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Abstract

There is currently a rapid increase in the number of challenge
problem, benchmarking datasets and algorithmic optimiza-
tion tests for evaluating AI systems. However, there does not
currently exist an objective measure to determine the com-
plexity between these newly created domains. This lack of
cross-domain examination creates an obstacle to effectively
research more general AI systems. We propose a theory for
measuring the complexity between varied domains. This the-
ory is then evaluated using approximations by a population
of neural network based AI systems. The approximations are
compared to other well known standards and show it meets
intuitions of complexity. An application of this measure is
then demonstrated to show its effectiveness as a tool in varied
situations. The experimental results show this measure has
promise as an effective tool for aiding in the evaluation of
AI systems. We propose the future use of such a complexity
metric for use in computing an AI system’s intelligence.

Introduction
There is currently an ever increasing number of new and in-
novative AI performance measures. These can range from
simple tests to challenging suites of diverse problems. Yet
little consideration is given to measuring and comparing the
complexity of existing benchmarks and evaluation systems.
This lack of cross-domain measures hinders our ability to
evaluate AI systems across multiple benchmarks. Without
this examination, it is difficult to assess how the field is pro-
gressing, which results in the slowing of research on general
AI systems.

The AI community often focuses on the creation of an
AI system with the intent of achieving better than state-of-
the-art performance. This focus has resulted in spectacular
AI systems that achieve a high performance on a singular
task. These ideas, however, tend not to progress the AI com-
munity as a whole towards generalizable systems that are
able to handle multiple diverse tasks or slightly variant do-
mains. This lack of cross-domain examination impedes the
field from achieving more generalizable results.

To address this problem, we propose a measure of domain
complexity that can be used to compare domains. Evaluating
these domains with the intent of differentiation will allow us
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to see which AI systems are performing better when running
over a suite of domains.

A measure of domain complexity is a necessary, but not
sufficient, component in a framework for evaluating AI sys-
tems. In addition to a complexity measure, we also need a
measure of domain similarity and a universal performance
measure will be required to achieve this goal (Pereyda and
Holder 2020).

The rest of the work proceeds as follows. First, we briefly
examine the current state of measuring complexity in a mul-
titude of fields. Then we propose our theory of complexity
following from these works. Next, we evaluate our theory
utilizing well known datasets and show how the complex-
ity measure can be applied. Finally, we conclude by review-
ing our goals and how effective the measure was to solving
them.

Related Work
One approach for measuring the complexity of a certain
task is to measure its Kolmogorov Complexity (Wallace and
Dowe 1999). The Kolmogorov Complexity of a domain is
the minimum size of a program which can be used to gen-
erate such a domain. This leads to the notion of compress-
ibility. Namely, the smallest representation of the domain.
While this seems like an effective way to measure complex-
ity, it has a significant drawback. There is currently no accu-
rate method to measure the lower bounds. Some approxima-
tions of upper bounds have been constructed (Staiger 1998).
One example of a problem utilizing this notion of compress-
ibility is the Hutter Prize (Hutter. 2012). The goal of the
task is to optimize a compressibility algorithm to compress
a large corpus of real world text. The creator’s of the test
propose that being able to compress is closely related to in-
telligence (Hutter 2004).

Another similar idea is to utilize the Minimum Message
Length (Wallace and Dowe 1999) (Hernández-Orallo and
Dowe 2010). This is in a similar vein to the Kolmogorov
Complexity. However, it does not strongly depend on a
notion of maximal compressibility. These two ideas rely
largely on Algorithmic Information Theory (Solomonoff
1964). While these methods have a well understood and
agreed upon theory, they remain largely impractical to use.
Still some ideas can be utilized, namely minimal problem
representations. That is, minimal problem representation



may make for a useful measure (Legg and Veness 2013).
One previous attempt to measure the complexity of do-

mains was performed by searching for a minimal network
to solve the domain (Pereyda and Holder 2018). This was
done by constructing a search over variable neural network
architectures. The networks were then trained to find the
smallest sizes that met the criterion of solved. Solving the
domain was defined as achieving 95% of the maximum pos-
sible score. While this approach is a reasonable approxima-
tion, it lacks any theoretical backing. It also heavily relies on
an effective search algorithm for finding a minimal network,
which may bias the results in favor of a certain domain. The
method also does not allow for an effective verification of re-
sults, as each measurement is determined by a single search
and not a set of searches.

