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Abstract—Support Vector Machines (SVM) is a supervised
Machine Learning and Data Mining (MLDM) algorithm, which
has become ubiquitous largely due to its high accuracy and
obliviousness to dimensionality. The objective of SVM is to find
an optimal boundary — also known as hyperplane — which
separates the samples (examples in a dataset) of different classes
by a maximum margin. Usually, very few samples contribute
to the definition of the boundary. However, existing parallel
algorithms use the entire dataset for finding the boundary, which
is sub-optimal for performance reasons.

In this paper, we propose a novel distributed memory al-
gorithm to eliminate the samples which do not contribute to
the boundary definition in SVM. We propose several heuristics,
which range from early (aggressive) to late (conservative) elimi-
nation of the samples, such that the overall time for generating
the boundary is reduced considerably. In a few cases, a sample
may be eliminated (shrunk) pre-emptively — potentially resulting
in an incorrect boundary. We propose a scalable approach to
synchronize the necessary data structures such that the proposed
algorithm maintains its accuracy. We consider the necessary
trade-offs of single/multiple synchronization using in-depth time-
space complexity analysis. We implement the proposed algorithm
using MPI and compare it with libsvm — de facto sequential
SVM software — which we enhance with OpenMP for multi-
core/many-core parallelism. Our proposed approach shows ex-
cellent efficiency using up to 4096 processes on several large
datasets such as UCI HIGGS Boson dataset and Offending URL
dataset.

I. INTRODUCTION

Machine Learning and Data Mining (MLDM) algorithms
are becoming increasingly popular for analyzing the exorbitant
volume of data produced by simulations and instruments [1],
[2]. MLDM algorithms are widely applied for modeling,
classification and clustering in many science domains [3]–[5].
Wu et al. have identified the top 10 MLDM algorithms [6].
Support Vector Machines (SVM) is one such algorithm which
is used for non-parametric modeling, classification and re-
gression. SVM has become the de facto supervised learning
algorithm due to its excellent accuracy and obliviousness to
dimensionality. Due to its excellent theoretical foundation and
accuracy, several SVM algorithms have been proposed in
literature and practice [7]–[11]. A majority of these algorithms
are either sequential or scale to a single compute node [11].

Fig. 1: A two-class dataset with support vectors — samples which
contribute to boundary definition (encircled)

A few other researchers have proposed distributed memory
SVM algorithms. Parallel SVM (PSVM) [12] is an example
which uses a kernel-matrix to save important computations,
such that they can be re-used during the iterative procedure in
SVM. However, it ceases to scale due to its prohibitive space
complexity (Θ(n2) for n samples). Other parallel approaches
such as MLLib [13] also primary rely on large kernel-cache
for scaling SVM algorithm.

Figure 1 shows an example of a two-class dataset (marked
with blue and orange points). Support vectors — samples
which contribute to the definition of the boundary are shown
as encircled. We observe that a very small fraction of the
samples are support vectors. SVM algorithms (the most popu-
lar example is Sequential Minimal Optimization (SMO) [14])
use an iterative procedure to find these support vectors. Exist-
ing distributed memory SVM algorithms (such as distributed
SMO) use the entire dataset for finding the support vectors,
potentially wasting significant compute time in processing
the samples, which could have been shrunk (eliminated from
consideration).

Hence there are several important questions to be consid-
ered: 1) What are the properties of a sample, such that it
could be shrunk? 2) When should the sample be shrunk? 3)
How to maintain the accuracy of the proposed shrinking based
algorithm — since it can falsely eliminate a few samples —
and what are the space-time complexity tradeoffs?



A. Contributions

Specifically, in this paper, we make the following contribu-
tions:

1) We propose a novel distributed memory SVM algorithm,
which adaptively shrinks the non-contributing samples
during the iterative procedure. We propose and imple-
ment several heuristics, ranging from early (aggressive),
average and late (conservative), while considering single
and multiple eliminations of samples during the proce-
dure.

2) We propose a distributed memory algorithm to synchro-
nize the important data structures — gradient recon-
struction — of falsely eliminated samples, such that the
accuracy of the proposed solution remains intact. In
practice, the cardinality of falsely eliminated samples is
a very small fraction of the entire dataset — which keeps
the overhead of this step low.

3) We use a compressed representation of data samples and
avoid the kernel cache completely. The proposed SVM
algorithm is effective for memory-restricted many-cores
and large scale systems on the horizon.

4) We enhance libsvm [15] — the de facto sequential
SVM software — for multi-core parallelism by us-
ing OpenMP. Unlike existing literature — which uses
sequential libsvm as the baseline — the enhanced
version provides a fairer baseline for performance com-
parison with the proposed SVM algorithm.

5) We implement the proposed SVM algorithm using MPI
and evaluate it with ten different datasets using up to
4096 cores. Our proposed SVM algorithm is able to
train the URL dataset (2.3M samples) on 4096 processes
in 8 minutes, while the enhanced libsvm (using 16
cores on one node) takes 39 hours to complete the
training. On UCI HIGGS dataset using 2.6M samples,
the proposed algorithm is able to complete the training
in 2 hours, while the Original algorithm takes more than
3 hours. The proposed algorithm and its implementation
are available with Machine Learning Toolkit for Extreme
Scale (MaTEx) [16].

