
The General Utility Problem in Machine Learning

Lawrence B. Holder
University of Illinois
Beckman Institute

405 North Mathews, Urbana, IL 61801

(In the Proceedings of the Seventh International Conference on Machine Learning, 1990, pp. 402--410.)

Abstract

Experiments have revealed that uncon-
trolled application of the analytical learning
paradigm results in knowledge having low
utility. Because the performance element
must consider low utility knowledge along
with high utility knowledge, the prolifera-
tion of low utility knowledge eventually de-
feats the goal of improved performance. Ex-
periments in empirical learning have demon-
strated a similar phenomenon. Uncontrolled
application of an empirical learning paradigm
may result in inaccurate knowledge, and a
post-processing stage is typically needed to
repair the degradation in performance. The
results from experimentation in both analyt-
ical and empirical learning imply a general
utility problem in machine learning. This
paper presents evidence for such a perspec-
tive and recommends a closer dependence be-
tween the learning paradigm and the perfor-
mance goals for which it is designed. A new
approach is presented along with experimen-
tation that illustrates the applicability of the
approach to the general utility problem.

1 Introduction

One of the main goals for research in machine learning
is the eventual integration of learning methods with
knowledge-based systems. Learning methods offer the
ability to transform the knowledge of the system to im-
prove performance on the tasks using the knowledge.
The ability to transform knowledge will reduce the de-
pendency of system performance on the quality of the
knowledge initially entered by the knowledge engineer.

Recent experimentation with machine learning
methods has uncovered a new obstacle to their inte-
gration with knowledge-based systems. Experiments
with several analytical learning systems demonstrated
an eventual degradation in performance due to uncon-

trolled application of the learning paradigm. This ob-
stacle has been named the utility problem [Minton88].
Experiments with empirical learning methods are also
uncovering this phenomenon of performance degrada-
tion due to unconstrained application.

Two additional obstacles block the integration of
current learning methods with knowledge-based sys-
tems. First, the performance goals for the tasks us-
ing the knowledge may change over time. Knowledge
transformations made by machine learning methods
must adapt to changes in the performance goals for
the desired tasks. Second, the knowledge may sup-
port different tasks from multiple domains. Knowledge
transformations to improve performance on one task
must preserve the performance goals of other tasks us-
ing the knowledge. These additional constraints along
with the original utility problem combine to form the
general utility problem. The general utility problem
in machine learning is the degradation of performance
for tasks using the knowledge due to the unconstrained
transformation of the knowledge by machine learning
methods.

Recent solutions to the utility problem have gen-
erally followed the trend of applying the learning
method to every task and then pruning away the
knowledge that eventually turns out to degrade perfor-
mance. This research offers a different approach called
performance-driven knowledge transformation that se-
lectively applies learning methods only when necessary
to achieve a desired performance goal for some task.
The approach acquires knowledge for controlling the
application of multiple learning methods.

The next section reviews work related to the utility
problem in analytical learning and casts recent work
in empirical learning in the context of the utility prob-
lem. Section 3 defines the general utility problem for
machine learning and discusses alternative solutions.
Section 4 describes the performance-driven knowledge
transformation approach to solving the general utility
problem. Section 5 illustrates experiments performed
with an implementation of the approach in the Peak
system. Section 6 concludes with plans for further im-



provements to the proposed approach.

2 Utility Problem in Learning

Research in both empirical and analytical learning has
uncovered deficiencies in the employed methodologies.
The major deficiencies stem from the naive view that
the methodology in question is always applicable to
the learning task and therefore should always be ap-
plied to the data. In a performance-driven system, one
methodology is rarely sufficient to handle the variety
of learning tasks.

2.1 Analytical Learning

Research on analytical (explanation-based) learning
techniques began to focus more attention on perfor-
mance with the appearance of Keller’s work on the
definition of operationality [Keller88]. Analytical tech-
niques learn from a single example by proving the ex-
ample is an instance of the concept to be learned. The
proof terminates when the leaves of the proof tree are
all operational predicates. The proof tree is then gen-
eralized, yielding an operational description of the con-
cept. Earlier work on explanation-based learning de-
fined an operational concept as one whose description
is composed from a set of predicates deemed easy to
evaluate [DeJong86, Mitchell86]. Keller pointed out
that operationality is more intimately related to the
performance element and the desired performance im-
provement. This view of operationality was used in
the MetaLex system that learns heuristics for solv-
ing calculus problems. MetaLex defines an opera-
tional concept as one that improves the performance
element’s (problem solver’s) run-time efficiency on a
set of benchmark calculus problems, while maintain-
ing effectiveness so that some percentage of the prob-
lems are still solved correctly. The increased attention
on performance has led to the reevaluation of several
analytical learning systems and the observation that
performance may degrade with repeated application.

