
Performance-Driven Knowledge Representation

Lawrence B. Holder
Department of Computer Science

University of Illinois
405 North Mathews
Urbana, IL 61801

Abstract

Integration of machine learning methods with knowledge based systems requires sophis-
ticated control mechanisms for applying methods appropriate to the performance task.
Performance-driven knowledge transformation controls the application of learning methods
based on their ability to achieve desired performance goals while preserving the performance
on other tasks. A means-ends approach to performance-driven knowledge transformation
is presented along with experimental results from an implementation. The results indicate
that performance-driven knowledge transformation is able to maintain multiple performance
goals by applying appropriate machine learning methods to transform a knowledge base.

1 Introduction

Intelligent systems acquire knowledge in order to perform some task. The level of perfor-
mance depends upon the quality of the acquired knowledge. Machine learning methods
attempt to improve the quality of the knowledge, and thus improve performance on the
desired task. Integration of machine learning methods with knowledge-based systems will
reduce the dependency of system performance on the quality of knowledge initially entered
by the knowledge engineer. For example, instead of extracting high-level rules from a domain
expert, the knowledge engineer might need to collect only previous instances with known
conclusions. The machine learning component of the knowledge-based system may then
generalize the instances into knowledge of the appropriate quality.

Several machine learning methods have been developed that successfully derive higher-
level knowledge from examples. However, these methods work in isolation and do not con-
sider the need for multiple learning methods within a single knowledge-based system. For
instance, if the knowledge takes the form of examples and the goal is improved accuracy,
then the system may choose to invoke an empirical learning method that constructs gener-
alized rules describing the examples. On the other hand, if the knowledge takes the form of
higher-level rules and the goal is improved response time, then the system may choose an
analytical learning method to construct a macro from the rule inference chain used to solve
the current problem. Knowledge-based systems must be able to select learning methods ap-
propriate for the desired performance improvement. In addition, application of the learning
method must preserve the performance goals of other knowledge used for other tasks.

Knowledge-based systems need the capability of applying multiple learning methods in
order to adapt to new performance requirements while maintaining previously stated goals.

1



For example, once a certain level of accuracy has been achieved, the emphasis may shift to the
time needed to arrive at an accurate decision. The desired accuracy may have been achieved
by rote learning examples, and then the desired speed may be achieved by generalizing these
examples to a few general rules. Current individual learning systems are incapable of a
corresponding shift of attention.

Performance-driven knowledge transformation controls the application of learning meth-
ods based on their ability to achieve desired performance goals while preserving the per-
formance on other tasks. The next section describes work related to performance-driven
knowledge transformation. Then, the approach is discussed in detail. Next, results are
presented from preliminary experimentation with an implementation of the approach in the
Peak system.

2 Related Work

Experimentation with empirical learning programs has shown that more emphasis should be
placed on performance during the construction of the learned concepts. Evidence for this
can be found in the results obtained with the decision trees generated by Quinlan’s ID3
program (Quinlan 1986). Quinlan found that pruning the rules extracted from a decision
tree can improve the accuracy of the rules on unseen examples (Quinlan 1987). Compared
to the original rules, the pruned rules performed better on a set of unseen test examples.
Recent experiments by Mingers have confirmed this result (Mingers 1989).

Further evidence for the necessity of performance for guiding concept learning can be
found in experimentation on explanation-based learning systems. In experimentation with
the Prodigy system, Minton found that performance degrades as the number of rules grows
large (the utility problem) (Minton 1988). In order to learn a concept, the system acquires
several rules whose disjunction forms the system’s understanding of the concept. As the
number of rules increase, the cost of determining the applicability of a rule may outweigh
the benefits of applying, and thus, retaining the rule. Minton’s solution is to maintain
empirical estimates of match costs, application savings and frequency of application for
each rule. These estimates are used to compute a utility value for the rule. If this value
becomes negative, the rule is no longer considered. Minton found that maintenance of a rule’s
utility value and compression of the rule’s conditions result in a substantial performance
improvement.

This related research illustrates that learning should be constrained by the desired perfor-
mance. If the knowledge base satisfies the performance goals, then no learning is necessary.
If performance is violated, then only enough learning should be done to achieve the perfor-
mance without violating previously satisfied performance goals.

