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Abstract. The problem of activity recognition in smart environments
has produced multiple divergent paths of research in an attempt to
improve the usability and usefulness of smart environments. In this paper
we merge these research paths by defining a method for mapping smart
environment sensor activities into an ontologically defined semantic fea-
ture space. We show that by using this approach we are able to improve
activity recognition by between 5-20 %.
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1 Introduction

Recent advances in pervasive computing technologies have enabled the explo-
ration of intelligent environments as a means of providing daily activity monitor-
ing and cognitive support for aging populations. In order to meet this potential
the environment must be able to efficiently and accurately recognize the state
of the resident and in what activity, or activities, the resident is engaged.

Unfortunately, activity recognition in a real-world smart environment is a
challenging task, partly due to the sparsity of the available data and its highly
skewed class distribution. Also, variability between individuals and environ-
ments can amplify the difficulty and expense of collecting and annotating data
required to learn in a new environment. While some researchers have proposed
expert systems based on semantic modeling as a method to avoid dependence
on machine learning algorithms, these approaches carry expectations related
to sensor utility and activity structure which often do not transfer well to the
real-world.

The main contribution of this paper is a process for integrating semantic
knowledge into the process of learning activity recognition models. We model
five existing smart environments using Semantic Web technologies and exist-
ing ontologies related to smart environments and demonstrate that activity
recognition can be reliably improved by 5-20 %, depending on what measure is
used.
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2 Ontological Models of Smart Environments

Several researchers have defined ontologies for smart environments, each with
a slightly different focus. Of these ontologies, DogOnt! [1] and COSE? [16] are
both publicly available. To the best of our knowledge the ontologies in [2,15] are
not generally available.

DogOnt provides a rich ontology for smart homes with an emphasis on facil-
itating device interoperability. As such it provides many concepts related to
device capabilities, functionality and commands providing an API for smart
environments. This focus makes DogOnt a good ontology for use by intelligent
agents when controlling and communicating with devices in a smart environ-
ment. COSE, on the other hand, is a smaller ontology focused on modeling
objects and sensors within a smart environment. In [16], the authors make clear
that one of their design goals was to integrate COSE with a top level ontol-
ogy, namely OpenCyc [10]. The authors argue that mapping into an upper-level
ontology provides extra portability for models utilizing COSE and enables more
integration with the wider Semantic Web.

For this work, we have chosen to use COSE due to its richer model of objects
in the environment. It is worth noting that, given the structure of the Semantic
Web, using one ontology in no way prohibits the use of a different ontology when
the need to express different concepts arises. Thus, applications in smart envi-
ronments can easily reference concepts from both COSE and DogOnt whenever
needed.

3 Smart Environments

In this section we discuss the details of the environments which we have modeled
for this paper. For a more general discussion of smart environments, refer to [4].

We have modeled five environments using the COSE ontology. One, named
Kyoto, is a testbed for smart home research and is used in seven out of the eleven
datasets in this study. The other four environments are homes which have been
instrumented with sensors in order to gather longitudinal data on activities,
the names for these environments are Aruba, Cairo, Milan, and Tulum. Table 1
provides details about these environments.

Figure 1 shows the locations of sensors in the Kyoto environment. This envi-
ronment is a three-bedroom apartment with two levels. The upper level contains
the bedrooms and a bathroom, while the lower floor contains the living room,
kitchen and dining area. Controlled experiments in this environment were con-
ducted on the lower level of this apartment. Those experiments account for five
of the seven datasets gathered in Kyoto.

! http://elite.polito.it /ontologies/dogont.owl.
2 http://casas.wsu.edu/owl/cose.owl.


http://elite.polito.it/ontologies/dogont.owl
http://casas.wsu.edu/owl/cose.owl

Improving Activity Recognition in Smart Environments 131

@ @ SO
@6 @a Bathroom:
: @, %:5 @,
@ @
Lowios @,
RO 0% @) Lot Los @),
@,
D12 -0 (reezgr)
: “;J
\
@J Al
e
=)
Lt
@,
@5 olot @o 17
:01

Fig. 1. Sensor layout for the Kyoto Smart Environment. This environment contains:
52 Motion sensors; 17 Light-switch sensors; 15 Door sensors; 12 Object contact sensors;
2 Temperature sensors; 2 Water flow sensors; 1 Home energy usage sensor; 1 Range
burner sensor

Table 1. Environments used in this study

Name Aruba Cairo Milan Tulum Kyoto

Sensors 39 32 33 18 102

Sensor Events 1,709,866 724,738 432,416 1,085,026 | 5,078,005

Sensor Types Door, Motion, Motion, Door, Motion, Motion Door, Motion,
Temperature Temperature Temperature Object,