2.1.1 PRODIGY

In experimentation with the Morris analytical learn-
ing system, Minton found that performance degrades
as the number of rules grows large [Minton85]. In order
to learn a concept, the system acquires several rules
whose disjunction forms the system’s understanding
of the concept. As the number of rules increase, the
cost of determining the applicability of a rule may
outweigh the benefits of applying, and thus, retain-
ing the rule. Minton calls this phenomenon the utility
problem and offers the Prodigy system as a solution
[Minton88]. Prodigy maintains empirical estimates
of match costs, application savings and frequency of
application for each rule. These estimates are used

to compute a utility value for the rule. If this value
becomes negative, the rule is no longer considered.
Minton found that maintenance of a rule’s utility value
and compression of the rule’s conditions result in a
substantial performance improvement. These results
indicate that a system should be sensitive to the cost
and savings of the learned descriptions.

2.1.2 SOAR

Experimentation on the Soar system has uncovered
similar results [Tambe88]. Instead of monitoring the
cost and benefits of rules, Tambe and Rosenbloom re-
strict the expressiveness of the learned rules so that the
complexity of the match is kept linear in the number of
matching conditions [Tambe89]. Results of using this
technique within Soar indicate a greater number of
less expressive rules are needed to attain the generality
of the more expressive rules, but the match cost is no
longer exponential. However, the results are unclear
on whether an exponential number of simpler rules will
be needed to achieve the generality of the more expres-
sive rules. Also, the trend toward generating ground
instances of the general rules seems contradictory to
the purported benefits of analytical learning.

2.1.3 EGGS

Despite the aforementioned evidence for degrading
performance in analytical learning systems, other such
systems have demonstrated improved performance
without concern for the number or form of the learned
rules. Looking at systems by O’Rorke [O’Rorke87]
and Shavlik [Shavlik88] Mooney recently uncovered
the reason for the contradictory results [Mooney89].
The performance element for Mooney’s experiments
was Eggs [Mooney86], which includes a Horn-clause
theorem prover and standard explanation-based learn-
ing techniques [DeJong86, Mitchell86] for generalizing
the proofs.

Experiments with Eggs revealed that limited use
of the learned rules provided greater performance in
accuracy and speed than full use. Because Shavlik
constrained the proofs to be no longer than a specified
depth bound, his system was making only limited use
of the learned rules (i.e., only those rules that required
limited chaining).

Mooney also demonstrated that using a breadth-
first search for theorem proving, instead of depth-first,
also forced a limited use of learned rules. Learned rules
that would have required deep sub-goaling to reach a
solution are circumvented by the simultaneous con-
sideration of proofs from the original domain theory.
The use of breadth-first search in O’Rorke’s system ac-
counts for much of the favorable performance. Mooney
concludes that limited use of learned rules is advis-



able until the system has learned the rules necessary
to solve the more common problems.

2.1.4 Summary

Experimentation on analytical learning systems
demonstrates performance degradation with uncon-
trolled application of the paradigm. In response, many
researchers have opted for more specific instances of
the learned rules. The level of specificity of the
knowledge should not be arbitrary, but determined by
the desired performance. In fact, with performance-
directed learning the original domain theory may per-
form within desired performance thresholds, in which
case, the application of analytical learning may be un-
necessary.

2.2 Empirical Learning

Empirical learning methods have traditionally been
designed to achieve the best classification performance
possible. However, experimentation described below
indicates that classification performance can actually
degrade with repeated application of the empirical
learning method.

2.2.1 AQ

During experimentation with the AQ system (specif-
ically, AQ15 [Michalski86]), Michalski found that
repetitive application of AQ can yield less accurate
concepts than a more conservative application strategy
combined with a simple inference mechanism [Michal-
ski87]. The AQ methodology finds a conjunctive de-
scription that covers as many positive examples as pos-
sible without covering any negative examples. Positive
examples not covered by the first description are used
as input for another execution of AQ. This procedure
continues until a concept in disjunctive normal form is
produced covering all the positive examples and none
of the negative examples. Michalski compared the ac-
curacy of the DNF concept with that of the concept
consisting of only the single disjunct covering the most
positive examples. Using a simple matching proce-
dure, the truncated concepts out-performed the orig-
inal concepts in both accuracy and speed. This ob-
servation illustrates the need for systems to be more
selective in their own behavior when such selectivity is
sufficient to achieve the desired performance goals.

