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Dedication: Ben Taskar (1977-2013)

Ben made fundamental contributions to the area of 
structured prediction

We dedicate this tutorial to him
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Outline of Tutorial

Different frameworks for structured prediction [Jana]

Cost function learning framework and recent advances

Control knowledge learning framework (greedy and beam search)

HC-Search: A Unifying framework

 Integrating deep learning and structured prediction [Liping]

 Deep learning ∩ cost function learning

 Deep learning ∩ control knowledge learning

Multi-task structured prediction [ChaoMa]

Graphical models approach

Search based learning and inference architectures
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Part 1: Introduction
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Introduction

Structured Prediction problems are very common

 Natural language processing

 Computer vision

 Computational biology

 Planning

 Social networks

 ….
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Natural Language Processing 

Examples
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NLP Examples: POS Tagging and Parsing 

POS Tagging

Parsing

𝑥 = “The cat ran” 𝑦 = <article> <noun> <verb>

“Red figures on the screen 
indicated falling stocks” 

𝑥
𝑦
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NLP Examples: Coreference and Translation

Co-reference Resolution

Machine Translation

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

𝑥 𝑦

𝑥 = “The man bit the dog” 𝑦 =该男子咬狗
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Examples of Bad Prediction
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Computer Vision Examples
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Scene Labeling 

Image Labeling
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The OSU Digital Scout Project 

Objective: compute semantic interpretations of football video

Raw video 

High-level interpretation of play

 Help automate tedious video annotation done by pro/college/HS teams

 Working with hudl (hudl.com)

 Requires advancing state-of-the-art in computer vision, including:

 registration, multi-object tracking, event/activity recognition
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Multi-Object Tracking in Videos

Video

Player Trajectories
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Common Theme

POS tagging, Parsing, Co-reference resolution, 
detecting parts of biological objects 

 Inputs and outputs are highly structured

Studied under a sub-field of machine learning called 
“Structured Prediction”

Generalization of standard classification

Exponential no. of classes (e.g., all POS tag sequences)
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Classification to Structured Prediction 



Input

X

Y

Output

Learning a Classifier

?



X

male

Learning a Classifier

?

Example problem:

X  - image of a face

Y∈ {male, female}



X

Y

Learning a Classifier

?

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X  - image of a face

Y∈ {male, female}

Learning
Algorithm

(           , male)



X

Y

Learning a Classifier

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X  - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃



X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X  - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃

feature vector

class label



X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X  - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃

feature vector

class labelLogistic Regression
Support Vector Machines
K Nearest Neighbor
Decision Trees
Neural Networks
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Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Part-of-Speech Tagging

“The cat ran” 

<article> <noun> <verb>

English Sentence:

Part-of-Speech Sequence:

𝒀 = set of all possible POS tag sequences

Exponential !!



X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Co-reference Resolution

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

Text with input mentions:

Co-reference Output:

𝒀 = set of all possible clusterings

Exponential !!

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”



X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Handwriting Recognition

𝒀 = set of all possible letter sequences

Exponential !!

Letter Sequence:

S t r u c t u r e d

Handwritten Word:
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Part 2: Cost Function Learning Framework 

and Argmin Inference Challenge
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Cost Function Learning Approaches: 

Inspiration

Generalization of traditional ML approaches to structured 
outputs

 SVMs  ⇒ Structured SVM  [Tsochantaridis et al., 2004]

 Logistic Regression ⇒ Conditional Random Fields [Lafferty et al., 2001]

 Perceptron  ⇒ Structured Perceptron  [Collins 2002]
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Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is  n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is  n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Example: Part-of-Speech Tagging

x = “The cat ran” y = <article> <noun> <verb>

𝜙(𝑥, 𝑦) may have unary and pairwise features

unary feature:  e.g. # of times ‘the’ is paired with <article>

pairwise feature: e.g. # of times <article> followed by <verb>
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Key challenge: “Argmin” Inference

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Exponential 

size of output 

space !!
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Key challenge: “Argmin” Inference

Time complexity of inference depends on the 
dependency structure of features 𝜙(𝑥, 𝑦)

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Key challenge: “Argmin” Inference

Time complexity of inference depends on the 
dependency structure of features 𝜙(𝑥, 𝑦)

 NP-Hard in general 

 Efficient ``exact’’ inference algorithms exist only for simple 
features

Approximate inference techniques are employed in practice 
and they work reasonably well

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Cost Function Learning: Key Elements

 Joint Feature Function

 How to encode a structured input (x) and structured output 
(y) as a fixed set of features 𝜙(𝑥, 𝑦)?

 (Loss Augmented) Argmin Inference Solver



 Viterbi algorithm for sequence labeling

 CKY algorithm for parsing

 (Loopy) Belief propagation for Markov Random Fields

 Sorting for ranking 

Optimization algorithm for learning weights

 (sub) gradient descent, cutting plane algorithm …

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)
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Cost Function Learning: Generic Template

repeat

For every training example (𝑥, 𝑦)

Inference: ො𝑦 = arg𝑚𝑖𝑛𝑦∈𝑌 𝑤 ∙ 𝜑 𝑥, 𝑦

If mistake 𝑦 ≠ ො𝑦,  

Learning: online or batch weight update

until convergence or max. iterations

Training goal:

Find weights 𝑤 s.t

For each input 𝑥, the cost of the correct structured output 
𝑦 is lower than all wrong structured outputs 

Exponential 

size of output 

space !!



