
 
Extracting Generalizable Spatial Features  

from Smart Phones Datasets   

Kevin Bouchard, Lawrence Holder, Diane J. Cook 
Center for Advanced Studies in Adaptive Systems 

Washington State University 
Pullman, WA 99163, USA 

{kevin.bouchard, holder, djcook}@wsu.edu 
 
 
 

Abstract 
This paper is part of the effort to develop assistive smart 
homes able to monitor the daily life activity of a resident 
and provide punctual assistance when necessary. One of the 
limitations of assistive smart homes is the fact that it cannot 
assist the resident when he is going out. Because of this, 
many researchers are working on wearable sensors to keep 
track of the activities outside the home. Our lab proposes to 
instead focus on smart phones which are a cheap alternative 
that many persons already carry in their daily life. While 
most algorithms used in the smart home can be exploited, 
smart phones generate spatial information from the GPS that 
do not scale very well. The goal of this paper is to initiate a 
discussion on spatial features and their exploitation for data 
mining of smart phones datasets. 

Introduction   
The aging of the world population is a well-documented 
problem that most of the developed countries are currently 
facing (U. Nations 2010). The consequence of world popu-
lation aging are numerous. The aging of the population 
results in a higher prevalence of age-related diseases such 
as Alzheimer's and Parkinson. Older adults also require 
more services from the healthcare system leading to higher 
cost and more demand for qualified professionals. It is 
generally accepted that institutionalization of elders should 
be used as last resort when the state of the individual can-
not allow him to complete the essential Activities of Daily 
Living (ADLs). 

 Many researchers envision the use of technology to 
promote aging in place (Morris, et al. 2013). These tech-
nologies can be simple devices to enable monitoring of an 
individual at a distance or more complex apparatus such as 
smart homes. The Center for Advanced Studies in Adap-
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tive Systems (CASAS) at Washington State University 
(Cook, et al. 2013) is working on the development of such 
assistive smart homes. The goal is to create enhanced hous-
ing incorporating various sensing technologies in a non-
invasive manner. Therefore, small binary sensors like elec-
tromagnetic contacts and infrared motion sensors are prior-
itized over video cameras and microphones, which can be 
perceived by the residents as intrusive (Demerism, et al. 
2008).  

Progress on smart home research has led to the deploy-
ment of realistic living places where a resident's ADLs are 
constantly monitored by this technology (Akl, et al. 2015; 
Chernbumroong,et al. 2013). One limitation of the current 
projects is, however, the lack of monitoring when the resi-
dent leaves the home. Indeed, the sensors are fixed in the 
smart home and lose track of the person whenever she gets 
out of range. To palliate to this problem, the development 
of wearable sensors blossomed in the last decade (Lara and 
Labrador 2013). Nevertheless, using smart phones could 
turn out to be a better alternative. Smart phones are already 
part of the life of many persons, they are light, have a good 
battery life and are relatively inexpensive. They are also 
generally equipped with good sensors including, but not 
exclusively, accelerometers, gyroscope and proximity. 

Our activity learning algorithms are fairly sensor agnos-
tic and can handle data from any type of sensor platform. 
One notable distinction between smart home and smart 
phone features, however, is the ability for the phone to 
collect position data from a GPS chip. A user’s GPS-based 
information is valuable in discerning and predicting ADLs. 
In a smart home, sensors can be described based on their 
position in the house (e.g., “motion sensor over couch”, 
“door sensor on kitchen cabinet”). As a result, the learned 
activity models generalize over multiple users and home 
settings. Unlike smart home data, the GPS features do not 
generalize easily over multiple users because individuals 
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live, work, and interact in locations that are unique to each 
person. 