2.2.2 ID3

Similar results have been obtained with the decision
trees generated by Quinlan’s ID3 program [Quinlan86].
Quinlan found that pruning the rules extracted from
a decision tree can improve the accuracy of the rules
on unseen examples [Quinlan87]. ID3 builds decision
trees by selecting an attribute from the training ex-
amples providing the best split (according to an infor-

mation theoretic criterion) between positive and neg-
ative examples. The program continues by descending
each branch and recursively applying itself to the ex-
amples satisfying the attribute value for that branch.
ID3 halts when all the nodes at the frontier of the
tree contain all positive or all negative examples. The
pruning stage removes rules from the decision tree un-
til accuracy on a set of test examples begins to de-
crease. Compared to the original rules, the pruned
rules performed better on a set of unseen test exam-
ples. Although the success of pruning is due to noise,
missing values, and the decreased number of examples
available at higher depths in the tree, this stage might
have been unnecessary if the desired accuracy had been
taken into account during the initial generation of the
decision rules.

2.2.3 Summary

Research on empirical learning has shown that inexact
rules combined with a simple matching procedure can
be less expensive and more accurate than exact rules.
The tradeoff between accuracy and completeness of the
learned rules should be decided by the desired perfor-
mance. Modifying the AQ algorithm to return only
the one disjunct covering the most positive examples
may avoid generation of low utility knowledge. Like-
wise, constraining the ID3 algorithm to stop when the
leaves have reached a desired level of accuracy may
prevent inaccuracies at greater depths in the decision
tree and avoid the need for pruning.

Typically, empirical learning methods are invoked
to achieve the best classification accuracy possible. To
avoid a degradation in classification performance, em-
pirical learning methods should be invoked only when
necessary to achieve a violated performance goal. Fur-
thermore, repair of the performance goal violation may
require only modest generalization as opposed to the
large inductive leaps made by most empirical learning
methods. In the extreme case (e.g., small number of
instances in the concept), rote learning may be prefer-
able to more powerful empirical learning methods.

3 General Utility Problem

The generation of low utility knowledge by both an-
alytical and empirical learning methods indicates a
utility problem in machine learning more widespread
than that identified in the analytical learning litera-
ture. The general utility problem encompasses not
only the performance degradation on one task due
to uncontrolled application of learning methods, but
also adaptation to changing task performance goals
and maintenance of performance on other tasks using
the knowledge. Thus, the general utility problem is
informally defined as follows:



General Utility Problem: performance
degradation on one or more tasks due to the
transformation of knowledge.

In order to address the general utility problem, the
role of machine learning methods must be viewed from
a purely performance-based perspective. This perspec-
tive is similar to that used by Keller in the MetaLex
system [Keller87]. MetaLex transforms its knowl-
edge base by retaining a new concept only if the con-
cept improves the efficiency and effectiveness of the
performance element.

Markovitch and Scott address the general utility
problem by filtering the information flow from in-
stances, to the knowledge base, and then to the perfor-
mance element [Markovitch89]. One filter, the utiliza-
tion filter, removes harmful rules from the knowledge
used by the performance element.

Learning control knowledge for the application of
learning methods to different tasks is addressed by
Rendell’s variable-bias management system (VBMS)
[Rendell87]. VBMS maps different tasks to points in
a bias space. Each point in bias space represents a
choice of inductive algorithm, representation language
and any relevant parameters for the algorithm or lan-
guage.

The next section describes an approach to the gen-
eral utility problem called performance-driven knowl-
edge transformation. This approach differs from the
approach in MetaLex by making performance goals
more explicit and incrementally adapting to changes in
desired performance. In contrast to the knowledge fil-
tering approach, performance-driven knowledge trans-
formation constrains the initial generation of knowl-
edge as directed by failure performance goals. This
approach differs from the approach in VBMS in that
the emphasis is on selecting learning methods to re-
pair violations in desired performance, not to achieve
maximum possible performance on an isolated learn-
ing task.

