
1

Recent Advances in Structured Prediction

Jana Doppa

Liping Liu

Chao Ma

Tutorial at AAAI Conference on Artificial Intelligence (AAAI), 2018

2

Dedication: Ben Taskar (1977-2013)

Ben made fundamental contributions to the area of
structured prediction

We dedicate this tutorial to him

3

Outline of Tutorial

Different frameworks for structured prediction [Jana]

Cost function learning framework and recent advances

Control knowledge learning framework (greedy and beam search)

HC-Search: A Unifying framework

 Integrating deep learning and structured prediction [Liping]

 Deep learning ∩ cost function learning

 Deep learning ∩ control knowledge learning

Multi-task structured prediction [ChaoMa]

Graphical models approach

Search based learning and inference architectures

4

Part 1: Introduction

5

Introduction

Structured Prediction problems are very common

 Natural language processing

 Computer vision

 Computational biology

 Planning

 Social networks

 ….

6

Natural Language Processing

Examples

7

NLP Examples: POS Tagging and Parsing

POS Tagging

Parsing

𝑥 = “The cat ran” 𝑦 = <article> <noun> <verb>

“Red figures on the screen
indicated falling stocks”

𝑥
𝑦

8

NLP Examples: Coreference and Translation

Co-reference Resolution

Machine Translation

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

𝑥 𝑦

𝑥 = “The man bit the dog” 𝑦 =该男子咬狗

9

Examples of Bad Prediction

10

Computer Vision Examples

11

Scene Labeling

Image Labeling

12

The OSU Digital Scout Project

Objective: compute semantic interpretations of football video

Raw video

High-level interpretation of play

 Help automate tedious video annotation done by pro/college/HS teams

 Working with hudl (hudl.com)

 Requires advancing state-of-the-art in computer vision, including:

 registration, multi-object tracking, event/activity recognition

13

Multi-Object Tracking in Videos

Video

Player Trajectories

14

Common Theme

POS tagging, Parsing, Co-reference resolution,
detecting parts of biological objects

 Inputs and outputs are highly structured

Studied under a sub-field of machine learning called
“Structured Prediction”

Generalization of standard classification

Exponential no. of classes (e.g., all POS tag sequences)

15

Classification to Structured Prediction

Input

X

Y

Output

Learning a Classifier

?

X

male

Learning a Classifier

?

Example problem:

X - image of a face

Y∈ {male, female}

X

Y

Learning a Classifier

?

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X - image of a face

Y∈ {male, female}

Learning
Algorithm

(, male)

X

Y

Learning a Classifier

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃

X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃

feature vector

class label

X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

X - image of a face

Y∈ {male, female}

Learning
Algorithm F(X, 𝜃)

𝜃

feature vector

class labelLogistic Regression
Support Vector Machines
K Nearest Neighbor
Decision Trees
Neural Networks

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Part-of-Speech Tagging

“The cat ran”

<article> <noun> <verb>

English Sentence:

Part-of-Speech Sequence:

𝒀 = set of all possible POS tag sequences

Exponential !!

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Co-reference Resolution

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

Text with input mentions:

Co-reference Output:

𝒀 = set of all possible clusterings

Exponential !!

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a

former First Lady.”

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃)

𝜃

Handwriting Recognition

𝒀 = set of all possible letter sequences

Exponential !!

Letter Sequence:

S t r u c t u r e d

Handwritten Word:

25

Part 2: Cost Function Learning Framework

and Argmin Inference Challenge

26

Cost Function Learning Approaches:

Inspiration

Generalization of traditional ML approaches to structured
outputs

 SVMs ⇒ Structured SVM [Tsochantaridis et al., 2004]

 Logistic Regression ⇒ Conditional Random Fields [Lafferty et al., 2001]

 Perceptron ⇒ Structured Perceptron [Collins 2002]

27

Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

28

Cost Function Learning: Approaches

Most algorithms learn parameters of linear models

𝜙 𝑥, 𝑦 is n-dim feature vector over input-output pairs

w is n-dim parameter vector

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Example: Part-of-Speech Tagging

x = “The cat ran” y = <article> <noun> <verb>

𝜙(𝑥, 𝑦) may have unary and pairwise features

unary feature: e.g. # of times ‘the’ is paired with <article>

pairwise feature: e.g. # of times <article> followed by <verb>

29

Key challenge: “Argmin” Inference

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

Exponential

size of output

space !!

30

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙(𝑥, 𝑦)

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

31

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙(𝑥, 𝑦)

 NP-Hard in general

 Efficient ``exact’’ inference algorithms exist only for simple
features

Approximate inference techniques are employed in practice
and they work reasonably well

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

32

Cost Function Learning: Key Elements

 Joint Feature Function

 How to encode a structured input (x) and structured output
(y) as a fixed set of features 𝜙(𝑥, 𝑦)?

