible scheme to cluster related requirements so that
a final optimal number of clusters can be achieved. The
proposed approach has the following advantages:

e BY ihcorporating formal specification notations,
using Z as our first attempt, into requirements
clustering, it eliminates the problem of subjectivity
and minimizes the strength assignment overhead
when the number of requirements become large.
The use of formal notation facilitates the automa-
tion of the six-step RC algorithm.

By providing system decomposition from the user’s
perspectives, it leads to user-recognizable clusters.

It allows the final number of clusters to be ad-
justed, by choosing an appropriate DD coupling
strength level from the strength spectrum to fulfill
customers’ need, to adapt to a specific develop-
ment environment, or to minimize future mainte-
nance cost.

The use of scenarios in constructing operation
schema provides a way to connect and show
the temporal relationship between related opera-
tion schema. The role played by each operation
schema in a typical use of the system can be easily
visualized. Furthermore, scenarios narrow the gap
between developers and customers. Developers
and customers can validate system requirements
by tracing through each scenario and the associ-
ated scenario schema group. Each scenario indeed
is the basic unit of meaningful communication be-
tween the developers and the customers.

The steps of the RC algorithm are well defined, so
that it is possible to automate the entire RC process.
We are currently developing a CASE tool to support
incremental delivery that includes four major subsys-
tems: 1) a requirements tool; 2) a scenarios tool; 3) a
rapid prototyping tool; and 4) an incremental delivery
planing and maintenance tool. Implementation of the
RC algorithm is an essential part of the requirements
tool.

Acknowledgments
We gratefully acknowledge Dr. Ali Mili for his generous
help in verifying the correctness of some of the Z spec-
ification. We would also like to thank Mr. Liang Li for
reviewing Figures 2 and 3 and all the anonymous refer-
ees for their insightful comments on an earlier draft of
this paper which were indispensable in obtaining this
final result.

References
[l] Austin, J . L . , “How To Do Things With Words,”

2nd ed., Urmson, J.O. and Sbisa, M. ed., Cam-
bridge, MA: Harvard University Press, 1962.

[a] Barden, R., Stepney, S., and Cooper, D., “Z in
Practice,” Prentice-Hall, 1994.

[3] Carroll, J.M. (ed.), “ Scenario-Based Design: En-
visioning Work and Technology in System Devel-
opment,” John Wiley & Sons, Inc., 1995.

132

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

[4] Gilb, T., “Evolutionary Delivery versus the Wa- [17] Jacobson, I., “Object-Oriented Software Engineer-

: agent to sptem 11

0

I 1

I 1

I ,

Tcl

terfall Model,” Software Engineering Notes, vol.
10, no. 3, 1985, pp. 49-62.

Gilb, Tom., “Principles of Software Engiineering
Management,” Addison-Wesley, 1988.

Gupta, A.P., “Onion: A Development Methodol-
ogy for Data-Dominant Systems,” P1h.D. diisserta-
tion, The University of Texas at Arlington, March
1990.

0
RQ reservation e

.. (1

RQdate 4-0

enter date +-ib

RQ origin & des1 fo

enter origin C dest W

RQairline f-0

enter airline ++
RQclasa to
choose economic seat e

check seat (system)

I ,

d l

(1

I 1

Hekmatpour, S., “Experience with Evolutionary
Prototyping in a Large Software Project ,”’ Soft-
ware Engineering Notes, vol. 12, no. 1, 1987, pp.
38-41.

...
..

to RQ name c SSN

0 - j enter name & SSN

Hepner, M.M.,“An Object-oriented Approach to
Incremental Delivery of Software Systems,” Mas-
ters thesis, The University of Texas at Arlington,
1991.

4 1

12
1

Hooper, J.W. and Hsia, p., “Scenario-Based Pro-
totyping for Requirements Identificistion,” ACM
SIGSOFT, Software Engineering Notes, vol. 7, no.
5, Dec. 1982, pp. 88-93.