Other approaches for understanding complexity come
from psychology and cognitive science (Hernández-Orallo
2017), where the difficulty of a domain is understood to be
a function of working memory (Hardman and Payne 1995).
That is, how many ideas can be kept track of at once by a
human. While these concepts and theories can be useful for
constructing human-based difficulty measures, they do not
generalize well. For instance, a computer can easily keep
track of a large number of complex ideas for an indefinite
period (Bang et al. 2015). This lack of generalizability does
not allow for scalability or verification through the use of
synthetic experimentation.

Our approach aims to solve these keys issues. First, we
create our theory of complexity. This is built off previous
work and aims to guide our understanding of what it is we
are measuring. This aids with understanding and validating
our measure. Second, we create this measure with applica-
bility in mind. We are able to effectively test and validate the
measure and shows its practical uses. This approach helps
bridge the typical problem of moving from theory to practi-
cality. We are then able to show how our measure compares
to other well-understood notions of problem difficulty.

Theory of Complexity
There is not currently a unified model to understand or de-
scribe complexity. Several theories and models have been
put forward over the last few decades, but there is little con-
sensus (Hernández-Orallo et al. 2016). Each field of study
generally has its own notion of complexity, in relation to the
specifics of the field. For instance, the field of psychology
tends to use the amount of mental effort required to solve a
problem as their complexity (Logie and Logie 1995). Due to
this, we will focus our notion of complexity from the field
of computer science.

In this field, there exists three primary perspectives for un-
derstanding complexity (Liu and Li 2012). The interaction
perspective defines complexity is based on the amount of in-
teraction required to solve the task. For example, some com-
bination of practice games and theorizing of chess to be able
to solve it. The resource requirement perspective, in which
complexity is defined by the amount of total resources used
in solving the task. For example, the amount of time and
energy a chess player uses during a game. This is the pre-
ferred perspective for cognitive models based on working

memory. The structuralist perspective, in which complexity
is defined from the set of components and rules that go into
defining the task. For example, the types of pieces of a chess
board and the rules that govern the actions of these pieces.
One such method is to look at the size of mazes to construct
a notion of difficulty (Zatuchna and Bagnall 2009). This ap-
proach is often flawed by the same problems that flaw the
use of Kolmogorov Complexity (Legg and Hutter 2007), in
that it requires a series of approximations and assumptions
to be made.

From these differing perspectives we will focus on the
resource requirement perspective. That is, we examine the
policies that are used to solve a problem. This involves
analysing the complexity of the policy itself to find the re-
quired resources. This is similar to measuring the memory
used by an agent to solve a classification problem. This will
allow us to examine how the domains and tasks are being
represented by the AI system. Examining these allows us
to determine how differently-capable AI systems handle the
problem and to be able to weight their scores appropriately.
This is not practical to do in psychology, because the hu-
man brain is not yet accurately represented at the neuronal
level. Though the ideas of working memory (Logie and Lo-
gie 1995) can be extrapolated into AI systems to better in-
form our measure of complexity.

To begin, we need to properly define three key spaces.
The first space we will define is the task space. This task
specific space contains the intricacies of each task, including
the rules that govern the task, the specific states of the task,
and the resulting observable representation of the space. It
is generally impossible to reduce a task to the fundamental
components of a minimal representation (Wallace and Dowe
1999). Some exceptions exist for which the task was specif-
ically constructed to be reducible to a minimal representa-
tion (Insa-Cabrera, Dowe, and Hernández-Orallo 2011). We
define the task space µ as the resulting set of possible obser-
vations.

The next space is the solution space. The solution space
is a set of resulting products from the observation space.
This space holds the relevant information for defining per-
formance measures on the AI system. For example we can
examine the Cartpole solution space (Brockman et al. 2016).
Cartpole is a reinforcement learning domain with real world
physics. The goal of the domain is to balance a pole which is
jointed to a cart that moves left or right for as long as possi-
ble. While each state in the space may not hold a significant
amount of information, we can examine the space’s depth to
find the resulting score of the domain. This creates one par-
ticular performance measure, but this same space can also
be used for many different measures. Using the same ex-
ample, one can create a performance measure in which dis-
tance from the center is the score. That is, minimal extreme
movements from the AI system increases performance. This
space can be thought of as a deterministic Markov chain.
The solution space is defined as a function of a particular
performance metric V .

