
Natural Language Generation from Graphs

Ngan T. Dong

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99163, USA
takura247@gmail.com

Lawrence B. Holder

School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA 99163, USA

holder@wsu.edu

The Resource Description Framework (RDF) is the primary language to describe information

on the Semantic Web. The deployment of semantic web search from Google and Microsoft, the

Linked Open Data Community project along with the announcement of schema.org by Yahoo,

Bing and Google have signi¯cantly fostered the generation of data available in RDF format. Yet
the RDF is a computer representation of data and thus is hard for the non-expert user to

understand. We propose a Natural Language Generation (NLG) engine to generate English text

from a small RDF graph. The Natural Language Generation from Graphs (NLGG) system uses
an ontology skeleton, which contains hierarchies of concepts, relationships and attributes, along

with handcrafted template information as the knowledge base. We performed two experiments

to evaluate NLGG. First, NLGG is tested with RDF graphs extracted from four ontologies in

di®erent domains. A Simple Verbalizer is used to compare the results. NLGG consistently
outperforms the Simple Verbalizer in all the test cases. In the second experiment, we compare

the e®ort spent to make NLGG and NaturalOWL work with the M-PIRO ontology. Results

show that NLGG generates acceptable text with much smaller e®ort.

Keywords: RDF; graph; natural language generation.

1. Introduction

Natural Language Generation (NLG) is a natural language processing task of gen-

erating natural language from a computer representation of data. The left side of

Fig. 1 shows an example of data in computer representation (RDF graph) in which

`̀ v" refers to a vertex and `̀ d" refers to a directed edge. Nodes and edge labels are

Universal Resource Identi¯ers (URIs) or strings. This expression of a graph is not

human friendly. A natural language generation system's task in this case is to

translate these graphs into English text as illustrated on the right in Fig. 1.

The Semantic Web is an increasing e®ort of converting the existing set of Web

documents into a giant graph of data. This representation brings a number of

International Journal of Semantic Computing
Vol. 8, No. 3 (2014) 335–384

°c World Scienti¯c Publishing Company

DOI: 10.1142/S1793351X14500068

335

http://dx.doi.org/10.1142/S1793351X14500068

bene¯ts, including but not limited to reusing, sharing and intelligent searching. The

Resource Description Framework (RDF) is a language to describe information on the

Semantic Web. Web resources are represented as RDF triples. A set of RDF triples

form an RDF graph. Generally, an RDF graph is equivalent to a directed graph.

Further details about the Semantic Web and RDF will be given in Sec. 3.

The announcement of schema.org by Yahoo, Google, and Bing; the ongoing

Linked Open Data project led by the World Wide Web Consortium (W3C); along

with a number of other research e®orts from the government, industry and academic

institutions, have resulted in a signi¯cant increase in the amount of data available in

RDF format. Yet RDF triples are computer friendly and thus sometimes are hard for

the non-expert user to understand. What is more, since the predicate in a RDF triple

can be anything, graph visualization sometimes cannot solve the problem. Also in

some systems that do semantic search or anomaly detection, the output should be in

the form of natural language rather than graphic. Therefore, we believe a natural

language generation system, which expresses a small RDF graph into English text, is

needed.

Research in Natural Language Generation applied to the Semantic Web is in its

initial stages. NaturalOWL [1], a domain independent sentence generator from RDF

graph [2], and some work in verbalizing OWL ontologies [3–5] are some current works

in the ¯eld. However, their problem statements are di®erent from the above one. We

propose a general natural language generation from graphs (NLGG) approach to

bridge the gap between Semantic Web representation and natural language so that

people who are not familiar with RDF can also access the information and knowledge

for various purposes.

Figure 2 illustrates a potential use case of NLGG in which a large RDF graph is

processed to produce several small RDF graphs that are converted to English text.

The input graph can be, for example, a social network graph extracted from Face-

book or a citation network or web logs of user activities from a website, in which

RDF Graph: Nat Lang Text:
v 1 http://www.co-ode.org/roberts/family-tree.owl#A A, B and C are
v 2 http://www.co-ode.org/roberts/family-tree.owl#Person people. B and C are
v 3 http://www.co-ode.org/roberts/family-tree.owl#B
v 4 http://www.co-ode.org/roberts/family-tree.owl#Person
v 5 http://www.co-ode.org/roberts/family-tree.owl#C
v 6 http://www.co-ode.org/roberts/family-tree.owl#Person
d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
d 1 3 http://www.co-ode.org/roberts/family-tree.owl#hasChild
d 5 1 http://www.co-ode.org/roberts/family-tree.owl#hasParent

Fig. 1. Example input/output of NLGG system. Left: Machine representation of RDF graph. Right:

Natural language text describing RDF graph.

336 N. T. Dong & L. B. Holder

nodes can be people, agents, or groups; and edges are relationships between them.

The graph processing might consist of subgraph pattern miners or anomaly detec-

tors, which produce several small RDF subgraphs. The set of RDF graphs, along

with the original large graph and template information, are passed into NLGG as the

knowledge base. NLGG pre-processes the large graph to eliminate information re-

lated to individuals such as their names, ages, jobs, and relationships with others. For

each small RDF graph, NLGG generates a corresponding piece of English text for

output to the user. The main focus of our work is to verbalize a small set of RDF

triples into English text. By saying verbalize, we mean to focus on the way in which a

set of facts is presented to the user. We use a semantic reasoner to help generate

better text. A skeleton ontology is used instead of the full original graph to minimize

the system's running time. We minimize the manual input of lexical information into

the system to make it more portable and cost e®ective. Compared with a template-

base NLG system like NaturalOWL, NLGG is much easier to set up. The system's

capability in generating cohesive text with connecting words is still limited. To the

best of our knowledge, this is the ¯rst work in the ¯eld to deal with the problem of

verbalizing a small subset of a RDF graph that involves information about multiple

individuals/classes.

Our goal is to help non-experts understand the content of a small RDF graph. A

graph visualizer can ful¯ll the task by generating a graph as depicted in Fig. 3. Graph

visualization is preferred in some cases because it is intuitive. Also, visualization

requires no handcrafted template information that most of the time will be required

by natural language generation. However, we argue that a natural language gener-

ation engine for RDF graphs is still needed for three main reasons. First, RDF

predicates can be any string, and that string sometimes is not expressive or familiar

enough for the user to understand the meaning. A graph visualizer can only render

the connection between nodes. It cannot help the user understand the meaning of a

RDF triple or RDF predicate, and thus, fails to ful¯ll the task. Second, for those

systems that do anomaly detection, the output of the system should not be a graph

Large

RDF

Graph

Processing

Module(s)

RDF
NLGG

English

Templates

Fig. 2. An example of NLGG use case in which graph processing is used on a large RDF graph to produce
multiple smaller RDF graphs (e.g. subgraph patterns, anomalies) that are then presented to the user as

English text.

Natural Language Generation from Graphs 337

with nodes and edges. Instead, it should be a spoken or written warning message in

natural language. Third, visually-impaired users, or users in an environment where

visual focus must be elsewhere, would bene¯t from a spoken description of the graph

based on a natural language expression. Therefore, we believe that though a graph

visualizer can sometimes help solve the problem, there is still a need for a natural

language generation capability for expressing graphs.

In the remainder of this paper, Sec. 2 describes natural language generation

systems, their applications, architecture and type of input. Section 3 discusses the

Semantic Web and related concepts. Section 4 explains the NLGG architecture step

by step. Section 5 presents the experimental results. Section 6 discusses conclusions

and future directions.

2. Natural Language Generation

Natural Language Generation (NLG) is a fascinating area of research with many

real-world applications. Most current NLG systems are used either to present in-

formation to users, or to partially automate the production of routine documenta-

tion. There is no consensus among NLG research communities for a standard input

format, system structure or evaluation techniques. The knowledge models vary from

system to system. This makes most existing NLG systems heavily domain dependent

and hard to reuse. This section will give a brief overview of Natural Language

Generation systems, their input, system architectures, applications and evaluation

techniques.

A

Person

isa

E

hasParent

B

isWifeOf

Person

isa

C

hasBrotherInLaw

D

hasAuntInLaw

Person

isa

Person

isa

Person

isa

GraphViz Visualization NLGG English Text
A, B, C, D and E are people.

Fig. 3. Visualization of small graph pattern using GraphViz [6] (left). English text expression of graph

using NLGG (right).

338 N. T. Dong & L. B. Holder

2.1. De¯nition

Natural Language Generation (NLG) is the natural language processing task of

generating natural language from machine readable data such as numerical values,

logical form, XML, etc., to meet speci¯ed communicative goals. In other words, an

NLG system serves as a translator that converts a computer based representation

into natural language representation. The communicative goals represent the pur-

pose of the text to be generated. A weather reporter's communicative goal can be to

summarize the weather data for a speci¯c month. The communicative goals of on-

tology verbalizers, such as NaturalOWL, are to generate a description about an

entity or a concept. And the goal of NLGG is to verbalize a set of given RDF triples.

As regards to the knowledge foundation, natural language generation is closely

related to natural language understanding [7]; both of them are concerned with

computational models of language and their use. In regard to the internal operations,

natural language generation may be viewed as the opposite of natural language

understanding. Natural language generation is the process of mapping internal

computer representations of information into human language; whereas, natural

language understanding is the process of mapping human language into internal

computer representations.

NLG research involves knowledge of arti¯cial intelligence, cognitive science and

human-computer interaction. Over the past two decades, NLG has received con-

siderable attention among research communities. Over 385 NLG systems, with many

real-world applications, have been documented so far at the NLG Wiki (www.nlg-

wiki.org). In the long term, NLG plays an important role in human-computer in-

teraction and will help provide much richer interaction with machines than today.

2.2. Input to NLG systems

As summarized by Reiter and Dale [7], inputs to a NLG system consist of four

components: a knowledge base, a communicative goal, a user model and a discourse

history. The knowledge base contains information about the system's domain. Both

the content and representation of the knowledge base are highly application-de-

pendent. A weather forecaster's knowledge base can be a database of numerical

sensor measurements. A museum guide NLG system like NaturalOWL [1] uses an

annotated OWL ontology about museum artifacts as the knowledge base. And those

of ontology verbalizers like the Sydney OWL syntax [3], the Rabbit controlled

natural language [4], and the Attempto Controlled English (ACE) [5], are OWL

ontologies which contain formal de¯nitions about classes, individuals and properties.

NLGG's knowledge base is an OWL ontology which contains only information

about classes and properties, but not individuals, plus simple template information

for those classes and properties. There is a trade-o® between the quality of the text

generated and the amount of handcrafted domain-dependent information input into

the system. Our objective is to make NLGG as general as possible. And thus, the

type of template required is simple. However, that places some limitations on quality

Natural Language Generation from Graphs 339

of the output text. For example, NLGG cannot generate referring expressions or use

pronouns and other references to make the text more °uent and natural. More details

about NLGG's knowledge base will be given in Sec. 4.1.

In general, there is no formal characterization of what a knowledge base should

look like. The wide variation among existing NLG systems' input knowledge bases is

a result of the di®erences in a system's text planning, localization and realization

strategies; and thus make existing NLG applications highly domain dependent. The

richer semantics that the knowledge base contains, the more power the system has in

generating natural, customized, °uent text.

A communicative goal de¯nes the purpose of the generated text. Di®erent NLG

systems have di®erent sets of communicative goals (e.g. automated generation of

reports, letters, jokes, help messages, customized introductions, etc.). A weather

forecaster's communicative goal is to summarize the weather data for a speci¯c

month. NaturalOWL's communicative goal is to summarize information related to

an artifact as regards to the user model and discourse history. An ontology verba-

lizer's goal is to map OWL representation into natural language. NLGG's commu-

nicative goal is to verbalize a set of small RDF triples.

A user model refers to the characteristic of an NLG system's targeted user. Mono-

user model systems like ontology verbalizers, or our current system (NLGG), which

only support one type of user, are not concerned about a user model. They do not

need to customize the generated text according to the current user's domain

knowledge. But multi-user model systems like NaturalOWL do need to take the user

model into account. A user model in this case de¯nes the user's understanding of the

domain. And this, in turn, a®ects the level of details included in the generated text.

A discourse history is simply a log of what information has already been com-

municated so far. In other words, it keeps track of what facts have already been

outputted to the user. This helps the NLG system avoid repetition as well as °exibly

use pronouns or relative clauses. For interactive systems, discourse history plays a

central role in generating intelligent and natural text. But for ontology verbalizers that

werementioned above and theNLGG,where the content of the output text is intended

to stay the same for all users, discourse history is rarely given much account.

2.3. NLG applications

The highest motivation behind Natural Language Generation technology is that

computer systems' representations of information usually require a considerable

amount of expertise to interpret. Therefore, there is often a need for systems that can

present such data in an understandable form to non-expert users. NLG systems have

been e®ectively used for the following tasks.

. Generate textual weather forecasts from numerical data, and summary reports,

as in [8–11]. These works often involve the task of summarizing information

from a set of data. Research in the ¯eld indicates that users sometimes prefer

340 N. T. Dong & L. B. Holder

computer-generated forecasts to human written ones [9], partly because computer

forecasts used more consistent terminology.

. Explain medical information in a patient-friendly way, as in [12–14]. These sys-

tems aim at providing decision support to medical professionals. Also they help

keep family members informed about the patient's condition.

. Describe concepts in the knowledge base. Natural OWL [1] is a natural language

generation system that has been used to describe museum artifacts. The system

supports multilingual language and multi-user model text generation.

. Develop interactive question answering [15], generate adaptive stories [16], and

dynamic drama plots [17]. The unique characteristic of these systems is that they

are capable of handling the user interaction in the generation process.

. Present geo-referenced data available for visually impaired population, as in [18].

Geo-referenced data is often in the form of maps and so is hard or impossible for

users with visual impairment to access. Thomas and Sripada's system takes this

kind of data representation as input and generates textual summaries which can be

read out loud to users via screen reader software and thus help overcome the visual

impairment issue.

In addition, NLG technology can be used to build authoring aid systems that help

people create routine documents. Examples of using NLG as an authoring aid include

as follows.

. Helping domain experts to encode their knowledge directly, by interacting with a

feedback text generated by the system, as the work proposed by Power [19]. Power

developed the What You See Is What You Meant (WYSIWYM) system that is a

NLG framework that allows domain expert users to create and manipulate

knowledge representations, such as those required by the Semantic Web using a

natural language interface, thereby editing the formal language without learning

it. Some works on OWL ontology verbalizers like the Sydney OWL syntax [3], the

Rabbit controlled natural language [4], the Attempto Controlled English (ACE)

[5] are attempts to make OWL ontologies accessible to people with no training in

formal methods. Further details about these ontology verbalizers will be given at

the end of this section. Information about OWL ontologies and the Semantic Web

will be presented in the next section.