The rest of the paper is organized as follows: In section II,
we provide a brief introduction to SVM. In section III,
we present a solution space of the algorithms and associ-
ated heuristics in section IV. In section V, we present a
performance evaluation and analysis of the proposed SVM
algorithm. In section VI we present the related work and
present the conclusions in section VIII.

II. SUPPORT VECTOR MACHINES (SVM)

A. Sequential Minimal Optimization (SMO)

SVM training, which solves the dual problem, is typically
conducted by splitting a large optimization problem into a
series of smaller sub-problems [17]. The SMO algorithm [14],
[18] uses exactly two samples at each optimization step. With
two samples, it is possible to generate an analytical solution
for the quadratic minimization at each step.

1) Gradient updates: In the SMO algorithm [14], several
data structures are read/updated at each step. Gradient (γ in
Table I) is a data structure, which is maintained for each
sample. It is calculated as follows:

γi =
∑
jαjyjΦ(xi,xj)− yi (1)

The gradient of the dual objective function for each sample
is updated after every iteration. The gradient for i-th sample
(γi) is updated as:

γnewi = γoldi +

yup ∗ (αnewup − αoldup ) ∗ (Φ(xup, xi))+

ylow ∗ (αnewlow − αoldlow) ∗ (Φ(xlow, xi))

(2)

2) Working Set Selection: For faster convergence, an SVM
algorithm (like SMO) selects a few samples (two in SMO
algorithm) for gradient calculation of remaining samples (Eq.
(2)). Keerthi et al. have proposed several possibilities for
working set selection [18]. They are shown in Algorithm 1.
In one case, the algorithm iterates over all samples in I0. In
the second case, the algorithm evaluates only the worst KKT
violators — βup and βlow — which are calculated at each
step using Eq. (3). The other data structures are updated as
follows:

βup = min{γi : i ∈ I0 ∪ I1 ∪ I2}
βlow = max{γi : i ∈ I0 ∪ I3 ∪ I4}

(3)

where
i ∈ I0 ∪ I1 ∪ I2 ∪ I3 ∪ I4. I0 = {i : 0 < αi < C},

I1 = {i : yi = 1, αi = 0}, I2 = {i : y = −1, αi = C},
I3 = {i : yi = 1, αi = C}, I4 = {i : yi = −1, αi = 0}

(4)

βup and βlow are are two threshold parameters, which are
discussed in detail by Keerthi et al. [18]. The optimality
condition for termination is:

βup + 2 ∗ ε ≥ βlow (5)

where ε is a user-specified tolerance parameter. We also
observe from Eq. (2) and Eq. (3), that the worst violators for
the next iteration are gathered by considering all the samples,
which keeps the accuracy of the solution intact.

B. Message Passing Interface
Message Passing Interface (MPI) [19], [20] supports

mail-box style of communication. MPI provides a rich
set of interfaces for point-to-point operations, collective
communication operations (group operations) and one-
sided primitives (for remote memory access operations).
In this paper, we specifically use several MPI primitives
: MPI_Send, MPI_Recv for exchanging dataset during
gradient-reconstruction, MPI_Allreduce (collective opera-
tion for reduction on data structures) for exchanging βup and
βlow.

Most modern supercomputers support MPI, since large
scale applications use MPI directly/indirectly. High perfor-
mance MPI implementations on modern interconnects such
as InfiniBand, Cray and Blue Gene systems have become
available [21]–[26]. .



III. SOLUTION SPACE: PRELIMINARIES

TABLE I: Symbols used for modeling time-space complexity
of SVM

Name Symbol
# of Processors p

# of Training Points N
Class label yk

Lagrange multiplier αk

Set of Support Vectors ζ
Working set π

δLD/δαk , γk ∗ yk (1) ∇k

Hyperplane threshold β
Indices set I0−4in (4) ς

Shrinking threshold δ
User-Specified Tolerance ε

Avg 〈, . , 〉 time λ
Average sample length |xk| m

Network Latency l

Network Bandwidth 1
G

Algorithm 1: SVM training - Sequential

Input: C, σ, X ∈ <N×d, yi ∈ {+1,−1}, i = 1, 2, . . .N
Data: α ∈ <N×1

Result: ζ
1 ∀i, γi = −yi, αi = 0;
2 ilow ∈ {j | yj = 1, j ∈ {1, 2, . . .N}};
3 iup ∈ {k | yk = −1, k ∈ {1, 2, . . .N}} ;
4 while βup + 2 ∗ ε ≤ βlow do
5 αilow ← (6), αilow ← (6);
6 ilow ← ς , iup ← ς (4);
7 ∀i, γi ← (2);
8 Calculate new βlow and βup using (3);

Table I shows the symbols which we have used to model
the time and space complexity of the proposed algorithms and
heuristics. Algorithm 1 shows the key steps in the sequential
SVM algorithm. At each iteration, ∀i, αi is calculated using
Eq. (6). When the objective function is positive definite (ρ <
0) (the objective function is always positive semi-definite, and
positive definite for Gaussian kernel (e−γ·||xi−xj ||2 )) , Eq. (7)
is used for the updates. We use the approach proposed by Platt
et al. [14] to update the equations, when ρ > 0.