The last space is the policy space. This space governs the
mapping function of the task space to the solution space.
This policy space is the most interesting space as it is where



AI systems live. That is, an AI system is an instantiation of a
specific policy. This space holds the required information for
the AI system to make selections of the task space to achieve
a certain performance measure from the solution space. We
will primarily focus on this space for our notion of complex-
ity. A policy π is defined as the mapping function from the
task space to the solution space.

One theory for determining the complexity of a do-
main is to analyze the effort required to solve the domain
(Hernández-Orallo 2017). This idea has several theoretical
and practical challenges that need to be addressed. Namely,
the interpretation of effort required and solving the domain.
While there are several cognitive theories, we will examine
these ideas from an AI system perspective.

There are several methods for determining the amount of
effort required to solve a domain. One such example is to
use Levin’s universal search to find an optimal policy within
some tolerance (Levin 1973). This has the benefits of being
well defined and accepted by the community, yet it has draw-
backs. It exists as one of many search algorithms and may
not be the best choice. The larger drawback is its inability
to be applicable. Levin’s search suffers from the same prob-
lems as Kolmogorov Complexity, in that it can only be upper
approximated for most domains. This prevents us from tak-
ing full advantage of the formalisms of the search to find the
effort required.

Another approach is to examine the number of diverse in-
stances from a task it takes for a policy to adapt to a solution
(Hernández-Orallo 2017). While this approach offers good
insight into a variety of possible solutions, it still has flaws
similar to what was discussed before. As a result we will
utilize some key ideas of this to construct a more applicable
complexity measure. To do this we need to further define
policy.

Firstly, we need to determine the choice of policy. There
exist many different paradigms of AI systems involving
many different policies. Without a specific methodology for
selecting a policy, the resulting solution space may be bi-
ased. Consider two types of tasks: reinforcement learning
and planning. Both tasks have specific policies that can be
used to efficiently solve either problem, but not the other.
There exist very few policies that can effectively solve both
tasks. From this, we can determine that policy choice plays
an important role in determining the solution space and thus
will play an important role in our notion of complexity.
Therefore, we will not denote a specific policy for use in
the theory, rather, we will assume an arbitrarily generaliz-
able policy π.

Now that we have a notion of policy, we need to deter-
mine the capability of the policy. That is, the complexity of
the policy space utilized in the policy. This can be thought of
as the size of the resulting network of a partially observable
Markov decision process. Most practical policies have a no-
tion of capability that is intrinsic to the specific policy. For
example, consider neural networks. Within each network,
capability can be determine either through network topol-
ogy parameters (number of layers and nodes) or as the total
parameters in the network.

This notion of policy capability is crucial to our theory

of complexity since we need a practical approximation of
policy size. We propose that the complexity of a domain is
intrinsically tied to the smallest policy that maps the domain
to a specific performance measure. That is, given a certain
domain µ and performance value V , there exists a smallest
capable policy π∗ such that, π∗ achieves V on µ.

Examining only the size of the smallest policy leaves
out the searching process of finding such an optimal pol-
icy. While this searching effort information may be useful to
further refine the measure, we find that it is not critical in de-
termining the measure. If a consistent methodology can be
used such that the resulting search effort is constant for all
policies over all domains, it can be safely ignored.

This begs the question, what performance values do we
choose to examine? We postulate that there is insufficient
information to make an arbitrary singular choice of perfor-
mance value. As a result, we utilize the entire space of pos-
sible performance values to create a measure. We propose
that Complexity is defined as the minimal representation of
the policy space required to achieve a certain score over the
whole interval of the solution space for a given task space.
Thus, complexity can be defined as follows:

The complexity C of a domain µ is the performance mea-
surement V of a solution space {s} ∈ π∗(µ) resulting from
a minimal policy π∗ operating on the domain µ for a fixed
performance value V (s) evaluated over all possible perfor-
mance values.

The mathematical representation for the complexity of a
domain can be defined as follows:

Complexity(µ) =

∫ V maxµ

V minµ

VMDL(π)
µ dV (1)

Where µ is a domain, MDL is the minimal description
length of a policy, π is an agent implementing a fixed pol-
icy, V πµ is the resulting solution space score given the policy
mapping, and V is the score. We define V minµ and V maxµ
as the minimum and maximum performance value achiev-
able over µ, respectively. This depends on the particular per-
formance metric used.

