
VizDoom 
Pathfinding AI
NATHAN BALCARCEL

WASHINGTON STATE UNIVERSITY
LAWRENCE HOLDER



Problem

The goal was to explore different pathfinding and 
navigation techniques within the game of VizDoom. 
The new approach must replace the older q-
learning agent that exists now.
● Make pathfinding efficient and scalable
● Allow pathfinding to be interfaced from a higher 

module



Approach

Agent has access to the coordinates of the walls.
● Ended up defining rooms and doorways, then 

pathfinding from doorway to doorway
● Requires no training, very flexible with new rooms 

and maps



Approach

Step 1: Define doorways
● Find parallel lines that point to each other and 

draw a doorway between them



Approach

Step 2: Define rooms
● Find the areas bounded by walls and doorways 

and define them as a room



Approach

Step 3: Find a path of doorways 
we must navigate through
● Find a path of rooms from the 

starting room to the 
destination room (i.e. {C, B, A})

● Convert this into a path of 
doorways we must navigate 
through (i.e. {(C,B), (B,A)})



Approach

Step 4: Navigate to the next doorway
● Find a path from the current location to the 

midpoint of the next doorway.
● Once we’re past the last doorway, pathfind to 

the destination.



Evaluation

New technique was evaluated based on two 
criteria: interfacing ability and performance
● Navigation skill is controlled by a higher module, 

which will decide where to move and when to 
divert attention to another skill, makes difficult 
decisions

● Pathfinding must be efficient, both in move count 
and real processing time
○ Consider performance in new maps it has never 

seen



Results

Approach uses breadth-first search, which should 
find an optimal path. Additionally, every next move 
is retrieved manually
● Easily able to control when to start, stop, continue, 

and cancel the navigation
● Performance is similar no matter how many times 

the agent has seen a map, non-optimal 
algorithms in areas of the code



Conclusions

● Impacts
○ Smarter bots in video games, with less 

dependence on the current maps and faster 
pathfinding times.

○ Possible applications to real life robotics i.e. search 
and rescue, delivery

● Next steps
○ Implement diagonal smoothing, improve hitbox 

detection, keep squashing bugs
○ Grey out areas of map, improve complexity of 

algorithms



Thank You

● Thank you for attending our presentations
● Questions?