The goal of this paper is to investigate whether spatial 
features can be learned in an unsupervised fashion from 
mobile phone data and whether these features can be used 
to create a generalizable model of activities from smart 
phone sensor data, but also to initiate a discussion about 
the various alternative of generalizable spatial features that 
could be extracted from GPS data. The paper is divided as 
follows. The research context is described in the next sec-
tion including a concise description of a new app devel-
oped at WSU. Then, the types of spatial features that we 
could extract are discussed. Finally, a preliminary evalua-
tion of the ability to learn generalizable activity models 
with and without these GPS data using leave-one-user-out 
testing on actual phone data collected from study partici-
pants is presented. 

Research Context 
The CASAS lab is focused on designing machine learning 
algorithms to learn behavioral patterns from sensor data. 
While we have made progress in smart home settings 
(Cook 2010), we are now interested in exploring the appli-
cation of our activity learning methods to mobile plat-
forms. To validate our methods, we collected activity data 
in naturalistic settings for smart phone users. This section 
presents the protocol the team has been executing to collect 
these datasets. With the smart phone data, we aimed to 
explore spatial features to create models that are general-
izable to new user (Renz and Nebel 2007). Our hypothesis 
is that incorporating generalizable spatial features into an 
activity model will increase activity recognition accuracy 
for both cross validation and leave-one-user-out testing. 

Collecting the datasets 
To create the smart phone datasets, we first designed a 
mobile version of our activity learning algorithm, called 
AL (Activity Learner), which runs on IOS and Android 
platforms. AL is designed to collect 5 seconds of data at 
fixed intervals (every 10, 15, 30, or 60 minutes) as selected 
by the user. Whenever the sensor data is collected, AL asks 
the user what activity he is currently performing. The sen-
sor data and user-supplied label are sent to a compute serv-
er to store the data and learn an activity model. Next, the 
team received IRB approval to collect and use data from 
real users for research purposes. Students were asked to 
install the application on a smart phone and collect data for 
activities of their own choosing. Some students extensively 
used the application, and other only entered a few ADLs. 
This led us to obtain 45 datasets of various lengths. Alt-
hough we provide the user with an initial set of activities, 
they are free to add their own as well so the number of 

activities that are tracked by each user varies greatly. The 
Figure 1 shows a few screen shots of AL. 
 

 
Figure 1. AL activity learner app. From left to right: top-level 

page, sensors page and an activity report as a pie chart. 

Composition of the data 
The datasets we collected are composed of 14 basic sensor 
types. Those sensor types include 3-axis acceleration and 
rotation, yaw, pitch, roll, latitude, longitude, altitude, 
course, current speed and date/time. For each sensor type 
we extract features including maximum, minimum, sum, 
mean, median, standard deviation, mad, cross-axis correla-
tion, skewness, kurtosis, signal energy, power, and auto-
correlation resulting in a total of 245 features. There are 
few challenging issues with our datasets that have to be 
taken into consideration. First, there is a distinct possibility 
that some activity labels may not be accurate since the la-
bels are provided in real time by the users themselves. Se-
cond, a single activity may be labeled differently from one 
user to another. For example, some users labeled Watch TV 
as simply Watch, while others used similar labels such as 
Watch Television or Relax. 

Spatial Information 
The previous section provided background for the mobile-
based generalized activity learning problem. In this sec-
tion, we discuss the potential spatial features that can be 
extracted from mobile data (Koperski,et al. 1996). The 
sensors embedded in smart phones enable us to obtain rich 
spatial information. In particular, this data includes the 
phone movement speed, movement direction and move-
ment acceleration in a three dimensional space. In addition, 
the GPS chip provides us with latitude, longitude and alti-
tude or, simply, a position in a 2D or 3D space. Such spa-
tial information can enable us to easily discriminate be-
tween the ADLs performed by a single user. For example, 
the activity Work will generally take place in a different 
location than any other ADLs.  However, the activity Work 
will not be in the same location for different users. While 
date/time information can help in the recognition, it might 
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not be sufficient. In this section, we discuss the various 
spatial features and their properties that we could extract 
from our datasets in order to achieve a better generaliza-
tion. 