Experiments
In this section we will evaluate our theory using a variety
of experiments. We compare our proposed complexity mea-
sure to other standards of information theory. The complex-
ity measure is also applied to intuitive problems to show
that the measure meets expectations. We demonstrate that
domains with a relative known difficulty are effectively and
accurately ranked in terms of difficulty. We also attempt to
address potential biases in the measure due to population
selection. Finally, a practical application of the measure is
demonstrated to show its usefulness for domain analysis.

Since our measure exists only theoretically, we will make
a few approximations to be able to utilize it. First is the
choice of an arbitrarily generalizable policy. While there
does not currently exist a truly generalizable policy, some
approximations to one have been created (Veness et al.
2011). To address this, we propose that the currently most



generalizable AI system exists in the form of a neural net-
work. Currently the standard in the field of AI research is
to utilize neural networks for a diverse range of problems.
Therefore, we will use a neural network as our approxima-
tion of a generalizable AI system.

Second is how we evaluate our policies over the whole
range of performance values, but this is practically infeasi-
ble. Instead, too compute the complexity measure, we cre-
ate a random population of neural network based AI sys-
tems. The population varies according to each agent’s capa-
bilities. Capabilities are determined by the number of train-
able parameters of the network. This is largely dependent on
the number of nodes and layers which are randomly varied
within each agent. Each agent in this population is given the
same training period over the data. The resulting scores are
compiled and used to fit a linear estimator corresponding to
the agent’s capabilities. This linear estimator is then used
to approximate the policy curve. From this curve, we then
generate an area under the curve (AuC) over the observable
score ranges. This resulting AuC is then an approximation
of our complexity equation. The AuC is sum-normed to 1.0
to allow for cross-domain analysis.

All of our proceeding experiments implement the same
error bars. The error is defined as a function of the resulting
mean squared error (MSE) of the linear-estimator. The MSE
is converted to a standard error and normalized for the num-
ber of samples. We then multiply this by 1.96 to achieve an
effective standard confidence interval of 95%. We are thus
95% confident that the true value lies somewhere within the
error bars.

We provide an example of this methodology as follows.
First we select a specific domain to evaluate its complexity.
We then proceed to train a large population of neural net-
works with varying capabilities. The training is conducted
consistently for each each agent. For example, the number of
training epochs is consistent regardless of the training score
achieved. This results in many capability-performance pair-
ings. Using a linear-estimator, we approximate the curve of
agent capability to performance. We then calculate the AuC
of this linear-estimator for positive performance values to
create a complexity measure. This measure is non-normed
and must be normed to compare across domains.

For these experiments we focus primarily on five well
established domains. Four are image datasets: Mnist (Le-
Cun et al. 1998), Fashion-Mnist (Xiao, Rasul, and Vollgraf
2017), Cifar10, and Cifar100 (Krizhevsky 2012). Each im-
age set was converted to greyscale for ease of computation.
The fifth domain is the reinforcement learning problem Cart-
pole (Brockman et al. 2016). These fice datasets can be ob-
served in Figure 1. To fairly evaluate these domains, we
transformed Cartpole into an image classification problem
by running a trained agent to generate correct image-action
pairings. This was done to preserve experimental consis-
tency so we can utilize the exact same methods of measuring
complexity as every other domain. While our theory is gen-
eralizable to reinforcement learning problems, we wanted to
ensure the consistency of its presentation and examination
within this work.

Figure 1: The five datasets used in our experimentation.
Cifar-10 and Cifar-100 were converted to greyscale for uni-
formity. The Cartpole domain was constructed by running a
trained agent on the environment to generate correct labels
for the corresponding observation vector.

Entropic Verification
As mentioned before, one method for computing the dif-
ficulty of a task is to measure its Kolmorgorov Complex-
ity. Since this complexity is not practical to measure, there
are certain approximations that can be made to estimate this
measure. One such method is to measure the Shannon en-
tropy and use that as an approximation (Galatolo, Hoyrup,
and Rojas 2010).

The Shannon entropy of an image is defined as the aver-
age local entropy for every pixel for a certain locality size. In
our experimentation we used a radius of size 1, in most cases
this leads to a locality of 5 pixels. For edge and corner pixels
this size will be smaller. The entropy of this locality is calcu-
lated by determining the minimum number of bits needed to
encode the locality. However, this does not account for the
label portion of the dataset. To take the label into considera-
tion, we add the base two logarithm of the number of classes
in the image set, to the average entropy of the image. For
example, in Cafar100 there are 100 labels to encode, so for
every image in Cifar100 we add 3.32 to the average local-
ity entropy. This final combination is the summed for every
image in the set to generate a final entropy of the set.

