
User-Centered System Decomposition: 
Z-Based Requirements Clustering 

Pei Hsia C.T. Hsu David C. Kung Lawrence B. Holder 

Computer Science and Engineering Department 
The University of Texas at Arlington 

Arlington, Texas, USA 

Abstract 
Requzrements clusterzng (RC) provades a dzfferent ap- 
proach t o  s y s t e m  decomposataon, b y  enablang a s y s t e m  t o  
be pnrtataoned anto user-recognazable components,  where 
each component  can be used, a lmos t  andependently, t o  
snizsfy part  of the  user’s needs. Requarements cluster- 
m g  as essentaal f o r  a software development approach 
called ancremental delavery (ID) A successful cluster- 
zng of s y s t e m  requarements produces a set  of useful, us- 
nble ,  and sema-andependent clusters that can be devel- 
oped and delavered t o  the  c u s t o m e r s  an ancrements. Thas 
pnper  presents  a requarements clusterang process based 
on  ER modelang, scenaraos, and t h e  f o r m a l  specaficataon 
noiataon Z. 

1 Introduction 
Reducing the complexity of large software systems is 
one of the most important tasks in the entire soft- 
ware development process. By applying the concept of 
divide-and-conquer, systems can be decomposed into 
lcss complex parts, so each part can be addressed 
with less difficulty. Typically, a system is partitioned 
into smaller functional components. Functional de- 
composition applies the divide-and-conquer concept 
from a system developer’s view and provides a per- 
spcctive for system construction. Unfortunately, it is 
usually not easy to map these functional parts onto 
customer-recognizable components. Therefore, the cus- 
tomers/users are left out of the system development 
process because they do not understand the internal 
dct ails. Furthermore, developers tend to concentrate 
on the functional details and easily lose sight of the 
ohjectives of the system and the goal of the product. 

Incremental delivery transforms the major steps in 
software development, such as requirements analysis, 
system partitioning, and system integration, into a 
user-centered perspective. It partitions a whole system 

from its utility point of view and allows a system to 
be grouped into usable subsystems (called increments). 
Each subsystem is semi-independent from the rest of 
the system and can be implemented, tested, and de- 
livered to the customer separately in a well-defined se- 
quence according to priority, precedence relation, and 
other criteria. The delivered subsystems are immedi- 
ately usable to the customer to fulfill part of his/her 
requirements. A key factor to the success of ID is to 
cluster requirements into increments in such a way that 
each increment can operate without much functional 
help from the other increments. 

This paper presents a requirements clustering pro- 
cess based on ER modeling, scenarios, and the formal 
specification notation Z,  and uses a simplified airline 
scheduling and reservation system to illustrate the ap- 
proach. The remainder of the paper is structured as 
follows. Section 2 summarizes related work on require- 
ments clustering and incremental delivery. Section 3 
provides a brief explanation of some of the key con- 
cepts and terms of the Z notation. Based on this, the 
proposed requirements clustering process and a simpli- 
fied airline scheduling and reservation system (ASR) is 
presented in Section 4. Section 5 summarizes the paper 
and our future work. 

2 Related work 

2.1 Incremental delivery 
Traditionally, software systems have been considered a 
monolithic piece: no part is separable from the rest, and 
all software components must be present to achieve an 
operational system. Recently, researchers and practi- 
tioners have been advocating incremental development, 
and even incremental delivery, to  construct and deliver 
software systems (e.g. [4], [7], [lo], [ll], [IS]). Incre- 
mental delivery takes incremental development a step 
further by providing software systems to end-users in 
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componeiits. Each delivered iiicrement supports a par- 
tial set of requirements, and its functionalities are visi- 
ble to the end-users. These new approa,ches are cort- 
ceptually appealing, because they provllde both cuo- 
tomers and management with an essential ingredient 
which is conspicuously absent in the monolithic devel- 
opment approach: progress visibility. Tlhe increment,s 
that are delivered to the customers can be examined 
for t,heir functionalities and provide a foretaste of the 
things to come. At the same time, they serve as con- 
crete progress achievements to the custorners, manage- 
ment , and system developers themselves. Some addi- 
tional advantages of ID are summarized in ([ll],  [12], 
[l 31, [15]). A somewhat similar approach to ID is called 
evolutionary delivery (ED) [5]. In ED, a software devel- 
opment project is divided into a carefullly-planned se- 
qiience of releases. Early releases deliver the core func- 
tionalities, while subsequent releases add on more capa- 
bilities. ED differs from ID in that each release in ED 
delivers a more complete set of system capabilities than 
the previous releases, while in ID, the delivered incre- 
ments are semi-independent of one another. Hough dis- 
cussed a system development approach called rapid de- 
livery [lo] , by identifying twelve issues concerning SYF- 