34

Expensive Training Process

Main Reason

 repeated calls to “Argmin inference solver” (computationally 
expensive) on all the training examples

Recent Solutions

Amortized Inference:  Kai-Wei Chang, Shyam Upadhyay, Gourab

Kundu, Dan Roth: Structural Learning with Amortized Inference. AAAI 2015

Decomposed Learning: Rajhans Samdani, Dan Roth: Efficient 

Decomposed Learning for Structured Prediction. ICML 2012
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Amortized Inference and Speedup Learning

We need to solve many inference problems during both 
training and testing

Computationally expensive!

Can we improve the speed of solving new problems based 
on past problem-solving experience? 

Yes, amortized Inference! 

Highly related to ``speedup learning’’ [Fern, 2010]
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Amortized Inference with ILP Formulation

 Inference can be formulated as ILP [Roth and Yih, 2004]

 Imagine that you already solved many inference problems

Your algorithmic solution method doesn’t matter 

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the (n+1)th one 
faster? 

Conditions under which the solution of a new problem Q 
is the same as the one of  P (which we already cached) 

If CONDITION (problem cache, new problem)
then (no need to call the solver)

SOLUTION(new problem) = old solution
Else

Call base solver and update cache
End

0.04 ms

2 ms
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The Theorem Must Fire a Lot

 Inference formulation provides a new level of abstraction 
for amortization

Modulo renaming 

Dan gave a talk

Vinod ate a pizza

Heng read a book

Have same POS tag structure, Parse Tree, Semantic Parse

Pigeon Hole Principle

Many different instances have to be mapped into identical 
inference outcomes

Often, saves 85% of the computation.
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Amortized ILP Inference: References

 Vivek Srikumar, Gourab Kundu, Dan Roth: On Amortizing Inference 
Cost for Structured Prediction. EMNLP 2012

 Gourab Kundu, Vivek Srikumar, Dan Roth: Margin-based 
Decomposed Amortized Inference. ACL 2013

 Kai-Wei Chang, Shyam Upadhyay, Gourab Kundu, Dan Roth: 
Structural Learning with Amortized Inference. AAAI 2015

PAC Theory for ILP Inference: The behavior of ILP 
inference (integrality of relaxed solutions) on training 
examples generalize to testing examples

Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, David Sontag: 
Train and Test Tightness of LP Relaxations in Structured 
Prediction. ICML 2016
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Decomposed Learning (DecL)

Key Idea: Inference over a smaller structured output space

 All structured outputs that have a hamming accuracy of k from 
the ground truth structured output: DecL(k)

As k increases, learning approaches standard learning

Theoretical guarantees on when DecL will behave similar to 
standard learning [Samdani and Roth, 2012]

Special case (k=1): 

 Pseudo-max training [Sontag et al., 2010]
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Structured Prediction Cascades 

[Weiss and Taskar, 2010]

Accuracy: Minimize the number 
of errors incurred by each level

Efficiency: Maximize the 
number of filtered assignments 
at each level 

Filter 1

Filter 2

Filter D

Predic

t
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Cost Function Learning: 

“Exact” vs. “Approximate” Inference Solver

Most theory works for “Exact” Inference

Theory breaks with “Approximate” Inference
 Alex Kulesza, Fernando Pereira: Structured Learning with Approximate 

Inference. NIPS 2007

 Thomas Finley, Thorsten Joachims: Training structural SVMs when exact 
inference is intractable. ICML 2008: 304-311

Active Research Topic: Interplay between (approximate) 
inference and learning
 Veselin Stoyanov, Alexander Ropson, Jason Eisner: Empirical Risk 

Minimization of Graphical Model Parameters Given Approximate Inference, 
Decoding, and Model Structure. AISTATS 2011 

 Justin Domke: Structured Learning via Logistic Regression. NIPS 2013

 Tamir Hazan, Alexander G. Schwing, Raquel Urtasun: Blending Learning and 
Inference in Conditional Random Fields. JMLR-2016

 …
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Search-based Structured Prediction

 Integrating “Learning” and “Search” two fundamental 
branches of AI to solve structured prediction problems

Key Idea:

Learning “with Inference” vs. Learning “for Inference”

Select a computationally bounded search architecture for 
making predictions

 Optimize the parameters of that procedure to produce 
accurate outputs using training data 
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Part 3: Control Knowledge Learning 

Framework: Greedy Methods
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Greedy Control Knowledge Learning

Given

 Search space definition 

Training examples (input-output pairs) 

Learning Goal

 Learn a policy or classifier to that directly predicts good 
structured outputs (no inference needed!)

Key Idea:

 Training examples can be seen as expert demonstrations

 Equivalent to “Imitation Learning” or “Learning from 
Demonstration”

 Reduction to classifier or rank learning
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Classifier-based Structured Prediction

Reduction to classifier learning

26 classes

 IL Algorithms

 Exact-Imitation  

 SEARN

 DAgger

 AggreVaTe

 LOLS
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Aside: Reductions in Machine Learning

Reduce complex problem to simpler problem(s)

A better algorithm for simpler problem means a better 
algorithm for complex problem

Composability, modularity, ease-of-implementation

Hard Machine 
Learning Problem 

Easy Machine 
Learning Problem Reduction

Performance 𝜖Performance f(𝜖)
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Imitation Learning Approach

Expert demonstrations

each training example (input-output pair) can be seen as a 
“expert” demonstration for sequential decision-making

Collect classification examples

Generate a multi-class classification example for each of the 
decisions

 Input: f(n), features of the state n

Output: yn, the correct decision at state n

Classifier Learning

Learn a classifier from all the classification examples
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Exact Imitation: Classification examples

, - - - - - -𝑓 𝑠

𝑓 𝑡

𝑓 𝑟

𝑓 𝑢

𝑓 𝑐

𝑓 𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output

For each training example 
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Exact Imitation: Classifier Learning