. Helping personnel o±cers produce multilingual job advertisements, as in [20]. Job

adverts are stored as language-independent schemas in the database. Users can

search the database in their own language and get customized summaries of the

job ads. This NLG engine used canned text, templates, and grammar rules to

produce texts and hypertexts.

. Helping technical authors produce instructions for using software, as in [21, 22].

The technical author speci¯ed the instructions of di®erent tasks in a non-linguistic

representation. NLG engines will express these content speci¯cations as instruc-

tional texts that conform to the style of software user manuals.

Natural Language Generation from Graphs 341

2.4. NLG architecture

Though di®erent NLG systems have di®erent architectures and cover di®erent tasks,

Ehud Reiter in [23] summarized that almost all applied NLG systems perform the

following three tasks.

. Content Determination and Text Planning: Decide what information should be

communicated to the user (content determination) and how this information

should be rhetorically structured (text planning). These tasks are usually done

simultaneously.

. Sentence Planning: Decide how the information will be split among individual

sentences and paragraphs, and what cohesion devices (e.g. pronouns, discourse

markers) should be added to make the text °ow smoothly.

. Realization: Generate the individual sentences in a grammatically correct manner.

This set of tasks might not cover all the possible problems associated with a natural

language generation system. Also di®erent NLG engines might address them dif-

ferently and/or in a di®erent order. However, all these issues must be dealt with one

way or another by a complete NLG system. In the rest of this section, di®erent ways

of performing each of these tasks shall be brie°y discussed.

2.4.1. Content determination and text planning

Content determination decides what information to communicate in the text. In

most NLG systems, NaturalOWL for example, the set of information related to an

individual in the ontology contains information about its properties, the individuals

or classes that it connects to, and information related to those individuals or classes.

Generally, not all this information should be output in the text since there might be

repetition and also the user might have already known something. So the task of the

content determination module in that case is to decide what should be included in the

output text and what should not. In other words, it is responsible for selecting some

appropriate subset of the available information.

However, the content determination module of NLGG is slightly di®erent. Be-

cause the set of facts communicated in the text is ¯xed in the NLGG system; its

content determination module only decides how a fact should be output to the user

by °exible use of inverse, symmetric properties as given in the knowledge base. For

example, instead of output `̀ C hasParent A", NLGG chooses `̀A hasChild C" so that

it can be aggregated with another fact `̀ A hasChild B" in the input to produce the

sentence `̀ B and C are A's children". Further details about this shall be given in

Sec. 4 when the NLGG system architecture is presented.

Text planning organizes the information into a rhetorically coherent structure.

These tasks can be done at many di®erent levels of sophistication, ranging from hard-

coded, rule-based to special schema or special language. The more sophisticated

the system's content determiner and text planner, the more °exibility the system

342 N. T. Dong & L. B. Holder

engineer has in generating rhetorical and sentence structure. NaturalOWL organizes

facts according to distance from the individual or class being described. Facts that

have the same distance are organized according to handcrafted ordering annotations

in the knowledge base. NLGG does some slightly di®erent text planning jobs. Since

NLGG has no notion of focus point (i.e. the individual or class being described as in

NaturalOWL), NLGG groups facts into three types: class de¯nitions, individuals'

attributes and individuals' relationships; and organizes them in that order. Facts in

the same category are organized by priorities (which are included in the knowledge

base). Lack of focus point might make the text less cohesive or look unnatural.

However, for a small piece of text, we ¯nd no such problems in this document

structuring strategy.

2.4.2. Sentence planning

Sentence planning includes the following three operations.

. Conjunction and other aggregation. For example, transforming (a) into (b):

(a) Sam has high blood pressure. Sam has low blood sugar.

(b) Sam has high blood pressure and low blood sugar.

. Pronominalization and other reference. For example, transforming (c) into (d):

(c) I just saw Mrs. Black. Mrs. Black has a high temperature.

(d) I just saw Mrs. Black. She has a high temperature.

. Introducing discourse markers. For example transforming (e) into (f):

(e) If Sam goes to the hospital, he should go to the store.

(f) If Sam goes to the hospital, he should also go to the store.

The common theme behind these operations is that they do not change the infor-

mation content of the text, but they do make it more °uent and readable. Look at the

text generated by NaturalOWL in Fig. 4. We can see that it does a good aggregation

job as well as °exibly uses pronouns and reference (e.g. `̀ this particular aryballos",

exhibit24: This is an aryballos, a kind of vessel. An aryballos was a
small spherical vessel with a narrow neck, in which the athletes kept
the oil they spread their bodies with. This particular aryballos was
found in the Heraion of Delos and it is currently exhibited in the
Archaeological Museum of Delos. It was created during the archaic
period. The archaic period was the time during which the Greek ancient
city-states developed and it covers the time between 700 B.C. and 480
B.C. This aryballos was decorated with the black-figure technique. In
the black-figure technique, the silhouettes are rendered in black on the
pale surface of the clay and details are engraved.

Fig. 4. Example output produces by the NaturalOwl system.

Natural Language Generation from Graphs 343

`̀ it", and `̀ this aryballos" were used interchangeably to refer to the item being de-

scribed (i.e. exhibit24)). NLGG's sentence planning module only covers the ¯rst task

out of the three listed at the beginning of this section. That means NLGG's text

planning (or document structuring) will only aggregate sentences and does not

support the use of pronominalization or other reference and neither does it consider

discourse markers. This is partly due to the simple type of template used as well as

the lack of focus point in the generated text. Further details about NLGG's aggre-

gation strategies shall be given in the next section.

To sum up, sentence planning is fundamental if the text's °uency is important,

and it should look like it was written by a human (which is usually the case for a

museum guide agent, for example). If it does not matter that the text sounds stilted

and was obviously produced by a computer, then it may be possible to de-emphasize

sentence planning, and perform minimal aggregation, use no pronouns, etc. Other-

wise, a good job of sentence planning is essential.

2.4.3. Realization

A realizer generates individual sentences, typically from a deep syntactic represen-

tation. The realizer needs to make sure that the rules of English are obeyed, including

the following.

. Point absorption and other punctuation rules. For example, the sentence `̀ I saw

Helen Jones, my sister-in-law" should end in `̀ .", not `̀ ,.".

. Morphology. For example, the plural of `̀ box" is `̀ boxes", not `̀ boxs".

. Agreement. For example, `̀ I am here" instead of `̀ I is here".

. Re°exives. For example, `̀ John saw himself" instead of `̀ John saw John".

There are numerous linguistic formalisms and theories that can be incorporated into

an NLG realizer. Among those, the SimpleNLG [24] is a general NLG system that

serves as a `̀ realization engine" and has been used successfully in a number of pro-

jects. NLGG uses SimpleNLG to do the realization jobs. Looking at the output text

in Fig. 1, we can see that punctuation rules and morphology (e.g. use `̀ children"

instead of `̀ childs") have been successfully followed in the output text.

2.5. NLG systems evaluation

The two most popular NLG evaluation methods are those based on task performance

and human judgments/ratings. Task-based evaluation evaluates an NLG system by

assessing human performance on a task in the application domain. This type of

evaluation is helpful when NLG developers need to persuade someone with di®erent

expertise (for example, a doctor or a psychologist) about the usefulness of the NLG

system. However, it can be expensive and time-consuming to carry out. Human

ratings and judgments ask human experts to judge/rate the generated text on some

scales. Human-based evaluation tends to be quicker and cheaper to carry out, and

344 N. T. Dong & L. B. Holder

thus seems to be preferred over task-based evaluation. Another reason that makes

human judgments more prominent is that it is not always possible to conduct

meaningful task-based evaluations on some NLG systems. Further details

about these methods will be given below. Some other evaluation e®orts that focus

on NLG individual components will also be brie°y presented at the end of this

subsection.

2.5.1. Task-based evaluation

Task-based evaluation looks at human users' success or failure in performing a task

in the application domain using the NLG system in question. STOP [25] is a NLG

system for generating personalized smoking-cessation letters. It was evaluated on the

basis of medical e®ectiveness. The authors sent a group of 2000 smokers either

STOP-generated letters or one of two kinds of control letters, and measured how

many smokers in each group managed to quit smoking. SKILLSUM [11], which

generates feedback reports from literacy assessments, was evaluated on the basis of

educational e®ectiveness. They gave 200 assessment takers either SKILLSUM texts

or control texts, and measured whether they increased the accuracy of self-assess-

ments of their literacy skills. The Generating Instructions in Virtual Environments

(GIVE) [26] represents another set of current attempts in task evaluations. GIVE is a

community-shared task. Users connect to the NLG systems via the Internet. The

NLG systems' tasks are to generate real-time instructions that help users accomplish

a `̀ treasure hunt" task in a virtual 3D environment. User performance is logged and

used to analyze the quality of the generated instructions. Three installments of GIVE

have been run so far from 2008 to 2012. GIVE is one of the largest ever NLG

evaluation e®orts in terms of the number of experimental subjects. The GIVE or-

ganizing committee claims that their results are agreeable but more detailed than

those that were obtained from lab-based evaluations.

Task-based evaluations have traditionally been regarded as the most meaningful

kind of evaluation in NLG, especially in the context where the evaluation needs to

convince people in other communities about the e®ectiveness/usefulness of the NLG

applications (e.g. psychologists and physicians). However, they can be expensive and

time-consuming. Reiter and Belz [27] summarized that the STOP evaluation cost

UK£75,000, and required 20 months to design, carry out, and analyze; the SKILL-

SUM and one of the BabyTalk systems cost UK£20,000 over six months. These

studies cost a great deal of money and time, which cannot be a®orded by every NLG

system.

2.5.2. Evaluation based on human judgments or ratings

Evaluation based on human judgments or ratings asks human experts to judge the

quality of generated texts on an n-point rating scale. This type of evaluation is the

most popular way of evaluating NLG systems, because it is relatively cheap and

Natural Language Generation from Graphs 345

quick to carry out. Also it can provide insights into the general strengths and

weaknesses of the NLG technology.

This methodology was ¯rst used in NLG by Lester and Porter [28]. They asked

eight domain experts each to rate 15 texts on a number of di®erent dimensions:

overall quality and coherence, content, organization, writing style, and correct-

ness. Some of the texts were human written and some were computer-generated,

but the judges did not know the origin of speci¯c texts they read. Many more

such evaluations have been performed since, often with fewer dimensions. A var-

iation of this technique is to show subjects di®erent versions of a text, and ask

them which one they prefer. We use this type of evaluation to evaluate the text

generated by the NLGG system. Output texts from a Simple Verbalizer are

compared with the results generated by NLGG. The Simple Verbalizer uses no

template nor requires any manual syntactic or lexical information. It simply reads

in RDF triples and for each triple uses simple rules to generate English text.

Further details about the Simple Verbalizer based NLGG evaluation are given in

the next section.

2.5.3. Other works

Besides the above two methodologies, NLG researchers also pay attention to the

evaluation of the performance of individual components inside an NLG system. Yeh

and Mellish [29], for example, evaluated the performance of a referring expression

generation algorithm by comparing its decision about which type of referring ex-

pression was appropriate in a given context to the decision made by human writers

who were given the same problem.

The surface realizer shared task [30] is an ongoing research e®ort in which they

manually evaluate and compare the performance of di®erent surface realizers, whose

inputs are the same, in terms of Clarity, Readability and Meaning Similarity. The

RDF-content selection shared task challenge [31] is another recent community e®ort

on content selection from a common semantic-web format input. Participants were

asked to select the content communicated from a large volume of RDF triples about

reference biographies. The selected triples are evaluated against a gold triple selec-

tion set using standard quality assessment metrics. Since those works can only

evaluate individual parts inside an NLG system, there is some concern that the

results of such evaluations may not be meaningful.

Overall, human ratings are currently the most popular evaluation technique in

NLG. There are, as yet, no de¯nitive answers as to how NLG systems should be

evaluated.

2.6. Di®erence between NLGG and existing works

To summarize our discussion about NLG systems, we present a comparison between

our NLGG system and some existing systems, which include NaturalOWL, Ontology

Verbalizers, and the domain independent sentence generator.

346 N. T. Dong & L. B. Holder

2.6.1. NLGG versus NaturalOWL

NaturalOWL [1] is a multilingual natural language generation system that produces

personalized descriptions of individuals and classes starting from a linguistically

annotated ontology (the M-PIRO's museum ontology) (Fig. 5). NaturalOWL is a

template-based system that requires manual input for various types of templates.

Besides lexicon information for classes, instances and properties, it also requires

information about user models, micro-plans with regards to user types, canned texts

(a ¯xed string associated with a class or properties) and aggregation rules. Rich

lexical and template information makes the knowledge base creation process of

NaturalOWL expensive and time consuming. However, it enables the system to

generate more complex types of text, which contains referring expressions and is

customized according to user models. In addition, referring expressions generation

helps avoid repetition and thus makes the output text more coherent and °ow

smoothly. Figure 5 presents information about one individual of class aryballos

(exhibit24) stored in the system's ontology. Figure 4 shows NaturalOWL generated

text for that individual. Figure 6 gives an example of a lexicon entry to a class which

is much more complicated than that of NLGG (which is given in Table 1, Sec. 4.1).

So NLGG and NaturalOWL are both template-based NLG systems whose inputs

contain an annotated OWL ontology. However, there are three main di®erences

between NLGG and NaturalOWL. First, their types of output text are di®erent.

NaturalOWL can produce multilingual personalized text with referring expressions

while NLGG can only generate a ¯xed small simple piece of English text for a given

set of facts. Second, the type of template information required by NLGG is much

simpler than that of NaturalOWL. We can see a signi¯cant di®erence by comparing

Fig. 6 and Table 1 (Sec. 4.1). In short, NLGG requires only one type of template for

classes and properties and that type of template is much simpler than that required

by NaturalOWL. And ¯nally, the content determination and document structuring

of the two systems are fundamentally di®erent. While NaturalOWL content deter-

mination module's task is to collect appropriate facts associated with a given class or

individual, NLGG's content determination module tries to switch the way a set of

given facts will be rendered to the user. NaturalOWL's document structuring

<creation-
<creation- -
<exhibit- -
<location- -
<painting-technique- -figure-
<exhibit-story rdf:reso
<creation- -

</aryballos>

Fig. 5. Entry for the exhibit24 artifact in the M-PIRO's museum ontology.

