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Definition
Greedy search is an e�cient and e�ective strategy for
searching an intractably large space when su�ciently
informed heuristics are available to guide the search.
�e space of all subgraphs of a graph is such a space.
�erefore, the greedy search approach of graph mining
uses heuristics to focus the search toward subgraphs of
interest while avoiding search in less interesting por-
tions of the space. One such heuristic is based on the
compression a�orded by a subgraph; that is, how much
is the graph compressed if each instance of the subgraph
is replaced by a single vertex. Not only does compres-
sion focus the search, but it has also been found to prefer
subgraphs of interest in a variety of domains.

Motivation and Background
Many datamining andmachine learningmethods focus
on the attributes of entities in the domain, but the rela-
tionships between these entities also represents a signif-
icant source of information, and ultimately, knowledge.
Mining this relational information is an important chal-
lenge both in terms of representing the information and
facing the additional computational obstacles of ana-
lyzing both entity attributes and relations. One e�cient
way to represent relational information is as a graph,
where vertices in the graph represent entities in the
domain, and edges in the graph represent attributes and
relations among the entities.�us, mining graphs is an

important approach to extracting relational informa-
tion. �e main alternative to a graph-based represen-
tation is �rst-order logic, and the methods for mining
this representation fall under the area of inductive logic
programming. Here, the focus is on the graph represen-
tation.

Several methods have been developed for mining
graphs (Washio & Motoda, ����), but most of these
methods focus on �nding the most frequent subgraphs
in a set of graph transactions (e.g., FSG (Kuramochi
& Karypis, ����), gSpan (Yan & Han, ����), Gaston
(Nijssen & Kok, ����)) and use e�cient exhaustive,
rather than heuristic search. However, there are other
properties besides frequency of a subgraph pattern that
are relevant to many domains. One such property is the
amount of compression a�orded by the subgraph pat-
tern, when each instance of the pattern is replaced by a
single vertex. Searching for themost frequent subgraphs
can bemade e�cientmainly through the exploitation of
the downward closure property, which essentially says
one can prune any extension of a subgraph that does
not meet the minimum support frequency threshold.
Unfortunately, the compression of a subgraph does not
satisfy the downward closure property; namely, while a
small extension of a subgraph may have less compres-
sion, a larger extension may have greater compression.
�erefore, one cannot easily prune extensions andmust
search a larger portion of the space of subgraphs.�us,
onemust resort to a greedy searchmethod to search this
space e�ciently.

As with any greedy search approach, the result-
ing solution may sometimes be suboptimal, that is, the
resulting subgraph pattern is not the pattern with max-
imum compression. �e extent to which optimal solu-
tions are missed depends on the type of greedy search
and the strength of the heuristics used to guide the
search. One approach is embodied in the graph-based
induction (GBI) method (Matsuda, Motoda, Yoshida,
&Washio, ����; Yoshida, Motoda, & Indurkhya, ����).
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GBI continually compresses the input graph by identi-
fying frequent triples of vertices, some of which may
represent previously compressed portions of the input
graph. Candidate triples are evaluated using a measure
similar to information gain.

A similar approach recommended here is the use
of a beam search strategy coupled with a compression
heuristic based on the 7minimum description length
(MDL) principle (Rissanen, ����). �e goal is to per-
form unsupervised discovery of a subgraph pattern that
maximizes compression, which is essentially a trade-
o� between frequency and size. Once the capability to
�nd such a pattern exists, it can be used in an iterative
discovery-and-compress fashion to perform hierarchi-
cal conceptual clustering, and it can be used to perform
supervised learning, that is, �nd patterns that com-
press the positive graphs, but not the negative graphs.
�is approach has been well studied (Cook & Holder,
����, ����; Gonzalez, Holder, & Cook, ����; Holder
& Cook, ����; Jonyer, Cook, & Holder, ����; Kukluk,
Holder, &Cook, ����) and has proven successful in sev-
eral domains (Cook, Holder, Su, Maglothin, & Jonyer,
����; Eberle & Holder, ����; Holder, Cook, Coble, &
Mukherjee, ����; You, Holder, & Cook, ����).