, - - - - - -𝑓 𝑠

𝑓 𝑡

𝑓 𝑟

𝑓 𝑢

𝑓 𝑐

𝑓 𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output

…

𝒉

Recurrent classifier 

or

Learned policy

Classification 
Learner
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Learned Recurrent Classifier: Illustration

Error propagation:

errors in early decisions propagate to down-stream decisions 
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Recurrent Error

Can lead to poor global performance

Early mistakes propagate to downstream decisions: 
f 𝜖 = 𝑂 𝜖𝑇2 , where 𝜖 is the probability of error at 
each decision and T is the number of decision steps 
[Kaariainen 2006] [Ross & Bagnell 2010]

Mismatch between training (IID) and testing (non-IID) 
distribution

 Is there a way to address error propagation?
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Addressing Error Propagation

• Rough Idea: Iteratively observe current policy and augment 
training data to better represent important states

• Several variations on this idea [Fern et al., 2006], [Daume et al., 2009],

[Xu & Fern 2010], [Ross & Bagnell 2010], [Ross et al. 2011, 2014], [Chang et al., 2015]

• Generate trajectories using 
current policy (or some variant)

• Collect additional classification 
examples using optimal policy 
(via ground-truth output) 
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DAgger Algorithm [Ross et al., 2011]

Collect initial training set 𝐷 of 𝑁 trajectories from 
reference policy 𝜋∗

Repeat until done
𝜋 ← LearnClassifier(𝐷)

Collect set of states S that occur along 𝑁 trajectories of 𝜋

For each state 𝑠 ∈ 𝑆

 𝐷 ← 𝐷 ∪ { 𝑠, 𝜋∗ 𝑠 } // add state labeled by expert or reference policy

Return 𝜋

Each iteration increases the amount of training data (data aggregation)
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DAgger for Handwriting Recognition

Source: [Ross et al., 2011]
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Easy-First Approach: Big Picture

Drawbacks of classifier-based structured prediction

Need to define an ordering over the output variables (e.g., left-
to-right in sequence labeling)

Which order is good? How do you find one?

Some decisions are hard to make if you pre-define a fixed order 
over the output variables

Easy-First Approach: Key Idea

 Make easy decisions first to constrain the harder decisions

 Learns to dynamically order the decisions

 Analogous to constraint satisfaction algorithms
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Easy-First Learning as Imitation Learning

 Imitation learning with a non-deterministic oracle policy

multiple good decisions (actions) at a state

Ties are broken with the learned policy (scoring function)

NLP researchers employ imitation learning ideas and call 
them “training with exploration”
 Miguel Ballesteros, Yoav Goldberg, Chris Dyer, Noah A. Smith: Training with 

Exploration Improves a Greedy Stack-LSTM Parser. CoRR abs/1603.03793 
(2016)

 Imitation learning ideas are also employed in training 
recurrent neural networks (RNNs) under the name 
“scheduled sampling”
 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer: Scheduled Sampling 

for Sequence Prediction with Recurrent Neural Networks. NIPS 2015
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Part 4: Control Knowledge Learning: 

Beam Search Methods
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Beam Search Framework

Given

 Search space definition (ordered or unordered)

 Training examples (input-output pairs)

 Beam width B (>1) 

Learning Goal

 Learn a heuristic function to quickly guide the search to the 
correct “complete’’ output 

Key Idea:

Structured prediction as a search problem in the space of 
partial outputs

 Training examples define target paths from initial state to 
the goal state (correct structured output)
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Beam Search Framework: Key Elements

1) Search space; 2) Search procedure; 3) Heuristic function

Represent heuristic function as a linear function

 𝐻 𝑛 = 𝑤 ∙ 𝜓(𝑛) , where 𝜓(𝑛) stands for features of node 𝑛

Target node

Non-Target node



60

Beam Search: Illustration
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Beam Search: Illustration
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Beam Search: Illustration
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Beam Search: Illustration

…
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Beam Search: Illustration

…
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Beam Search Framework: Inference

Input: learned weights 𝑤; beam width B; 
structured input 𝑥

repeat

 Perform search with heuristic 𝐻 𝑛 = 𝑤 ∙ 𝜓(𝑛)

until reaching a terminal state

Output: the complete output y corresponding 
to the terminal state 
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Beam Search Framework: 

Generic Learning Template

Three design choices

 How to define the notion of “search error”? 

 How to “update the weights” of heuristic function 
when a search error is encountered?

 How to “update the beam” after weight update?



67

Beam Search Framework: 

Learning Instantiations

 Early update

 Max-violation update

Learning as Search Optimization (LaSO) 

[Collins and Roark, 2004]

[Huang et al., 2012]

[Daume et al., 2005], [Xu et al., 2009]
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Beam Search Framework: LaSO

Search error: NO target node in the beam 
We cannot reach the goal node (correct structured output)

Weight update: perceptron update 
𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝛼 ∙ (𝜓𝑎𝑣𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜓𝑎𝑣𝑔(𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡))

𝜓𝑎𝑣𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 = Average features of all target nodes in the 

candidate set

𝜓𝑎𝑣𝑔 𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡 = Average features of all non-target nodes 

in the candidate set

 Intuition: increase the score of target nodes and decrease the 
score of the non-target nodes

Beam update: reset beam with target nodes in 
the candidate set
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LaSO Training: Illustration






















B
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vF
ww
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






















B
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

…

…

An error occurs

An error occurs

Basic Idea: repeatedly conduct search on training examples

update weights when error occurs  
solution node

non-solution node
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Beam Search Framework: LaSO

repeat

For every training example (𝑥, 𝑦)