Natural Language Generation from Graphs 347

strategies are based on the distance from the individual/class being described, while

that of NLGG is based on the type of facts. In summary, though the two systems are

both template-based NLG systems using OWL ontologies, they have di®erent types

of input (communicative goals, knowledge base (i.e. template)), and thus support

di®erent types of output text.

<owlnl:owlClass rdf:about = http://.../mipro.owl#vessel>

-

</owlnl:owlClass>

-

<owlnl:GreekNP>

<owlnl:countable>yes</owlnl:countable>

<owlnl:num>singular</owlnl:num>

<owlnl:gender>neuter</owlnl:gender>

<owlnl:singular>

<owlnl:singularForms>

<

</owlnl:singularForms>

</owlnl:singular>

<owlnl:plural>

<owlnl:pluralForms>

<owlnl:nominativexml:lan

</owlnl: pluralForms>

</owlnl: plural>

</owlnl:GreekNP>

<owlnl:EnglishNP>

<owlnl:countable>yes</owlnl:countable>

<owlnl:num>singular</owlnl:num>

<owlnl:gender>neuter</owlnl:gender>

<owlnl:singular>vessel</owlnl:singular>

<owlnl:plural>vessels</owlnl: plural >

</owlnl: EnglishNP >

</owlnl:LanguagesNP>

</owlnl:NP>

Fig. 6. A lexicon entry for a class in the NaturalOwl system.

348 N. T. Dong & L. B. Holder

2.6.2. NLGG versus domain independent sentence generation

from RDF representations

Sun and Mellish [2] proposed a generic method for independent sentence generation

from RDF representations based on the observation that RDF triples contain rich

implicit linguistic information. Input to the system is a list of connected RDF triples,

and they assume that the number of RDF triples is not too much for a single sentence

(no more than 10 triples). For each triple, they use WordNet to parse it into tokens.

After that, the syntax and linguistic information of those tokens is guessed based on

a set of handwritten rules. Their system lexicalizes a property as a Verb Phrase (VP)

or a Prepositional Phrase (PP). Examples of their type of phrases in the paper are

restricted to the form of `̀ has something" for a VP and similarly, `̀ with something"

for a PP. Their generation strategies go through a number of expensive operations

involving the creation of a tree, lexicalizing, shifting, balancing and aggregating to

have a complete lexicalized syntax tree. They placed a number of restrictions in their

algorithm, and a formal evaluation has not been given yet. Figure 7 gives an example

of the input and output from the domain independent sentence generator. Figure 8

gives an example of the text that might be generated by NLGG given the input graph

as in Fig. 7. We can observe several di®erences between the two systems' output

texts. NLGG cannot use pronouns while the domain independent sentence generator

uses the pronoun `̀ it" in the second sentence to replace `̀ LongridgeMerlot" in the

¯rst sentence. NLGG can verbalize `̀ hasMaker" as `̀ is made by" while the sentence

verbalizer cannot.

So there are two fundamental distinctions between Sun and Mellish's work and

ours. First, they support di®erent kinds of RDF graphs. We do not restrict the size of

the input RDF graph to 10 triples nor the content to only one individual or one class

as that of the domain independent sentence generator. Second, the domain inde-

pendent sentence generator does not require manual input of lexical information

while NLGG does require it. Further information about NLGG's template will be

given in Sec. 4.1.

RDF Triples:
(LongridgeMerlot, RDF:type, Merlot)
(LongridgeMerlot, locatedIn, NewZealandRegion)
(LongridgeMerlot, hasMaker, Longridge)
(LongridgeMerlot, hasSugar, Dry)
(LongridgeMerlot, hasFlavor, Moderate)
(LongridgeMerlot, hasBody, Light)

English Text:
LongridgeMerlot is a kind of Merlot with dry sugar,
moderate flavor and light body. It is located in New
Zealand Region and it has maker Longridge.

Fig. 7. Example input and output from the domain independent sentence generator.

Natural Language Generation from Graphs 349

Domain Independent NLG is the most economic and generic way of generating

natural language text. However, we argue that this approach is problematic for four

main reasons. First, using only simple rules to ¯nd neighborhoods in the tree and

placing a number of restrictions on the tree size and structures limits the system's

capability. Second, their system performance depends heavily on WordNet's analysis

result as well as the coverage of their handwritten rules which were extracted based

solely on the set of RDF triples in their set of ontologies. WordNet has errors and

there is no threshold for that error rate, especially when the predicate in an RDF

triple can be any string and can be used in any structure. Also, parsing and guessing

syntactic information for a set of tokens reintroduces another set of problems facing

today's Web: interpreting natural language automatically. Thus, there is no guar-

antee about the system's performance on a new ontology that is di®erent from what

they have observed so far. Third, lexicalizing a property into `̀ has something" or

`̀ with something" is too restrictive. It fails to render properties like `̀ bornIn" or

`̀ teach", etc. And ¯nally, their syntactic and lexical meaning guesser fails even in the

cases where the predicate does follow their assumed forms (e.g. predicates start with

verb or noun: the predicate `̀ http://xmlns.com/foaf/0.1/maker" should be inter-

preted as `̀ is made by"). From those observed restrictions, we believe that an NLG

system for small RDF graphs is still needed, and that requiring simple template

information to be manually input into the system is appropriate.

2.6.3. NLGG versus ontology verbalizers

It is a common belief that the mathematical nature of description logics makes it

di±cult for non-logicians such as domain experts to understand and author OWL-

based ontologies [32]. Based on this, [3–5] proposed three controlled natural lan-

guages that aim at assisting non-OWL experts in building an ontology in OWL. A

controlled language is a subset of natural language with constraints on grammar,

lexicon and style. Ontology verbalizers like those mentioned earlier try to transform

a hierarchy of classes, object properties, and data type properties into English text.

They use a set of construction rules to de¯ne the syntax and another set of inter-

pretation rules for dealing with ambiguity. Figure 9 gives an example of input and

output from those ontology verbalizers where ACE, RAB, and SOS respectively refer

to systems described in [3–5].

So the ¯rst di®erence between NLGG and these ontology verbalizers lies in the

type of input into each system. While current work on ontology verbalizers only

NLGG English Text:
Longridge Merlot is a Merlot. Longridge Merlot locates
in New Zealand Region. Longridge Merlot is made by
Longridge. Longridge Merlot has dry sugar, moderate
flavor and light body.

Fig. 8. Output that might be generated from NLGG for the input graph in Fig. 7.

350 N. T. Dong & L. B. Holder

supports concept de¯nitions, NLGG allows relationships and attributes of indivi-

duals/classes to be included in the output text. What is more, the syntax rules and

lexicalization rules are hard-coded into those ontology verbalizers, while in NLGG

they are passed in as templates. That makes NLGG more °exible and easier to adapt

to changes.

In summary, to the best of our knowledge, NLGG is the ¯rst work in the ¯eld that

deals with the task of verbalizing a small, connected RDF graph. There are existing

NLG works on RDF and OWL ontology, but we argue that they do not meet the

need of our current problem statement. NaturalOWL only focuses on generating

descriptions for an individual or a class, and the expensive annotation process makes

it infeasible for a general NLG engine. Domain independent sentence generator is

e±cient and general, but it reintroduces several other hard problems that have not

been solved yet. Also hard-coded rules and restrictions make the system only a novel

approach that still needs more research e®ort before it can be used in real-world

applications. As regards to the work on ontology verbalizers, their goals and scopes

are di®erent from NLGG. Thus, we believe that NLGG meets the need of a general,

e±cient NLG system for a speci¯c group of Semantic Web applications in which

output of the system is a small RDF graph.

3. The Semantic Web and OWL 2 Ontology

As we have previously mentioned, RDF triples are designed for computers and

thus, hard for non-expert users to understand. Natural language generation in

this case will help bridge the gap between the Semantic Web representation

and natural language so that people who are not domain experts can still access

information. The di±cult to understand nature of the Semantic Web data is the

main motivation behind our work. In this section, further details about that

computational representation shall be discussed. We start with a brief overview

about the Semantic Web and its applications. Next, we present an introduction to

the OWL 2 Ontology language, RDF/XML syntax and the two types of RDF triples.

And ¯nally, an overview about Semantic reasoners will be given at the end of

this section.

OWL SubClassOf(OWLClass(factory),
ObjectSomeValuesFrom(ObjectProperty(has-part),
ObjectIntersectionOf([ObjectSomeValuesFrom(ObjectProperty(has-purpose),
OWLClass(manufacturing)), OWLClass(building)])))

ACE For every factory its part is a building whose purpose is manufacturing
RAB Every Factory has a part Building that has Purpose Manufacturing
SOS Every factory has a building as a part that has a manufacturing as a purpose

Fig. 9. Example output from three ontology verbalizers: ACE, RAB and SOS.

Natural Language Generation from Graphs 351

3.1. The semantic web

The Semantic Web is a collaborative movement led by the World Wide Web Con-

sortium (W3C). The motivation behind the Semantic Web is to convert existing

Web documents into a giant graph of semantically rich data that makes reuse,

sharing, combining and searching information easier. Tim Berners-Lee originally

expressed the vision of the Semantic Web as follows [33].

`̀ I have a dream for the Web [in which computers] become capable of ana-

lyzing all the data on the Web ��� the content, links, and transactions

between people and computers. A `̀ Semantic Web", which should make this

possible, has yet to emerge, but when it does, the day-to-day mechanisms of

trade, bureaucracy and our daily lives will be handled by machines talking to

machines. The `̀ intelligent agents" people have touted for ages will ¯nally

materialize."

The Semantic Web has received more and more attention among research com-

munities recently. Current research e®orts include the announcement of Google

Semantic Web search, the Linked Open Data community project, the annotation of

Facebook, and Twitter OpenGraph. There is also an increasing research e®ort both

from academic and commercial companies to integrate the Semantic Web into

existing applications. In the past decade, the Semantic Web research community has

been growing fast in size and scope. Large companies like Oracle, IBM, Adobe,

Software AG and Yahoo have already o®er business solutions based on this tech-

nology. The announcement of schema.org from Yahoo, Bing and Google has also

facilitated the creation of more semantically rich data.

Semantic Web technologies have been used in a variety of domains, including but

not limited to broadcasting [34], health care [35–37], search [38–40], public institu-

tions [41], and eGovernment [42, 43]. The complexity and variety of applications

referring to the Semantic Web is increasing every day.

In summary, the Semantic Web and related applications have received signi¯cant

attention recently. The number, functionality and scope of the Semantic Web

applications keep growing. Consequently, they result in the generation of more and

more data in the Semantic Web language.

3.2. The OWL 2 ontology language and the resource description

framework (RDF)

RDF is a language for describing things on the Semantic Web. Web resources are

expressed as RDF triples or statements. Each triple has a subject, a predicate and an

object. A triple represents a directed relationship between its subject and its object.

A Uniform Resource Identi¯er (URI) reference within an RDF graph (an RDF URI

reference) is a Unicode string that is used to identify a name or a resource over a

network (typically the World Wide Web). Literals are used to represent values such

as numbers or dates. In this work, we restrict literals to strings. The input to our

352 N. T. Dong & L. B. Holder

system is a small RDF graph which is the output of another system (e.g. a frequent

subgraph miner [44, 45]). We assume that each graph is represented by a set of

vertices and edges. Further details about RDF graph input into the NLGG system

will be presented in Sec. 4.1.

Heath and Bizer [46] divide RDF triples into two categories. RDF links are used to

express relationships between two resources. An RDF link consists of three URI

references corresponding to the subject, predicate and object in the triple. The

predicate URI refers to the type of relationship between two related resources. An

example of RDF links is the triple `̀ http://www.co-ode.org/roberts/family-tree.

owl#john william folland http://www.co-ode.org/roberts/family-tree.owl#hasParent

http://www.co-ode.org/roberts/family-tree.owl#m136" which is illustrated in

Fig. 10. The `̀ http://www.co-ode.org/roberts/family-tree.owl#john william folland",

`̀ http://www.co-ode.org/roberts/family-tree.owl#hasParent", and `̀ http://www.co-

ode.org/roberts/family-tree.owl#m136" are URI. RDF literals describe the proper-

ties of resources (e.g. name, date of birth of a person). The subject and predicate in

an RDF literal are URIs, but the object is represented by a literal. An example of an

RDF literal is `̀ http://www.co-ode.org/roberts/family-tree.owl#john william folland

http://www.co-ode.org/roberts/family-tree.owl#hasFamilyName `̀ Folland"" where

`̀ http://www.co-ode.org/roberts/family-tree.owl#john william folland" and `̀ http://

www.co-ode.org/roberts/family-tree.owl#hasFamilyName" are URIs and `̀ Folland"

is a string.

An ontology is an explicit speci¯cation of conceptualization [47] which contains a

description about concepts and their relationships. Ontology languages are formal

languages used to construct ontologies. The OWL 2 Web Ontology Language is an

ontology language for the Semantic Web. According to W3C [48], an OWL 2 on-

tology contains information about concepts, properties and types of relationships

between objects in a speci¯c domain. Any OWL 2 Ontology can be viewed as an RDF

graph and vice versa. Classes de¯ne concepts. Individuals are instances of classes.

Individuals represent resources/entities on the Semantic Web. Data values or

datatype properties correspond to individuals' attributes or characteristics. Prop-

erties or Object properties refer to relationships between individuals. For simplicity,

from now on we will use the word `̀ relationship" to refer to an object property and

`̀ attribute" to refer to a data type property in an ontology. We use Pðx; yÞ to denote

a direct relationship between x and y, where x, y, and P are correspondingly the

subject, object and relationship type (or predicate). In OWL 2, a symmetric property

P is a property such that if Pðx; yÞ is true then Pðy; xÞ also holds true. If two

properties P1 and P2 are inverse then P1(x, y) is true i® P2(y,x) is also true.

The RDF/XML syntax [49] is standardized by the W3C and is widely used to

publish Linked Data on the Web. The primary syntax for OWL 2 is RDF/XML.

While RDF/XML provides a standard, other syntaxes may also be used. Alternative

RDF speci¯cations include, but are not limited to, Turtle [50], XML serialization

[51], the Manchester syntax [52], and the functional-style syntax [51]. These can be

easily changed into RDF/XML format by using tools like Jena (jena.apache.org).

Natural Language Generation from Graphs 353

The RDF/XML syntax is described in detail as part of the W3C RDF Primer [53].

An example of RDF triples in RDF/XML format is given in Fig. 10. The ¯rst triple

states that there is a thing, identi¯ed by the URI `̀ http://www.co-ode.org/roberts/

family-tree.owl#john william folland" of type Person. The second triple states

that this thing has the family name `̀ Folland". The third triple states that

`̀ john william folland" has a `̀ hasParent" relationship with a thing which is identi-

¯ed by the URI `̀ http://www.co-ode.org/roberts/family-tree.owlm136".