Feature properties 
When discussing the basic features that can be extracted 
from data, we note that there are many ways to represent 
the raw data and informative descriptors of aggregated 
data. Sensor data is inherently numeric but corresponding 
features can also be represented as discrete or qualitative 
values, each with advantages for activity models (Cohn 
1997). Raw GPS data is clearly quantitative, representing 
the phone’s position in a 3D Cartesian space. On the other 
hand, qualitative features may provide valuable general-
ized information. Qualitative features can be extracted 
from quantitative values by partitioning the values into 
bins (Renz and Nebel 2007).  
 One possible advantage of a qualitative representation of 
model features is that the discrete values simplify the mod-
el representation. Another advantage is that discrete-valued 
features can be used to represent spatial features that are 
actually learned in an unsupervised fashion from the data 
itself. For example, let's say that two objects A and B are in 
space at A=<123, 27, 40> and B=<140, 30, 38>. While we 
can numerically compute the distance between these 
points, we could also consider learning qualitative relation-
ships between the points such as same location, next to, or 
far apart. There are also some disadvantages of relying on 
qualitative representation. The main one is the need to pa-
rameterize any qualitative spatial models. In our example, 
we can clearly see that depending on the method of extract-
ing features, the same quantitative information about the 
positions of A and B could lead to different qualitative 
relationships. 
Qualitative features 
One well-known method of generating qualitative features 
is through equal-size (or, alternatively, equal-frequency) 
binning. To do this we obtain the upper and lower bound of 
the quantitative values represented by the qualitative set � 
and divide the resulting range into �  intervals. The bin-
ning can be performed either on a per-user basis or global-
ly for all data. Both methods have major implications. If 
this is on per-user basis then the bin ranges might be dif-
ferent. For example, if we want to represent qualitatively 
the feature Walking speed as the set 
� � ������������������ with user #1 ranging from [1, 
12] and user #2 ranging from [1, 6], user #1 would be 
walking Slow at 4 while user #2 would be walking at a 
Normal speed. This approach is a good option for features 
that are intrinsically different from one user to another. 
 Qualitative models have two other important properties. 
The first is the feature granularity. As we discussed earlier, 

a bounded quantitative feature can be directly converted 
into a qualitative set since there is a finite number of possi-
ble values. However, it would not be very useful since the 
granularity would be maxed. The selected granularity is 
important since it determines the expressivity of the model. 
However, as argued by Renz and Nebel (2007), selecting 
the right granularity is challenging. Finally, qualitative 
models often result in numerous possible entity relation-
ships (Cohn 1997) that are Jointly Exhaustive and Pairwise 
Disjoint (JEPD). The advantage of this property is that any 
pair of entities are connected by only one of the basic rela-
tions. It is particularly useful for reasoning since it induces 
definite knowledge with respect to the granularity. 

Types of spatial features 
The main properties of qualitative spatial features have 
been discussed briefly in the previous section. This section 
will describe types of spatial information that can be ob-
tained from mobile data. In particular, we describe the fea-
tures distance, position, shape and gesture.  
Position 
Position may seem like a very simple feature, since it is a 
concept that we use in our everyday lives without analyz-
ing it. However, there is more to it than may appear at first 
glance (Clementini, et al. 1997). First, position depends on 
the point of view that is adopted: deictic, intrinsic or ex-
trinsic (Retzschmidt 1988). Let us consider the sentence 
The ball is in front of the car. A deictic point of view 
would yield position from the descriptor’s origin. Intrinsic 
describes position from the natural orientation of the rela-
tive element (if the element has indeed a natural orienta-
tion). Extrinsic combines the position with the movement 
and describes it relatively to the heading direction. Suppos-
ing the letter is the origin of the descriptor, Figure 2 illus-
trates those three points of view. 
 

 
Figure 2. Deictic (A), intrinsic (B) and extrinsic (C). 