 Perform search with current heuristic (weights) 

 If search error ,  update weights

 Reset beam with target nodes in the candidate set

 Continue search     

until convergence or max. iterations
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LaSO Convergence Results

Under certain assumptions, LaSO-BR converges to a 
weight vector that solves all training examples in a finite 
number of iterations

 Interesting convergence result 

Mistake bound depends on the beam width

Formalizes the intuition that learning becomes easier as we 
increase the beam width (increase the amount of search)

First formal result of this kind
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Part 5: HC-Search: A Unifying 

Framework for Cost Function and 

Control Knowledge Learning
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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HC-Search: A Unifying View

Cost Function Learning Approaches

 Don’t learn search control knowledge

Control Knowledge Learning Approaches

Don’t learn cost functions 

HC-Search Learning Framework

 Unifies the above two frameworks and has many advantages

 Without H, degenerates to cost function learning

 Without C, degenerates to control knowledge learning

 Supports learning to improve both speed and accuracy of 
structured prediction
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HC-Search framework: Inspiration

HC-Search Framework

Traditional AI Search for combinatorial optimization

+

Learning



77

HC-Search Framework: Overview

Key Idea:

Generate high-quality candidate outputs by conducting a 
time-bounded search guided by a learned heuristic H

Score the candidate outputs using a learned cost function C
to select the least cost output as prediction

Heuristic Learning

 can be done in primitive space (e.g., IJCAI’16 paper on 
incremental parsing)

 OR complete output space

IJCAI’16 paper on computing M-Best Modes via Heuristic Search  



78

HC-Search framework: Overview

 Key Ingredients: 

Define a search space over structured outputs

Learn a cost function 𝑪 to score potential outputs

Use a search algorithm to find low cost outputs

Learn a heuristic function 𝑯 to make search efficient

Our approach:

o Structured Prediction as a search process in the 
combinatorial space of outputs
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HC-Search Illustration: Search Space 
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HC-Search Illustration: Cost Function
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HC-Search Illustration: Making Predictions 

Assume we have a 
good cost function.

How to make predictions?
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HC-Search Illustration: Greedy Search

, praualroot node
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search Illustration: Greedy Search
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HC-Search: Properties

Anytime predictions

Stop the search at any point and return the best cost output

Minimal restrictions on the complexity of heuristic and 
cost functions

Only needs to be evaluated on complete input-output pairs

Can use higher-order features with negligible overhead

Can optimize non-decomposable loss functions

 e.g., F1 score

Error Analysis: Heuristic error + Cost function error

 engineering methodology guided by the error decomposition
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HC-Search: Key Learning Challenges

Search Space Design:

How can we automatically define high-quality search 
spaces ? 

Heuristic Learning:

How can we learn a heuristic function to guide the 
search to generate high-quality outputs ?

Cost Function Learning:

How can we learn a cost function to score the 
outputs generated by the heuristic function ?
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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HC-Search: Loss Decomposition
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HC-Search: Loss Decomposition
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HC-Search: Loss Decomposition
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HC-Search: Loss Decomposition

Overall loss 𝝐 = 0.22

Generation loss 𝝐𝑯 = 0.09

(Heuristic function)

Selection loss 𝝐𝑪 = 0.22 – 0.09

(Cost function)
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HC-Search: Loss Decomposition 

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall 
expected loss

Generation loss 
(Heuristic function)

Selection loss 
(Cost function)

𝑪 𝒙, 𝒚 = 𝒘𝒄 ⋅ 𝝓𝑯 𝒙, 𝒚
𝑯 𝒙, 𝒚 = 𝒘𝑯 ⋅ 𝝓𝑪 𝒙, 𝒚
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HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss 

(Heuristic function)
Selection loss 

(Cost function)

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition

Doppa, J.R., Fern, A., Tadepalli, P. HC-Search: A Learning Framework for Search-based Structured Prediction. 

Journal of Artificial Intelligence Research (JAIR) 2014. 
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HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss 

(Heuristic function)
Selection loss 

(Cost function)

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition
Step 1:    ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)
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HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss 

(Heuristic function)
Selection loss 

(Cost function)

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition
Step 1:    ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)

Step 2:    መ𝐶 = arg𝑚𝑖𝑛𝐶∈𝑪 𝜖𝐶| ෡𝐻 (cost function training)
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods



109

HC-Search: Heuristic learning

Learning Objective:
Guide the search quickly towards high-quality (low loss) 

outputs
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HC-Search: Heuristic Learning

Key idea: Imitation of true loss function  

Conduct searches on training example using the true loss 
function as a heuristic

(generally is a good way to produce good outputs)

Learn a heuristic function that tries to imitate the observed 
search behavior

• Given a search procedure (e.g., greedy search) 
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Greedy Search: Imitation with true loss
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Greedy Search: Imitation with true loss
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Greedy Search: Ranking examples
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Greedy Search: Ranking examples
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Greedy Search: Ranking examples
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HC-Search: Heuristic Function Learning

Rank Learner

Heuristic function ෡𝑯

Ranking examples

Can prove generalization bounds on learned heuristic 

[Doppa et al., 2012]



117

HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss 

(Heuristic function)
Selection loss 

(Cost function)

Key idea: Greedy stage-wise minimization guided by 
the loss decomposition
Step 1:    ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)

Step 2:    መ𝐶 = arg𝑚𝑖𝑛𝐶∈𝑪 𝜖𝐶| ෡𝐻 (cost function training)
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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HC-Search: Cost Function Learning

Learning Objective:
Correctly score the outputs generated by the heuristic as per 

their losses
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HC-Search: Cost function Learning