4 Performance-Driven Knowledge
Transformation

Performance-driven knowledge transformation con-
trols the application of learning methods based on
their ability to achieve desired performance goals on
one task while preserving the performance on other
tasks. Each task for the knowledge base defines a per-
formance space. The dimensions of the performance
space are the performance goals (e.g., completeness,
correctness, response time) to be maintained by the
knowledge base for that task. The current state of the
knowledge base is represented by a point in the per-
formance space for each task. A knowledge transfor-

Figure 1: Performance Spaces for Two Tasks

mation can be viewed as a move of the current knowl-
edge base from one point in the performance space of
each task to another. Figure 1 shows the performance
spaces for two tasks. Task A (Figure 1a) consists of
three performance goals G1, G2 and G3. Task B (Fig-
ure 1b) consists of two performance goals G4 and G5.
The location of two knowledge bases K1 and K2 are
shown for each task.

The desired performance for each task defines a
hyper-rectangle in that task’s performance space.
When the knowledge base moves outside the desired-
performance hyper-rectangle in some performance
space, performance-driven knowledge transformation
selects a learning method to transform the knowledge
base so that the corresponding point in the perfor-
mance space for the current task moves back inside
the desired-performance hyper-rectangle without mov-
ing the point outside the desired hyper-rectangle in the
performance spaces for other tasks. Referring to Fig-
ure 1, knowledge base K1 has satisfactory performance
for task B, but violates the performance goals of task
A. Transforming knowledge base K1 to K2 achieves
the performance goals of task A and preserves the sat-
isfactory performance for task B.

This research proposes an approach to performance-
driven knowledge transformation implemented in the
Peak system. When a performance goal violation is
detected while solving a problem from some task, the
Peak system uses information about the context of
the goal violation (e.g., the difference between desired
and actual performance) to select a transformation op-
erator for reducing this difference while maintaining
other performance levels. Application of the opera-
tor yields a new knowledge base. If the new knowl-
edge base achieves the violated performance goal and
preserves other performance goals, then the current
knowledge base is replaced by the new knowledge base.
Otherwise, another transformation operator is selected
for application. Verification of the new knowledge base



is accomplished by using the knowledge to solve previ-
ously seen problems from the same task. For each op-
erator, Peak retains information about the applicabil-
ity of the operator in a given context based on the suc-
cess of the operator in reducing the goal violation. As
more performance goal violations are repaired, Peak
demonstrates more intelligent selection of transforma-
tion operators and quicker convergence to a knowledge
base within desired performance thresholds.

In the following discussion, certain assumptions
have been made about the knowledge in the knowledge
base and the performance element using this knowl-
edge. The knowledge base is a set of Horn clause rules.
The performance element is a deductive retriever sim-
ilar to Prolog. Performance is measured while the per-
formance element attempts to solve a query posed by
the user. Attached to the query are the performance
goals to be maintained during the solution of the query.
Performance goal violations occur when the measured
performance exceeds the desired thresholds.

4.1 Performance Perspective

Using performance goals as a means of guiding the
maintenance and repair of a knowledge base requires
a precise definition of performance. The definition of
performance depends on the perspective. Four per-
spectives are applicable for describing the performance
of a knowledge base:

• External performance is the performance mea-
sured from outside the knowledge base, regardless
of any internal knowledge transformations.

• Current performance is the performance the sys-
tem currently maintains for the previously seen
queries.

• Expected performance is the performance the
system expects to demonstrate on future queries.
Expected performance is usually the same as cur-
rent performance.

• Absolute performance is the performance that
the current state of the knowledge would support
if given every possible query.

When the user specifies a threshold for some per-
formance measure, the proper perspective must be
used to evaluate the performance of the knowledge
base. Absolute performance is rarely available due to
a lack of knowledge about the instance space. Ab-
solute performance is inappropriate, because the dis-
tribution over the entire instance space may not give
equal probability to each instance. External perfor-
mance provides information about the rate of conver-
gence towards absolute performance. Changes in ex-
ternal performance indicate the need for an increase

or decrease in the extent of the knowledge transforma-
tions. Current performance evaluates the knowledge
only on previously seen queries. Expected performance
is the best measure of the current state of the knowl-
edge base, because the objective of the knowledge base
is to maintain its expected ability to perform the task
within desired thresholds on possibly unseen queries.

Both expected and external performance should be
measured by the performance-driven knowledge trans-
formation process. Knowledge transformations are
triggered only when expected performance falls below
desired levels. External performance should then be
used in the selection of an appropriate transformation
operator. The greater the difference between external
and expected performance, the more drastic a transfor-
mation should be recommended by the system.

