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Problem

The goal was to explore different pathfinding and 
navigation techniques within the game of VizDoom. 
The new approach must replace the older q-
learning agent that exists now.
● Make pathfinding efficient and scalable
● Allow pathfinding to be interfaced from a higher 

module



Approach

Agent has access to the coordinates of the walls.
● Ended up defining rooms and doorways, then 

pathfinding from doorway to doorway
● Requires no training, very flexible with new rooms 

and maps



Approach

Step 1: Define doorways
● Find parallel lines that point to each other and 

draw a doorway between them



Approach

Step 2: Define rooms
● Find the areas bounded by walls and doorways 

and define them as a room



Approach

Step 3: Find a path of doorways 
we must navigate through
● Find a path of rooms from the 

starting room to the 
destination room (i.e. {C, B, A})

● Convert this into a path of 
doorways we must navigate 
through (i.e. {(C,B), (B,A)})



Approach

Step 4: Navigate to the next doorway
● Find a path from the current location to the 

midpoint of the next doorway.
● Once we’re past the last doorway, pathfind to 

the destination.



Evaluation

New technique was evaluated based on two 
criteria: interfacing ability and performance
● Navigation skill is controlled by a higher module, 

which will decide where to move and when to 
divert attention to another skill, makes difficult 
decisions

● Pathfinding must be efficient, both in move count 
and real processing time
○ Consider performance in new maps it has never 

seen



Results

Approach uses breadth-first search, which should 
find an optimal path. Additionally, every next move 
is retrieved manually
● Easily able to control when to start, stop, continue, 

and cancel the navigation
● Performance is similar no matter how many times 

the agent has seen a map, non-optimal 
algorithms in areas of the code



Conclusions

● Impacts
○ Smarter bots in video games, with less 

dependence on the current maps and faster 
pathfinding times.

○ Possible applications to real life robotics i.e. search 
and rescue, delivery

● Next steps
○ Implement diagonal smoothing, improve hitbox 

detection, keep squashing bugs
○ Grey out areas of map, improve complexity of 

algorithms



Thank You

● Thank you for attending our presentations
● Questions?