 (Loss Augmented) Argmin Inference Solver



 Viterbi algorithm for sequence labeling

 CKY algorithm for parsing

 (Loopy) Belief propagation for Markov Random Fields

 Sorting for ranking

Optimization algorithm for learning weights

 (sub) gradient descent, cutting plane algorithm …

F(x) = 𝐚𝐫𝐠 𝒎𝒊𝒏
𝒚∈𝒀

𝒘 ⋅ 𝝓(𝒙, 𝒚)

33

Cost Function Learning: Generic Template

repeat

For every training example (𝑥, 𝑦)

Inference: ො𝑦 = arg𝑚𝑖𝑛𝑦∈𝑌 𝑤 ∙ 𝜑 𝑥, 𝑦

If mistake 𝑦 ≠ ො𝑦,

Learning: online or batch weight update

until convergence or max. iterations

Training goal:

Find weights 𝑤 s.t

For each input 𝑥, the cost of the correct structured output
𝑦 is lower than all wrong structured outputs

Exponential

size of output

space !!

34

Expensive Training Process

Main Reason

 repeated calls to “Argmin inference solver” (computationally
expensive) on all the training examples

Recent Solutions

Amortized Inference: Kai-Wei Chang, Shyam Upadhyay, Gourab

Kundu, Dan Roth: Structural Learning with Amortized Inference. AAAI 2015

Decomposed Learning: Rajhans Samdani, Dan Roth: Efficient

Decomposed Learning for Structured Prediction. ICML 2012

35

Amortized Inference and Speedup Learning

We need to solve many inference problems during both
training and testing

Computationally expensive!

Can we improve the speed of solving new problems based
on past problem-solving experience?

Yes, amortized Inference!

Highly related to ``speedup learning’’ [Fern, 2010]

36

Amortized Inference with ILP Formulation

 Inference can be formulated as ILP [Roth and Yih, 2004]

 Imagine that you already solved many inference problems

Your algorithmic solution method doesn’t matter

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the (n+1)th one
faster?

Conditions under which the solution of a new problem Q
is the same as the one of P (which we already cached)

If CONDITION (problem cache, new problem)
then (no need to call the solver)

SOLUTION(new problem) = old solution
Else

Call base solver and update cache
End

0.04 ms

2 ms

37

The Theorem Must Fire a Lot

 Inference formulation provides a new level of abstraction
for amortization

Modulo renaming

Dan gave a talk

Vinod ate a pizza

Heng read a book

Have same POS tag structure, Parse Tree, Semantic Parse

Pigeon Hole Principle

Many different instances have to be mapped into identical
inference outcomes

Often, saves 85% of the computation.

38

Amortized ILP Inference: References

 Vivek Srikumar, Gourab Kundu, Dan Roth: On Amortizing Inference
Cost for Structured Prediction. EMNLP 2012

 Gourab Kundu, Vivek Srikumar, Dan Roth: Margin-based
Decomposed Amortized Inference. ACL 2013

 Kai-Wei Chang, Shyam Upadhyay, Gourab Kundu, Dan Roth:
Structural Learning with Amortized Inference. AAAI 2015

PAC Theory for ILP Inference: The behavior of ILP
inference (integrality of relaxed solutions) on training
examples generalize to testing examples

Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, David Sontag:
Train and Test Tightness of LP Relaxations in Structured
Prediction. ICML 2016

39

Decomposed Learning (DecL)

Key Idea: Inference over a smaller structured output space

 All structured outputs that have a hamming accuracy of k from
the ground truth structured output: DecL(k)

As k increases, learning approaches standard learning

Theoretical guarantees on when DecL will behave similar to
standard learning [Samdani and Roth, 2012]

Special case (k=1):

 Pseudo-max training [Sontag et al., 2010]

40

Structured Prediction Cascades

[Weiss and Taskar, 2010]

Accuracy: Minimize the number
of errors incurred by each level

Efficiency: Maximize the
number of filtered assignments
at each level

Filter 1

Filter 2

Filter D

Predic

t

41

Cost Function Learning:

“Exact” vs. “Approximate” Inference Solver

Most theory works for “Exact” Inference

Theory breaks with “Approximate” Inference
 Alex Kulesza, Fernando Pereira: Structured Learning with Approximate

Inference. NIPS 2007

 Thomas Finley, Thorsten Joachims: Training structural SVMs when exact
inference is intractable. ICML 2008: 304-311

Active Research Topic: Interplay between (approximate)
inference and learning
 Veselin Stoyanov, Alexander Ropson, Jason Eisner: Empirical Risk