4.2 Information on Goal Violations

Once a goal violation has been detected, several pieces
of information are available for selecting an appropri-
ate knowledge transformation operator. First, as de-
scribed in the previous section, the difference between
expected and external performance indicates the ex-
tent of the necessary transformation.

Second, after the performance element attempts to
solve a query, the violated and preserved goals are
known. Each goal contains information about the per-
formance measure that this goal constrains, the de-
sired threshold on the measure, the observed value of
the measure on previously seen queries (including the
query just processed), and the difference between the
observed and desired performance (the error). The
performance measure constrained by a violated goal is
useful for selecting transformation operators capable of
improving this performance measure. The magnitude
of the error indicates the extent of the transformation.
The performance measure constrained by a satisfied
goal is useful for selecting transformation operators
capable of preserving this performance measure. The
magnitude of the error indicates the extent to which
the selected operator may degrade performance on the
satisfied goals in order to achieve performance on the
violated goals.

A third source of information that will be avail-
able upon detection of a performance goal violation
is the task history. Each task known to the knowledge
base maintains a task history of previously seen queries
from the task. The task history serves two purposes.
First, the task history represents an empirical estimate
of the distribution over the possible queries of the task.
This distribution can be used to verify the achievement
of violated performance goals in transformed knowl-
edge. Second, an entry in the task history contains in-
formation about the query-solving episode. One useful



piece of information about a query-solving episode is
the trace of the knowledge accessed during the solu-
tion.

The knowledge trace is an and/or tree that records
the knowledge accessed during the solution of the
query and indicates which rules (if any) support the
response to the query. Information about the shape
of a task’s knowledge traces constrains the selection of
knowledge transformations. For example, wide, shal-
low knowledge traces indicate that the knowledge con-
sists of specific instances of the task; whereas narrow,
deep knowledge traces indicate a more general set of
rules for proving queries from the corresponding task.

Finally, past success of the transformation opera-
tors provides information upon performance goal vi-
olation. As the knowledge base transforms to meet
performance goals, a record is kept of the old and new
knowledge bases along with the operator responsible
for the transformation. If the new knowledge base
achieves a violated goal while preserving non-violated
goals, then the system increases the operators appli-
cability for achieving and preserving the appropriate
goals. Over time, collection of this information will
allow the system to make a more informed operator
selection based on past experience.

4.3 Verification of Knowledge Base

Because no operator application is guaranteed to
achieve the desired results, the system must verify
that the knowledge base resulting from an operator
application achieves the desired performance. Verifi-
cation can be accomplished by re-solving the queries
in the task history. The size of the task history can be
changed to tradeoff performance convergence rates for
transformation speed. As the system learns operator
applicability, there is less chance that several alterna-
tive operator applications must be tried before find-
ing one that achieves the violated goal. Because each
transformation attempt requires verification of the re-
sulting knowledge base, the fewer attempts necessary
implies fewer verifications; thus, the task history size
can increase over time.

5 Experimentation

This section illustrates the application of Peak on two
tasks from diverse domains. The first experiment in-
volves learning to improve response time, completeness
and correctness while determining whether to land the
space shuttle manually or automatically depending on
environmental conditions. The second experiment in-
volves learning to improve response time while con-
structing plans to build towers in the blocks-world do-
main. Together, the two experiments demonstrate the
ability of performance-drive knowledge transformation

to selectively apply appropriate learning methods to
achieve desired performance goals.

5.1 Shuttle Domain

This experiment executes the Peak system on the
shuttle landing control database available from the
machine learning databases maintained by University
of California at Irvine. The problem is to determine
whether to land the shuttle manually or automatically
based on environmental attributes. The corresponding
task is labeled the landing task, and the queries are
of the form landing(ENV,?x). The ENV in the query
represents the environmental situation to be evalu-
ated. The performance element attempts to fill in the
?x with the recommended landing control: auto or
noauto.

Prior to query answering, the user inputs the per-
formance thresholds to be maintained by the knowl-
edge base while answering landing queries using the
performance element (a backward-chaining deductive
theorem prover for Horn clauses). For this experi-
ment, three performance goals are specified: correct-
ness, completeness and response time. The correctness
goal specifies that the answers to queries must be cor-
rect 90% of the time. The completeness goal specifies
that the query must be answered 95% of the time.
That is, the answer should be either auto or noauto

and not “I don’t know”. The response time goal speci-
fies that the performance element must respond within
10 seconds.