3 Approach

Performance-driven knowledge transformation controls the application of learning methods
based on their ability to achieve desired performance goals. Each task for the knowledge base
defines a performance space. The dimensions of the performance space are the performance

2



goals (e.g., completeness, correctness, response time) to be maintained by the knowledge
base for that task. The current state of the knowledge base is represented by a point in the
performance space for each task. A knowledge transformation can be viewed as a move of
the current knowledge base from one point in the performance space to another. Figure 1
shows the performance space for one task. The task consists of three performance goals G1,
G2 and G3. The location of two knowledge bases K1 and K2 are shown for the task.

Figure 1: Performance Space for One Task

The desired performance for each task defines a hyper-rectangle in that task’s perfor-
mance space. When the knowledge base moves outside the performance hyper-rectangle in
some performance space, performance-driven knowledge transformation selects a learning
method to transform the knowledge base so that the corresponding point in the performance
space for the current task moves inside the desired performance hyper-rectangle without
moving the points for other tasks outside the desired hyper-rectangle in the performance
spaces. Referring to Figure 1, knowledge base K1 violates the performance goals for the
task. Transforming knowledge base K1 into K2 achieves the desired performance goals.

This research investigates a means-ends approach to performance-driven knowledge trans-
formation. When a performance goal violation is detected while solving a problem from some
task, the means-ends approach uses information about the context of the goal violation (e.g.,
the difference between desired and actual performance) to select a transformation operator
for reducing this difference while maintaining other performance levels. Application of the
operator yields a new knowledge base. If the new knowledge base achieves the violated per-
formance goals and preserves other performance goals, then the current knowledge base is
replaced by the new knowledge base. Otherwise, another transformation operator is selected
for application.

In the following discussion, certain assumptions have been made about the knowledge in
the knowledge base and the performance element using this knowledge. The knowledge base
is a set of Horn clause rules. The performance element is a deductive retriever similar to
Prolog. Performance is measured while the performance element attempts to solve a query
posed by the user. Attached to the query are the performance goals to be maintained during
solution. Performance goal violations occur when the measured performance exceeds the
desired thresholds.

3



3.1 Performance Perspective

Using performance goals as a means of guiding the maintenance and repair of a knowledge
base requires a precise definition of performance. The definition of performance depends
on the perspective. Four perspectives are applicable for describing the performance of a
knowledge base:

• External performance is the performance measured from outside the knowledge base,
regardless of any internal knowledge transformations.

• Current performance is the performance the system currently maintains for the pre-
viously seen queries.

• Expected performance is the performance the system expects to demonstrate on fu-
ture queries. Expected performance is usually the same as current performance.

• Absolute performance is the performance that the current state of the knowledge
would support if given every possible query.

When the user specifies a threshold for some performance measure, the proper perspective
must be used to evaluate the performance of the knowledge base. Absolute performance is
rarely available due to a lack of knowledge about the instance space. Absolute performance
is inappropriate, because the distribution over the entire instance space may not give equal
probability to each instance. External performance provides information about the rate of
convergence towards absolute performance. Changes in external performance indicate the
need for an increase or decrease in the extent of the knowledge transformations. Current
performance evaluates the knowledge only on previously seen queries. Expected performance
is the best measure of the current state of the knowledge base, because the objective of
the knowledge base is to maintain its expected ability to perform the task within desired
thresholds on possibly unseen queries.

Performance-driven knowledge transformation should measure both expected and external
performance. Knowledge transformations are triggered only when expected performance
falls below desired levels. External performance should then be used in the selection of
an appropriate transformation operator. The greater the difference between external and
expected performance, the more drastic a transformation operator should be recommended
by the system.

3.2 Information on Goal Violations

Once a goal violation has been detected, several pieces of information are available for select-
ing an appropriate knowledge transformation operator. First, as described in the previous
section, the difference between expected and external performance indicates the extent of
the necessary transformation.

Second, after the performance element attempts to solve a query, the violated and pre-
served goals are known. Each goal contains information about the performance measure that
this goal constrains, the desired threshold on the measure, the observed value of the measure
on previously seen queries (including the query just processed), and the difference between

4



the observed and desired performance (the error). The performance measure constrained
by a violated goal is useful for selecting transformation operators capable of improving this
performance measure. The magnitude of the error indicates the extent of the transformation.
The performance measure constrained by a satisfied goal is useful for selecting transforma-
tion operators capable of preserving this performance measure. The magnitude of the error
indicates the extent to which the selected operator may degrade performance on the satisfied
goals in order to achieve performance on the violated goals.