Set of all outputs generated by the heuristic ෡𝑯
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HC-Search: Cost function Learning

Key Idea: Learn to rank the outputs generated by the 
learned heuristic function ෡𝐻 as per their losses
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HC-Search: Cost function Learning

Create a ranking example between every pair of 
outputs  (𝑦𝑏𝑒𝑠𝑡 , 𝑦) such that: 𝐶 𝑥, 𝑦𝑏𝑒𝑠𝑡 < 𝐶(𝑥, 𝑦)

Learning to Rank:

<

…

…

…

…

Best loss outputs

Non-best loss outputs
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HC-Search: Cost function Learning

Rank Learner

Cost function ෡𝑪

Ranking examples

<

<

…

…

<

<

Can borrow generalization bounds from rank-learning literature 
[Agarwal and Roth, 2005 & Agarwal and Niyogi, 2009]
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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HC-Search: Search Space Design

Objective:
High-quality outputs can be located at small depth

Target depth = 5
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HC-Search: Search Space Design

Objective:
High-quality outputs can be located at small depth

Solution #1: 

Flipbit Search Space [JMLR, 2014]

Solution #2: 

Limited Discrepancy Search (LDS) Space [JMLR, 2014]

Defined in terms of a greedy predictor or policy

Solution #3: 

Segmentation Search Space for computer vision tasks [CVPR, 2015]
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Flip-bit Search Space
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Multi-Label Prediction: Problem

Input Output
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Multi-Label Prediction: Problem

Commonly arises in various domains

 Biology – predict functional classes of a protein/gene

 Text – predict email tags or document classes

 …



130

Multi-Label Prediction

Benchmark data 

Dataset Domain #TR #TS #F #L 𝑬[𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15
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Multi-Label Prediction

Benchmark data 

Dataset Domain #TR #TS #F #L 𝑬[𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15

Label vectors are highly sparse
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Multi-Label Prediction via HC-Search

HC-Search

 Exploit the sparsity property (Null vector + flip bits)

𝑥 , y = 000000root node

𝑥 , y = 100000 𝑥 , y = 001000 𝑥 , y = 000001

… …

𝑥 , y = 101000 𝑥 , y = 001001

…

𝑥 , y = 111000 𝑥 , y = 101100 𝑥 , y = 001011

… …
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods
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Engineering Methodology

Select a time-bounded search architecture

 High-quality search space (e.g., LDS space or its variant)

 Search procedure

 Time bound

 Effectiveness can be measured by performing LL-Search (loss 
function as both heuristic and cost function)

Training and Debugging

 Overall error = generation error (heuristic) + selection error 
(cost function)

 Take necessary steps to improve the appropriate error guided 
by the decomposition
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Outline of HC-Search Framework

Introduction
Unifying view and high-level overview 

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods



136

HC-Search vs. CRF/SSVM

 Inference in CRF/SSVM

 Cost function needs to score exponential no. of outputs

 Inference in HC-Search

 Cost function needs to score only the outputs generated 
by the search procedure guided by heuristic 𝐻

F(x) = 𝐚𝐫𝐠 𝐦𝒊𝒏
𝒚 ∈ 𝒀(𝒙)

𝑪(𝒙, 𝒚)

F(x) = 𝐚𝐫𝐠 𝐦𝒊𝒏
𝒚 ∈ 𝒀𝑯(𝒙)

𝑪(𝒙, 𝒚)
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HC-Search vs. Re-Ranking Algorithms

Re-Ranking Approaches

 k-best list from a generative model
Michael Collins: Ranking Algorithms for Named Entity Extraction: Boosting and the Voted 
Perceptron. ACL 2002: 489-496

 Diverse M-best modes of a probabilistic model
Payman Yadollahpour, Dhruv Batra, Gregory Shakhnarovich: Discriminative Re-ranking of 
Diverse Segmentations. CVPR 2013: 1923-1930

No guarantees on the quality of generated candidate set

HC-Search

 Candidate set is generated via generic search in high-quality 
search spaces guided by the learned heuristic

 Minimal restrictions on the representation of heuristic

 PAC guarantees on the quality of candidate set
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HC-Search: A “Divide-and-Conquer” Solution

HC-Search is  a “Divide-and-Conquer’’ solution 
with procedural knowledge injected into it

 All components have clearly pre-defined roles

 Every component is contributing towards the 
overall goal by making the role of other components 
easier
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HC-Search: A “Divide-and-Conquer” Solution

Every component is contributing towards the overall 
goal by making the role of other components easier

 LDS space leverages greedy classifiers to reduce the target 
depth to make the heuristic learning easier

 Heuristic tries to make the cost function learning easier by 
generating high-quality outputs with as little search as possible
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Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep 

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction
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Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep 

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction
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Conditional Random Field (CRF)

The basic form 

𝑃(𝑦 | 𝑥; 𝑤) =
1

𝑍 𝑤
exp σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦)

partition function 𝑍 𝑤 = σ𝑦∈𝒴 exp σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦)

The function 𝜙𝑘 𝑥, 𝑦 = 𝜙𝑘(𝑥, 𝑦𝑖𝑘)often defines the 

potential of a single label or a pair of labels
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CRF extensions with Deep models

Deep structured models [Chen et al. ICML 2015]

Replace linear potential 𝑤𝑘𝜙𝑘( ⋅ ) with a deep function 

𝑓𝑘(𝑥, 𝑦; 𝑤) to extract information from complex object 𝑥

Structured Prediction Energy Network (SPEN) 

[Belanger et al. ICML 2016, 2017]