t em segmentation strategies. Hepner [S] proposed a,n 
ohjt=ct-oriented incremental delivery approach (OOID) 
hnsed on Coad’s OOA and scenarios. OlOID identifies 
similar functions by their relatedness to common ob- 
jccts, services, and/or message connections. Scenarios 
which relate to similar functions are clustered in the 
same group. The increment implementation order is 
then determined based on their interdependency. 

2.2 Requirements clustering 

Hsia and Yaung [12] proposed a RC algorithm based 
on scenario-based prototyping. This algorithm consislts 
of t,wo major steps. The first step generates an ini- 
tial clustering from a set of scenarios, and the second 
st.rp refines these clusters. The initial set of clusters is 
derived from the scenarios obtained by scenario-based 
prototyping [9] during requirements vallidation. The 
second step generates a matrix of indicator functions 
where the indicator functions represent the strength of 
relations between any requirement pair. 

The success of this algorithm dependls on identify 
ing and assigning proper strengths to the relations in- 
volved between any requirement pair. The strengtrh 
assignments are based solely upon the developers’ un- 
derstanding of the system, and are, therefore, subjec- 
tive. The effort involved in the strength assignment 

objective and mechanical strength assignment scheme, 
the incurred overhead cannot be overlooked. 

Hsia and Gupta [13] lessened the problem of subjec- 
tivity involved in strength assignments by using IDEFl 
[19] and a methodology for building data-dominant sys- 
tems called Onion [6] .  Software system development 
using Onion normally consists of four major steps: 1) 
create an IDEFl data model for the system; 2) identify 
abstract data types (ADTs) from this model; 3) spec- 
ify, implement , and verify each ADT; and 4) implement 
user required functions, or external visible functions 
(EVFs), using the above ADTs. EVFs are classified 
into two categories: 1) modifying ADTs (T,,,); and 2) 
accessing the content of ADTs (T,). The idea is that 
any two EVFs in the T, category are grouped into the 
same logical (cluster if they change one or more com- 
mon ADTs. EVFs in the T, category do not change 
the state of an ADT, so each such requirement is placed 
in a cluster b,y itself. This algorithm tends to result in 
a larger number of clusters. Besides, the total number 
of clusters is fixed, and it may not be flexible enough 
to fit in different development contexts. 

3 Definitions 
We will briefly explain some key concepts and terms 
of the formal specification notation Z that are relevant 
to our following discussion. Here, we assume that the 
structuring of Z specifications follows the “Established 
Strategy” [2], namely a Z specification consists of a 
system state schema, an initial state schema, and a set 
of operation schema. 

The state schema describes all or some part of a sys- 
tem state. It consists of a set of state  components  and 
some constraining predicates that are defined based on 
those components. Each state component is associated 
with an implicit value at any given time after the sys- 
tem’s initialization. Here at the abstract level, we need 
to know nothing about the internal structures of the 
state Components and their associated values. Hence, 
we introduce given sets to model state components and 
their associated values. 

[COMPONENT, VALUE] 

Predicates are normally built upon state compo- 
nents. A predicate may refer to zero or more state 
components. The same state component may appear 
in one predicate more than once. However, for our pur- 
pose, we do not need to distinguish them. Therefore, a 
predicate can be modeled as 

I Predicate 2 PCOMPONENT 

lwtween any two requirements is non-trivial when the 
number of requirements n become large. Without a m  

The state of a system at any given time is deter- 
mined by the states of all its components a t  that time. 

127 

Authorized licensed use limited to: Washington State University. Downloaded on October 07,2020 at 16:54:50 UTC from IEEE Xplore.  Restrictions apply. 