αnewilow
= αilow − yilow ∗ (γiup

− γilow)/ρ

αnewiup
= αiup

+ yilow ∗ yiup
∗ (αilow − αnewilow

)
(6)

where

ρ = 2 ∗ Φ(xilow ,xiup
)

−Φ(xiup
,xiup

)− Φ(xilow ,xilow)
(7)

At the terminating condition (5), β is calculated as:

β =

{ ∑
i∈I0 γi/ |I0| if |I0| 6= 0

(βlow + βup)/2 otherwise

A. Data Structures Organization and Kernel Cache

1) Data Structures Organization: As shown in Table I,
there are several important data structures which are used in
algorithms 2 , 3, 4 and 5. These data structures include X , the
input dataset; y, the sample label; α, the Lagrange multipliers;
γ, gradient and ς , the set information. The data structures
— α, γ, ς and y — are associated with each sample. For
performance reasons, we co-locate these data structures with
individual samples. This improves the spatial locality of the
proposed solution.

We have also observed that most datasets are sparse in
nature (several datasets have less than 20% density). Hence,
we use a compressed sparse row (CSR) representation to store
the dataset X . For several datasets — especially the large ones
— we did not observe a sparsity pattern, which is frequently
observed in scientific domains. Hence, we use the basic CSR
format, and consider using other formats in the future.

2) Kernel Cache: As evident from Eq. (2), gradient updates
— the most computationally expensive part of the calculation
— can be formulated by using a series of kernel calculations.
The individual kernel calculations may be stored in a kernel
cache, which itself can be distributed across different pro-
cesses. However, the space complexity of a complete kernel
cache (also known as a kernel-matrix) is Θ(N 2), which is
prohibitive for large input. Even with a kernel cache, at
each step, the entire rows corresponding to indices iup and
ilow need to be sent to each process. This results in a data
movement of O(N · log(p)) (The rows can be sent using
an MPI primitive such as MPI_Bcast, which has a time-
complexity of O(log(p))).

Besides prohibitive data movement, there are several other
reasons to avoid a kernel cache: The primary objective of a
kernel cache is to maximize temporal utilization. However,
for a fixed kernel cache size, the probability of a cache-hit
reduces with increasing size of the dataset. At the same time,
even lesser memory is available for kernel cache, since a larger
area of memory is occupied by the dataset. Hence, we avoid
a kernel completely in our proposed solution.

B. Parallel Default SVM training Algorithm

Algorithm 2 is a parallel default variant of the sequential
algorithm 1. We refer to this algorithm as Original for rest of
the paper. This algorithm uses the entire dataset for generating
the hyperplane. There are two major part of this algorithm —
α updates (lines 3 - 8) and γ updates (lines 9 - 17).

1) α update: To begin with, each process receives two
samples — xlow and xup — from a default process (process
with rank 0) using MPI_Bcast primitive. Each process
calculates the α corresponding to iup and ilow independently.
This results in a overall time complexity of O(l+m·G)·log(p)
for network communication and three kernel calculations 3 ·λ
(ignoring other integer based calculation(s)).

2) γ update: We observe that γ update is required for each
sample in the dataset. Hence, this step dominates the entire
computation time in the SVM algorithm. Within the for-loop,
there are several steps: Each gradient update (line 10) requires



Algorithm 2: Parallel variant of Algorithm 1; q-th CPU
perspective.

Input: C, σ, Xq ∈ <
N
p ×d, yi ∈ {+1,−1},∀i, α ∈ <

N
p ×1

Result: ζ
1 ∀i ∈ Xq , γi ← −yi, αi ← 0
2 while βup + 2 · ε ≤ βlow do
3 if q == 0 then
4 xilow ← Recv(Xqilow )

5 xiup ← Recv(Xqiup
)

6 if q == qilow then
7 Send(Xqilow , 0)

8 if q == qiup then
9 Send(Xqiup

, 0)

10 xilow , xiup
← Bcast(0) #0

11 αilow ← using (6) , αiup
← using (6)

12 for ∀i ∈ Xq do
13 γi ← using (2)
14 if i == iup or i == ilow then
15 αi ← αilow or αiup

16 ςi ← using (4)

17 if βi ≤ min(γj) | j < i (4) then
18 βup ← βi

19 if βi ≥ max(γj) | j < i (4) then
20 βlow ← βi

21 βup ← Allreduce(βqup
, p)

22 βlow ← Allreduce(βqlow , p)

several kernel calculations. The other parts are updating the set
information (ς), however, it is only a comparison operation. In
the algorithm, we save the values of local βup and βlow. The
global values are obtained using MPI_Allreduce operation,
which has a time complexity of Θ(l · log(p)) (We ignore the
bandwidth term here, since this communication only involves
two scalars).