Two knowledge transformation operators are avail-
able: rote learning and empirical learning. Application
of the rote learning operator asks the user for the cor-
rect answer to the query. A new rule is added to the
knowledge base having the instantiated query as the
consequent, and the facts defined before query execu-
tion as the antecedent. The empirical learning oper-
ator utilizes the ID3 program to build a decision tree
from examples in the knowledge base. The examples
are rules such as those learned by the rote operator.
Each path in the resulting decision tree is converted
to a rule. The examples are replaced by the new rules
in the transformed knowledge base.

Starting with an empty knowledge base, Peak at-
tempts to solve landing queries, while maintaining the
performance goals. Figure 2 plots the three perfor-
mance goals for 200 randomly chosen queries from the
shuttle landing control domain.

Figure 2a illustrates how Peak maintains response
time performance below 10 seconds. For the first 30
queries, response time increases as the number of rote-
learned rules increases. Eventually, the large number
of rules in the knowledge base cannot be traversed
within the response time threshold.



Figure 2: Plots of Performance for Shuttle Domain



While processing the 30th query, Peak was unable
to solve the query, generating a completeness failure.
Peak first trys to transform the knowledge base by
rote-learning a new rule. However, verification of the
new knowledge base uncovers a response time fail-
ure. Because the rote learning operator was ineffec-
tive, Peak chose to apply the ID3 operator. ID3 gen-
eralized the 29 learned instances into 8 general rules.
As Figure 2a indicates, the resulting transformation
drastically improves response time performance.

The plot of completeness performance in Figure 2b
illustrates how Peak quickly learns the initial query
knowledge. After the ID3 transformation, complete-
ness remained above the 95% threshold for the remain-
der of the 200 queries.

The correctness plot in Figure 2c shows how per-
formance starts at 100% and converges to the desired
90% threshold. The initial values of 100% for correct-
ness are due to the fact that many of the initial queries
could not be answered. Correctness performance only
measures the correctness of answered queries. Imme-
diately following the application of ID3, correctness
falls to 94% due to the next two queries being incor-
rectly answered according to the new knowledge base.
As query answering continues, the over-generalization
in the rules eventually brings correctness down below
the 90% threshold. Correctness violations occur at
queries 89, 98, 153 and 163. In each case, Peak uses
the rote-learning operator to memorize the incorrectly
answered query and restore 90% correctness perfor-
mance.

The final knowledge base after completion of the
200 queries consists of the 12 rules shown in Figure 3.
Rules 5-12 are the general rules learned by ID3. Rules
1-4 are the specific instances learned to repair the over-
generalization in ID3’s rules. After 200 queries, the
knowledge base converged to 8 general rules describing
major trends in the shuttle landing domain and four
specific rules for special cases not handled correctly by
the general rules.

One final observation from Figure 2 is the conver-
gence of the performance towards the desired thresh-
olds and not towards the maximum possible perfor-
mance. This indicates how performance-driven knowl-
edge transformation utilizes flexibility in one dimen-
sion of performance to improve performance in another
dimension.

5.2 Blocks-World Domain

In the task from the blocks-world domain, the user
asks the performance element to construct a plan for
building a tower of blocks. The queries are of the form
tower(A B C ?state), where A, B and C are blocks,
and ?state is a variable to be instantiated with the

plan for achieving the tower.
Prior to query answering, the user inputs the perfor-

mance thresholds to be maintained by the knowledge
base while answering tower queries. For this experi-
ment, one performance goal is specified: response-time
< 10 seconds. Performance goals for completeness and
correctness are inappropriate, because the domain the-
ory is assumed complete and correct.

In addition to the rote learning and ID3 opera-
tors used with the first experiment, an explanation-
based generalizer, Eggs [Mooney86], is included in the
Peak system. Eggs applies standard explanation-
based techniques [DeJong86, Mitchell86] to general-
ize the proofs obtained by the performance element.
When Eggs is applied to a proof, the result is a gen-
eral rule that is added to the knowledge base.

Starting with the blocks-world domain theory, Peak
attempts to solve tower queries, while maintaining the
response time performance goal. The initial state of
the blocks world contained six blocks. Figure 4 shows
the response time obtained by Peak for 100 semi-
randomly chosen tower queries. Semi-random means
that the first ten queries were all towers of height two
(the two blocks to be in the tower were chosen ran-
domly from the six blocks in the initial state). The
second ten queries were all towers of height three, and
so on for the first 50 queries. The second 50 queries
repeat the above sequence to show the effects on re-
sponse time of the rules learned during the first 50
queries.