Components’ states are modeled as a function from 
COMPONENT to  VALUE. 

I ComponentState COMPONENT -+ VALUE 

A system’s state is thus a combination of its compo- 
nents’ states. 

I Systemstate 2 P Componentstate 

Operation schemas, sometimes called state transi- 
tion schemas, are used to define all the operations that 
are applied to the system state. An operation schema 
consists of a pre-condition and a post-condition. Both 
the pre- and post-conditions contain a set of logically 
conjuncted and/or disjuncted predicates. Operation 
schemas and their pre and post-conditions are modeled 
as 

PreCond, PostCond : PPredrcate 

Oper PreCond f+ PostCond 

We categorize operation schemas into three main 
types: 1) delta schemas, 2) xi schemas, and 3) util- 
i ty  schemas. A delta schema represents a successful 
execution of an operation. The result of successfully 
executing a delta schema will change the values of one 
or more state components, namely components’ state 
changes. Schema MakeReservatzon is an example of a 
delta schema. A xi schema shows no changes of any one 
of the state components. It normally specifies query re- 
sults and describes situations that involves a reference 
to any of the state components. Schema SeatAvazl- 
able is an example of a xi schema. The third category 
of operation schemas-utility schemas-are schemas that 
do not refer to  any one of the state components. 

Delta and xi schemas relate to system state changes. 
The difference between these two types of schemas is 
that in delta schemas, the states of at least one of the 
state components are changed, while none of the state 
components change their states in xi schemas. These 
two operation schemas are modeled as total functions 
from Systemstate to Systemstate. 

delta, xi : Systemstate 4 Systemstate 

v s  : Systemstate e delta s # s 
x a s = s  

A system specification typically includes these three 
types of operation schemas. Delta schemas specify the 
functional and behavioral aspects of a system’s require- 
ments, while xi and utility schemas complement delta 
schemas in specifying exceptional cases when the exe- 
cution of a delta schema fails. The operation schemas 
t h a t  describe the successful cases and various excep- 
tional cases are normally combined using schema con- 
junction and schema disjunction to produce a complete 
specification. 

As previously mentioned, predicates refers to  zero 
or more state components to  specify constraints, pre- 
conditions, and/or post-conditions. We identify two 
different types of state component references. First, 
a predicate may use the current implicit values of the 
state components. In this case, we call it a read refer- 
ence, since no change of these components’ values are 
made. Second, a predicate may refer to  one or more 
state components and change the values of these com- 
ponents. Here, the reference to any one of the state 
components is called a write reference. Both read and 
write references refer to at least one state components. 
Read and write references are modeled as partial func- 
tions from Oper to  PI COMPONENT. Functions write 
and read return the set of state components that are 
write-referenced and read-referenced by an operation 
schema, respectively. 

I write : Oper U PI COMPONENT 

vs, s i  : Systemstate; o p  : Oper I s’ = delta s e 
write o p  = { c  : COMPONENT; v ,  v i  : VALUE I 

( c ~ 2 ) ) E s  A ( c ~ - + v ’ ) E s ‘  A v # v ’ e c }  

read : Oper U PI COMPONENT 

o p  : OpeT; I s’ = (delta s U x i  s) 
read o p  = { c  : COMPONENT; p : Predicate I c E p 

A ( p  E dom o p  V ( p  E ran o p  A c @ write o p ) )  e c }  

The interrelatedness between a state component and 
a schema is defined based on the number of read and 
write references. 

comp-op : COMPONENT x Oper 4 

p : Predicate I c E p 
A ( p E d o m o p  V p E r a n o p ) e  

comp-op(c, o p )  = 2 * #(write o p )  + #(read o p  \ write o p )  

4 The requirements clustering 
process 

The requirements clustering process consists of three 
major activities. First, a set of scenarios is prepared 
in an attempt to cover all of the possible ways that a 
system can be used. Each scenario is represented as a 
scenario tree. A data model of the system is then devel- 
oped and represented as an ER diagram. Second, the 
ER model is mapped into a Z state schema. A set of 
related operation schemas is then identified and spec- 
ified for each scenario. Third, a six-step requirements 
clustering algorithm is used to  further group together 
strongly coupled operation schemas into clusters. A 
schematic representation of the requirements cluster- 
ing process is shown in Figure 1. 