3.3. Semantic reasoners

Reasoning is the process of inferring new facts that are not explicitly stated in the

ontology or knowledge base. As Marek Obitko pointed out in his dissertation [54], a

few tasks required from a semantic reasoner (or reasoner) are as follows.

. Satis¯ability of a concept — determine whether there is a contradiction in the

concepts' de¯nitions.

. Subsumption of concepts— determine whether concept C is a subclass of concept D.

. Check an individual — check whether the individual is an instance of a concept.

. Retrieval of individuals — ¯nd all individuals that are instances of a concept.

. Realization of an individual — ¯nd all concepts the individual belongs to, espe-

cially the most speci¯c ones.

. Retrieval of relationships — ¯nd all relationships related to the individuals in the

ontology.

There are a number of existing reasoners both proprietary and free software. Jena

(jena.apache.org) is a free Semantic Framework for Java. Jena has its own

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.co-ode.org/roberts/family-tree.owl#"

xml:base="http://www.co-ode.org/roberts/family-tree.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf -schema#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w 3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:NamedIndividual rdf:about="http://.../family-tree.owl#john_william_folland">

<rdf:type rdf:resource="http://.../family-tree.owl#Person"/>

<hasFamilyName>Folland </hasFamilyName>

<hasParent rdf:resource="http://.../family-tree.owl#m136"/>

</owl:NamedIndividual>

</rdf:RDF>

Fig. 10. Example of RDF/XML onology.

354 N. T. Dong & L. B. Holder

specialized reasoning engine that works with RDF and OWL data sources. Also it is

possible to connect the description logic reasoner Pellet [55] directly to Jena to have

more reasoning power.

In short, RDF is the basic fabric behind the Semantic Web. Web resources are

represented as RDF triples. Each triple contains URIs and may contain a string. The

arbitrary nature of URIs makes Semantic Web documents hard for non-expert users

to understand. Since natural language is the most human-friendly form or repre-

sentation, and there are more and more data available in RDF format, we believe a

natural language generation system whose task is to verbalize a set of RDF triples is

needed. The next section presents our proposed NLGG system, its input format,

system architecture and generation algorithm.

4. The NLGG System

Figure 1 presented an example of the input and output of our Natural Language

Generation from Graphs (NLGG) system. NLGG is a template-based NLG engine. It

uses a pipeline architecture which consists of three processing stages: (1) model

preparation and content determination, (2) document structuring, and (3) lexicali-

zation, aggregation and realization. Input to NLGG is a directed graph, along with

the corresponding lexical information, and output from NLGG is a piece of English

text. This section presents information about the input, type of output text and the

architecture of the NLGG system.

4.1. Input to NLGG

As mentioned in Sec. 3, in a RDF/XML ontology, a class de¯nes a concept. An indi-

vidual is an instance of a class and is equivalent to a SemanticWeb resource/entity. An

object property represents a type of connection between two individuals. A datatype

property represents an attribute/characteristic of an individual. Each class, individ-

ual, object property or datatype property is represented by a unique Universal Re-

source Identi¯er (URI). Literals are strings in our system. We use the words

relationship and attribute to refer to an object property and data type property in an

ontology, respectively. For simplicity, we will use alias names to refer to URIs. We use

isa to represent a class de¯nition predicate (which is actually http://www.w3.org/

1999/02/22-rdf-syntax-ns#type). For other URIs, we eliminate the name space and

use only the fragment identi¯ers to those URIs. For example, we use only hasChild to

refer to the URI http://www.co-ode.org/roberts/family-tree.owl#hasChild, Person

to refer to http://www.co-ode.org/roberts/family-tree.owl#Person, etc.

General RDF graphs consist of triples where only individuals will be at the two

ends of a relationship (except class de¯nitions) or attribute edge. However, output

from some systems, such as a frequent subgraph miner, is not always in that form.

They can have classes connected by relationship edges or a class link to a string by an

attribute edge. Figure 11 gives an example of such a graph. The graph was taken

Natural Language Generation from Graphs 355

from the output of the frequent subgraph miner [44] on a semantic graph data set.

We can see that all the nodes in the ¯gure are general nodes. So to address the

general nodes problem, the directed graph input to our natural language generator is

a modi¯ed version of RDF graphs in which labels for vertices can be class URIs,

individual URIs or strings. Labels for edges can either be relationship URIs or at-

tribute URIs. Figure 11 illustrated a sample input graph to the system where `̀ v"

indicates a vertex, and `̀ d" indicates a directed edge. Since any RDF graph can be

easily converted into this form, the extension to the system input only enriches the

coverage of the system.

Almost every NLG system needs syntactic and lexical information to be included

in the knowledge base. An RDF URI reference is just a string. And as we pointed out

in Sec. 2, automatically guessing semantic information from an RDF URI reference is

problematic and thus is not feasible. Therefore, besides the small RDF graph, input

to our system includes an ontology along with the template information for its

classes, relationships and attributes. We try to keep the amount of manual work

involved as small as possible. Therefore, the type of template input into our system is

very simple. Further details about this are given below.

4.1.1. Template information about classes, relationships and attributes

For each class, we require the user to input information about its singular and plural

forms. Existing morphology tools can generate plural forms of a single-word noun.

But for a concept represented by multiple words like BrotherInLaw (refers to a

brother in law), they fail to generate their correct plural forms. So NLGG requires

plural forms of the concepts to be input as well. Table 1 illustrates template infor-

mation for the Brother, BrotherInLaw, Cousin, Daughter and DaughterInLaw classes

in the family ontology. ClassID, singular, and plural are, respectively, the class's

URI, singular and plural form.

Because the NLGG system is designed to require minimal manual work, each

template for a relationship/attribute consists of only the slots for basic syntax

Fig. 11. Example output from a frequent subgraph miner applied to a large FOAF graph.

356 N. T. Dong & L. B. Holder

components in a sentence. For each relationship (object property), we require in-

formation about the following.

. verb

. priority

. object

. complement

. voice (passive/neutral)

Table 2 shows some example relationship templates, where #subject represents the

subject in the triple, and #object represents the object in the triple. The object in the

relationship template should be a noun or a noun-phrase. A complement is whatever

comes after an object. We de¯ne a special string null to represent the absence of an

object/complement in a relationship template. Priority gives system engineers the

ability to order output facts in the same category. This is helpful when the system

engineer might want speci¯c types of information be output before others. Consid-

ering the family ontology, we might want information about blood and husband/wife

relationships to come before information about in-law or other relationships. In this

case, we set the priority of relationships like hasParent, hasChild, and isWifeOf

higher than those of hasAuntInLaw and isUncleOf. Table 2 gives some of our rela-

tionship templates for the family ontology where smaller values mean higher prior-

ities. Example 2 in Appendix A presents an example of how priorities help organize

the content of the generated text. There are four relationships in the input graph.

Information about in-law relationships (hasBrotherInLaw and hasAuntInLaw)

comes before information about family relations (isWifeOf and hasParent). Without

Table 2. Example relationship templates from the family ontology.

ObjectPropertyID Priority Verb Object Complement Voice

http://. . ./family-tree.owl#hasAuntInLaw 3 be #subject's aunt in law passive

http://. . ./family-tree.owl#hasBrother 1 be #subject's brother null passive
http://. . ./family-tree.owl#hasBrotherInLaw 3 be #subject's brother in law passive

http://. . ./family-tree.owl#hasChild 1 be #subject's child null passive

http://. . ./family-tree.owl#hasParent 1 be #subject's parent null passive
http://. . ./family-tree.owl#isUncleInLawOf 3 be #object's uncle in law neutral

http://. . ./family-tree.owl#isUncleOf 2 be #object's uncle null neutral

http://. . ./family-tree.owl#isWifeOf 1 be #object's wife null neutral

Table 1. Example class templates for the family ontology.

ClassID ClassLabel Singular Plural

http://. . ./family-tree.owl#Brother Brother brother brothers

http://. . ./family-tree.owl#BrotherInLaw Brother In Law brother in law brothers in law
http://. . ./family-tree.owl#Cousin Cousin cousin cousins

http://. . ./family-tree.owl#Daughter Daughter daughter daughters

http://. . ./family-tree.owl#DaughterInLaw Daughter In Law daughter in law daughters in law

Natural Language Generation from Graphs 357

the use of priority, information about relationships will be output in that order.

However, looking at the NLGG output text, since hasParent and isWifeOf have

higher priorities, the text associated with them has been output before text about in-

law relationships. In general, more important information should be given higher

priority (smaller value). Facts in the same category (class de¯nition, attribute or

relationship information) will be organized according to relationship/attribute pri-

orities. Further details will be given in the Document Structuring and Aggregation

section. Table 2 demonstrates template information for eight relationships in the

family ontology where ObjectPropertyID refers to a relationship URI.

Template information for an attribute is similar to that of a relationship. How-

ever, the `̀ voice" ¯eld is replaced by `̀ isBoolean" which is used to represent whether

this is a boolean attribute or not (true/false value). Table 3 shows some examples of

attribute templates for the family ontology, where DatatypePropertyID corresponds

to an attribute URI. The GH `̀ GrayHat" ontology is extracted from a defense-related

project about people in a military-controlled area, their attributes and relationships

(more detail is given in Sec. 5 describing experimental results).

4.2. Preprocessing

Suppose the user of the system is doing frequent subgraph mining on a RDF graph

taken from a social network. The graph consists of information about thousands of

users and their activities, their relationships, etc. Traditional NLG approaches, like

that of the NaturalOWL system, would possibly build a large ontology from that

large graph, annotate and then take it as input to their system. Apart from the huge

amount of manual work, reasoning and querying on an ontology of such size is

expensive and time consuming. As pointed out by Dentler et al. [56], the running

time of an OWL DL and OWL 2 reasoner is exponential to the size of the input. So a

larger ontology means much longer running time. In our experiments with the sys-

tem, the Java Virtual Machine always ran out of memory even with a small ontology

like the family ontology which contains 58 classes, 80 relationships, 9 attributes and

508 individuals and is equivalent to a set of 3,999 triples. It also ran out of memory

when we use the GH ontology (with 3 classes, 11 attributes, 64 relationships and

equivalent to � 236; 000 triples).

As we have mentioned in Sec. 3, the size and scope of the Semantic Web graph

data is growing day by day. Therefore, reasoning with the full ontology is not fea-

sible. To overcome this, we reduced the size of the ontology input into our system by

eliminating individuals' information from it. In other words, the ontology input to

NLGG does not contain information about individuals but rather can be called an

ontology skeleton in the sense that it only contains a list of classes, object properties

and data type properties. Since the number of classes, relationships and attributes is

limited, a lightweight ontology avoids the large-graph problem. For the family on-

tology, the size of the ontology skeleton is only 1/7 that of the original one (51KB as

opposed to 351KB). Also the number of classes, relationships and attributes is only

358 N. T. Dong & L. B. Holder

T
ab

le
3.

E
x
am

p
le

at
tr
ib
u
te

te
m
p
la
te
s
fr
om

th
e
fa
m
il
y
an

d
G
H

(`̀
G
ra
y
H
at
")

on
to
lo
gi
es
.

D
a
ta
ty
p
eP

ro
p
er
ty
ID

P
ri
o
ri
ty

V
er
b

O
bj
ec
t

C
o
m
p
le
m
en

t
B
o
o
l

h
tt
p
:/
/.
..
/f
am

il
y
-t
re
e.
ow

l#
al
so
K
n
ow

n
A
s

1
b
e

n
u
ll

al
so

k
n
ow

n
as

#
ob

je
ct

F
al
se

h
tt
p
:/
/.
..
/f
am

il
y
-t
re
e.
ow

l#
fo
rm

er
ly
K
n
ow

n
A
s

1
b
e

n
u
ll

fo
rm

er
ly

k
n
ow

n
as

#
ob

je
ct

F
al
se

h
tt
p
:/
/.
..
/f
am

il
y
-t
re
e.
ow

l#
h
as
B
ir
th
Y
ea
r

1
b
e

n
u
ll

b
or
n
in

#
ob

je
ct

F
al
se

h
tt
p
:/
/.
..
/f
am

il
y
-t
re
e.
ow

l#
h
as
D
ea
th
Y
ea
r

1
b
e

n
u
ll

d
ie
d
in

F
al
se

h
tt
p
:/
/.
..
/f
am

il
y
-t
re
e.
ow

l#
h
as
F
am

il
y
N
am

e
1

h
av

e
fa
m
il
y
n
am

e:

#
ob

je
ct

n
u
ll

F
al
se

h
tt
p
:/
/.
..
/o

n
to
lo
gy

/G
H
/N

am
e

1
b
e

n
u
ll

ca
ll
ed

#
ob

je
ct

F
al
se

h
tt
p
:/
/.
..
/o

n
to
lo
gy

/G
H
/T

im
eO

fE
v
en
tS
ta
rt

1
st
ar
t

n
u
ll

at
#
ob

je
ct

F
al
se

h
tt
p
:/
/.
..
/o

n
to
lo
gy

/G
H
/i
sD

et
ai
n
ed

2
b
e

n
u
ll

d
et
ai
n
ed

T
ru
e

h
tt
p
:/
/.
..
/o

n
to
lo
gy

/G
H
/i
sS
ou

rc
e

2
b
e

so
u
rc
e

n
u
ll

T
ru
e

Natural Language Generation from Graphs 359

1/3 that of individuals (58þ 80þ 9 ¼ 147 as opposed to 508), not to mention the

fact that annotating an individual would take more time than a class/relationship/

attribute (each individual has his/her own attributes and relationships).

We assume that the original large RDF graph is in RDF/XML format. If it is not,

a tool like Jena can be used for the conversion. The RDF/XML ontology is then

passed to a Java program for individuals' information removal. So the output of the

preprocessing step is a skeleton ontology that contains only a list of classes, rela-

tionships and attributes. After this we need lexical information to be manually added

into the NLGG knowledge base. This information is domain-dependent and repre-

sents the only manual work required for the NLG system to work. Information about

these templates has already been given above.

4.3. The NLGG architecture

NLGG uses a pipeline architecture that generates natural language in three main

stages: (1) model preparation and content determination, (2) document structuring,

(3) realization, aggregation and lexicalization. Figure 12 illustrates the NLGG sys-

tem architecture. Though aggregation is supposed to be one of the main tasks in the

Fig. 12. The NLGG system architecture.

360 N. T. Dong & L. B. Holder

third stage, we do have some aggregation in the Document Structuring stage. The

following sections will explain this in more detail.