As shown in Figure 4, the first 20 queries (towers of
height two and three) are solved by the original domain
theory within the response time threshold. However,
the domain theory is unable to maintain the response
time performance goal while processing the 21st query
(tower of height four). At this point, ID3 cannot be
applied due to the lack of examples in the knowledge
base. The Eggs operator is chosen over rote learning
due to the knowledge trace for the query. The deep,
wide proof tree suggests that Eggs is more likely to
succeed than ID3.

Application of Eggs yields a general rule that builds
any tower of height four in one step. Thus, the remain-
der of the tower queries for height four are completed
within the response time threshold. Similar rules are
learned for the 31st query (tower of height five) and
41st query (tower of height six). Figure 4 shows that
retrying the towers of heights two through six (queries
50-100) results in no response time performance viola-
tions due to the previously learned rules.

This experiment demonstrates Peak’s ability to
constrain the application of the Eggs analytical learn-
ing algorithm. Application of Eggs was unnecessary
for towers of height two and three, because the original



1. landing(x,noauto) ← sign(x,nn) & wind(x,head) & stability(x,xstab) & error(x,MM) &
magnitude(x,Medium) & visibility(x,yes)

2. landing(x,noauto) ← sign(x,pp) & wind(x,tail) & stability(x,xstab) & error(x,MM) &
magnitude(x,Low) & visibility(x,yes)

3. landing(x,noauto) ← sign(x,nn) & wind(x,head) & stability(x,stab) & error(x,MM) &
magnitude(x,OutOfRange) & visibility(x,yes)

4. landing(x,noauto) ← sign(x,nn) & wind(x,tail) & stability(x,xstab) & error(x,MM) &
magnitude(x,Low) & visibility(x,yes)

5. landing(x,auto) ← error(x,MM) & visibility(x,yes)
6. landing(x,auto) ← stability(x,stab) & error(x,SS) & magnitude(x,Strong) & visibility(x,yes)
7. landing(x,auto) ← visibility(x,no)
8. landing(x,noauto) ← error(x,XL) & visibility(x,yes)
9. landing(x,noauto) ← error(x,LX) & visibility(x,yes)
10. landing(x,noauto) ← stability(x,xstab) & error(x,SS) & magnitude(x,Strong) & visibility(x,yes)
11. landing(x,noauto) ← error(x,SS) & magnitude(x,OutOfRange) & visibility(x,yes)
12. landing(x,noauto) ← error(x,SS) & magnitude(x,Low) & visibility(x,yes)

Figure 3: Shuttle Domain Knowledge Base After 200 Queries

Figure 4: Plot of Response Time for Tower Domain

domain theory was able to solve these queries within
the desired performance thresholds. However, the do-
main theory was unable to support the desired perfor-
mance for towers of height four, five and six, requiring
three applications of Eggs to learn general rules for
these specific cases. As the performance on the second
50 queries indicates, the original domain theory plus
the three learned rules was sufficient to maintain the
desired performance for the tower-building task.

6 Conclusions

In order to integrate machine learning methods with
knowledge-based systems, the general utility problem
in machine learning must be addressed. Evidence for
the general utility problem has been found in exper-
imentation on both analytical and empirical learning

methods. Unconstrained application of these meth-
ods has been shown to degrade the performance they
were designed to improve. Learning methods should
be invoked only after a performance failure has been
detected, and then, only if the learning method is ap-
plicable to the properties of the failure. Furthermore,
learning methods must permit transformation of the
knowledge to achieve performance goals without vi-
olating the performance goals associated with other
tasks using the knowledge. The learning methods must
also have the ability to adapt to changing performance
goals.

Performance-driven knowledge transformation offers
an approach that addresses the general utility prob-
lem. Learning methods are invoked only when neces-
sary to improve performance, and in accordance with
previous success in repairing the violated performance
goal. The performance-driven knowledge transforma-
tion approach has been implemented in the Peak sys-
tem. Experimentation with Peak demonstrates the
ability to control the application of learning methods
to achieve desired performance goals.

More experimentation is necessary to validate the
use of performance-driven knowledge transformation.
Experiments with modified versions of the AQ and ID3
algorithms will indicate the usefulness of these trans-
formation methods to avoid inaccuracies due to uncon-
strained application of the paradigms. Experiments
with the interaction of multiple learning methods will
indicate the usefulness of current control knowledge
and suggest the need for other knowledge to con-
trol the performance-driven knowledge transformation
process.