IV. PROPOSED SVM ALGORITHM AND HEURISTICS

In the previous section, we presented the default SVM al-
gorithm, which uses the entire dataset for finding the maximal
margin hyperplane. As we observed in Figure 1, only a small
fraction of samples are actual support vectors. Specifically, we
observe the following property for non-shrinkable samples:

A = {xk | γk < βlow or γk > βup, 0 < αk }
and

|A| � |X |
(8)

The premise of the proposed algorithm is to eliminate non-
contributing samples from consideration — at the earliest
possible time. A sample can be eliminated from consideration,
if its α, γ, I1, I2, I3 and I4 (defined in (4)) and y satisfy the
following conditions:

-¥ 

¥ 
active set 
γ-range 

βlow=max(γi), i∈{I0,I3,I4} 
  β 
low 

shrink 
i∈{I1,I2} 

β 
up 

shrink 
i∈{I3,I4} 

βup=min(γi), i∈{I0,I1,I2} 

Fig. 2: Condition(s) for eliminating samples during computation.
Samples with γ between βup and βlow are active, and others are
shrunk

i ∈ {I3 ∪ I4} and γi < βup

or

i ∈ {I1 ∪ I2} and γi > βlow

(9)

This is explained further in the Figure 2. We refer to the
property of eliminating samples adaptively as shrinking for
rest of the paper. Shrinking reduces the number of gradient
calculations, which need to be executed by each process.
Naturally, this leads to faster convergence in comparison to
the default algorithm.

It is worthwhile observing, that an accurate condition for
shrinking is unknown [15], [17]— before the final solution
is achieved. Hence, the proposed conditions are heuristics,
which makes it possible for support vectors to be eliminated
prematurely. A possible design choice is to eliminate the
sample permanently, as soon as these conditions hold true.
However, the algorithm may lose accuracy — an approach
recently considered by Communication-Avoiding SVM [27].
However, we consider only accurate solutions in this paper,
since it is un-attractive for several science domains to lose
accuracy.

There are two major design elements of our proposed
algorithm: When to shrink a sample? and How to maintain
the accuracy of the proposed SVM algorithm? We address
each of these questions in the following sections.

A. Shrinking Heuristics

From section II, we also observe that γ, α and other data
structures are updated iteratively. Hence, there are several in-
stances at which a sample may be shrunk. An early elimination
of sample (an aggressive technique) can reduce the size of
the working set, although it increases the probability of a
false elimination. On the other hand, a conservative sample
elimination reduces the improvement in time-complexity. As
the iterative procedure continues, we expect the γ and α of
each sample to stabilize. A sample, which can be a potential
support vector satisfies the following condition:

À = {xk | βlow ≥ γk ≥ βup } (10)

As a result, one or more samples from the set X − À can be
eliminated without changing the current solution.

We consider two design elements in selecting a shrinking
threshold. The following section shows the heuristics for



TABLE II: Heuristics. Description and classification. ?: Ag-
gressive shrinking class, •: Conservative, �: Average

# Shrinking Type γ-Recon. Name Class
1) None N/A Original N/A
2) random: 2 Single Single2 ?
3) random: 500 Single Single500 ?
4) random: 1000 Single Single1000 �
5) numsamples: 5% Single Single5pc ?
6) numsamples: 10% Single Single10pc �
7) numsamples: 50% Single Single50pc •
8) random: 2 Multi Multi2 ?
9) random: 500 Multi Multi500 ?
10) random: 1000 Multi Multi1000 �
11) numsamples: 5% Multi Multi5pc ?
12) numsamples: 10% Multi Multi10pc �
13) numsamples: 50% Multi Multi50pc •

selecting an initial shrinking threshold. This is followed by
a discussion on selecting subsequent shrinking threshold.

1) Initial Shrinking Threshold Calculation: We design our
heuristics by making an underlying assumption, that the
number of support vectors is much smaller than the number
of samples (ζ � N ). By using this intuition, we propose
heuristics for calculating initial shrinking threshold, which are
based on the N . This method is referred to as numsamples
based approach in Table II. Using this threshold, the first
iteration at which a sample can be shrunk is at n · N , where
n < 1. A conservative shrinking heuristic uses a larger value
of n. An alternative method is to assign initial shrinking
threshold to a random value, similar to the approach proposed
by Lin et al [15]. The default case is achieved by no-shrinking
(n =∞).

2) Subsequent Shrinking Threshold Calculation: In our
proposed algorithm, we continue to shrink the samples adap-
tively, as we find samples which can be eliminated. Hence,
it is important to calculate a subsequent shrinking threshold
at which samples can be considered for shrinking again. The
default approach is to use the initial shrinking threshold as the
subsequent threshold.

However, we consider an alternative heuristic. We use the
size of the active working set as the subsequent shrinking
threshold. The intuition for this heuristic is that the size of
the working set gives sufficient opportunities for samples to
be considered at least once, such that their α and γ can be
stabilized. (Recall that SMO uses precisely two samples at
each iteration). The new subsequent shrinking threshold is cal-
culated at each shrinking step by using an MPI_Allreduce.
Naturally, the intuition is that after several shrinking thresh-
olds, the algorithm will converge to the samples which mostly
constitutes the support vectors.

B. Maintaining Accuracy of SVM

Recall, that the heuristics can prematurely eliminate the
samples — especially when their α and γ have not stabilized.
In many cases, especially with large datasets and with high
dimensions, it is possible that many samples are eliminated
prematurely. Specifically, in shrinking, we assume that ζ ⊆ À,
however, it is possible that there are several support vectors

in X − À. Hence, we need to consider this set as well for
maintaining accuracy.