Replace σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦) with a deep function 𝐹 𝑥, 𝑦; 𝑤 , 

so  𝑃(𝑦 | 𝑥; 𝑤) =
1

𝑍 𝑥,𝑤
exp 𝐹 𝑥, 𝑦; 𝑤

Deep Value Network (DVN) [Gygli et al. ICML 

2017]

Learn a deep model 𝑣 𝑥, 𝑦; 𝑤 to fit the negative loss 

(DVN)



149

Deep Structured Models

Deep structured models [Chen et al. ICML 2015]

The potential 𝐹 𝑥, 𝑦;𝑤 is decomposable by nodes or 

node pairs, 

𝐹 𝑥, 𝑦;𝑤 = σ𝑘 𝑓𝑘(𝑥, 𝑦𝑖𝑘; 𝑤)

𝑓𝑘(𝑥, 𝑦; 𝑤) is still a single or a pairwise potential

DSM approximates the partition function with loopy 

belief propagation 
log 𝑍 𝑥,𝑤 = max

𝑝
𝐸𝑝 𝐹 𝑥, 𝑦𝑖𝑘; 𝑤 + 𝐻[𝑝]

(Treat 𝑤 as a constant here)

Approximate marginal of dist 𝑝 by local beliefs
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Structured Prediction Energy Network

SPEN [Belanger et al. ICML 2016, 2017] allows 

high order label interactions through non-linear 

transformation of label vectors
min
𝑦

𝐸𝑥(𝑦) 𝑠. 𝑡. 𝑦 ∈ 0, 1 𝐿

Training in the same way as structured SVM

Minimize the hinge loss

min
𝑤

max
𝑦

Δ 𝑦𝑖 , 𝑦 − 𝐸𝑥𝑖 𝑦 + 𝐸𝑥𝑖 𝑦𝑖 +

 Inner optimization problem is solved by LP relaxation, 

relaxing the space of discrete labels to a continuous one
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Deep Value Networks (DVN)

DVN [Gygli et al. ICML 2017] fit negative loss 

values

Train a network 𝑣(𝑥, 𝑦; 𝜃) such that 

𝑣 𝑥, 𝑦; 𝜃 ≈ −𝑙𝑜𝑠𝑠(𝑦, 𝑦∗)

Trained with samples (𝑥, 𝑦′, −𝑙𝑜𝑠𝑠(𝑦′, 𝑦∗)), with 𝑦′
being

Training label 𝑦∗

 Inference result ො𝑦 = argmax 𝑣(𝑥, 𝑦; 𝜃)

Random samples 

Adversarial samples  

 Inference is done by optimization of 𝑦 in the 

continuous space
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Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep 

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction
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RNN for Structured Prediction

RNN can output predictions with structures

 Input 𝑥, 𝑦𝑡−1
Output 𝑦𝑡 at time 𝑡

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

loss

𝑦𝑡

loss



154

RNN for Structured Prediction

RNN can output predictions with structures

 Input 𝑥, 𝑦𝑡−1
Output 𝑦𝑡 at time 𝑡

Considerations for structured prediction

How to avoid exposure bias (i.e. teacher forcing makes 

training and testing different )?

How to include loss function in training?
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RNN for Structured Prediction

Two issues 

Exposure bias (teacher enforcing)

Loss-evaluation mismatch

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

𝑦𝑡

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

𝑦𝑡

loss
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Structured Prediction as an RL Problem

Formulation as reinforcement learning 

(𝑥, 𝑜𝑡−1, ℎ𝑡) as a state

Negative loss as reward

 Reward is given at the last step

 Zero reward for intermediate steps

Output 𝑦𝑡 at each step as action

RNN as a policy

Tackle two issues together 

Minimize loss by maximize reward

Learning naturally corrects exposure bias
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Training RNN with policy gradient

Learn RNN with MIXER [Ranzato, ICLR 2016]

First time steps  are trained by maximize likelihood

The last few steps are trained by REINFORCE

 REINFORCE is a one policy gradient algorithm

 Use a single sample from RNN to estimated expected reward
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Actor-Critic Algorithm for RNN Learning

An actor-critic algorithm for sequence prediction 

[Bahdanau et al. ICLR 2017]

Actor: RNN(𝜃)

Critic: another network to estimated Q function

Learning Procedure

Update actor/RNN with gradient,

𝑑𝑉

𝑑𝜃
= 𝐸𝑦∼𝑅𝑁𝑁(𝜃) ෍

𝑡

෍

𝑦𝑡
′

𝑑 𝑝 𝑦𝑡
′ 𝑦𝑡−1, ℎ𝑡
𝑑𝜃

෠𝑄(𝑦𝑡
′, 𝑦1:𝑡−1))

Update critic/estimation of ෠𝑄
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Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep 

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction
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Structure design of structured prediction

A single label does not need all inputs 

Let the model to decide which to use

𝑥1 𝑥2

𝑦2𝑦1

𝑥3 𝑥4

𝑦3 𝑦3

𝑥0

𝑦0
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Attention Model

Attention model for image captioning [Xu et al. 

ICML 2015]

RNN model for image captioning

Output: a sequence of words

 Input: feature vectors extracted from selected image 

locations at different time steps

Image is from the paper [Xu et al., ICML 2015]
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Structured Attention Model

Assume attention sequence has structures

Define attention sequence as CRF

𝑝 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑧 | 𝑜𝑢𝑡𝑝𝑢𝑡 𝑦𝑡 , 𝑖𝑛𝑝𝑢𝑡 𝑥
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜃𝑐(𝑧𝑐))

End-to-end training

Gradient calculation is propagated through the inference 

procedure 
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Structured Prediction with Deep Models 

– the Trend

Less hand crafted model design

Function design

Structure design

More Utilization of existing network structures

Need to consider the propagation of gradients
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Structured Prediction with Deep Models

Large data amount calls for flexible models that 

support fast training (aka deep models)

Batch training and stochastic gradient are 

important ingredients – as in other deep learning 

models

Slow inference methods become less favored

Disclaimer: 

Only a small portion of the recent literature is covered 

here due to time limit. 