 The position takes an important role in all other spatial 
features (distance, topology, acceleration, gesture, etc.) 
(Renz and Nebel 2007; Cohn 1997 Clementini, et al. 1997; 
Egenhofer 2005). In addition to being expressed as a Car-
tesian coordinate, it can be expressed qualitatively. It is 
logical to think about position in a qualitative way (e.g. 
workplace, home, restaurant). Defining this finite set of 
qualitative positions is a challenging task. This can be ac-
complished by using a hierarchical clustering algorithm 
that would determine the number of elements in the set and 
the cluster would be the area covered by the qualitative 

20



position. There would be two issues. The first one is the 
inherent variability in user movement patterns (for exam-
ple in ADLs such as walking, cycling, etc.). A second chal-
lenge is how to generate qualitative information from these 
movements that generalizes across users. One approach is 
to require all new users to train the model with labeled data 
for a while, but the long term goal is to be able to use an 
unsupervised algorithm to accomplish the same task and 
remove the burden from the user. 
Distance 
Distance is an important notion that would probably help 
discriminate between ADLs. Distance is a relative infor-
mation that can be acquired by comparing two positions. In 
our dataset, it can take many forms. First, it can be a trav-
eled distance during an activity. The traveled distance is 
discriminative in comparing different ADLs as it illustrates 
the mobility of the person. The traveled distance can be 
represented by several features. Figure 3 illustrates the 
difference between different traveled distances. The corre-
sponding feature can be the max/min distance between any 
two positions in the data representing one realization of an 
ADL. It can also be the absolute traveled distance, or 
simply, the sum of the traveled distance between all posi-
tions in their ordered sequence. This version could help 
distinguish between ADLs with a similar max/min traveled 
distance but with one involving sedentary behavior versus 
high mobility. Finally, traveled distance can be used to 
compute other features such as the average traveled dis-
tance between positions and average variation in traveled 
distance. 
 

 
Figure 3. Four datasets having different value for few distance 

features. 

 

 It is worth noting that reasoning with traveled distance 
is related to time. Indeed, comparing different values with-
out the same time frame of reference would not hold any 
meaningful information. Similarly, a Distance feature can 
also take on multiple meanings, such as distance from 
origin or distance between ADLs. This distance can be 
computed by using the centroid of the positions across all 

ADLs of a user. The centroid would probably be a signifi-
cant location where most of the ADLs occur such as the 
home. However, the problem is that it widely depends on 
the proportion of ADLs of each type recorded by the user 
(e.g. if he is at work for most of the dataset, the centroid 
will be closer to his workplace). Another option would be 
to introduce the concept of home in the application. It 
would simply require the user to enter his home location 
and then all the measure of distance to origin would have a 
comparable basis across different user. Another challenge 
would however be that for similar locations (workplace, 
gym, etc.), the distance from home could be very different. 
That feature might therefore be more helpful when ex-
pressed as a binary value (at home/centroid or not). 
Shape 
The next class of spatial information we wanted to discuss 
is the shape. While the precise shaping of a dataset of posi-
tions is not especially relevant for the purpose of our re-
search, the general shape might provide a simple qualita-
tive way to distinguish between few ADLs. In particular, 
some ADLs might generate positions in the shape of a 
cloud/ disc (e.g.: cooking) because the person is idle or 
moving around in a certain area. However, for some other 
it might result in an elongated shape. Obviously, a high 
number of shapes could represent the positions related to 
each ADL. However, it is not clear how well they would 
scale to different user.  
 

 
Figure 4. Example of sets of points with similar shape but differ-

ent gesture. Other properties are shown. 