7 Acknowledgments

I would like to thank Robert Stepp for his insightful
comments on this work. I would also like to thank
Diane Cook, Brad Whitehall and Robert Reinke for
their helpful suggestions. The ID3 and EGGS op-
erators were adapted from versions written by Ray
Mooney. The blocks-world domain theory was adapted
from rules written by Jude Shavlik and Ray Mooney.

8 References

[DeJong86] G. F. DeJong and R. J. Mooney,
“Explanation-Based Learning: An Alternative
View,” Machine Learning 1, 2 (April 1986), pp.
145-176.

[Keller87] R. M. Keller, “Concept Learning in Con-
text,” Proceedings of the 1987 International Ma-
chine Learning Workshop, Irvine, CA, June 1987,
pp. 91-102.

[Keller88] R. M. Keller, “Defining Operationality for
Explanation-Based Learning,” Artificial Intelli-
gence 35, 2 (June 1988), pp. 227-241.

[Markovitch89] S. Markovitch and P. D. Scott, “Uti-
lization Filtering: A Method for Reducing the
Inherent Harmfulness of Deductively Learned
Knowledge,” Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence,
Detroit, MI, August 1989, pp. 738-743.

[Michalski86] R. S. Michalski, I. Mozetic, J. Hong
and N. Lavrac, “The Multi-Purpose Incremental
Learning System AQ15 and its Testing Applica-
tion in Three Medical Domains,” Proceedings of
the National Conference on Artificial Intelligence,
Philadelphia, PA, August 1986, pp. 1041-1047.

[Michalski87] R. S. Michalski, “How to Learn Impre-
cise Concepts: A Method for Employing a Two-
Tiered Knowledge Representation in Learning,”
Proceedings of the 1987 International Machine
Learning Workshop, Irvine, CA, June 1987, pp.
50-58.

[Minton85] S. Minton, “Selectively Generalizing Plans
for Problem-Solving,” Proceedings of the Ninth
International Joint Conference on Artificial Intel-
ligence, Los Angeles, CA, August 1985, pp. 596-
599.

[Minton88] S. Minton, “Quantitative Results Con-
cerning the Utility of Explanation-Based Learn-
ing,” Proceedings of the National Conference on
Artificial Intelligence, St. Paul, MN, August
1988, pp. 564-569.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar-
Cabelli, “Explanation-Based Generalization: A
Unifying View,” Machine Learning 1, 1 (January
1986), pp. 47-80.

[Mooney86] R. J. Mooney and S. W. Bennett, “A
Domain Independent Explanation-Based Gener-
alizer,” Proceedings of the National Conference on
Artificial Intelligence, Philadelphia, PA, August
1986, pp. 551-555.

[Mooney89] R. J. Mooney, “The Effect of Rule Use on
the Utility of Explanation-Based Learning,” Pro-
ceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, Detroit, MI, Au-
gust 1989, pp. 725-730.

[O’Rorke87] P. V. O’Rorke, “LT Revisited: Exper-
imental Results of Applying Explanation-Based
Learning to the Logic of Principia Mathemat-
ica,” Proceedings of the 1987 International Ma-
chine Learning Workshop, Irvine, CA, June 1987,
pp. 148-159.

[Quinlan86] J. R. Quinlan, “Induction of Decision
Trees,” Machine Learning 1, 1 (1986), pp. 81-
106.

[Quinlan87] J. R. Quinlan, “Generating Production
Rules from Decision Trees,” Proceedings of the
Tenth International Joint Conference on Artifi-
cial Intelligence, Milan, Italy, August 1987, pp.
304-307.

[Rendell87] L. Rendell, R. Seshu and D. Tcheng,
“Layered Concept Learning and Dynamically-
Variable Bias Management,” Proceedings of the
Tenth International Joint Conference on Artifi-
cial Intelligence, Milan, Italy, August 1987, pp.
308-314.

[Shavlik88] J. W. Shavlik, “Generalizing the Structure
of Explanations in Explanation-Based Learning,”
Ph.D. Thesis, Department of Computer Science,
University of Illinois, Urbana, IL, January 1988.

[Tambe88] M. Tambe and A. Newell, “Some Chunks
Are Expensive,” Proceedings of the 1988 Interna-
tional Machine Learning Workshop, Ann Arbor,
MI, June 1988, pp. 451-458.

[Tambe89] M. Tambe and P. Rosenbloom, “Eliminat-
ing Expensive Chunks by Restricting Expressive-
ness,” Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, De-
troit, MI, August 1989, pp. 731-737.