In this paper, we focus on activities two and three, 
namely, how the ER model and scenarios can help 
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Entities with a single (key) attribute can simply be 
modeled as given sets. 

A binary relationship can be specified as either a 
function or a relation from the key attribute of an en- 
tity to the key attribute or the entity schema of another 
entity. One-to-one relationships can be specified as in- 
jections. For example, “a reservation takes a seat” is 
modeled as an injection from RESID to Seat. 

I take : RESID -+ Seat 

Figure 1: The requirements c1usterin.g process 

construct a Z specification and how related operation 
schemas can be clustered into coherent increments. ,A 
simplified airline scheduling and reservation system is 
used to  further illustrate the approach. 

4.1 Constructing the system state 

In general, a Z specification starts by defining the sys- 
tem state schema along with the given sets and thie 
global constants. ER modeling provides a simple way 
to begin constructing the state schema. It helps thie 
specifiers better understand the problem before jump- 
ing into the details of the state schema specification. 
A well-defined data model provides a better chance for 
constructing a good state schema. 

Semmens et al. [22] propose a mapping scheme that 
allows ER diagrams to  be mapped into Z rjtate schemas. 
For our purpose, we use a slightly different mapping 
scheme. First, types are declared for each attribute. 
These types are then specified as given sets. An en- 
f r f y  schema is introduced to include all the non-key 
attributes of an entity. Each entity is then specified as 
either a partial or a total function from itri key attribute 
to the entity schema. For example, as shown in Figure 
3 ,  ent8ity ‘Flight’ is specified as an entity schema and 
R partial function (injection) from its key attribute t,o 
the entity schema. 

Flight -- 

schema 

aarlrne :AIRLINE 
orrgin, dest : AIRPORT 
date : DATE 
depTime, arrTime : TIME 
craft : CRAFT 

I flight : FID >+$ Flight 

One-to-many or many-to-one relationships can be 
specified as either partial or total functions. As shown 
in Figure 3, the many-to-one relationship ‘reserved-by’ 
between ‘Reservation’ and ‘Passenger’ can be specified 
in one of the following two ways: 

reservedby : RESID -+ Passenger 
reserve : SSN -++ RESID 

The choice between these two relies on the specifier’s 
decision on which one leads to a simple and better en- 
suing operation specification. 

Figure 2 shows the ER diagram of the ASR system. 
The state schema is constructed by mapping from the 
ER diagram. The specification of the state schema is 
included in the appendix. 

4.2 Scenario-based specification 
A system seldom exists on its own. It is either a part 
of a larger system under which the system cooperates 
with other systems to achieve a broader goal, or it is an 
autonomous working unit that can be used by its users 
independently. The external entities, either other peer 
systems or the users, that a system interacts with are 
called agents. 
Types of interactions 
The interaction between a system and its agents can 
be thought of as a restricted form of human conversa- 
tion. The basic unit of interaction is a speech act [l]. A 
speech act, in general, has two components: a proposi- 
tional content, and an illocutionary point (force). The 
propositional content specifies what is being requested, 
warned aboul,, ordered, etc. Each type of speech act 
has a point or a purpose essential to  its being a speech 
act of that type. 