4.3.1. Model preparation and content determination

NLGG's content determination task is not to decide what information should be

communicated in the text. Instead, it is to decide in which way the information

should be output to the user. The model preparation stage builds an ontology model

at run time and adds in individuals' information to do the reasoning. As illustrated in

Fig. 12, inputs to the system at this stage are: the lightweight ontology, an RDF

graph and template information. Also the module can be decomposed further into six

parts that are responsible for the following tasks.

(1) Read in the template information

(2) Load in the ontology model

(3) Parse information in the input graph to get a list of individuals, their attributes

and relationships

(4) Add information in the graph to the ontology model

(5) Use Pellet reasoner to infer new information

(6) Select appropriate facts and remove redundancy

We use the Jena Semantic Framework (jena.apache.org) to load the ontology model

from a ¯le. Information about templates, individuals, attributes and relationships is

parsed and stored as runtime dictionaries in the system.

As mentioned in the previous section, a reasoner's main tasks are to check the

ontology consistency and infer new information from the existing logic. We use the

Pellet reasoner [55] in our system. But any reasoner that understands Description

Logic (DL) [57] and has an available Java API can also work well. We do not need to

take the running time of the reasoners into account because for a small ontology,

there should be little di®erence in their performance.

A reasoner like Pellet works only with facts related to individuals. It can only infer

triples attached to individuals. However, as mentioned earlier, the NLGG knowledge

base is only a lightweight ontology that contains no such knowledge. Therefore, the

input RDF needs to be loaded into the ontology model at run time. Loading indi-

viduals' information at run time and removing it later without updating the ontology

brings two main bene¯ts. First, it makes reasoning possible. Second, it helps keep the

size of the knowledge base small.

Inferring new information with a reasoner helps generate more natural text. Graph

1 of Example 1 in Appendix A gives an example of such capabilities. Instead of

generating two sentences: `̀ A has child B. C has parent A", the NLGG outputs `̀ B and

C are A's children". The hasChild and hasParent are represented as inverse rela-

tionships in the ontology. So `̀ C hasParent A" and `̀ A hasChild C " are two equiv-

alent triples. Pellet understands this and thus is capable of inferring `̀ A hasChild C "

as a new fact. However, Pellet exhaustively generates all possible triples from the

Natural Language Generation from Graphs 361

given logic. So both `̀ C hasParent A" and `̀ A hasChild C " are included in Pellet

output. Table 4 gives a complete list of Pellet's output triples for the graph in Fig. 1.

Since Person is a subclass of Thing. Triples like `̀ A isa Thing" are also included in

Pellet's output. Therefore, NLGG needs Fact Selector to choose `̀ A hasChild C " and

remove `̀ C hasParent A" from the model. FactSelector's selection criteria are as

follows.

(1) Only consider statements whose subjects and objects have already existed as

subject-object or object-subject pairs in the input graph. For example if the input

RDF graph contains two statements `̀ A hasParent B" and `̀A isSiblingOf C "

and from that Pellet infers a new statement `̀ C hasParent B ", then that

statement will be dropped by the Fact Selector because the input graph has no

triple for B and C .

(2) Keep the set of class de¯nition statements ¯xed. For example, if the input graph

has `̀A isa Person" then keep only that triple and remove other isa triples like `̀A

isa Thing" from the set of generated triples.

(3) For two inverse relationships, select the one that has higher priority (smaller

value). If they have the same priority value, select the one that has higher

alphabetic order. For example, in the family ontology, `̀ hasChild " and

`̀ hasParent" have the same priority. Therefore, for graph 1 of Example 1 in

Appendix A, `̀ A hasChild C" was selected over `̀ C hasParent A" according to

alphabetic order.

(4) For symmetric relationships (e.g. if `̀ A isSiblingOf B " then we also have `̀ B

isSiblingOf A"): keep only the existing statement and remove the newly inferred

one.

(5) Remove new relationships inferred from rules (if any). Our objective is to keep

the content of the input RDF graph intact. Using rules to replace `̀ A isSiblingOf

B" and `̀A isa Male" with `̀A isBrotherOf B" might make the output text look

better. However, we should not replace `̀ A hasFather B" and `̀ A hasHusband C "

with `̀ C hasFatherInLaw B" because the replacement will result in the loss of

Table 4. An exhaustive set

of output triples from Pellet

for the input graph in Fig. 1.

fsubject, predicate, objectg
fA, isa, Thingg
fB, isa, Thingg
fC, isa, Thingg
fA, isa, Persong
fB, isa, Person g
fC, isa, Person g
fA hasChild Bg
fA hasChild Cg
fB hasParent Ag
fB hasParent Ag

362 N. T. Dong & L. B. Holder

information (A hasHusband C and hasFather B). It is hard to decide when the

inference engine should remove the triples in the left hand side of a rule, and

when it should not. What is more, as we have discussed in Sec. 4.1, output from

a frequent subgraph miner often contains general class nodes. There are also a

number of other systems whose task is to mine concepts or motif patterns from a

large semantic graph. Most of the time, the input RDF graph is used to express

a general pattern. Inferring new information or further specializing the pattern

based on inferences from the reasoner may change the intended generality or

meaning of the pattern. For those two reasons, we will not make use of rules in

the generation process.

A list of triples generated by Fact Selector will be passed as input to the document

structuring and aggregation module. For graph 1 of Example 1 in Appendix A, the

set of triples is given in Table 5.

4.3.2. Document structuring

As mentioned in Sec. 2, since NLGG has no notion of a focus point in the small input

RDF graph, text planning strategies based on distance from the object being de-

scribed cannot be applied. Instead, the system organizes information according to

types. We group facts into three categories: class de¯nitions, attribute information

and relationship information; and organize them in that order. Also, information in

the same group will be ordered according to priorities (which are included in the

knowledge base). Class de¯nitions are sentences that are derived from isa triples such

as `̀A isa Person", `̀ C isa Document", etc., where A and C are individuals, and

Person and Document are concepts in the ontology.

Attribute information includes sentences that are derived from RDF triples in

which the predicates are attribute URIs. `̀ Jack isSource `̀ true"`̀ , `̀Olivia Gender

`̀ FEMALE "`̀ , or `̀A age `̀ 20 "`̀ are some examples of attribute triples where Jack,

Olivia and A are individuals. Relationship information consists of sentences that are

derived from RDF triples whose predicates are relationship URIs. `̀ A hasChild B"

and `̀A knows B", where A and B are two individuals, are examples of relationship

triples. NLGG's document structuring strategy ¯rst outputs class de¯nitions, then

attribute information, and lastly relationship information.

Table 5. Output of the model prepara-
tion and content determination module

for the input graph in Fig. 1.

fsubject, predicate, objectg
fA, isa, Persong
fB, isa, Person g
fC, isa, Person g
fA hasChild Bg
fA hasChild Cg

Natural Language Generation from Graphs 363

At this stage, NLGG treats each sentence as a compound triple. A compound

triple is a triple whose subject can consist of multiple individuals. Each sentence

corresponds to a Sentence object. Each Sentence object has a list of subjects, a

Boolean attribute representing whether the corresponding predicate is a Boolean

property, and six other String objects for verb, predicate, object, template object,

template complement and the voice. Output of the Document Structuring module is

an ordered list of compound Sentences. The only aggregation job we do at this level is

to wrap sentences that have the same object and predicate. In the input graph in

Fig. 1 we have three sentences that are derived from three triples `̀ A isa Person" and

`̀ B isa Person" and `̀ C isa Person". When the aggregation rule is executed, they will

be wrapped into just one sentence as presented in Fig. 13. An exhaustive list of

compound sentences output from the module for the input graph in Fig. 1 is pre-

sented in the right hand table of Fig. 13. Each sentence object is represented as a row

in the table. Sentence objects for class de¯nitions always have the default null voice.

4.3.3. Lexicalization, aggregation and realization

We use simpleNLG [24] to realize a set of existing Sentences. Each Sentence is

represented by an SPhraseSpec object in simpleNLG. Elements of that Sentence will

be assigned to an appropriate component in that SPhraseSpec object depending on

the sentence's voice. Figure 14 illustrates how the mapping works.

First, we replace possible #subject or #object in the Sentence's template slots

with the Sentence's subject(s) or object, respectively. For a neutral or null voice

Sentence, the Sentence's subject, verb, template object, and template complement

will be assigned to its SPhraseSpec's subject, verb, object, and complement, re-

spectively. The ¯rst Sentence output from the Document structuring in Fig. 14 is a

null voice Sentence. The ¯rst row in the middle table in Fig. 14 presents the

SPhraseSpec object corresponding to that Sentence. Here, fA,B,Cg (the Sentence's

subject) has been mapped to the SPhraseSpec's subject, the plural noun corre-

sponding to the class Person (people) has been assigned to the SPhraseSpec's object.

Fig. 13. NLGG document structuring for the RDF graph in Fig. 1.

364 N. T. Dong & L. B. Holder

The verb and template complement of the Sentence, which are `̀ be" and `̀ null ", have

been respectively assigned to the SPhraseSpec's verb and complement. The only

di®erence between a negative voice Sentence's SPhraseSpec object construction and

that of the other is that instead of mapping the Sentence's subject to the SPhrase-

Spec's subject, we assign the Sentence's template object to the SPhraseSpec's sub-

ject. The other mappings remain the same. We can see that for the second Sentence

object in the leftmost table, the #subject has been replaced by A (the Sentence's

subject) in its corresponding SPhraseSpec object in the middle table.

After getting a list of simpleNLG's SPhraseSpec objects, we aggregate them. We

wrap sentences that have the same subject and verb but di®erent objects into a

compound sentence. We also wrap sentences that have the same verb and object but

di®erent subjects. Figure 14 demonstrates how these work. The second and third

SPhraseSpec objects in the middle table have the same verb and object, and thus

have been aggregated into just one SPhraseSpec object, which is represented as the

second row in the rightmost table in Fig. 14.

A shows 12 of the 43 examples of text generated from the NLGG system.We can see

that NLGG uses `̀There is/are" sentences to give identi¯cation to general nodes.

General nodes of the sameclass are de¯ned inone sentence.Thenumber of `̀ there is/are"

sentences is equal to the number of di®erent classes that have general nodes in the input

graph. In graph 6, there are three general nodes that belong to three di®erent classes. So

the number of `̀ there is/are" sentences added into the NLGG system is three.

5. Experimental Results

We constructed two experiments to evaluate NLGG. First, we evaluate how domain-

dependent knowledge helps improve the quality of NLGG's generated text, and how

NLGG works with ontologies in di®erent domains. Second, we compare the e®ort

required to make NLGG work with a new ontology to the e®ort for an existing NLG

system. Details about the two experiments are presented below.

5.1. Experiment 2: NLGG vs the simple verbalizer

Our main approach to evaluate NLGG is to compare NLGG's output texts with

those of a Simple Verbalizer. The Simple Verbalizer generation engine only uses some

Fig. 14. NLGG lexicalization and aggregation for the RDF graph in Fig. 1.

Natural Language Generation from Graphs 365

simple rules to generate English texts. We observe that NLGG consistently out-

performs the Simple Verbalizer. However, when the number of general nodes in the

input graph increases, the NLGG's generation strategies reveal some problems. Also

the system's capacity in generating coherent text is still limited. In this section, we

present information about the Simple Verbalizer, its generation approach, the

comparison results between the two systems and some discussion about NLGG

limitations.

5.1.1. The simple verbalizer

The Simple Verbalizer is a simple rule-based NLG engine. It does not attempt to

guess syntactic or lexical information from RDF triples. Instead, it uses some simple

rules to verbalize them. Those rules are given below.

(1) Each triple will be output as one sentence.

(2) Place a period at the end of each sentence.

(3) The order of the output sentences is the same as that of the input RDF triples. In

other words, the Simple Verbalizer reads in the input graph line by line, ver-

balizes each triple it encounters separately, and combines the output.

(4) For each RDF triple, its subject, predicate, and object are verbalized separately

and combined in that order to form a sentence. So essentially, Simple Verbalizer

treats an RDF triple as three ordered special strings that respectively correspond

to its three components (subject, predicate and object). A special string can be

a double quoted string or a URI. The Simple Verbalizer uses the same set of

rules to verbalize each string and then combines the result. For example, for

the triple `̀A hasChild B", Simple Verbalizer will verbalize `̀A", `̀ hasChild ", and

`̀ B" separately. `̀A" is verbalized as `̀ A", `̀ B" is verbalized as `̀ B ", and

`̀ hasChild " is verbalized as `̀ has child ". The results are then combined. A sen-

tence `̀ A has child B" is produced as the output of Simple Verbalizer for

the triple `̀ A hasChild B". The rules for verbalizing a special string are given

below.

(a) For a double-quoted string, remove the double quote. For example, the string

`̀Armed Assault" in the input graph in Example 6 of Appendix A will be output

as Armed Assault.

(b) For a URI, eliminate the namespace in the URI. So for a URI like http://www.

co-ode.org/roberts/family-tree.owl#hasParent, the http://www.co-ode.org/

roberts/family-tree.owl# will be removed. Simple Verbalizer verbalizes only

hasParent (the fragment identi¯er).

(c) For a fragment identi¯er that contains only uppercase letters such as PER-

SON RESPONSIBLE in Example 6 of Appendix A, no changes are made.

That means the URI http://eecs.wsu.edu/�ndong/ontology/GH/PERSON

RESPONSIBLE will be verbalized as PERSON RESPONSIBLE.

366 N. T. Dong & L. B. Holder

(d) For other fragment identi¯ers: (1) replace underscores with spaces, (2) add

spaces between a lowercase letter and an uppercase letter/digit and vice versa; or

between an uppercase letter and a digit and vice versa. According to these,

http://eecs.wsu.edu/�ndong/ontology/GH/Person will be verbalized as per-

son. http://eecs.wsu.edu/�ndong/ontology/GH/EventActivityType will be

verbalized as event activity type.

Refer to Appendix A for more examples of output texts from the Simple Verbalizer.

5.1.2. Experiment data

We evaluated NLGG on four di®erent ontologies in di®erent domains as described

below. The data statistics are summarized in Table 6.

(1) The Friend of a Friend (FOAF) ontology from the FOAF project (www.foaf-

project.org). It consists of 22 class de¯nitions, 21 attributes and 40 relationships

about people, their links and the things that they create and do.

(2) A family ontology downloaded from http://www.cs.man.ac.uk/� stevensr/on-

tology/family.rdf.owl. It contains 53 class de¯nitions, 9 attributes and 80 dif-

ferent relationships about a family relationship hierarchy and related concepts.