Hough, D., “Rapid Delivery: An Evollutionatry Ap-
proach for Application Developmenl,,” IBlvI Sys-
tems Journal, vol. 32, no. 3, 1993, pp. 397-419.

Hsia, P., Yaurig, A.T., and Jiam, S.IH., “Require-
ments Clustering for Incremental Construction of
Software Systems,” Proc. COMPSAC ’86, Oct.
1986.

Hsia, P. and Yaung, A.T., “Another Approach
to System Decomposition: Requirements Cluster-
ing,” Proc. COMPSAC ’88, October, 1988.

Hsia, P. and Gupta, A., “Incremental Delivery Us-
ing Abstract Data Types and Requirements Clus-
tering,” ICSI ’92.

Hsia, P. et al., “Formal Approach to Scenario
Analysis,” IEEE Software, March 1994, pp. 33-41.

Hsia, P., Hsu, C.T., Kung, D.C., and Yaung, A.T.,
“The Impact of Incremental Delivery on Main-
tenance Effort: An Analytical Study,” Proc. of
ESEC ’95, September 26-28, Spain, 1995, pip. 405-
422.

Ichikawa, H., Itoh, M., and Kato, J . , “SDE: Incre-.
mental Specification and Development of Commu-
nications Software,” IEEE Transactions on Com-
puters, April 1991, pp. 553-561.

. .

ing: A Use Case Driven Approach,” Addison-
Wesley, 1992.

[18] Rumbaugh, J . et al., “Object-Oriented Modeling
and Design,” Prentice Hall, 1991.

[19] Ruoff, K.L., “Practical Application of the IDEFl
as a Database Development Tool,” Proc. Intl.
Conf. on Data Engineering, 1984.

[20] Searle, J.R., “Speech Acts: An Essay in the Philos-
ophy of Language,” Cambridge University Press,
1969.

[21] Searle, J.R., “A Taxonomy of Illocutionary Acts,”
In Searle, J.R. (ed), Expression and Meaning:
Studies in the Theory of Speech Acts, Cambridge
University Press, 1979, pp. 1-29.

[22] Semmens, L. and Allen, P., “Using Yourdon and
Z: an Approach to Formal Specification,” Proc. Z
User Workshop, Oxford, 1990, pp. 228-253.

Figure 2. The seat reservation scenario tree

133

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The ER model of the ASR system

S4
S5
S7

(a) The CD metrlr (b) The 00 coupling
indicator matrix

pixhi, resewedon, resewedby I 1 ASR,
pighl, resewedon 7(tie), 7 ASR,

flight 5 ASR,

Ixi schema groupl state components I max GD, I assigned to]

S9 bight, searing
SI0 bight

7 ASR,
5 ASR,

SI1 bight 5

(0) Clustering the remalnlng xi schema groups

Figure 4. Requirement8 clustering for the ASR aystem

ASR,

e Scenarios:

s1:
s2:
s3:
s4:
S5:

S6:
s7:
S8:
s9:

s10:
s11:

Schedule a new flight.
Cancel an existent flight.

*Ita0 : DISTANCE
md: C o n
#Ah= 1

I dw : C L A D

Change air fare.
Request the passenger list in a flight.
Request total number of reservations
in a flight.
Make a reservation.
Find a flight.
Cancel a reservation.
Request seat price.
Request the arrival time of a flight.
Request the departure time of a flight.

I .

M S R
a? : AIRLINE

or$, *r? : AIRPORT
R : DATE
dq?, UT? : TIME
e? : CRAW

n:Pm

e? : BID

134

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

at! : N
f l E domllil#
Wl= #ry : Ri#t I fi#t-'(lf = p a

nrrrpdon-'(l f D]

S d H i l r u C
BASR
R : DATE
mi#?, lu? : AIRPORT
a? : AIRLINE
R : CLASS

&I, aw! : TIME
&id : S1D

w:pm

f#? : PARE
I?:SSN
n? : NAME

R : DATE
mi#?, lu? : AIRPORT I a? : AIRLINE

NoRumrfiOn-
ZASR

I? : SSN

135

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore. Restrictions apply.