Based on the illocutionary point, Searle ([20], [21]) 
classified speech acts into five categories: assertives, 
directives, commissives, expressives, and declaratives. 
The purpose of an assertive speech act is for the speaker 
to “tell how things are” to the hearer. A directive is 
a speech act where the speaker gets the hearer to do 
something. Commissive speech acts are to  commit the 
speaker to do something. The expressive speech acts 
are to  express the speaker’s feelings and attitudes. A 
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declarative is to bring about changes in the world by 
saying so. 
Constructang operation schemas  usang scenarzos 
Rpcently, scenarios has been actively used in many ar- 
ras ,  especially in the areas of human computer interac- 
tion and software engineering (e.g., [3], [17], [18]). So 
far,  there is no clear consensus about the definition of 
scenarios. Here, we define scenarios as sequences of in- 
teractions in terms of speech acts between a system and 
its agents. The definition of scenarios in terms of the 
theory of speech act suggests a systematic procedure 
for constructing operation schemas. The procedure is 
divided into three steps. First, each scenario is repre- 
sented as a scenario tree [14]. Each node in the scenario 
tree represents a state, while an edge indicates an oc- 
cnrrence of an event. Here, we consider only the events 
(or system-agent interactions) and do not consider the 
details of the states. The labels of all the nodes are, 
therefore, suppressed. Second, all the transition cen- 
tcrs (TCs) within each scenario must be identified. A 
lrnnsataon center  is a node that represents the focus of 
the interaction between a system and its agents. It in- 
dicates system’s (re) actions and will possibly trigger 
the transition of its states to fulfill agent’s requests. To 
locate transition centers, look for 

0 commissives from system to agents, and 

0 nodes with outdegree greater than 1, or at least 
one of its outgoing paths result in a system state 
change. 

Third, the scope of each operation schema must be 
dct,ermined. A transition center is the center for a set 
of potentially related operation schemas. To determine 
the scope (or the granularity) of each operation schema, 
we start from the transition center and look for the in- 
piit boundary and the output boundary by traversing 
upward and downward, respectively, along a path in 
the scenario tree. Each path between an input bound- 
ary and an output boundary is a potential operation 
schema. 

Input and output boundaries are open to interpreta- 
tion. Different specifiers may select different points in 
the path as boundary locations. When looking for the 
input boundary, we suggest commissives from agents to 
system or directives from system to agents while com- 
missives or assertives from system to agents are poten- 
tial output boundary locations. As shown in Figure 2, 
two TCs, labeled as TC1 and TC2, are identified. For 
TC1, one input boundary (11) and two output bound- 
aries (011 and 0 1 2 )  are chosen. Likewise, the input and 
output boundaries for TC2 are chosen as 12 and 0 2 1  

and 0 2 2 ,  respectively. There are four different paths: 

1) I1 to 011; 2) 11 to 0 1 2 ;  3) I2 to 0 2 1 ;  and 4) 12 
to 0 2 2 .  These four paths suggest four potential op- 
eration schemas: 1) SeatAvailable, 2) NoSeatAvai lable ,  
3) MakeReservat ion,  and 4) Reservat ionExis t .  The op- 
eration schemas that are derived from a scenario tree 
are referred to as a scenario schema  group. Scenario 
schema groups are further classified into two types: 
delta schema group and xi schema group. A delta 
schema group includes at least one delta schema, while 
a xi schema group does not. The eleven scenarios and 
their associated scenario schema groups of the ASR sys- 
tem are listed in the appendix. 

4.3 The requirements clustering algo- 
rithm 

The final activity of the requirements clustering pro- 
cess is a six-step RC algorithm: 

Step 1: Construct the component-delta (CD) matrix. 
A CD matrix is constructed by assigning an integer 
CD, = c o m p - o p ( i , j )  to entry ( i , j )  where state com- 
ponent a is referenced by delta schema group j. CDij 
represents a syntactical measure of the interdependency 
(CD coupling) between a state component and a delta 
schema group. 

The CD matrix for the ASR system is shown in Fig- 
ure 4(a). To explain how this matrix is constructed, 
let us examine the (passenger ,S6 )  entry of the ma- 
trix. One read reference (in Reserva t ionEx i s t )  and one 
write reference (in MaAeReservatzon)  of the state com- 
ponent passenger are identified in delta schema group 
S 6 .  Therefore, the CDpassenger,S6 entry of the matrix 
is assigned to be 3 to indicate the coupling strength be- 
tween delta schema group S6 and the state component 
passenger.  

Step 2: Construct the delta-delta (DD) coupling indi- 
cator matrix. 
The DD coupling indicator matrix is constructed based 
on the CD matrix. The ( i j )  entry of the DD matrix is 
assigned an integer DD, derived from the CD matrix. 
That is 

where n = number of state components. The value of 
DD, indicates the relative strength of interdependency 
between delta schema groups i and j .  