(3) A university ontology from the SWAT projects (swat.cse.lehigh.edu/projects/

lubm). It has 43 class de¯nitions, 7 attributes and 25 di®erent relationships

about university people, their links and interaction.

(4) A real-world ontology, the GH `̀ GrayHat" ontology, which is extracted from a

defense-related project about people in a military-controlled area, their attri-

butes and relationships. The ontology consists of 3 class de¯nitions, 11 attributes

and 64 di®erent relationships.

From these ontologies, we manually created 43 small RDF graphs with varying

complexity (10 from the FOAF, 5 from the family, 10 from the university, and 18

from the GH). We place no restriction on the number of RDF triples of the input

RDF graph. The original ontologies were preprocessed to remove individuals' in-

formation. A program was used to extract the lists of classes, relationships and

attributes from those ontologies. Twelve draft template ¯les were created, manually

edited, and then passed in as input to the system. We ran NLGG and the Simple

Verbalizer on the 43 small RDF graphs that were created previously. Output texts

were written to ¯les and then manually compared.

Table 6. Experiment data statistics.

Ontologies No. of classes No. of relationships No. of attributes No. of extracted graphs

FOAF 22 40 21 10

Family 53 80 9 5

University 43 25 7 10
GH 3 64 11 18

Natural Language Generation from Graphs 367

5.1.3. Experimental results and discussion

5.1.3.1. Experiment 2.1

We processed the 43 small RDF graphs extracted from the four ontologies with both

NLGG and the Simple Verbalizer. Output texts were written to ¯les and manually

compared. Appendix A gives the outputs from the Simple Verbalizer and NLGG for

12 of the 43 tested graphs. We presented the results in random order to two users,

along with the input graphs, and asked them to select which text they prefer. We

evaluated the results and observe that the users consistently prefer the NLGG text

over the Simple Verbalizer in all the 43 input graphs. Also by manual analysis of the

generated texts by the two systems, we draw the following observations.

(1) The texts generated by NLGG are more coherent, clearer and less stilted than

those of the Simple Verbalizer.

(2) Simple Verbalizer cannot aggregate sentences while the NLGG can. NLGG can

aggregate multiple similar class de¯nitions into one sentence. Therefore, as il-

lustrated in Example 1 of A, instead of saying that `̀A is a person. B is a person.

C is a person" as the Simple Verbalizer did. NLGG says `̀ A, B and C are people".

In addition, NLGG can also aggregate facts associated with the same subject into

one sentence. Looking at Example 3 of Appendix A, rather than using two

sentences `̀ A publications C. A publications D", NLGG aggregates them into `̀A

publishes D and C ". Clearly, NLGG aggregation makes the text briefer, clearer

and more natural.

(3) NLGG document structuring makes the text look better. Example 4 of Appendix

A illustrates such capabilities. Output text from the Simple Verbalizer °ows in

the same order as the input RDF graphs. The Simple Verbalizer outputs two

sentences that contain information for the same subject A (`̀A is a university"

and `̀A a±liated organization of C ") far away from each other, one at the

beginning and the other at the end of the output text. NLGG, on the other hand,

is capable of organizing the output facts, placing those two sentences adjacent to

each other, and then aggregating them to generate the sentence: `̀ A is an uni-

versity and is a±liated with C ". We may notice a problem with the article

generation by NLGG in this case. We will discuss this issue later. But for now,

clearly, NLGG's capabilities in organizing and aggregating sentences make the

texts shorter and clearer.

(4) NLGG can di®erentiate between di®erent general class nodes while the Simple

Verbalizer cannot. This makes the Simple Verbalizer generate texts failing to

render the connections between objects in the graph, and thus makes the output

texts look incoherent. Example 7 of Appendix A illustrates this issue. The input

graph has a class node Person connected to a class node Group through the

PERSON FOUNDER relationship. And Emma is a member of that Group.

Simple Verbalizer generates two sentences for those connections as `̀ Person

PERSON FOUNDER group. Emma PERSON MEMBER group". Clearly, there

368 N. T. Dong & L. B. Holder

is no notion of the connection between the group founded by some person and the

group in which Emma has joined. Simple Verbalizer has failed to render the

connection that was included in the input graph. NLGG, on the other hand, has

successfully preserved such connections in its generated text by giving identi¯-

cation to general class nodes. It identi¯ed the person as Person1 and the group as

Group1. And the two triples were output as `̀ Person1 is the founder of Group1.

Emma is a member of Group1." In general, NLGG can handle general class nodes

while the Simple Verbalizer fails. It would be better if NLGG generated text like

`̀ Person1 is the founder of a group. Emma is a member of that group." However,

there are two main reasons why we do not support the generation of that kind of

text. First, NLGG's document structuring strategy is object-oriented. That

means facts about one individual might not concentrate to one part of the output

text. In other words, there is no guarantee that the two sentences like `̀ Person1

is the founder of a group" and `̀ Emma is a member of that group" will be adjacent

to each other in the output text. Therefore, using the relative pronoun is risky.

Second, if we use `̀ a group" to refer to a general Group node, then we might lose

the connection between nodes when there are more than one general Group

nodes in the graph. Similarly, if we have one general Group node, one general

Person node, one general Event node, using a relative pronoun (like `̀ that group",

`̀ that person", or `̀ that event") might make the output text less coherent or even

confusing. In general, such a generation approach only works with some speci¯c

cases. We do not place any restriction on the number of general nodes in the

input RDF graph. Therefore, NLGG does not support the generation of texts

that use relative pronouns to identify general nodes.

(5) Text generated by the NLGG is shorter than that of the Simple Verbalizer most

of the time. NLGG generated texts are longer than that of the Simple Verbalizer

only when there are general nodes in the graphs. That is due to the additional

text generated by NLGG for identifying the general class nodes. Those sentences

are necessary to preserve the connections to/from those nodes.

5.1.3.2. Experiment 2.2

We performed a second experiment with the 43 RDF graphs to test the e®ectiveness

of the semantic reasoner in the generation process. We remove the reasoning module

from the NLGG. We call the NLGG system without semantic reasoning: Simple

NLGG. We pass the 43 RDF graphs with corresponding template information into

Simple NLGG and let it generate natural language. Results are written into ¯les. We

observe that there are ten cases in which the generated texts by NLGG are di®erent

from those of the Simple NLGG. The input and generated texts by NLGG for seven

of these ten graphs can be found in Appendix A in Examples 1, 2, 5 and 9–12. We

gave a user the texts generated by the two systems along with the input graphs and

asked him which texts he prefers. The user prefers NLGG's generated texts for nine

out of the total ten graphs. He indicated the main reason for his preference is that

Natural Language Generation from Graphs 369

NLGG uses a consistent way to express symmetric or inverse relationships. There-

fore, it can aggregate information better than the Simple NLGG. One example has

been referenced throughout this work is that instead of generating `̀ B is A's child. A

is C's parent." as output by the Simple NLGG, the NLGG with the reasoning

capability can generate `̀ B and C are A's children." And most of the time, that kind

of aggregation helps generate briefer and clearer texts. In summary, reasoning does

help NLGG generate better text.

5.1.4. Discussion

The rest of this section is dedicated to further discussion about the NLGG capa-

bilities and limitations in generating natural language. By analyzing the generated

texts from NLGG, we observe the following.

(1) NLGG cannot generate sentences with connecting words, referring expressions or

pronouns. As we discussed earlier when comparing NLGG with NaturalOWL,

there are two main reasons for this problem. First, NLGG does not have a focus

point. Thus, the text planning in NLGG cannot start from this object, and then

expand further or explain further about that object. The graph typically contains

information about one object or more objects, and then describes the attributes

of each object, and then the relationships among objects. Changing the subjects

so frequently makes it hard for NLGG to make use of relative pronouns or

connecting words. Second, the more domain knowledge or semantic and syn-

tactic information input to the system, the more power it has in generating

natural text. Domain knowledge includes the knowledge that helps a NLG engine

understand things like: `̀ Person" refers to a person and we should use he to

replace a person whose gender is male, etc. We try to avoid adding too much

domain information into the system. We also try to keep the template infor-

mation input into the system as simple as possible. So we consider this as a

tradeo® between the quality of the generated text and the amount of handcrafted

information input into the system.

(2) As previously pointed out, NLGG sometimes generates incorrect articles for a

noun, e.g. Example 4 in Appendix A. This is because NLGG uses only simple

rules to generate an article for a noun. It generates the article an whenever it

encounters a noun begin with a vowel. So basically, it fails irregular cases like

university as illustrated in the example.

(3) Sometimes the text dedicated to the general nodes' identi¯cation in NLGG is too

much compared with the number of actual sentences generated from the triples.

It would be better if NLGG can °exibly use relative clauses to avoid those kinds

of general node identi¯cation sentences. For example, in Example 8 in Appendix

A, the ideal generated text might be something like (1): `̀ A person targets a

Police Operation event" or (2): `̀ A person targets an event which is a Police

Operation event". Such expressions require the system to understand that

370 N. T. Dong & L. B. Holder

EventActivityType is a characteristic attribute and that we can use the `̀ Police

Operation" string to identify the general event node. This is considered domain

dependent knowledge, and we do not want to require that kind of the knowledge

be given to the system. So NLGG cannot generate sentences like: `̀ A person

targets an event which is a Police Operation", which requires the use of a relative

clause. It looks simple with a graph with only two edges connecting to two

general nodes. And the general nodes do not have any attribute edges connected

to them. But it is a challenge when the number of general nodes in the graph

increases and with the presence of attribute edges connecting to those general

nodes. One example of this kind of complex graph is given in Example 6 in

Appendix A. In general, when and where to use relative clauses is a challenge,

especially when the number of general nodes increases.

5.2. Experiment 2: NLGG vs NaturalOWL

As pointed out in the related work section, NaturalOWL is the most complete

NLG system that is closed to ours. In this experiment, we compare the quality of

the text generated as well as the e®ort spent to make NLGG and NaturalOWL

work for the M-PIRO ontology (which is contained in the NaturalOWL1.1 package

and can be downloaded from http://protegewiki.stanford.edu/wiki/Nat-

uralOWL 1.1). Our goal in this experiment is to validate our hypothesis that NLGG

can generate acceptable text in a much more economical way compared with other

NLG systems.

M-PIRO is an ontology for museum exhibits. It consists of 57 classes, 31 object

properties, 6 data type properties and 343 individuals. We extract the ontology

skeleton and create the domain dependent knowledge required by NLGG for

M-PIRO. The new ontology skeleton size is 34KB compared with the original one of

166KB. Our templates size is reduced signi¯cantly from 889KB to 10.3KB. We do

not know the time that was needed by domain experts to create domain knowledge

for NaturalOWL, but it took us around one day to create templates for NLGG. We

do believe bigger size means larger e®ort, not to mention the fact that NaturalOWL

requires much more complex information than NLGG as discussed in previous sec-

tions. Hence, from the numbers, we claim that NLGG is cheaper and more portable

than existing systems, namely NaturalOWL.

We manually extract 10 subgraphs from M-PIRO for 10 exhibits and let the two

systems run for those inputs. Table 7 illustrates the generated text from the two

systems for exhibit5. Refer to Appendix B for a sample of the results. As we can see in

the table, NLGG text lacks referring expressions and hence makes it less coherent.

We asked two people who are not domain experts to evaluate the results. They both

prefer NaturalOWL's generated text but still approve that NLGG's text is accept-

able. This is still consistent with our hypothesis that NLGG is a lightweight NLG

system which can generate acceptable text with much less e®ort. There is always a

trade o® between high quality text and the amount of manual e®ort spent.

Natural Language Generation from Graphs 371

We have presented our experimental results with the NLGG system. We per-

formed experiments to see how NLGG compared with other existing systems, and

how NLGG works with new ontologies in di®erent domains. We summarized the

system capabilities and the types of texts that can be generated from NLGG. In

general, results have shown that NLGG can generate acceptable texts with reason-

able cost. We also discussed some limitations with the systems. Those issues will be

left for future work.

6. Conclusion

We have proposed a general NLG system to bridge the gap between Semantic Web

representation and Natural Language so that people who are not familiar with RDF

can also access the information and knowledge for various purposes. The use of a

reasoner helps NLGG generate better and briefer text. Also, using an ontology

skeleton instead of the full original one with individuals' information has helped

NLGG to minimize the amount of manual work as well as reduce the system running

time.

Four ontologies in di®erent domains have been used to test the performance of the

system. A Simple Verbalizer was used to compare the result. Experimental results

showed that the NLGG consistently outperforms the Simple Verbalizer. The texts

generated by NLGG are briefer, clearer and more coherent than those of the Simple

Verbalizer.

Our objective is to minimize the amount of manual work involved in the

knowledge base creation process. Also there is a tradeo® between the quality of the

generated text and the amount of domain-dependent knowledge or lexical and

syntactic information added into the system. Therefore, though there are still some

limitations with the system, we consider the tradeo® acceptable. As this knowledge

becomes more readily available, our NLGG approach can be expanded to take ad-

vantage of this information.

For future work, adding the referring expression generation module, connecting

words and pronouns will help improve the quality of the generated text. However, it

is tricky and might require the use of a di®erent document structuring strategy. Also,

testing the system with output from other real-world systems like graph-based

Table 7. NaturalOWL and NLGG text generated for exhibit5.

NaturalOWL NLGG

This is a stater, created during the archaic period.

It originates from Croton and it dates from
between 530 and 510 B.C. It has a picture of a

tripod on each side. A tripod is a vessel with

three legs and it was the sacred symbol of god

Apollo. This stater is made of silver and cur-
rently it is exhibited in the Numismatic Mu-

seum of Athens.

Exhibit 5 is a stater and is created during the archaic

period. Exhibit 5 dates from between 530 and 510
B. C. It has a picture of a tripod on each side. A

tripod is a vessel with three legs and it was the

sacred symbol of god Apollo. Exhibit 5 is made of

silver. Exhibit 5 originates from Croton. Exhibit 5
is currently exhibited in the Numismatic Museum

of Athens.

372 N. T. Dong & L. B. Holder

anomaly detection or results returned from a semantic web search agent would

provide more insight into the performance of our approach.

Acknowledgments

The authors would like to thank the Vietnam Education Foundation for their sup-

port of Ms. Dong's graduate work.

References

[1] D. Galanis, G. Karakatsiotis, G. Lampouras and I. Androutsopoulos, An open–source
natural language generator for OWL ontologies and its use in Prot�eg�e and second life, in
Association for Computational Linguistics, 2009, pp. 17–20.

[2] X. Sun and C. Mellish, Domain independent sentence generation from RDF repre-
sentations for the semantic web, in Combined Workshop on Language–Enhanced Edu-
cational Technology and Development and Evaluation of Robust Spoken Dialogue
Systems, 2006.