Structure of Learning System
Figure � depicts the structure of the greedy search
approach of graph mining. �e input data is a labeled,
directed graph G. �e search begins by identifying the
set of small common patterns in G, that is, all vertices
with unique labels having a frequency greater than one.
�e algorithm then iterates by evaluating the patterns
according to the search heuristic, retaining the best pat-
terns, and extending the best patterns by one edge until
the stopping condition is met.

�e search is guided by the minimum description
length (MDL) principle, which seeks to minimize the
description length of the entire data set.�e evaluation
heuristic based on the 7MDL principle assumes that
the best pattern is the one that minimizes the descrip-
tion length of the input graph when compressed by the
pattern. �e description length of the pattern S given
the input graph G is calculated as DL(G, S) = DL(S) +
DL(G�S), where DL(S) is the description length of the
pattern, and DL(G�S) is the description length of the

input graph compressed by the pattern.�e search seeks
a pattern S that minimizes DL(G,S).

While several greedy search strategies apply here
(e.g., hill climbing, stochastic), the strategy that has
been found to work best is the beam search. Of the pat-
terns currently under consideration, the system retains
only the best Beam patterns, where Beam is a user-
de�ned parameter.�ese patterns are then extended by
one edge in all possible ways according to the input
graph, the extended patterns are evaluated, and then
again, all but the best Beam patterns are discarded.
�is process continues until the stopping condition is
met. Several stopping conditions are applicable here,
including a user-de�ned limit on the number of pat-
terns considered, the exhaustion of the search space, or
the case in which all extensions of a pattern evaluate to a
lesser value than their parent pattern. Oncemeeting the
stopping condition, the system returns the best patterns.
Note thatwhile the naïve approach to implementing this
algorithmwould require an NP-complete subgraph iso-
morphism procedure to collect the instances of each
pattern, a more e�cient approach takes advantage of
the fact that new patterns are always one-edge exten-
sions of existing patterns, and, therefore, the instances
of the extended patterns can be identi�ed by search-
ing the extensions of the parent’s instances.�is process
does require several isomorphism tests, which is the
computational bottleneck of the approach, but avoids
the subgraph isomorphism problem.

Once the search terminates, the input graph can be
compressed using the best pattern. �e compression
procedure replaces all instances of the pattern in the
input graph by single vertices, which represent the pat-
tern’s instances. Incoming and outgoing edges to and
from the replaced instances will point to, or originate
from the new vertex that represents the instance. �e
algorithmcan then be invoked again on this compressed
graph.

Figure � illustrates the process on a simple example.
�e system discovers pattern S�, which is used to com-
press the data. A second iteration on the compressed
graph discovers pattern S�. Because instances of a pat-
tern can appear in slightly di�erent forms throughout
the data, an inexact graph match, based on graph edit
distance, can be used to address noise by identifying
similar pattern instances.
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mple of the greedy search approach of graph mi-
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Graph-Based Hierarchical Conceptual Clustering
Given the ability to �nd a prevalent subgraph pattern
in a larger graph and then compress the graph with this
pattern, iterating over this process until the graph can
no longer be compressed will produce a hierarchical,
conceptual clustering of the input data (Jonyer, Cook,
& Holder, ����). On the ith iteration, the best subgraph
Si is used to compress the input graph, introducing new
vertices labeled Si in the graph input to the next itera-
tion. �erefore, any subsequently discovered subgraph
Sj can be de�ned in terms of one or more of Sis, where
i < j. �e result is a lattice, where each cluster can be
de�ned in terms of more than one parent subgraph. For
example, Fig. � shows such a clustering done on a DNA
molecule.