Gesture 
A gesture is widely described and recognized as an expres-
sive and meaningful motion that conveys a message or 
more generally, embeds important information of spatio-
temporal nature (Mitra and Acharya 2007). Gestures are 
ambiguous and incompletely specified, since a multitude of 
conceptual information can be mapped to one gesture. A 
single gesture is usually defined as a sequence of move-
ment in space. The distance traveled is usually irrelevant in 
the gesture, as long as it is not null. In our context, it may 
seem that gestures and shape carry the same meaning, but 
they are actually quite different. Gestures are also not re-
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lated to time. Therefore, while the traveled distance for a 
same ADL could differ across user, the gesture realized 
could be the same (i.e.: users doing it at a different speed). 
The Figure 4 illustrates an example where the position da-
tasets result in the same shape but carry a different gesture. 

Validations 
As we said in the introduction, the goal of this paper is to 
initiate a discussion about the use of spatial features for 
data mining smart phone data. The discussion is based on 
the hypothesis that the GPS data help improve the accuracy 
of recognition algorithms. While this paper is exploratory, 
it seemed important to validate our premise, because if we 
had indication it was false, the discussion would be irrele-
vant. To do so, we did two sets of experiments. In the first 
one, the goal was to verify if the spatial data from the GPS 
improved the accuracy of the recognition. We selected 6 
user's dataset to build decision trees with J48 in Weka 
(Hall, et al. 2009). We tested those decision trees with 3-
folds cross validation and not 10-fold because of the size of 
some of the datasets we had. We also only selected the 
activities that had enough training data (i.e.: Person-
al_Hygiene, Work, Drive, Eat, Errands, Exercise, Cook, 
Sleep, Watch_TV). The results we obtained are shown on 
Figure 5. As we can see, for most users the raw GPS data 
improve the accuracy. In one case by more than 10%. 
Those results seems to confirm the significance of spatial 
information in activity recognition from smart phones. We 
also tested other algorithms in Weka, but J48 was the one 
providing the best results. 

 

 
Figure 5. Accuracy of the tests with and without GPS data. 

 The second set of experiments we did has the goal to 
confirm our hypothesis that spatial data does not generalize 
well. To do so, did few very simple leave-one-out tests. 
We carefully selected classifiers that exploited the GPS 
data in the decision process. For that reason, we were lim-
ited to only few examples. We used classifiers learned 
from user 1, 3, 5. However, we could not combine the da-
tasets of many users for the learning phase since the result-

ing classifier would not be using the GPS data (because it 
does not generalize well). We reproduced the same tests 
without the GPS data to confirm that the classifier general-
ize better. The Figure 6 shows the experiments we did and 
the results of the recognition.  
 As we can see, in most cases the recognition accuracy 
with the classifier exploiting GPS data was lower than its 
counterpart version. These preliminary tests seem to con-
firm our initial hypothesis. As we mentioned previously, 
we could not use more than one dataset for the learning 
phase because the resulting classifier would not exploit the 
GPS data. We tried different combination, but in none of 
the cases multiple user datasets used for learning resulted 
in a tree with GPS based rules. The main limitation of our 
preliminary experiments is that the current amount of data 
we have is not sufficient to perform good leave-one-out 
tests. Moreover, for many users, all the recorded ADLs 
were done in one place. Therefore, GPS was not discrimi-
natory for these users and not interesting for this paper. 
 

 
Figure 6. Accuracy of the tests with and without GPS data. 

Conclusion 
The goal of this paper was to initiate a discussion about the 
exploitation of spatial features in the process of data min-
ing for activity recognition. It seems interesting to look 
into other fields of research to improve the methods we use 
to exploit the spatial information. In particular, it seems 
that research geographical information systems has make 
several advance in spatial data mining. 
 In this paper, we presented an application for smart 
phones to collect datasets. These data were used to validate 
our premise that spatial information was helpful in the 
recognition, but does not generalize well. While our exper-
iments were small due to the limited data we had, the re-
sults tend to confirm our hypothesis. As a consequence, in 
future work, our team will test different spatial features 
that we discussed in this paper by collecting more data 
from the smart phone users. The goal will be to verify 
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which one help the most into the recognition and which 
one generalize well. 
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