[3] A. Cregan, R. Schwitter and T. Meyer, Sydney OWL syntax: Towards a controlled
natural language syntax for OWL 1.1, in OWL Experiences and Directions Workshop,
2007.

[4] G. Hart, C. Dolbear and J. Goodwin, Lege feliciter: Using structured English to represent
a topographic hydrology ontology, in OWL Experiences and Directions Workshop, 2007.

[5] K. Kaljurand and N. E. Fuchs, Verbalizing OWL in Attempto Controlled English, in
OWL Experiences and Directions Workshop, 2007.

[6] J. Ellson, E. R. Gansner, E. Koutso¯os, S. C. North and G. Woodhull, Graphviz and
dynagraph–static and dynamic graph drawing tools, in Graph Drawing Software, 2003,
pp. 127–148.

[7] E. Reiter and R. Dale, Building Natural Language Generation Systems (Cambridge
University Press, 2000).

[8] J. Coch, Interactive generation and knowledge administration in MultiMeteo, in Natural
Language Generation, 1998, pp. 300–303.

[9] E. Reiter, S. Sripada, J. Hunter, J. Yu and I. Davy, Choosing words in computer–
generated weather forecasts, Arti¯cial Intelligence 167(1) (2005) 137–169.

[10] S. Williams and E. Reiter, A corpus analysis of discourse relations for natural language
generation, in Corpus Linguistics, 2003, pp. 899–908.

[11] S. Williams and E. Reiter, Generating readable texts for readers with low basic skills, in
European Workshop on Natural Language Generation, 2005.

[12] F. de Rosis, F. Grasso and D. C. Berry, Re¯ning instructional text generation after
evaluation, Arti¯cial Intelligence in Medicine 17(1) (1999) 1–36.

[13] D. Huske-Krause, Suregen–2: A shell system for the generation of clinical documents, in
Association for Computational Linguistics, 2003, pp. 215–218.

[14] F. Portet, E. Reiter, A. Gatt, J. Hunter, S. Sripada, Y. Freer and C. Sykes, Automatic
generation of textual summaries from neonatal intensive care data, Arti¯cial Intelligence
173(7) (2009) 789–816.

[15] F. Benamara, Generating intensional answers in intelligent question answering systems,
Natural Language Generation, 2004, pp. 11–20.

[16] N. Szilas, A computational model of an intelligent narrator for interactive narratives,
Applied Arti¯cial Intelligence 21(8) (2007) 753–801.

Natural Language Generation from Graphs 373

[17] N. M. Sgouros, Dynamic generation, management and resolution of interactive plots,
Arti¯cial Intelligence 107(1) (1999) 29–62.

[18] K. E. Thomas and S. Sripada, Atlas.txt: Linking georeferenced data to text for NLG, in
European Workshop on Natural Language Generation, 2007.

[19] R. Power, Generating referring expressions with a uni¯cation grammar, in Association
for Computational Linguistics, 1999, pp. 9–14.

[20] H. Somers, B. Black, J. Nivre, T. Lager, A. Multari, L. Gilardoni, J. Ellman and
A. Rogers, Multilingual generation and summarization of job adverts: The tree project,
in Applied Natural Language Processing, 1997, pp. 269–276.

[21] N. Colineau, C. Paris and K. Vander Linden, An evaluation of procedural instructional
text, in Natural Language Generation, 2002, pp. 128–135.

[22] G.-J. Kruij®, E. Teich, J. Bateman, I. Kruij®-Korbayova, H. Skoumalova, S. Sharo®, L.
Sokolova, T. Hartley, K. Staykova and J. Hana, Multilinguality in a text generation
system for three slavic languages, in Association for Computational Linguistics, 2000,
pp. 474–480.

[23] E. Reiter and R. Dale, Building applied natural language generation systems, Natural
Language Engineering 3(1) (1997) 57–87.

[24] A. Gatt and E. Reiter, SimpleNLG: A realisation engine for practical applications, in
Natural Language Generation, 2009, pp. 90–93.

[25] E. Reiter, R. Robertson and L. M. Osman, Lessons from a failure: Generating tailored
smoking cessation letters, Arti¯cial Intelligence 144(1) (2003) 41–58.

[26] D. Byron, A. Koller, J. Oberlander, L. Stoia and K. Striegnitz, Generating Instructions in
Virtual Environments (GIVE): A challenge and evaluation testbed for NLG, in Pro-
ceedings of the Workshop on Shared Tasks and Comparative Evaluation in Natural
Language Generation, 2007.

[27] E. Reiter and A. Belz, An investigation into the validity of some metrics for automati-
cally evaluating natural language generation systems, Computational Linguistics 35(4)
(2009) 529–558.

[28] J. C. Lester and B. W. Porter, Developing and empirically evaluating robust explanation
generators: The knight experiments, Computational Linguistics 23(1) (1997) 65–101.

[29] C.-L. Yeh and C. Mellish, An empirical study on the generation of anaphora in chinese,
Computational Linguistics 23(1) (1997) 171–190.

[30] A. Belz, B. Bohnet, S. Mille, L. Wanner and M. White, The surface realisation task:
Recent developments and future plans, in Natural Language Generation, 2012, p. 136.

[31] N. Bouayad–Agha, G. Casamayor, L. Wanner and C. Mellish, Content selection from
semantic web data, in Natural Language Generation, 2012, pp. 146–149.

[32] R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear and G. Hart, A comparison of three
controlled natural languages for OWL 1.1, in OWL Experiences and Directions Work-
shop, 2008, pp. 1–2.

[33] T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scienti¯c American
284(5) (2001) 28–37.

[34] G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst, C. Bizer and
R. Lee, Media meets semantic web: How the BBC uses DBpedia and linked data to make
connections, in The Semantic Web: Research and Applications, 2009, pp. 723–737.

[35] K.-H. Cheung, E. Prudhommeaux, Y. Wang and S. Stephens, Semantic web for health
care and life sciences: A review of the state of the art, Brie¯ngs in Bioinformatics 10(2)
(2009) 111–113.

[36] C. D. Pierce, D. Booth, C. Ogbuji, C. Deaton, E. Blackstone and D. Lenat, SemanticDB:
A semantic web infrastructure for clinical research and quality reporting, Current Bio-
informatics 7(3) (2012) 267–277.

374 N. T. Dong & L. B. Holder

[37] C. Patel, S. Khan and K. Gomadam, Trialx: Using semantic technologies to match
patients to relevant clinical trials based on their personal health records, in International
Semantic Web Conference, 2009.

[38] B. Fazzinga, G. Gianforme, G. Gottlob and T. Lukasiewicz, Semantic web search based
on ontological conjunctive queries, in Web Semantics: Science, Services and Agents on
the World Wide Web, 2011.

[39] J. Gronski, Semantic web for search, in Semantic Web Conference, 2009, pp. 957–964.
[40] X. Jiang and A.-H. Tan, Learning and inferencing in user ontology for personalized

semantic web search, Information Sciences 179(16) (2009) 2794–2808.
[41] M. Grove and A. Schain, NASA expertise location service powered by semantic web

technologies, in W3C Semantic Web Case Studies and Use Cases, 2008.
[42] J. Hendler, J. Holm, C. Musialek and G. Thomas, US government linked open data:

Semantic.data.gov, IEEE Intelligent Systems 27(3) (2012) 25–31.
[43] N. Shadbolt, K. O'Hara, T. Berners-Lee, N. Gibbins, H. Glaser and W. Hall, Linked

open government data: Lessons from data.gov.uk, IEEE Intelligent Systems 27(3) (2012)
16–24.

[44] C. Joslyn, S. Al-Sa®ar, D. Haglin and L. Holder, Combinatorial information theoretical
measurement of the semantic signi¯cance of semantic graph motifs, in SIGKDD Work-
shop on Mining Data Semantics, 2011.

[45] V. Nebot and R. Berlanga, Finding association rules in semantic web data, Knowledge-
Based Systems 25(1) (2012) 51–62.

[46] T. Heath and C. Bizer, Linked data: Evolving the web into a global data space, Synthesis
Lectures on the Semantic Web: Theory and Technology 1(1) (2011) 1–136.

[47] T. R. Gruber, Toward principles for the design of ontologies used for knowledge sharing,
International Journal of Human Computer Studies 43(5) (1995) 907–928.

[48] O. W. G. W3C, OWL 2 web ontology language: Documents overview, W3C Recom-
mendation 27 (2009) 1205–1214.

[49] D. Beckett and B. McBride, RDF/XML syntax speci¯cation (revised), W3C Recom-
mendation, Vol. 10, 2004.

[50] D. Beckett and T. Berners-Lee, Turtle-terse RDF triple language, W3C Team Submis-
sion, Vol. 14, 2008.

[51] B. Motik, B. Parsia and P. F. Patel-Schneider, OWL 2 web ontology language XML
serialization, W3C Recommendation, 2009.

[52] M. Horridge and P. F. Patel-Schneider, OWL 2 web ontology language manchester
syntax, in W3C Working Group Note, 2009.

[53] F. Manola, E. Miller and B. McBride, RDF Primer, W3C Recommendation 10 (2004)
1–107.

[54] M. Obitko, Translations between ontologies in multi-agent systems, Czech Technical
University, 2007.

[55] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, Pellet: A practical OWL-DL
reasoner, Web Semantics: Science, Services and Agents on the World Wide Web 5(2)
(2007) 51–53.

[56] K. Dentler, R. Cornet, A. Ten Teije and N. de Keizer, Comparison of reasoners for large
ontologies in the OWL 2 el pro¯le, Semantic Web 2(2) (2011) 71–87.

[57] I. Horrocks, OWL: A description logic based ontology language, Principles and Practive
of Constraint Programming, pp. 5–8, 2005.

Natural Language Generation from Graphs 375

Appendix A. Selected Output Results from Simple Verbalizer

and NLGG Systems

Example 1

v 1 http://www.co-ode.org/roberts/family-tree.owl#A

v 2 http://www.co-ode.org/roberts/family-tree.owl#Person

v 3 http://www.co-ode.org/roberts/family-tree.owl#B

v 4 http://www.co-ode.org/roberts/family-tree.owl#Person

v 5 http://www.co-ode.org/roberts/family-tree.owl#C

v 6 http://www.co-ode.org/roberts/family-tree.owl#Person

d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 1 3 http://www.co-ode.org/roberts/family-tree.owl#hasChild

d 5 1 http://www.co-ode.org/roberts/family-tree.owl#hasParent

Simple Verbalizer NLGG

A is a person. B is a person. C is a person.

A has child B. C has parent A.

A, B and C are people. B and C

are A's children.

Example 2

v 1 http://www.co-ode.org/roberts/family-tree.owl#A

v 2 http://www.co-ode.org/roberts/family-tree.owl#Person

v 3 http://www.co-ode.org/roberts/family-tree.owl#B

v 4 http://www.co-ode.org/roberts/family-tree.owl#Person

v 5 http://www.co-ode.org/roberts/family-tree.owl#C

v 6 http://www.co-ode.org/roberts/family-tree.owl#Person

v 7 http://www.co-ode.org/roberts/family-tree.owl#D

v 8 http://www.co-ode.org/roberts/family-tree.owl#Person

v 9 http://www.co-ode.org/roberts/family-tree.owl#E

v 10 http://www.co-ode.org/roberts/family-tree.owl#Person

d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 7 8 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 9 10 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 5 http://www.co-ode.org/roberts/family-tree.owl#hasBrotherInLaw

d 3 7 http://www.co-ode.org/roberts/family-tree.owl#hasAuntInLaw

d 1 9 http://www.co-ode.org/roberts/family-tree.owl#hasParent

d 1 3 http://www.co-ode.org/roberts/family-tree.owl#isWifeOf

376 N. T. Dong & L. B. Holder

Simple Verbalizer NLGG

A is a person. B is a person. C is a person.

D is a person. B has brother in law C. B

has aunt in law D. E is a person. A has

parent E. A is wife of B.

A, B, C, D and E are people. A is E's

child and B's wife. C is B's brother

in law. D is B's aunt in law.

Example 3

v 1 http://xmlns.com/foaf/0.1#A

v 2 http://xmlns.com/foaf/0.1/Person

v 3 http://xmlns.com/foaf/0.1#B

v 4 http://xmlns.com/foaf/0.1/Person

v 5 http://xmlns.com/foaf/0.1#C

v 6 http://xmlns.com/foaf/0.1/Document

v 7 http://xmlns.com/foaf/0.1#D

v 8 http://xmlns.com/foaf/0.1/Document

d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 7 8 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 1 3 http://xmlns.com/foaf/0.1/knows

d 1 5 http://xmlns.com/foaf/0.1/publications

d 1 7 http://xmlns.com/foaf/0.1/publications

Simple Verbalizer NLGG

A is a person. B is a person. C is a docu-

ment. D is a document. A knows B. A

publications C. A publications D.

A and B are people. C and D are

documents. A knows B. A publishes

D and C.

Example 4

v 1 http://swat.cse.lehigh.edu/onto/univ-bench.owl#A

v 2 http://swat.cse.lehigh.edu/onto/univ-bench.owl#University

v 3 http://swat.cse.lehigh.edu/onto/univ-bench.owl#B

v 4 http://swat.cse.lehigh.edu/onto/univ-bench.owl#FullProfessor

v 5 http://swat.cse.lehigh.edu/onto/univ-bench.owl#C

v 6 http://swat.cse.lehigh.edu/onto/univ-bench.owl#ResearchGroup

d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Natural Language Generation from Graphs 377

d 3 1 http://swat.cse.lehigh.edu/onto/univ-bench.owl#tenured

d 1 5 http://swat.cse.lehigh.edu/onto/univ-bench.owl#a±liatedOrganizationOf

Simple Verbalizer NLGG

A is a university. B is a full professor.

C is a research group. B tenured

A. A a±liated organization of C.

C is a research group. B is a full pro-

fessor. A is an university and is

a±liated with C. B is tenured at A.