A third source of information that will be available upon detection of a performance goal
violation is the task history. Each task known to the knowledge base maintains a task history
of previously seen queries from the task. The task history serves two purposes. First, the task
history represents an empirical estimate of the distribution over the possible queries of the
task. This distribution can be used to verify the achievement of violated performance goals
in transformed knowledge. Second, an entry in the task history contains information about
the query-solving episode. One useful piece of information about a query-solving episode is
the trace of the knowledge accessed during the solution.

The knowledge trace is an and/or tree that records the knowledge accessed during the
solution of the query and indicates which rules (if any) support the response to the query. In-
formation about the shape of a task’s knowledge traces constrains the selection of knowledge
transformations. For example, wide, shallow knowledge traces indicate that the knowledge
consists of specific instances of the task; whereas narrow, deep knowledge traces indicate a
more general set of rules for proving queries from the corresponding task.

Finally, past success of the transformation operators provides information upon perfor-
mance goal violation. As the knowledge base transforms to meet performance goals, a record
is kept of the old and new knowledge bases along with the operator responsible for the trans-
formation. If the new knowledge base achieves a violated goal while preserving non-violated
goals, then the system increases the operators applicability for achieving and preserving the
appropriate goals. Over time, collection of this information will allow the system to make a
more informed operator selection based on past experience.

3.3 Verification of Knowledge Base

Because no operator application is guaranteed to achieve the desired results, the system must
verify that the knowledge base resulting from an operator application achieves the desired
performance. Verification can be accomplished by re-solving the queries in the task history.
The size of the task history can be changed to tradeoff performance convergence rates for
transformation speed. As the system learns operator applicability, there is less chance of
multiple verification being necessary to repair one goal violation; thus, the task history size
can be increased over time.

4 Experimentation

This section illustrates an experiment conducted with the Peak system. The experiment
follows the shuttle landing control database available from the machine learning databases
maintained by University of California at Irvine. The problem is to determine whether to land

5



the shuttle manually or automatically based on environmental attributes. The corresponding
task is labeled the landing task, and the queries are of the form landing(ENV,?x). The ENV in
the query represents the environmental situation to be evaluated. The performance element
attempts to fill in the ?x with the recommended landing control: auto or noauto.

Prior to query answering, the user inputs the performance thresholds to be maintained
by the knowledge base while answering landing queries using the performance element (a
backward-chaining deductive theorem prover for Horn clauses). For this experiment, three
performance goals are specified: correctness, completeness and response time. The cor-
rectness goal specifies that the answers to queries must be correct 90% of the time. The
completeness goal specifies that the query must be answered 95% of the time. That is, the
answer should be either auto or noauto and not “I don’t know”. The response time goal
specifies that the performance element must respond within 10 seconds.

Two knowledge transformation operators are available: rote learning and empirical learn-
ing. Application of the rote learning operator asks the user for the correct answer to the
query. A new rule is added to the knowledge base having the instantiated query as the
consequent, and the facts defined before query execution as the antecedent. The empirical
learning operator utilizes the ID3 program to build a decision tree from examples in the
knowledge base. The examples are rules such as those learned by the rote operator. Each
path in the resulting decision tree is converted to a rule. The examples are replaced by the
new rules in the transformed knowledge base.

Starting with an empty knowledge base, Peak attempts to solve landing queries, while
maintaining the performance goals. Figure 2 plots the three performance goals for 200
randomly chosen queries from the shuttle landing control domain.

Figure 2a illustrates how Peak maintains response time performance below 10 seconds.
For the first 30 queries, response time increases as the number of rote-learned rules increases.
Eventually, the large number of rules in the knowledge base cannot be traversed within the
response time threshold.

While processing the 30th query, Peak was unable to solve the query, generating a
completeness failure. Peak first trys to transform the knowledge base by rote-learning a
new rule. However, verification of the new knowledge base uncovers a response time failure.
Because the rote learning operator was ineffective, Peak chose to apply the ID3 operator.
ID3 generalized the 29 learned instances into 8 general rules. As Figure 2a indicates, the
resulting transformation drastically improves response time performance.