The DD coupling indicator matrix for the ASR sys- 
tem is shown in Figure 4(b). The value of the DDi, en- 
try is determined by looking at columns i and j of the 
CD matrix. It is derived by summing up the minimum 
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positive values of CDk, and CDI, , for k = I. to the num- 
ber of state components (11 in this example). For ex- 
ample, D D s l , s ~  = mzn(4,5) + min(3,2) + mzn(2,2) C 
mm(3,2) + min(2,2) = 12 

Strp 3: Build the DD coupling spectrum. 
By scanning through the DD matrix for different val- 
lips of D D ,  ’s, a sequence of integers ranging from the 
highest D D ,  to the lowest one is identified and are re- 
frrred to as the D D  coupling spectrum. A higheic value 
of DD, represents a higher degree of coupling between 
delta schema group z and j .  The DD coupling spectrum 
provides a road map for selecting the desired number of 
clusters. Each element in the DD spectrum is rlEferred 
to as a D D  coupling strength l eve l [ .  The DD coupling 
spectrum for the ASR system is <14,12,8,7,5,3,2>. 

Stcp 4: Cluster delta schema groups. 
For a chosen (, cluster delta schema groupis z and j with 
the value of D D ,  greater than or equal to e. The result 
is a set of clusters in which the delta schema groups 
wit,hin each cluster have DD coupling strength level of 
at least E .  Any value in the DD coupling ispectriim can 
he chosen as a reference DD coupling strength level ( 
for clustering related delta schema groups. By choosing 
a smaller value of [, delta schema groups tend to be 
clustered together. This will lead to a smaller number 
of clusters because each cluster will cover more delta 
schema groups. In the ASR system, let us assume that 
the DD coupling strength level [ is set to 12. The RC 
algorithm will produce three clusters: 

0 ASRl = (S1,S2) 
ASR2 = (S3) 
ASR3 = {S6,S8) 

Stcp 5: Cluster the remaining xi schema groups. 
For the rest of the xi schema groups, two options are 
possible: 

1. Each xi schema group can be an independent clus- 
ter of its own. 

2. Assign a xi schema group G to a cluster L, which 
includes a delta schema group 0, that has the 
largest value of GD, . The value of GD, , inclicating 
the coupling strength between xi schema group G 
and cluster L ,  is determined by 

where MG is the set of state compoiients that are 
referenced by G .  In case of a tie, compare the 
second-highest GD, . 

The choice between Options (a) and (b) is soinewhat 
application-dependent. However, to better control the 

number of clusters, we suggest Option (b) and make 
the adjustment of the final number of clusters during 
the last step. 

The remaining xi schema groups, and the state com- 
ponents they reference for the ASR system are listed in 
Figure 4(c). Here, we choose Option (b), namely, as- 
sign a xi schema group G to a cluster L ,  which has the 
largest value of GD, . The remaining xi schema groups 
and the clusters to which they are assigned are listed in 
Figure 4(c). The result of the requirements clustering 
algorithm before the final adjustment is 

e ASRl = (Sl,  S2, S7, S9, S10, S l l }  
ASR2 = (S3) 
ASR3 = {S4,S5,SS,SS} 

ASRl represents a subsystem that deals with the 
details of flights. It supports both the airline company 
and the travel agent’s operations. The airline com- 
pany can schedule a new flight and cancel a scheduled 
flight. A travel agent may find a flight, request a seat 
price, and request the arrival and departure times of 
a flight. ASR2 includes a single delta schema group 
S3. It allows the airline company to change the air 
fare. ASR3 mainly focuses on the operations that are 
related to seat reservations. It supports the operations 
of both the airline company and the travel agents. A 
travel agent can make or cancel a reservation, while the 
airline company is interested in requesting how many 
reservations have been made and who made the reser- 
vations in a flight. 

Step 6: Consider making a final adjustment. 
Steps 1 to 5 are mechanical, namely without any in- 
volvement of human judgment and decision except de- 
ciding on the value of I .  The final number of clusters 
derived from the previous five steps need not perfectly 
reflect customer’s and/or developer’s needs. Adjust- 
ment of the total number of clusters may be conducted 
by considering such factors as “a pre-determined num- 
ber of clusters based on customers’ needs,” “a short- 
est time-to-market delivery strategy,” “a cost-effective 
number of clusters for minimizing future maintenance 
effort and cost [15]. 