Example 5

v 1 http://swat.cse.lehigh.edu/onto/univ-bench.owl#College

v 2 http://swat.cse.lehigh.edu/onto/univ-bench.owl#University

v 3 http://swat.cse.lehigh.edu/onto/univ-bench.owl#A

v 4 http://swat.cse.lehigh.edu/onto/univ-bench.owl#Professor

v 5 http://swat.cse.lehigh.edu/onto/univ-bench.owl#B

v 6 http://swat.cse.lehigh.edu/onto/univ-bench.owl#University

v 7 http://swat.cse.lehigh.edu/onto/univ-bench.owl#C

v 8 http://swat.cse.lehigh.edu/onto/univ-bench.owl#D

v 9 http://swat.cse.lehigh.edu/onto/univ-bench.owl#E

v 10 http://swat.cse.lehigh.edu/onto/univ-bench.owl#ResearchGroup

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 7 1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 8 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 9 10 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 7 8 http://swat.cse.lehigh.edu/onto/univ-bench.owl#subOrganizationOf

d 3 7 http://swat.cse.lehigh.edu/onto/univ-bench.owl#headOf

d 3 5 http://swat.cse.lehigh.edu/onto/univ-bench.owl#doctoralDegreeFrom

d 3 9 http://swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf

Simple Verbalizer NLGG

A is a professor. B is a university. C is a

college. D is a university. E is a re-

search group. C sub organization of

D. A head of C. A doctoral degree

from B. A member of E.

E is a research group. A is a professor.

C is a school. B and D are universi-

ties. A has a doctoral degree from B.

A is the head of C and a member of

E. C is a part of D.

Example 6

v 1 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 2 `̀ MALE"

v 3 http://eecs.wsu.edu/�ndong/ontology/GH/Group

378 N. T. Dong & L. B. Holder

v 4 http://eecs.wsu.edu/�ndong/ontology/GH/Event

v 5 `̀ Armed Assault"

d 1 2 http://eecs.wsu.edu/�ndong/ontology/GH/Gender

d 4 5 http://eecs.wsu.edu/�ndong/ontology/GH/EventActivityType

d 1 4 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON RESPONSIBLE

d 1 3 http://eecs.wsu.edu/�ndong/ontology/GH/UNKNOWN

Simple Verbalizer NLGG

Person gender MALE. Event

event activity type Armed

Assault. Person PER-

SON RESPONSIBLE event.

Person UNKNOWN group.

There is a Event, let's call it Event1. There is a

Person, let's call it Person1. There is a Group,

let's call it Group1. Event1 is an Armed Assault

event. Person1 is a MALE, the responsible

person of Event1 and an unknown to Group1.

Example 7

v 1 http://eecs.wsu.edu/�ndong/ontology/GH/Group

v 2 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 3 http://eecs.wsu.edu/�ndong/ontology/GH#Emma

v 4 http://eecs.wsu.edu/�ndong/ontology/GH#E1

v 5 http://eecs.wsu.edu/�ndong/ontology/GH#Jayden

v 6 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 7 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 8 http://eecs.wsu.edu/�ndong/ontology/GH/Event

d 3 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 4 8 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 7 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON DEFENDANT

d 3 5 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON FAMILY CHILD

d 2 1 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON FOUNDER

d 3 1 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON MEMBER

Simple Verbalizer NLGG

Emma is a person. E1 is a event. Jayden is

a person. Emma PER-

SON DEFENDANT E1. Emma PER-

SON FAMILY CHILD Jayden. Person

PERSON FOUNDER group. Emma

PERSON MEMBER group.

E1 is an event. There is a person, let's

call it Person1. Jayden and Emma

are people. There is a group, let's call

it Group1. Emma is a child of Jay-

den and a defendant of E1. Person1

is the founder of Group1. Emma is a

member of Group1.

Natural Language Generation from Graphs 379

Example 8

v 1 http://eecs.wsu.edu/� ndong/ontology/GH/Person

v 2 http://eecs.wsu.edu/� ndong/ontology/GH/Event

v 3 `̀ Police Operation"

d 1 3 http://eecs.wsu.edu/� ndong/ontology/GH/EventActivityType

d 1 2 http://eecs.wsu.edu/� ndong/ontology/GH/PERSON TARGETED

Simple Verbalizer NLGG

Event event activity type Police

Operation. Person PER-

SON TARGETED event.

There is an event, let's call it Event1. There is

a person, let's call it Person1. Event1 is a

Police Operation event. Person1 targets

Event1.

Example 9

v 1 http://xmlns.com/foaf/0.1#A

v 2 http://xmlns.com/foaf/0.1/Group

v 3 http://xmlns.com/foaf/0.1#B

v 4 http://xmlns.com/foaf/0.1/Person

v 5 http://xmlns.com/foaf/0.1#C

v 6 http://xmlns.com/foaf/0.1/Person

v 7 http://xmlns.com/foaf/0.1/Organization

d 1 2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 5 6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 3 1 http://xmlns.com/foaf/0.1/member

d 5 1 http://xmlns.com/foaf/0.1/member

d 3 5 http://xmlns.com/foaf/0.1/knows

d 5 7 http://xmlns.com/foaf/0.1/topic interest

Simple Verbalizer NLGG

A is a group. B is a person. C is a

person. B member A. C mem-

ber A. B knows C. C topic in-

terest organization.

A is a group. C and B are people. There is an

organization, let's call it Organization1. B

knows C. C and B are members of A. Orga-

nization1 is the interested topic of C.

Example 10

v 1 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 2 http://eecs.wsu.edu/�ndong/ontology/GH#GH.N.TANGO.5264

v 3 `̀ 1000689718"

380 N. T. Dong & L. B. Holder

v 4 `̀ ASNNFD"

v 5 http://eecs.wsu.edu/�ndong/ontology/GH/Event

v 6 http://eecs.wsu.edu/�ndong/ontology/GH#GH.N.TANGO.58421

v 7 `̀ Police Operation"

v 8 `̀ 1115611"

d 2 1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 2 3 http://eecs.wsu.edu/�ndong/ontology/GH/FamilyName

d 2 4 http://eecs.wsu.edu/�ndong/ontology/GH/Ethnicity

d 6 5 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

d 6 7 http://eecs.wsu.edu/�ndong/ontology/GH/EventActivityType

d 6 8 http://eecs.wsu.edu/�ndong/ontology/GH/GH EVT ID

d 2 6 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON TARGETED

Simple Verbalizer NLGG

GH.N.TANGO.5264 is a person. GH.

N.TANGO.5264 family name

1000689718. GH.N.TANGO.5264

ethnicity ASNNFD. GH.N.

TANGO.58421 is a event. GH.N.

TANGO.58421 event activity type

police operation. GH.N.

TANGO.58421 GH EVT ID

1115611. GH.N.TANGO.5264

PERSON TARGETED GH.N.

TANGO.58421.

GH.N.TANGO.58421 is an event. GH.

N.TANGO.5264 is a person. GH.N.

TANGO.58421 is a Police Operation

event. GH.N.TANGO.58421 has

GH EVT ID 1115611. GH.N.

TANGO.5264 is an ASNNFD. GH.

N.TANGO.5264 has family name

1000689718. GH.N.TANGO.5264

targets GH.N.TANGO.58421.

Example 11

v 1 http://eecs.wsu.edu/�ndong/ontology/GH/Event

v 2 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 3 http://eecs.wsu.edu/�ndong/ontology/GH/Group

v 4 http://eecs.wsu.edu/�ndong/ontology/GH/Person

v 5 http://eecs.wsu.edu/�ndong/ontology/GH/Group

d 2 3 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON NETWORK

CONTACT

d 4 5 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON LOGISTICS

CHIEF

d 4 5 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON POLITICAL

MEMBER

d 2 4 http://eecs.wsu.edu/�ndong/ontology/GH/PERSON FAMILY COUSIN

d 4 5 . . ./�ndong/ontology/GH/PERSON OPERATIONS COMMANDER

Natural Language Generation from Graphs 381

Simple Verbalizer NLGG

Person PERSON NETWORK

CONTACT group. Person

PERSON LOGISTICS

CHIEF group. Person PER-

SON POLITICAL MEM-

BER group. Person

PERSON FAMILY COUSIN

person. Person PERSON

OPERATIONS COM-

MANDER group.

There is an event, let's call it Event1. There are 2

people, let's call them Person1 and Person2.

There are 2 groups, let's call them Group1 and

Group2. Person2 is a cousin of Person1. Per-

son1 is the logistics chief of Group1. Person2

has network contact with Group2. Person1 is

the operations commander of Group1 and a

political member of Group1.

Example 12

v 1 http://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent

v 2 http://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateCourse

v 3 http://swat.cse.lehigh.edu/onto/univ-bench.owl#Course

v 4 http://swat.cse.lehigh.edu/onto/univ-bench.owl#Professor

d 1 2 http://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse

d 1 3 http://swat.cse.lehigh.edu/onto/univ-bench.owl#teachingAssistantOf

d 1 4 http://swat.cse.lehigh.edu/onto/univ-bench.owl#advisor

Simple Verbalizer NLGG

Graduate student takes

course graduate

course. Graduate stu-

dent teaching assis-

tant of course.

Graduate student ad-

visor professor.

There is a professor, let's call it Professor1. There is a

course, let's call it Course1. There is a graduate

student, let's call it GraduateStudent1. There is a

graduate level course, lets call it GraduateCourse1.

GraduateStudent1 is being advised by Professor1.

GraduateStudent1 is taking GraduateCourse1. Gra-

duateStudent1 is a teaching assistant for Course1.

Appendix B. Selected Output Results from NaturalOWL and the NLGG

System

NaturalOWL NLGG

This is a kouros that is 1.94 metres high.

It dates from circa 530 B.C. It was

secretly cut in two pieces and

Exhibit 2 is a kouros and is created

during the archaic period. Exhibit 2

dates from circa 530 B. C. It was

382 N. T. Dong & L. B. Holder

(Continued)

NaturalOWL NLGG

transported to Paris in 1937, before it

was returned to Greece. This kouros is

inscribed with `̀ Stand and cry in front

of the grave of dead Kroissos, who

found death by Ares as he was ¯ght-

ing on the front". Currently this

kouros is exhibited in the National

Archaeological Museum of Athens.

secretly cut in two pieces and trans-

ported to Paris in 1937, before it was

returned to Greece. Exhibit 2 is

inscribed with `̀ Stand and cry in front

of the grave of dead Kroissos, who

found death by Ares as he was ¯ght-

ing on the front". Exhibit 2 is cur-

rently exhibited in the National

Archaeological Museum of Athens.

This is a statue that was sculpted by

Polykleitos. It was created during the

classical period and it is 2.12 metres

high. (Actually, this is a Roman copy;

we refer to the original). It dates from

circa 440 B.C. and currently it is

exhibited in the National Archaeo-

logical Museum of Napoli.

Exhibit 4 is a statue. (Actually, this is a

Roman copy; we refer to the original).

Exhibit 4 is created during the circa

440 B.C. Exhibit 4 dates from the

classical period. Exhibit 4 is sculpted

by Polykleitos. Exhibit 4 is currently

exhibited in the National Archaeo-

logical Museum of Napoli.

This is a tetradrachm, created during the

classical period. It originates from

Attica and it dates from between 440

and 420 B.C. It is made of silver and

currently it is exhibited in the Nu-

mismatic Museum of Athens.

Exhibit 6 is a tetradachm and is created

during the classical period. Exhibit 6

dates from between 440 and 420 B. C.

Exhibit 6 is made of silver. Exhibit 6

originates from Attica. Exhibit 6 is

currently exhibited in the Numis-

matic Museum of Athens.

This is a drachma, created during the

classical period. It originates from

Attica and it dates from circa the 5th

century B.C. It has an image of

Athena crowned with a branch of

olive, her tree, on one of its sides. One

the other side, there is a picture of the

goddess's owl. A drachma was enough

for a `̀ metic" (that is, a foreigner that

stayed in Athens) to pay the `̀ metic

tax" each month. This drachma is

made of silver and today it is exhib-

ited in the Agora Museum of Athens.

Exhibit 8 is a drachma and is created

during the classical period. Exhibit 8

dates from circa the 5 th century B. C.

It has an image of Athena crowned

with a branch of olive, her tree, on one

of its sides. On the other side, there is

a picture of the goddess's owl. A

drachma was enough for a metic (that

is, a foreigner that stayed in Athens)

to pay the metic tax each month.

Exhibit 8 is made of silver. Exhibit 8

originates from Attica. Exhibit 8 is

currently exhibited in the Agora

Museum of Athens.

Natural Language Generation from Graphs 383

(Continued)

NaturalOWL NLGG

This is a marriage cauldron, created

during the classical period. It was

painted in the style of the Painter of

Meidias and it was decorated with the

red-¯gure technique. It originates

from Attica and it dates from between

420 and 410 B.C. It depicts a bride

wearing her `̀ nymphides", meaning

`̀ bridal footwear". Today this mar-

riage cauldron is exhibited in the Na-

tional Archaeological Museum of

Athens.

Exhibit 10 is a marriage cauldron and is

created during the classical period.

Exhibit 10 dates from between 420

and 410 B. C. Exhibit 10 depicts a

bride wearing her nymphides, mean-

ing bridal footwear. Exhibit 10 origi-

nates from Attica. Exhibit 10 is

painted in the style of the Painter of

Meidias. Exhibit 10 is decorated with

the red-¯gure technique. Exhibit 10 is

currently exhibited in the National

Archaeological Museum of Athens.

384 N. T. Dong & L. B. Holder

	Natural Language Generation from Graphs
	1. Introduction
	2. Natural Language Generation
	2.1. Definition
	2.2. Input to NLG systems
	2.3. NLG applications
	2.4. NLG architecture
	2.4.1. Content determination and text planning
	2.4.2. Sentence planning
	2.4.3. Realization

	2.5. NLG systems evaluation
	2.5.1. Task-based evaluation
	2.5.2. Evaluation based on human judgments or ratings
	2.5.3. Other works

	2.6. Difference between NLGG and existing works
	2.6.1. NLGG versus NaturalOWL
	2.6.2. NLGG versus domain independent sentence generation from RDF representations
	2.6.3. NLGG versus ontology verbalizers

	3. The Semantic Web and OWL 2 Ontology
	3.1. The semantic web
	3.2. The OWL 2 ontology language and the resource description framework (RDF)
	3.3. Semantic reasoners

	4. The NLGG System
	4.1. Input to NLGG
	4.1.1. Template information about classes, relationships and attributes

	4.2. Preprocessing
	4.3. The NLGG architecture
	4.3.1. Model preparation and content determination
	4.3.2. Document structuring
	4.3.3. Lexicalization, aggregation and realization

	5. Experimental Results
	5.1. Experiment 2: NLGG vs the simple verbalizer
	5.1.1. The simple verbalizer
	5.1.2. Experiment data
	5.1.3. Experimental results and discussion
	5.1.4. Discussion

	5.2. Experiment 2: NLGG vs NaturalOWL

	6. Conclusion
	Acknowledgments
	References
	Appendix A. Selected Output Results from Simple Verbalizer and NLGG Systems
	Appendix B. Selected Output Results from NaturalOWL and the NLGG System