When a sample is shrunk, its α and γ are not updated.
To maintain the accuracy, we need to synchronize these data
structures. Recall that α is updated for the samples xup and
xlow. For sequential algorithm, Joachims et al. have proposed
to update the γ for each sample by using the α from each
other sample. In this paper, we propose a distributed memory
algorithm for this purpose. The main steps of the algorithm
are shown in in algorithm 3.

Algorithm 3: Gradient Reconstruction; q-th CPU perspec-
tive.

Input: σ, Xq ∈ <
N
p ×d, yi ∈ {+1,−1},∀i

1 ωq = Xq − πq // set of previously eliminated samples;
2 for ∀i ∈ |ωq| do
3 γtemp ← 0;
4 for ∀j ∈ |X | | αj > 0 do
5 γtemp+ = αj · yj · (Φ(xj ,xi));

6 γi ← γtemp − yi;
7 if βi ≤ min(γj) | j < i (4) then
8 βqup

← βi;

9 if βi ≥ max(γj) | j < i (4) then
10 βqlow ← βi;

11 βup ← Allreduce(βqup , p);
12 βlow ← Allreduce(βqlow , p);

For brevity, we have abstracted the communication steps
in the algorithm (line 1). In practice, this is implemented
using a ring algorithm with MPI_Isend, MPI_Irecv and
MPI_Waitall of CSR data. For each eliminated sample,
we calculate the gradient using the samples received in the
previous step from the neighbor (By the property of the
ring algorithm, at the end of p steps, we have updated the
gradient using the entire dataset). With the newly calculated
gradient, the iterative procedure eventually converges to the
accurate solution, since the proposed algorithm ensures that
each sample is considered.

1) Computation Time Complexity Analysis of Gradient Re-
construction: Let us consider a less-noisy dataset, such that
ζ � N and on an average, πq = ζ

p . Then, the expected time

complexity of algorithm 3 is
∣∣∣X−ζp ∣∣∣ · ζ · λ. By differentiating

this function with ζ, we see that the maxima occurs at ζ = |X |
2 .

As a result, the expected computational complexity is O( |X |
2

p )
for each process. The expected time complexity for the default
SMO algorithm is Θ( |X |

3

p ). Hence, it is important to perform
gradient reconstruction sparingly.

We consider two possibilities for gradient reconstruction. In
one method, we reconstruct the gradient precisely once during
the entire algorithm. The steps are shown in algorithm 4.
Once the gradient is reconstructed we do not shrink samples
again, and hence the final solution is precise. While this is



Algorithm 4: Shrinking with Single Gradient Reconstruc-
tion Algorithm; q-th CPU perspective.

Input: C, σ, Xq ∈ <
N
p ×d, yi ∈ {+1,−1},∀i, α ∈ <

N
p ×1

Result: ζ
1 ∀i ∈ Xq , γi ← −yi, αi ← 0
2 δc ← δ
3 while βup + 2 · ε ≤ βlow do
4 if q == 0 then
5 xilow ← Recv(Xpilow )

6 xiup
← Recv(Xpiup

)

7 xilow , xiup
← Bcast(0) #0

8 αilow ← using (6) , αiup
← using (6)

9 δc ← δc − 1
10 if δc = 0 then
11 δnew ← 0 // counter for subsequent shrinking

12 for ∀i ∈ Xq do
13 γi ← using (2)
14 if δc = 0& 9 then
15 ωq ← ωq ∪ xi // shrink sample
16 else
17 δnew ← δnew + 1

18 if i == iup or i == ilow then
19 αi ← αilow or αiup

20 ςi ← using (4)

21 if βi ≤ min(γj) | j < i (4) then
22 βqup ← βi

23 if βi ≥ max(γj) | j < i (4) then
24 βqlow ← βi

25 βup ← Allreduce(βqup
, p)

26 βlow ← Allreduce(βqlow , p)
27 if δc = 0 then
28 δ ← Allreduce(δnew, p) // Allreduce sum
29 δc ← δ

30 if βup + 2 · ε < βlow then
31 call Algorithm 3 to update βup, βlow
32 δc ←∞ // single gradient reconstruction, should

not shrink samples again

an attractive approach to minimize the overhead of gradient
reconstruction, it is not able to reduce the time to convergence
after the gradient reconstruction step.

The other possibility is to use multiple gradient reconstruc-
tion. This is shown in algorithm 5. We first synchronize the
gradient at 20 · ε, which allows us to re-introduce previously
eliminated samples, when we are close enough to the final
solution (2 · ε). The other possibility is to let the solution
converge to 2 · ε and reconstruct the gradient. We choose
the earlier approach, since it allows us to reconstruct gradient
at an intermediate step, while not necessarily waiting to the
termination condition.

Algorithm 5: Shrinking with Multiple Gradient Recon-
struction Algorithm; q-th CPU perspective.