In considering making the final adjustment, ASRl 
can be further divided into two clusters: 

ASR4: (S1, S2) 
0 ASRs: (S7, S9, S10, S11) 

ASR4 represents a subsystem that are related to the 
operations of the airline company. ASRs somehow re- 
lates to travel agents’ operations. These two clusters, 
interested in by different user groups, are coupled by 
referencing similar sets of state components. Strong 
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coupling indicates a possible increase of the extra code 
[ 151 in making these two clusters semi-independent of 
rach other. This is the point that the developers and 
1 he customers have to decide in making the final adjust- 
ment, by considering customer’s needs and the future 
software maintenance. 

ASRB includes a single delta schema group S3 (i.e., 
change fare). I t  becomes an independent cluster, be- 
caiise it has a loose coupling with other delta schema 
groiips. As we can expect, it could be a small cluster 
compared with the size of other clusters. To save fu- 
tiire maintenance efforts, adjustment may be needed to 
produce a final set of clusters that has a uniform clus- 
tcr size distribution [15]. S3 can be included in ASR4, 
liecause only the airline company can change the fare. 
After making the final adjustment, the RC algorithm 
produces three clusters: 

0 ASR3: (S4, S5, S6, S8) 
e ASR4: (Sl ,S2,S3} 
0 ASRF;: (S7, S9, S10, S11) 

As illustrated in the results of the example, the final 
niimber of clusters and the content of each cluster can 
I,r decided mechanically by Steps 1 to 5 of the RC algo- 
rithm. However, they can be adjusted to meet specific 
iiccds. Basically, the DD coupling spectrum provides 
a road map for choosing from the desired number of 
cliisters. Any DD coupling strength level can be chosen 
to produce different number and contents of clusters. 
’I’his process is mechanical and coarse-grained in na- 
t i i re .  The final number of clusters and the contents of 
cnch cluster may be fine-tuned by considering factors 
of interest to fit specific purposes. 

5 Concluding Remarks 
W v  have presented a requirements clustering process 
hased on ER modeling, scenarios, and the formal spec- 
ification notation Z. A simplified airline scheduling and 
reservation system has been used as an example to illus- 
trate the proposed approach. The RC process provides 
a flexible scheme to cluster related requirements so that 
a final optimal number of clusters can be achieved. The 
proposed approach has the following advantages: 

e BY ihcorporating formal specification notations, 
using Z as our first attempt, into requirements 
clustering, it eliminates the problem of subjectivity 
and minimizes the strength assignment overhead 
when the number of requirements become large. 
The use of formal notation facilitates the automa- 
tion of the six-step RC algorithm. 

By providing system decomposition from the user’s 
perspectives, it leads to user-recognizable clusters. 

It allows the final number of clusters to be ad- 
justed, by choosing an appropriate DD coupling 
strength level from the strength spectrum to fulfill 
customers’ need, to adapt to a specific develop- 
ment environment, or to minimize future mainte- 
nance cost. 

The use of scenarios in constructing operation 
schema provides a way to connect and show 
the temporal relationship between related opera- 
tion schema. The role played by each operation 
schema in a typical use of the system can be easily 
visualized. Furthermore, scenarios narrow the gap 
between developers and customers. Developers 
and customers can validate system requirements 
by tracing through each scenario and the associ- 
ated scenario schema group. Each scenario indeed 
is the basic unit of meaningful communication be- 
tween the developers and the customers. 

The steps of the RC algorithm are well defined, so 
that it is possible to automate the entire RC process. 
We are currently developing a CASE tool to support 
incremental delivery that includes four major subsys- 
tems: 1) a requirements tool; 2) a scenarios tool; 3) a 
rapid prototyping tool; and 4) an incremental delivery 
planing and maintenance tool. Implementation of the 
RC algorithm is an essential part of the requirements 
tool. 
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Figure 2. The seat reservation scenario tree 
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Figure 3. The ER model of the ASR system 
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Figure 4. Requirement8 clustering for the ASR aystem 
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