Many more papers worth reading.   

Structured Prediction with Deep Models 

– Summary
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Multi-Task Structured Prediction

Chao Ma
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Many NLP tasks process mentions of entities – things, 

people, organizations, etc. 

• Named Entity Recognition
• Coreference Resolution
• Entity Linking
• Semantic Role Labeling
• Entity Relation Extraction

……

Entity Analysis in Language Processing 

• Named Entity Recognition
• Coreference Resolution
• Entity Linking
• Semantic Role Labeling
• Entity Relation Extraction

……
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

i = 2i = 1

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbiaycoref =                 (                   ,                                       ,    … ) Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    ？ ,     ？ ， ？ ， ？ ， ？ ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

171



He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,     ？ ， ？ ， ？ ， ？ ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， ？ ， ？ ， ？ ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， ？ ， ？ ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， 4 ， ？ ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， 4 ， 5 ， ？ ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

176



He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， 4 ， 5 ， 6 ， ？ ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， 4 ， 5 ， 6 ， 7 ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (    1 ,       1 ， 2 ， 4 ， 5 ， 6 ， 7 ) 

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

m1，m2,  m3 m4, m5
m6

m7

coreference clustering

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference: Columbiaycoref =                 (                   ,                                       ,    … ) Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

Coreference Resolution
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference:

Named Entity 
Recognition :

Entity Linking:

Columbiaycoref =                 (                   ,                                       ,    … ) 

ylink =                     (                     ,                                             ,    … ) 

yner =                      (    ORG,               ORG,                                 … ) 

Columbia University

co-referent link

yi = {1, 2 … i}

yi = {ORG, PER, GPE, LOC,

FAC, VEL, WEA}

yi = {
https://en.wikipedia.org/wiki/Columbia_University,

https://en.wikipedia.org/wiki/Columbia_District,

https://en.wikipedia.org/wiki/Columbia,_British_Columbia,

https://en.wikipedia.org/wiki/Columbia_College,_Columbia_University,

…

}

https://en.wikip

edia.org/wiki/C

olumbia_Unive

rsity

https://en.wikipedia.org/wiki/

Columbia_University

i = 2i = 1

Named Entity Recognition
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He left [Columbia] in 1983 with a BA degree, ... 

after graduating from [Columbia University], he 

worked as a community organizer in Chicago…

Coreference:

Named Entity 
Recognition :

Entity Linking:

Columbiaycoref =                 (                   ,                                       ,    … ) 

ylink =                     (                     ,                                             ,    … ) 

yner =                      (    ORG,               ORG,                                 … ) 

Columbia University

co-referent link

yi = {1, 2 … i}

yi = {ORG, PER, GPE, LOC,

FAC, VEL, WEA}

yi = {
https://en.wikipedia.org/wiki/Columbia_University,

https://en.wikipedia.org/wiki/Columbia_District,

https://en.wikipedia.org/wiki/Columbia,_British_Columbia,

https://en.wikipedia.org/wiki/Columbia_College,_Columbia_University,

…

}

https://en.wikip

edia.org/wiki/C

olumbia_Unive

rsity

https://en.wikipedia.org/wiki/

Columbia_University

i = 2i = 1

Entity Linking
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Graphic Model: Joint Entity Linking, Typing, and 

Coreference Task [Greg Durrett and Dan Klein. TACL 2014]

Insolate models

1q
1e

1a

1t
Each mention has a corresponding entity typing tag.

The value of coreference variable indicates the 
index of its coreferent antecedent mention.

q is a key word from the mention to query the KB 
to get an ranked candidate list. Then e is the best 
linking output from the list.

m = “Oregon State University”

m(i) = “Oregon State University”

m = “Oregon State University” 

t =   ORG

En
ti

ty
 L

in
ki

n
g

C
o

re
fe

re
n

ce
N

ER

m(j) = “OSU located at Corvallis”

a( j) =  i

q = “Oregon State”

{ Oregon_State, Oregon_City, University_of_Oregon, 

OSU }KB e = OSU (id = EL34233)



Joint Model
This figure is provided by the original author

Learning

 The objective can be optimized using AdaGrad algorithm. 

Inference

 Belief propagation is still the best choice, but not efficient enough.

• Solution: use a threshold to prune away most of bad links in for 

coreference variables, but keep only k remaining.

Graphic Model: Joint Entity Linking, Typing, and 

Coreference Task [Greg Durrett and Dan Klein. TACL 2014]



Summary of Graphic Model Approaches

 The powerful capability of representation.

 Easy to deal with missing labels.

Advantages

Challenges

 The main learning difficulty in these graphic models is its 

complicate structure, 

 BP 

 Huge number of (hidden) variables and parameters.  

• Graph decomposition during learning and inference by 

ignoring some other parts of the graph.

• Pruning candidate values;

• Fixing some of variable values at early stages



Scoring 

function

Input Output
f : X, Y R y

f (x, y) = w · ϕ(x, y)

Search-based inference for Structured Prediction

x y

Learning Inference

Feature Vector

y = argmax f (x, y)
y

^

Intractable in most cases

• Structured Perceptron
• Structured SVM

……
• Beam Search

……

Candidate Methods: Candidate Methods:

This Work
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Structured SVM Learning with Search-based 

Inference
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{                   }

Multi-Task Structured Prediction (MTSP):

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)

f 2 : X    Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

Intermediate 
or final outputs

y2

x

y1 y3

Multi-Task Structured Prediction

o How to exploit the interdependencies between tasks?