Power Usage,
Temperature,
Water Flow

Number 9 9 7 13 118
annotated
activities

Relevant [3] [6] [3] [6,7,12,14]

Publications

4 Activity Recognition

Activity recognition is the task of recognizing when a person is performing a cer-
tain task. The set of possible tasks is unbounded, so smart home researchers gen-
erally consider a small number of tasks know as the Activities of Daily Living, or
ADLs [9], which are of particular interest in elder care applications. These activ-
ities include: Grooming, Eating, Toileting, Bathing, and Personal Hygiene. The
authors of [11] also suggest Instrumental Activities of Daily Living, or TADLs,
which include: Using a Telephone, Shopping, Cooking, Housekeeping, Laundry,
Taking Medications and Handling Finances.

These activities are the baseline around which much of the research, par-
ticularly health-care related smart environment research, has focused. Research
groups tend to instrument an environment, observe research participants per-
forming these activities, develop recognition algorithms, and then use the data
to assess algorithm effectiveness.
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4.1 Approaches to Activity Recognition

When designing systems to recognize activities, research generally falls into two
areas. The first uses statistical machine learning techniques to learn models
given observed data. The second uses logical models of activities defined a priori
to build rules to determine what activity is being performed. Each method has
benefits and drawbacks, though the machine learning approach is generally more
popular.

The data-driven approach to activity recognition relies on instrumenting an
environment with a range of sensors and using machine learning algorithms to
mine the output of those sensors for patterns related to activities of interest.
This approach is generally flexible and powerful enough to build useful activity
models, though skewed class distributions and the need for data annotation make
learning in new environments difficult.

In contrast, a “knowledge-based” approach is based on expert systems which
contain activity models as a set of logical constraints. These models are used
by inferencing engines to determine what activity is being performed. In [2], the
authors propose such a system using Semantic Web technologies and a novel
decision algorithm based on lattice-theory. The challenges when applying this
approach are that getting data out of an environment which is clean enough
to fit into a rule-based system is difficult. Also, building and extending these
systems is difficult and costly.

In this work we demonstrate a hybrid approach which combines the best of
both worlds in order to minimize the drawbacks of each while capitalizing on
their strengths.

5 Learning with Semantics

The proposal is simple: Map sensor data into an ontologically defined feature-
space for use by machine learning algorithms. This allows learned models to be
applied in any environment where these mappings are defined, and if needed,
integrate semantic rules into the activity recognition process.

5.1 Defining Semantic Space

Statistical machine learning algorithms necessarily learn by example. Given a
dataset, the attributes for each example are considered to be the “feature space”
of that dataset. When we say a “semantic feature space” we mean a feature space
which is defined by concepts in an ontology. The challenge is to choose which
concepts to use in our feature space.

To do this, we have taken inspiration from natural language processing tech-
niques and have adopted an n-gram approach. With this approach, we define the
feature space to be a set of n-grams built up from the concepts in COSE. In this
approach each sensor is mapped to one or more n-grams based on the following.

First, let S be the set of concepts in COSE which are directly instantiatable
in a smart environment. This excludes abstract concepts such as Sensor, but
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does include concepts such as MotionDetector. Next, for each sensor e of type ¢
we find the set of concepts C' C S to which e has a relationship. Further, let B be
a set of predefined base concepts around which n-grams will be built. Consider
P to be a partitioning of C into |B| + 1 sets such that all concepts in set ¢ are
a specialization of the concept B;. The last set in P contains all concepts in C
which have no parent in B. The features in semantic space to which e maps are
its type t and the set of features in the cross product of the sets in P.

As an example, sensor M014 is a motion detector which is situated above the
table in the dining room in the Kyoto smart environment. For this work we let 5
be {Sensor, SpaceInAHOC}3. Thus, M014 is mapped to features that are the
cross-product of the sets { MotionDetector}, { DiningRoom} and { Table}. These
features can be expressed with statements such as “Motion in the dining room”
and “Motion in the dining room above the table”.

5.2 Creating Feature Vectors

When creating feature vectors from streaming events we maintain the state of
the environment as a vector V. We allow sensor events to change this vector and
every g time units we shift this vector onto a stack of state vectors which extend
back for a limited amount of time; we call this H or the history matrix. Given
a list of window sizes Wy, we create a set of matrices W,,, over H which define
windows extending back a specific amount of time from the current moment. If
we consider the state vectors to be the rows of the matrix, then the columns
provide a history of each individual sensor.

The output feature vectors are, for each window, the mean of the columns
plus the union of 1D FFTs run over each column. The real-valued inputs to the
FFT mean that the result is symmetric and we only need to retain half of the
FFT which helps to reduce excess noisy features. In order to map into semantic
space, we observe that each ontological concept can be thought of as a sensor
with a real value. The state of the sensor is simply the mean of the real sensors
which map into the concept.