The plot of completeness performance in Figure 2b illustrates how Peak quickly learns
the initial query knowledge. After the ID3 transformation, completeness remained above the
95% threshold for the remainder of the 200 queries.

The correctness plot in Figure 2c shows how performance starts at 100% and converges
to the desired 90% threshold. The initial values of 100% for correctness are due to the
fact that many of the initial queries could not be answered. Correctness performance only
measures the correctness of answered queries. Immediately following the application of ID3,
correctness falls to 94% due to the next two queries being incorrectly answered according to
the new knowledge base. As query answering continues, the over-generalization in the rules
eventually brings correctness down below the 90% threshold. Correctness violations occur at
queries 89, 98, 153 and 163. In each case, Peak uses the rote-learning operator to memorize
the incorrectly answered query and restore 90% correctness performance.

6



Figure 2: Plots of Performance Obtained by PEAK

7



The final knowledge base after completion of the 200 queries consists of the 12 rules
shown below.

1. landing(x,noauto) ← sign(x,nn) & wind(x,head) &
stability(x,xstab) & error(x,MM) &
magnitude(x,Medium) & visibility(x,yes)

2. landing(x,noauto) ← sign(x,pp) & wind(x,tail) &
stability(x,xstab) & error(x,MM) &
magnitude(x,Low) & visibility(x,yes)

3. landing(x,noauto) ← sign(x,nn) & wind(x,head) &
stability(x,stab) & error(x,MM) &
magnitude(x,OutOfRange) & visibility(x,yes)

4. landing(x,noauto) ← sign(x,nn) & wind(x,tail) &
stability(x,xstab) & error(x,MM) &
magnitude(x,Low) & visibility(x,yes)

5. landing(x,auto) ← error(x,MM) & visibility(x,yes)
6. landing(x,auto) ← stability(x,stab) & error(x,SS) &

magnitude(x,Strong) & visibility(x,yes)
7. landing(x,auto) ← visibility(x,no)
8. landing(x,noauto) ← error(x,XL) & visibility(x,yes)
9. landing(x,noauto) ← error(x,LX) & visibility(x,yes)
10. landing(x,noauto) ← stability(x,xstab) & error(x,SS)

& magnitude(x,Strong) & visibility(x,yes)
11. landing(x,noauto) ← error(x,SS) &

magnitude(x,OutOfRange) & visibility(x,yes)
12. landing(x,noauto) ← error(x,SS) &

magnitude(x,Low) & visibility(x,yes)

Rules 5-12 are the general rules learned by ID3. Rules 1-4 are the specific instances
learned to repair the over-generalization in ID3’s rules. After 200 queries, the knowledge
base converged to 8 general rules describing major trends in the shuttle landing domain and
four specific rules for special cases not handled correctly by the general rules.

One final observation from Figure 2 is the convergence of the performance towards the
desired thresholds and not towards the maximum possible performance. This indicates
how performance-driven knowledge transformation utilizes flexibility in one dimension of
performance to improve performance in another dimension.

5 Conclusions

The goal of knowledge acquisition is the ability to perform some task. The goal of learning
is to improve performance on the task. Performance-driven knowledge transformation con-
trols the application of learning methods to maintain the desired performance levels of the
knowledge base. Future experimentation with the Peak system will analyze the convergence
properties of a knowledge base with respect to the available transformation operators and

8



the performance goals. The results will provide both theoretical and applied mechanisms for
the integration of learning methods with knowledge-based systems.

Acknowledgments

I would like to thank Robert Stepp, Diane Cook, Brad Whitehall and Robert Reinke for
their helpful suggestions on this work.

References

Mingers, J. 1989. “An Empirical Comparison of Pruning Methods for Decision Tree Induc-
tion.” Machine Learning 4, no. 2 (Nov.): 227-243.

Minton, S. 1988. “Quantitative Results Concerning the Utility of Explanation-Based Learn-
ing.” In Proceedings of the National Conference on Artificial Intelligence (St. Paul, MN,
August), 564-569.

Quinlan, J. R. 1986. “Induction of Decision Trees.” Machine Learning 1, no. 1, 81-106.

Quinlan, J. R. 1987. “Generating Production Rules from Decision Trees.” Proceedings of
the Tenth International Joint Conference on Artificial Intelligence (Milan, Italy, August),
304-307.

9