Intra-task Features

188



Introduce Inter-task Features:

models

Input

Output

f 1 : X    Y1

= w1 · ϕ1(x, y)

f 2 : X    Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

y2

x

y1 y3

Multi-Task Structured Prediction

Intra-task Features

Inter-task Features

ϕ(1,2)(x , y , y’) ϕ (2,3)(x , y’ , y” )

ϕ (1,3)(x , y , y”)
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Pipeline Architecture
Learning k (= 3) independent models, one after another;

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2 w(2,3)w(1,3)

Define a order:  Task 1 → Task 2 → Task 3

190



Pipeline Architecture

Task 1:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Learning k (= 3) independent models, one after another;
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Pipeline Architecture

Task 1:

Task 2:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Learning k (= 3) independent models, one after another;
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Pipeline Architecture

Task 1:

Task 2:

Task 3:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature 
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y),  ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Use feature 
ϕ3(x, y) ,  ϕ(1,3)(x,y,y”)

ϕ(2,3) (x,y’,y”)

y2y1 y3

SSVM Learner

tr
ai

n
p

re
d

ic
t

w3 w(2,3)w(1,3)

Learning k (= 3) independent models, one after another;
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 The task performs better when it is placed last in order. 

 There is no ordering that allows the pipeline to reach 

peak performance on all the three tasks.

Pipeline Performance Depends on Task Order

194

y2y1 y3

Pipe direction



Joint Architecture

Task 1 & 2 & 3:

Use all features 
ϕ1 (x,y), ϕ2 (x,y), ϕ3(x,y) ,

ϕ(1,2) (x,y,y’), ϕ(1,3)(x,y,y”) ,

ϕ(2,3) (x,y’,y”)

x

SSVM Learner

tr
ai

n
p

re
d

ic
t p

red
ict

w(1,2)w1 w3w2 w(2,3)w(1,3)

y2y1 y3

ϕ =  ϕ1 (x,y)ㅇϕ2 (x,y)ㅇϕ3(x,y)ㅇϕ(1,2)(x,y,y’)ㅇϕ(1,3)(x,y,y”)ㅇϕ(2,3) (x,y’,y”)

Vector concatenation

Big Problem: Huge branching factor for search
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Pruning

Score-agnostic Pruning

Score-sensitive Pruning

A pruner is a classifier to prune the domain of each variable using state 

features.

Cost 
function

Training 
Data

• Can accelerate the training time;

• May or may not improve the testing accuracy;

Pruned 
Data

Pruner training & 
predicting

SSVM Learner

Cost 
function

Training 
Data

Pruner training & 
predicting

SSVM Learner

testing Testing
Results

Testing
Results

• Can improve the testing accuracy;

• No training speedup, but evaluation does speed up.  
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Cyclic Architecture

Task 1 → Task 2 → Task 3

Connect the tail of pipeline to the head?

Pipeline architecture
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

w2

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

w(1,2)

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w(2,3)

y2

Unshared-Weight-Cyclic Training
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

y3

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w2 w(1,2) w(2,3)

y2

x

y2

y1

Use features 
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Unshared-Weight-Cyclic Training

Weights are 

independent
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

x

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3y1

w(1,2)w1 w3w2 w(2,3)w(1,3)
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

w(1,2)w1 w3w2 w(2,3)w(1,3)
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)
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Cyclic Architecture

Define a order:  Task 1 → Task 2 → Task 3

Use features 
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict  initial outputs:

y2 y3

x y3y1

Use features 
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

T
a
s
k
 2

 T
u

rn

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)

y3
x

y2

y1

Use features 
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Weights are shared
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Summary of Search-based Approaches

206

1. MTSP outperform the STSP by exploiting interdependency, which is captured 

by inter-task features. 

2. Search-based inference for large structured prediction problems suffers from 

local optima and is mitigated by a good initialization. 

3. Pipeline architecture is the fastest on both training and testing, but low 

accuracy; Joint architecture is good on accuracy, but slow speed; Cyclic is a 

trade-off between these two.

4. Score-sensitive pruning of joint MTSP performs the best and takes most time.

5. Unshared weights usually performs better than shared weights.
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Summary

Different frameworks for structured prediction [Jana]

Cost function learning framework and recent advances

Control knowledge learning framework (greedy and beam search)

HC-Search: A Unifying framework

 Integrating deep learning and structured prediction [Liping]

 Deep learning ∩ cost function learning

 Deep learning ∩ control knowledge learning

Multi-task structured prediction [ChaoMa]

Graphical models approach

Search based learning and inference architectures
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Future Directions

Design and optimization of search spaces for complex 
structured prediction problems

very under-studied problem

Leveraging deep learning advances to improve the 
performance of structured prediction approaches

Loose vs. tight integration

Learning to trade-off speed and accuracy of structured 
prediction

Active research topic, but relatively less work

What architectures are more suitable for “Anytime” 
predictions? How to learn for anytime prediction?
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Future Directions

Theoretical analysis: sample complexity and 
generalization bounds

Lot of room for this line of work in the context of “learning” + 
“search” approaches

Understanding and analyzing structured predictors in the 
context of integrated applications

 Pipelines in NLP and Vision among others

Amortized inference or speedup learning for other 
inference formulations

 (Multi-task) structured prediction with weak supervision

Dan Roth: Incidental Supervision: Moving beyond Supervised 
Learning. AAAI 2017