Graph-Based Supervised Learning
Extending a graph-based data mining approach to per-
form supervised learning involves the need to handle
negative examples (focusing on the two-class scenario).
In the case of a graph the negative information can

come in three forms. First, the data may be in the
form of numerous smaller graphs, or graph transac-
tions, each labeled either positive or negative. Second,
data may be composed of two large graphs: one posi-
tive and one negative. �ird, the data may be one large
graph inwhich the positive and negative labeling occurs
throughout.�e �rst scenario is closest to the standard
supervised learning problem in that one has a set of
clearly de�ned examples (Gonzalez et al., ����). Let G+
represent the set of positive graphs, and G− represent
the set of negative graphs.�en, one approach to super-
vised learning is to �nd a subgraph that appears o�en in
the positive graphs, but not in the negative graphs.�is
amounts to replacing the information-theoretic mea-
sure with simply an error-basedmeasure.�is approach
will lead the search toward a small subgraph that dis-
criminates well. However, such a subgraph does not
necessarily compress well, nor represent a characteristic
description of the target concept.

One can bias the search toward amore characteristic
description by using the information-theoretic measure
to look for a subgraph that compresses the positive
examples, but not the negative examples. If I(G) rep-
resents the description length (in bits) of the graph G,
and I(G�S) represents the description length of graph G
compressed by subgraph S, then one can look for an
S that minimizes I(G+�S) + I(S) + I(G−) − I(G−�S),
where the last two terms represent the portion of the
negative graph incorrectly compressed by the subgraph.
�is approach will lead the search toward a larger sub-
graph that characterizes the positive examples, but not
the negative examples.
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Greedy Search Approach of Graph Mining. Figure �. Iterative application of the greedy search approach of graphmin-
ing yields the hierarchical, conceptual clustering on the right given an input graph representing the portion of DNA
structure depicted on the left
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Greedy Search Approach of Graph Mining. Figure �. The node-replacement graph grammar (right) inferred from the
input graph (left). The connection instructions indicate how the pattern can connect to itself

Finally, this process can be iterated in a set-covering
approach to learn a disjunctive hypothesis. If using the
errormeasure, then any positive example containing the
learned subgraph would be removed from subsequent
iterations. If using the information-theoretic measure,
then instances of the learned subgraph in both the posi-
tive and negative examples (even multiple instances per
example) are compressed to a single vertex. Note that
the compression is a lossy one, that is, one does not keep
enough information in the compressed graph to know
how the instance was connected to the rest of the graph.
�is approach is consistent with the goal of learning
general patterns, rather than mere compression.

Graph Grammar Inference
In the above algorithms the patterns are limited to
non-recursive structures. In order to learn subgraph
motifs, or patterns that can be used as the building
blocks to generate arbitrarily large graphs, one needs
the ability to learn graph grammars. �e key to the

inference of a graph grammar is the identi�cation of
overlapping structure. One can detect the possibility of
a recursive graph-grammar production by checking if
the instances of a pattern overlap. If a set of instances
overlap by a single vertex, then one can propose a
recursive node-replacement graph grammar produc-
tion. Figure � shows an example of a node-replacement
graph grammar (right) learned from a simple, repetitive
input graph (le�).�e input graph in Fig. � is composed
of three overlapping substructures. Based on how the
instances overlap, one can also infer connection instruc-
tions that describe how the pattern can connect to itself.
For example, the connection instructions in Fig. � indi-
cate that the graph can grow by connecting vertex � of
one pattern instance to either vertex � or vertex � of
another pattern instance.

If a set of pattern instances overlap by an edge, then
one can propose a recursive edge-replacement graph
grammar production. Figure � shows an example of an
edge-replacement graph grammar (right) learned from
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the input graph (le�). Connection instructions describe
how the motifs can connect via the edge labeled “a” or
the edge labeled “b.”

Apart from the inclusion of recursive patterns, the
greedy search approach of graph mining is unchanged.
Both recursive and non-recursive patterns are evaluated
according to their ability to compress the input graph
using the 7MDL heuristic. A�er several iterations of
the approach, the result is a graph grammar consisting
of recursive and non-recursive productions that both
describe the input graph and provide a mechanism for
generating graphs with similar properties.

Programs and Data
Most of the aforementioned functionality has been
implemented in the SUBDUE graph-based pattern
learning system.�e SUBDUE source code and numer-
ous sample graph data �les are available at 7http://
www.subdue.org.