Input: C, σ, Xq ∈ <
N
p ×d, yi ∈ {+1,−1},∀i, α ∈ <

N
p ×1

Result: ζ
1 ∀i ∈ Xq , γi ← −yi, αi ← 0
2 δc ← δ
3 while βup + 20 · ε ≤ βlow do
4 call lines 4-30 of 4

5 call 3 to update βup, βlow
6 while βup + 2 · ε ≤ βlow do
7 call lines 4-30 of 4
8 if βup + 2 · ε < βlow then
9 call Algorithm 3 to update βup, βlow

10 // do not update δc to allow as many gradient
reconstructions as required

2) Communication Time Complexity Analysis of Gradient
Reconstruction: In algorithm 3, we update the γ values for
samples, which have been shrunk previously. To achieve this,
each process needs X−À, which is obtained in a ring commu-
nication. This results in the communication of samples owned
by each process. Due to the limitations of MPI collectives,
we cannot use MPI_Allgather(v), since the collectives
require a buffer large enough to hold the entire dataset!

The time complexity of communication at each step is l +
|X−À|
p ·G ≈ |X−À|p ·G, since dataset movement is bandwidth

bound. For the entire gradient reconstruction — by using p
steps — the time complexity is Θ(|X − À| ·G)

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
our proposed SVM algorithm with the no-shrinking (de-
fault) algorithm and OpenMP enhanced-libsvm. We use 10
datasets, using up to 2.6 million samples. We consider all
heuristics shown in section III including shrinking threshold
and single/multiple gradient reconstruction. We use up to 4096
processes for performance evaluation.

A. libsvm Enhancements

libsvm is the default sequential SVM library. We enhance
libsvm to use OpenMP, so that it can use the multi-core
systems effectively. We use 3.18 version of the software. While
our implementation does not use any kernel cache, we allow
libsvm to use a compute node’s entire memory as a kernel
cache. This presents the best execution scenario for libsvm.
We setup the baseline for libsvm by using all available cores.
We intend to contribute this enhancement, such that it can help
the broader community.

1) Comparison with Other Parallel SVM Software: We
explored performance comparisons with PSVM, and MLLib,
in addition to libsvm. MLLib has two problems: It does
not support non-linear SVM (Gaussian kernel) — which we
use for performance evaluation — and it does not use high



TABLE III: Dataset Characteristics and hyper-parameter set-
tings

Name Training Set Size Testing Set Size C σ2

Higgs Boson 2600000 N/A 32 64
Offending URL 2300000 N/A 10 4

Forest 581012 N/A 10 4
real-sim 72309 N/A 10 4
MNIST 60000 10000 10 25
cod-rna 59535 271617 32 64

Adult-9 (a9a) 32561 16281 32 64
Web (w7a) 24692 25057 32 64

performance interconnects in the native mode (such as by
using RDMA). The latest version is only able to use TCP/IP,
which gives it a significant disadvantage in comparison to
our proposed solution. While we were able to run PSVM,
it did not scale well even on a small problem size. This
can be attributed to its scalability limitations of incomplete
Cholesky factorization (ICF) [12], besides its prohibitive space
complexity problem.

B. Experimental TestBed

We use the PNNL Cascade Supercomputer [28], which is
equipped with Intel Sandybridge CPU and InfiniBand FDR
interconnect. The performance evaluation uses up to 4096
cores (256 compute nodes). We use MVAPICH2-2.0.1 for
performance evaluation. Since datasets vary in size we use
between 1 and 256 compute nodes, depending on the size and
properties of the dataset. As a result, the proposed algorithm
can be used on multi-core machines such as a desktop,
supercomputers or cloud computing systems. The datasets are
downloaded from libsvm web-page [15]. Please refer to the
page for datasets’ description.

C. Hyperparameter Settings

We conducted a ten-fold cross validation for select-
ing hyper-parameter settings for the datasets by using
libsvm [15]. These are shown in Table III. The hyper-
parameter C is described in section III and σ2 is the kernel
width in the Gaussian kernel: Φ(x,y) = e−γ·||x−y||

2

. The
proposed infrastructure allows us to plugin other kernels (such
as linear, polynomial). For larger datasets — where the cost
of ten-cross validation is too expensive — we selected values
after conducting in-depth literature study. Table II shows the
heuristics which we used for performance evaluation of these
datasets.

D. Results and Analysis

In each of the following charts (Figures 4 - Figure 7) each
bar shows a relative speedup to libsvm-enhanced which uses
OpenMP and 16 cores. Each chart has three bars: default
parallel algorithm (no shrinking), shrinking (best heuristic)
and shrinking (worst heuristic). For brevity, we only present
the results of the best and worst heuristics. For UCI HIGGS
dataset, the time to solution is more than 2 days for libsvm-
enhanced (the maximum time allowed on PNNL Cascade
for a job). Hence, we only compare the execution times

of Default, Shrinking (Worst) and Shrinking (Best) for UCI
HIGGS dataset. Due to time constraints on our supercomputer,
we use 2.6M samples out of 11M samples of the entire UCI
HIGGS dataset.

1) Large Datasets: UCI Higgs Dataset and URL Dataset:
Figure 3 shows the performance of UCI HIGGS dataset using
up to 4096 cores (256 compute nodes). On 4096 cores, the
proposed algorithm provides 1.56x speedup in comparison
to the Default algorithm, while on 1024 cores the speedup
is 2.27x. The Shrinking (Best) heuristic is Multi5pc (Multi-
ple gradient synchronization with 5% samples as the initial
shrinking threshold) and Shrinking (Worst) is Single50pc
(Single Gradient Synchronization with 50% samples as ini-
tial shrinking threshold). The overall calculation takes 34M
iterations. With increasing number of iterations, the number
of active samples decreases, which increases the relative time
of communication to computation. An important part of the
overall computation is gradient synchronization, which keeps
the accuracy of the proposed solution intact. We observed
that for 4096 processes, gradient synchronization takes less
than 10% of the overall time. Hence, the proposed approach
is effective for large datasets, since the cost of gradient
synchronization is amortized by the benefits of shrinking.