In this experiment we measure the Shannon entropy of
well known datasets and compare those to our complexity
measure. For each dataset we measure the average Shannon
entropy of an image. These entropies are then sum normed
to one to allow for comparison to the complexity measure.
These are referred to as Entropic Predictions.

We measured the complexity of each dataset using the
aforementioned methods. The resulting complexity values
were also sum normed to one.

The results are shown in Figure 2. From this data we de-
termine that our complexity measure functions as intended.
We can see that the rankings of complexity (Cifar100 being



Figure 2: Entropic Prediction compared to complexity mea-
sure. We plot the average Shannon Entropy for an image in
each dataset and compare that to the empirical prediction of
the complexity measure. The errors bars show the 95% con-
fidence interval of the complexity measure.

hardest and Cartpole being easiest) meets expectations. We
can also determine that the complexity measurement closely
approximates the entropic prediction. These approximations
are within the 95% confidence interval. Since entropy is
closely tied to Kolmorgorov complexity, and the Kolmor-
gorov complexity of a domain is a known and useful mea-
sure of difficulty, we can conclude that our complexity mea-
sure can be utilized to measure the difficulty of a domain.

Cluster Distribution Verification
Another method to verify that this complexity measure cap-
tures what we expect is to show how it performs over ran-
dom distributions. We can construct two normal distribu-
tions with a known mean and features corresponding to the
mean and variance. The task is to predict the cluster to which
a sample belongs. If we move the distribution means further
apart from each other, we expect the problem difficulty to
decrease. We can verify our complexity measure captures
domain difficulty if the perceived difficulty decreases pro-
portionally to the difference of the distribution means.

We construct two isotropic Gaussian clusters with a
known mean and variance. We then slowly shift the means
apart while applying the complexity measure. We plot the
complexity measure versus the known distance. We verify
the measure captures difficulty if we see a proportional in-
crease in complexity as the means become closer. We utilize
the same aforementioned methods for computing the com-
plexity measure.

Figure 3 shows the complexity versus the amount of clus-
ter overlap. From the results we can determine that the pro-
posed complexity measure captures difficulty. We can see
that as the cluster overlap decreases, the difficulty decreases.
At around 30% overlap and lower, the complexity remains
steady, because the clusters are separated enough that the

Figure 3: Measured complexity of a 2-cluster classifica-
tion problem as a function of cluster overlap. The clusters
are moved apart evenly using a Euclidean distance mea-
sure, however the resulting overlap between clusters is de-
termined by the overlap in the distributions. As a result, the
smaller overlapping amounts are much closer together than
the larger overlaps.

features of each point in the cluster do not significantly affect
the results. This is due to the isotropic nature of the cluster
generating algorithm.

Known Difficulty Verification
A third approach to verify the proposed complexity mea-
sure is to apply it to a set of problems with a known rank-
ing over difficulty. One such method is to take an existing
dataset with multiple sets of classes and increase the number
of classes. If an increase in complexity is measured along-
side an increase in the number of classes then the complexity
measure is validated.

This experiment was constructed utilizing the Cifar100
dataset. Random groupings of 10 classes from Cifar100
were selected and used to construct a smaller subset of Cifar.
We then measured the complexity of the resulting subsets of
Cifar. Since we know the possible ranges of these domains,
we normalize the resulting AuC of the linear-estimator by
the range of observed performance values. For example, we
observe lower performance values in harder Cifar problems,
so we normalize to the observed lower performance values.
Since we cannot make this cross-domain assertion in other
experiments, it exists only for this experiment.

The results of this experiment are shown in Figure 4. We
can see a clearly non-linear increase of complexity as the
number of classes used to construct the subset increases.
We expect a non-linear curve due to the problem difficulty
reaching a critical level, where adding more classes has a
negligible effect on the difficulty of the problem. The results
validate that the complexity measure properly ranks the Ci-
far problems according to known difficulty.



Figure 4: Complexity compared to the number of classes
used in a cifar subset. All classes were selected from the
original Cifar100 dataset. Each selection of classes were ran-
domly sampled from cifar100 to prevent a certain subset of
classes from biasing the results. We can observe a very clear
non-linear increase in complexity as the number of classes
increases.