Applications
Many relational domains, from chemical molecules to
social networks, are naturally represented as a graph,
and a graph mining approach is a natural choice for
extracting knowledge from such data.�ree such appli-
cations are described below.

A huge amount of biological data that has been
generated by long-term research encourages one to
move one’s focus to a systems-level understanding of
bio-systems. A biological network, containing various
biomolecules and their relationships, is a fundamen-
tal way to describe bio-systems. Multi-relational data
mining �nds the relational patterns in both the entity
attributes and relations in the data. A graph consist-
ing of vertices and edges between these vertices is a
natural data structure to represent biological networks.
�e greedy search approach of graph mining has been
applied to �nd patterns in metabolic pathways (You
et al., ����). Graph-based supervised learning �nds
the unique substructures in a speci�c type of pathway,
which help one understand better how pathways di�er.
Unsupervised learning shows hierarchical clusters that
describe the common substructures in a speci�c type
of pathway, which allow one to better understand the
common features in pathways.

Social network analysis is the mapping and mea-
suring of relationships and �ows between people, orga-
nizations, computers, or other information processing
entities. Such analysis is naturally done using a graphical
representation of the domain. �e greedy approach of
graph mining has been applied to distinguish between
criminal and legitimate groups based on their mode
of communication (Holder et al., ����). For exam-
ple, terrorist groups tend to exhibit communications
chains; whereas, legitimate groups (e.g., families) tend
to exhibit more hub-and-spoke communications.

Anomaly detection is an important problem for
detecting fraud or unlawful intrusions. However,
anomalies are typically rare and, therefore, present a
challenge to most mining algorithms that rely on regu-
larity and frequency to detect patterns. With the graph
mining approach’s ability to iteratively compress away
regularity in the graph, what is le� can be construed as
anomalous. To distinguish this residual structure from
noise, one can compare its regularity with the proba-
bility that such structure would appear randomly. �e
presence of rare structure that is unlikely to appear
by chance suggests an anomaly of interest. Further-
more,most fraudulent activity attempts to disguise itself
by mimicking legitimate activity. �erefore, another
method for �nding such anomalies in graphs is to �rst
�nd the normative pattern using the greedy search
approach of graph mining and then �nd unexpected
deviations to this normative pattern.�is approach has
been applied to detect anomalies in cargo data (Eberle
& Holder, ����).

Future Directions
One of themain challenges in approaches to graphmin-
ing is scalability. Since most relevant graph operations
(e.g., graph and subgraph isomorphism) are computa-
tionally expensive, they can be applied to only modest-
sized graphs that can �t in the main memory. Clearly,
there will always be graphs larger than can �t in main
memory, so e�cient techniques for mining in such
graphs are needed. One approach is to keep the graph
in a database and translate graphmining operations into
database queries. Another approach is to create abstrac-
tion hierarchies of large graphs so thatmining can occur
at higher-level, smaller graphs to identify interesting
regions of the graph before descending down into more
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Greedy Search Approach of Graph Mining. Figure �. The edge-replacement graph grammar (right) inferred from the
input graph (left). The connection instructions indicate how the pattern can connect to itself

speci�c graphs. Traditional high-performance comput-
ing techniques of partitioning a problem into subprob-
lems, solving the subproblems, and then recomposing
a solution do not always work for graph mining prob-
lems, because partitioning the problemmeans breaking
links which may later turn out to be important. New
techniques and architectures are needed to improve the
scalability of graph mining operations.

Another challenge for graph mining techniques is
dynamic graphs. Most graphs represent data that can
change over time. For example, a social network can
change as people enter and leave the network, new links
are established and old links are discarded. First, one
would like to be able to mine for static patterns in
the presence of the changing data, which will require
incremental approaches to graph mining. Second, one
would like to mine patterns that describe the evolution
of the graph over time, which requires mining of time
slice graphs or the stream of graph transaction events.
�ird, the dynamics can reside in the attributes of enti-
ties (e.g., changing concentrations of an enzyme in a
metabolic pathway), in the relation structure between
entities (e.g., new relationships in a social network),
or both. Research is needed on e�cient and e�ective
techniques for mining dynamic graphs.
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