Figure 4 shows the performance of Offending URL dataset
using up to 256 nodes (4096 processes). libsvm-enhanced
is able to complete the training in 39 hours using 1 node
and 16 threads. Using 256 nodes, we observe that we achieve
≈ 250x speedup for the Shrinking (Best), while Shrinking
(Worst) and Default algorithms do not perform that well.
We also observe that the best shrinking heuristic is Multi5pc
(multiple gradient reconstruction with 5% samples as the
initial shrinking threshold). The worst shrinking heuristic is
single50pc, which implies that for a large dataset such as
this, we are able to amortize the cost of multiple gradient
reconstruction by shrinking repeatedly.

2) Lessons Learned: There are a few observations from
the two largest datasets used for performance evaluation: 1)
Shrinking provides major speedup in comparison to both
the Default algorithm and libsvm-enhanced 2) The cost of
gradient synchronization is easily amortized by the benefits of
reduction in working set — and hence multiple gradient syn-
chronization based heuristics have shown promise 3) Multi5pc
is an effective shrinking heuristic, which can be used for other
datasets as well.

3) Forest: Figure 5 shows the performance of forest cover
dataset, using up to 64 nodes (1024 processes). We observe
that in comparison to libsvm-enhanced, the proposed Shrink-
ing (Best) heuristic achieves 19.8x speedup. It takes 2.07
million iterations to complete the training. However, unlike
URL, the shrinking of samples is more gradual for forest
cover dataset. We observed that shrinking continues to occur
almost to the convergence, which provides significant benefits
in comparison to the default case. After the first gradient-
reconstruction (20 · ε) the training recovers the false-positives
very quickly. Just like the URL dataset, Multi5pc is the best
shrinking heuristic, and Single50pc is the worst performing
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Fig. 3: UCI HIGGS Dataset Perfor-
mance.
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Fig. 4: URL Dataset Performance.
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Fig. 5: Forest Dataset Performance.
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Fig. 6: MNIST Dataset Performance.
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Fig. 7: Real-Sim Dataset Performance.
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heuristic. With shrinking, since the number of active samples
reduce over iterations, the overall efficiency also reduces with
scale.

4) MNIST: Figure 6 shows the performance of MNIST
dataset using up to 32 nodes (512 processes). In comparison
to libsvm-enhanced, we observe a speedup of 15x with
Shrinking (Best) heuristic. We observed that for 75% of the
iterations, the active set is a fraction of the overall number of
samples (20%). This validates our premise that a small fraction
of samples actually contribute to the definition of a classifier.

We also observe that the Shrinking (Worst) case performs
equivalent to the Default case. The primary reason is that
MNIST takes 21K iterations to converge. Since the MNIST
dataset has 60K samples, the initial shrinking threshold is
30K iterations. However, the algorithm converges before the
initial shrinking threshold — making the Default and Shrink-
ing (Worst) case equivalent. The best shrinking heuristic is
Multi5pc for MNIST.

5) Real-Sim: Figure 7 shows the performance of real-sim
dataset using up to 16 nodes (256 processes). We observe
a speedup of 6.6x using 16 nodes. The iterative calculation
takes 47K iterations, and the primary advantage is observed
after first gradient-reconstruction, since it is able to elimi-
nate the false positives completely. After the first gradient-
reconstruction, we observed that less than 10% of the samples
are actually active. However, this also results in reduced effi-
ciency with scale, due to increased ratio of communication to
computation. While Multi5pc is the best performing heuristic,
Single50pc performs the worst. Since the dataset has ≈ 72K
samples, the first shrinking occurs at 36K iterations. As a

result, much of the benefits from shrinking are lost, since most
of the samples are active for 75% of the execution time.

6) Analysis of Gradient Reconstruction Time: An important
part of the proposed solution is gradient synchronization. Fig-
ure 8 shows the ratio of time spent in gradient synchronization
to the overall time for the four large datasets considered in
this paper. The expected time-complexity of SMO is O(N

3

p ).
We also observed in section III that the time-complexity of
gradient-reconstruction is O(N

2

p ). Hence, we expect that the
ratio of gradient-reconstruction time to overall time should
remain constant for a dataset.

However, we observe that the ratio decreases with the
increasing scale. We observe that as the scale increases, the
efficiency of the iterative calculation decreases (as presented
in the previous section). We expect that on an average,
each process spends ≈ Θ(N − A) · Ap time in gradient-
reconstruction for A number of active samples. We also
observe that A � N , hence the gradient- reconstruction is
primarily dominated by Θ(Np ), which results in reduced time
for gradient-reconstruction with increasing scale.

7) Results on Smaller Size Datasets: Table IV shows the
results of proposed heuristics on smaller sized datasets. RCV1,
Adult and w7a perform well in comparison to libsvm,
however datasets like USPS and Mushrooms do not scale very
well, since they only have a few thousand samples.