6 Experiments

In order to test our hypothesis that adding semantic models can improve activ-
ity recognition in smart environments, we have testing activity recognition algo-
rithms over eleven datasets using three feature spaces.

6.1 Feature Spaces

The first feature space, which we refer to as sensor space, is a standard approach
which directly takes features from sensor activities. In this space, each sensor
produces two basic features for each time window: the sensor’s mean activity
and the dominant frequency of the sensor.

3 SpaceInAHOC is short for Space In A Human Occupation Construct.



134 Z. Wemlinger and L. Holder

The second space is the COSE space, which is built by mapping sensor
activities into semantic space using the procedure described in Sect.5.1. The
features in this space are the mean activity and dominant frequency of each
n-gram.

Finally, we also have tested the union of these two spaces, which we refer to
as the hybrid space.

6.2 Experimental Setup

Here we use window sizes of 3, 7, 14, 30 seconds and ¢ is 0.5 seconds. As suggested
in [3], we sample one feature vector every 10 seconds. All features are discretized
using equal width binning with 5 bins then mapped to binary features. Feature
vectors are labeled using the set of all labels observed on a sensor event during
the 10 second window.

Activity recognition is inherently a multi-label classification problem and
this is addressed here by training a single classifier for each activity in each
dataset over each feature space and evaluating the performance of each model
independently.

We have split each activity into n separate and temporally continuous sec-
tions. We train and test our models iteratively, such that on iteration ¢ we train
our model on the first ¢ sections and test on the remaining n — ¢ sections. In our
tests we have set n = 10.

Results are based on using Sofial-ML* which is a support vector machine
implementation and which is partly described in [13]. This particular implemen-
tation allows calculating support vectors by stochastically selecting examples
from both the positive and negative class. Doing this is necessary for our datasets
due to the highly skewed class distribution where the median density of posi-
tive examples is only 2.8 %. Throughout these analyses, statistical significance
is tested using student t-tests at the p = 0.05 level.

6.3 Results

In Fig. 2 we present performance using four metrics: accuracy, precision, recall,
and RMSE. The RMSE is calculated on the error in the probabilities produced
by our classifier. Due to the significant differences between precision and recall,
we do not present the F-score directly. If the top ranked feature space has a
statistically significantly improvement over other spaces it is marked with a
diamond.

As the reader can observe, in 70 % of the cases, using a hybrid feature space
provides a significant improvement over other feature spaces. In terms of per-
formance relative to a standard sensor approach, using a hybrid space provides
5.1 % more accuracy, 20 % better precision, 5.6 % higher recall, and 9.7 % lower
RMSE.

4 Available at: https://code.google.com/p/sofia-ml/.
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Fig. 2. Means for performance measurements given learning in the three feature spaces.
Marked bars indicate the top ranked space with statistical significance. Significance is
based on paired t-tests across all tests and activities in the environment. Note, RMSE
is an error measure, so lower is better.

The sensor space used here is consistent with the feature spaces used in other
data-driven approaches to activity recognition, e.g. [3,8]. Specifically, [3] evalu-
ated performance of learning algorithms using several of the datasets utilized in
this paper and reported an accuracy of 75 % using a hidden Markov model. The
overall accuracy for the sensor space used here was 77 % and the accuracy for
the hybrid space was 80 %.

7 Related Work

In Sect.2 we discuss related ontological modeling efforts and in Sect.4.1 we
discuss ongoing research into activity recognition. In [3], Cook uses non-semantic
method for mapping sensors into a common feature space with good effect. The
authors of [5] provide an overview of transfer learning, which is highly related
to this work. Transfer learning can avoid the need to create an ontology in order
to map sensor events between environments, however in doing so also does not
provide a method for integrating other semantic knowledge into the activity
recognition process.
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This work relates to these other efforts in that it provides a bridge between
semantic modeling efforts and data-driven machine learning techniques. Utilizing
the strengths from both of these areas of research holds promise for creating
extensible and portable activity recognition systems.

8 Conclusions and Future Work

In this paper we have provided a method for integrating semantic knowledge
bases into the activity recognition process for smart environments and have
shown that this process provides a statistically significant improvement of
5-20% to existing activity recognition approaches across a variety of environ-
ments and datasets.

While it is evident that logical rules can be applied when using a semantic
feature space, we have not yet tested how effective such a system would be; doing
so would be an immediate next step to this research. Other directions for future
research include extending the work in [3] to learn novel activities using concepts
from the ontology. Also, embedding natural language concepts into the ontology
could provide the basis for intelligent natural language prompting systems to
enhance smart home interactivity.
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