Agent Dependency

One potential problem with this experimentation is bias by
not choosing from all potential agents. While it is infeasible
to examine every possible type of AI system and all possible
variations, it is feasible to examine how our policy search
space may affect the results of our experimentation. For this
experiment we utilize the five original datasets.

We attempt to address this issue by determining how in-
dividual agents would compute the complexity measure. We
then compare the similarity of these predictions to the actual
complexity measure using cosine similarity. The resulting
complexity fit is compared to the capability of the AI system
used, as determined by the product of the number of nodes
and layers. A perfect similarity between the individual AI
system prediction and the actual measure is 1.

The results are shown in Figure 5. First, we observe that
the resulting complexity fit is largely grouped together. That
is, regardless of agent capabilities, the lowest fit achieved
was 0.88. This is still very close to the target of 1. This shows
that the choice of capability within an agent only matters so
much to the problem. Second, we observe there is a weak
positive correlation between capability and complexity fit.
Measuring the Pearson correlation coefficient (PCC) yields
a positive correlation of 0.36. However, we can determine
that after a certain point, the variance in the results drops
significantly. If we exclude capabilities below 5, we achieve
a PCC of 0.16. This implies that the choice of capabilities
of an AI system may have minor effects on the resulting
complexity measure. If a sufficient size of capabilities are
used, this effect is mitigated.

Figure 5: Complexity Fit compared to the capability of an AI
system. Complexity fit is the resulting cosine similarity be-
tween the agent’s score and the measured complexity over
the five domains. The capability of an AI system is deter-
mined by the product of nodes times layers.

Parameter Analysis
Our last experiment focuses on an additional application of
the complexity measure. It can be used to measure the com-
plexity of a domain relative to another. The measure can also
be used to determine how altering a certain domain parame-
ter will affect the resulting difficulty of the domain.

For this experiment we utilize the Cartpole domain. For
each change to the domain, we alter the force applied to the
cart for each action. The value is normally fixed to 10, in
our experiment we vary this constant between 1.0 and 20.0
in 1.0 intervals. The resulting complexity was measured for
each new force variation.

Figure 6 shows the results of this experiment. From this
data we can determine a vary clear positive correlation be-
tween force and difficulty. This makes intuitive sense as the
main challenge in Cartpole is over-correction. If the force is
continuously increased, the problem will get progressively
harder.

Conclusion
In this work we have constructed and put forward a novel
notion of domain complexity. Within this construction we
have briefly examined the theory behind it. With the goal
of applicability, we have constructed an approximation of
the measure that can be applied to real world domains. This
approximation keeps in line with the theoretical model.

In our experimentation we have demonstrated key aspects
of this complexity measure. Through our experiments we
have shown that it reasonably approximates a well known
standard, Shannon entropy, which is closely related to a no-
tion of problem complexity. We have also shown how the
complexity measure meets expectations by correctly rank-
ing problem difficulty by the number of classes involved



Figure 6: Complexity of the Cartpole domain compared to
the change in force applied. The force applied was varied
from 1.0 to 20.0 in 1.0 intervals. The complexity was mea-
sured for each new force variation.

with the problem and by correctly coorelating feature dis-
tinctiveness with difficulty. It has also been illustrated how
to effectively apply this measure to examine aspect of com-
plexity within a problem.

While we have been able to demonstrate the complexity
between domains, this was done so relatively. This method-
ology allows for the further research into an absolute scale of
complexity. We can infer the usefulness of an absolute scale
of complexity to evaluating domains in the future. Without
an absolute scale, measurements made in the present may
substantially drift. This will make it hard to compare do-
mains in the future to current day domains. To solve this, we
propose using this methodology on a large set of domains to
construct an effective scale of complexity for all domains.

As mentioned before, this is another step to evaluating AI
systems. We hold that this measure in particular will become
important to a greater measure for determining AI system
competence. This measure along with a notion of similarity
and performance will allow for a more thorough investiga-
tion. Using a combination of three such measures will allow
for the accurate evaluation of an AI system’s intelligence.
This can then be used to more effectively pursue generaliz-
able AI systems.

The AI community will greatly benefit from such a mea-
sure. Using this complexity measure, domains can be ob-
jectively determined and ordered by complexity. This will
allow the further weighting of scores across a wide set of
domains. From this, AI performance can be more easily
evaluated to see how the field is progressing. Determining
whether and by how much AI systems are progressing will
make the search for generalizable AI systems significantly
easier to perform.
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