8) Testing Accuracy Results: Table V shows the accuracy
of testing on the datasets used in this paper, which have testing
set available. As reflected in the table, the testing accuracy of
the proposed heuristics matches with the testing accuracy of
libsvm.



TABLE IV: Relative Speedup to libsvm-sequential with
smaller datasets

Name Default Shrinking (Worst) Shrinking (Best) Proc
Adult-9 1.5 3.1 3.2 16
RCV1 27 31 39 64
USPS 0.5 0.7 1.3 4

Mushrooms 0.4 1.09 1.9 4
Web (w7a) 1.7 2.4 3.1 16

TABLE V: Testing Accuracy

Name Test Acc. - Ours(%) Test Acc.-libsvm(%)
Adult-9 85.18 83.12
USPS 97.6 97.75

MNIST 98.9 98.62
Cod-RNA 92.33 92.1
Web(w7a) 98.82 98.9

VI. RELATED WORK

With the advent of multi-core systems and cluster com-
puting, several parallel and distributed algorithms have been
proposed in literature. This section provides a brief overview
of these algorithms: Architecture specific solutions using
GPUs [9], [10] have been proposed, and other approaches
which may require a special cluster setup have been proposed
as well [29]. Graf et al. have proposed Cascade SVM [29],
which provides a parallel solution to the dual optimization
problem. In Cascade SVM, the basic idea is to divide the
original problem into completely independent sub-problems,
and recursively combine the independent solutions to obtain
the final set of support vectors. However, Cascade SVM suffers
from load imbalance, since many processes finish their individ-
ual sub-problem before others. As a result, this approach does
not scale well for very large scale of processes. We address
this limitation by providing a shrinking based solution to the
problem. The advent of SIMD architectures such as GPUs has
resulted in research conducted for Support Vector Machines on
GPUs [9]. Under their approach, a thread is created for each
data point in the training set and the MapReduce paradigm
is used for compute-intensive steps. The primary approach
proposed in this paper is suitable for large scale systems,
and not restricted to GPUs. Similarly, MIC-SVM [11] is a
single node multi-core solution for Intel Xeon Phi, which
provides excellent speedup, but with restrictions to a single-
node. Yu et al. considered a small discussion on shrinking
(with no proposed algorithm/implementation), and concluded
that the engineering difficulty of shrinking is tedious. However,
in this paper, we demonstrate the efficacy of shrinking on
several large datasets by designing scalable SVM using smart
heuristics for shrinking and gradient-reconstruction.

Several other researchers have proposed alternative mech-
anisms for solving QP problems. An example of variable
projection method is proposed by Zanghirati and Zanni [30].
They use an iterative solver for QP problems leveraging the
decomposition strategy of SVMlight [17]. Chang et al. [12]
have also considered a working-set size > 2 and solve the
problem using Incomplete Cholesky Factorization and Interior

Point method (IPM). Woodsend et al. [31] have proposed
parallelization of linear SVM using IPM and a combination of
MPI and OpenMP. However, their approach is not a working-
set method, as it does not decompose a large problem into
smaller ones. A more recent work [32] exploits modern multi-
core architectures and intelligent caching to improve the speed
of training linear SVMs.

VII. ACKNOWLEDGEMENT

The research described in this paper is part of the Analysis
in Motion Initiative at Pacific Northwest National Laboratory.
It was conducted under the Laboratory Directed Research and
Development Program at PNNL, a multi-program national
laboratory operated by Battelle for the U.S. Department of
Energy.

VIII. CONCLUSIONS

In this paper, we have undertaken the challenge in designing
a scalable Support Vector Machine algorithm on distributed
memory systems. We have presented the case that in many
classification datasets, only a small fraction of samples con-
tribute to the definition of the classifier. These samples are
also known as support vectors. Our novel algorithm adap-
tively eliminates (shrinks) the samples which are unlikely
to contribute to the classifier definition. We have also ob-
served that eliminating a sample prematurely can lead to an
inaccurate solution. For maintaining the accuracy, we have
proposed a method to synchronize the data structures (gradient
synchronization) at regular intervals by using detailed time-
space complexity analysis. We have considered a broad set of
heuristics for shrinking and gradient synchronization.

We have implemented the proposed algorithm using MPI
and evaluated it with ten datasets using up to 4096 cores.
We have enhanced libsvm — de facto sequential SVM
software — to use OpenMP for exploiting multi-core paral-
lelism. This provides a fairer comparison of our approach with
libsvm. Our performance evaluation includes UCI HIGGS
Boson dataset and Offending URL dataset, among a total
of 10 datasets. On a 2.3M samples dataset, our proposed
algorithm with shrinking takes 8 minutes for training, while
the default non-shrinking algorithm takes 13 minutes. The
enhanced libsvm takes 39 hours on a 16-core sandybridge
machine. We plan to release our code with Machine Learning
Toolkit for Extreme Scale (MaTEx) [16]. We are planning to
contribute the OpenMP enhanced version to libsvm.

The implications of the proposed novel algorithms are such
that even larger datasets than considered in this paper can now
be used for classification and regression, without any accuracy
loss. We expect that the proposed algorithms will be useful for
several other science domains not considered in this paper.
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