Minimization of Graphical Model Parameters Given Approximate Inference,
Decoding, and Model Structure. AISTATS 2011

 Justin Domke: Structured Learning via Logistic Regression. NIPS 2013

 Tamir Hazan, Alexander G. Schwing, Raquel Urtasun: Blending Learning and
Inference in Conditional Random Fields. JMLR-2016

 …

42

Search-based Structured Prediction

 Integrating “Learning” and “Search” two fundamental
branches of AI to solve structured prediction problems

Key Idea:

Learning “with Inference” vs. Learning “for Inference”

Select a computationally bounded search architecture for
making predictions

 Optimize the parameters of that procedure to produce
accurate outputs using training data

43

Part 3: Control Knowledge Learning

Framework: Greedy Methods

44

Greedy Control Knowledge Learning

Given

 Search space definition

Training examples (input-output pairs)

Learning Goal

 Learn a policy or classifier to that directly predicts good
structured outputs (no inference needed!)

Key Idea:

 Training examples can be seen as expert demonstrations

 Equivalent to “Imitation Learning” or “Learning from
Demonstration”

 Reduction to classifier or rank learning

45

Classifier-based Structured Prediction

Reduction to classifier learning

26 classes

 IL Algorithms

 Exact-Imitation

 SEARN

 DAgger

 AggreVaTe

 LOLS

46

Aside: Reductions in Machine Learning

Reduce complex problem to simpler problem(s)

A better algorithm for simpler problem means a better
algorithm for complex problem

Composability, modularity, ease-of-implementation

Hard Machine
Learning Problem

Easy Machine
Learning Problem Reduction

Performance 𝜖Performance f(𝜖)

47

Imitation Learning Approach

Expert demonstrations

each training example (input-output pair) can be seen as a
“expert” demonstration for sequential decision-making

Collect classification examples

Generate a multi-class classification example for each of the
decisions

 Input: f(n), features of the state n

Output: yn, the correct decision at state n

Classifier Learning

Learn a classifier from all the classification examples

48

Exact Imitation: Classification examples

, - - - - - -𝑓 𝑠

𝑓 𝑡

𝑓 𝑟

𝑓 𝑢

𝑓 𝑐

𝑓 𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output

For each training example

49

Exact Imitation: Classifier Learning

, - - - - - -𝑓 𝑠

𝑓 𝑡

𝑓 𝑟

𝑓 𝑢

𝑓 𝑐

𝑓 𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output

…

𝒉

Recurrent classifier

or

Learned policy

Classification
Learner

50

Learned Recurrent Classifier: Illustration

Error propagation:

errors in early decisions propagate to down-stream decisions

51

Recurrent Error

Can lead to poor global performance

Early mistakes propagate to downstream decisions:
f 𝜖 = 𝑂 𝜖𝑇2 , where 𝜖 is the probability of error at
each decision and T is the number of decision steps
[Kaariainen 2006] [Ross & Bagnell 2010]

Mismatch between training (IID) and testing (non-IID)
distribution

 Is there a way to address error propagation?

52

Addressing Error Propagation

• Rough Idea: Iteratively observe current policy and augment
training data to better represent important states

• Several variations on this idea [Fern et al., 2006], [Daume et al., 2009],

[Xu & Fern 2010], [Ross & Bagnell 2010], [Ross et al. 2011, 2014], [Chang et al., 2015]

• Generate trajectories using
current policy (or some variant)

• Collect additional classification
examples using optimal policy
(via ground-truth output)

53

DAgger Algorithm [Ross et al., 2011]

Collect initial training set 𝐷 of 𝑁 trajectories from
reference policy 𝜋∗

Repeat until done
𝜋 ← LearnClassifier(𝐷)

Collect set of states S that occur along 𝑁 trajectories of 𝜋

For each state 𝑠 ∈ 𝑆

 𝐷 ← 𝐷 ∪ { 𝑠, 𝜋∗ 𝑠 } // add state labeled by expert or reference policy

Return 𝜋

Each iteration increases the amount of training data (data aggregation)

54

DAgger for Handwriting Recognition

Source: [Ross et al., 2011]

55

Easy-First Approach: Big Picture

Drawbacks of classifier-based structured prediction

Need to define an ordering over the output variables (e.g., left-
to-right in sequence labeling)

Which order is good? How do you find one?

Some decisions are hard to make if you pre-define a fixed order
over the output variables

Easy-First Approach: Key Idea

 Make easy decisions first to constrain the harder decisions

 Learns to dynamically order the decisions

 Analogous to constraint satisfaction algorithms

56

Easy-First Learning as Imitation Learning

 Imitation learning with a non-deterministic oracle policy

multiple good decisions (actions) at a state

Ties are broken with the learned policy (scoring function)

NLP researchers employ imitation learning ideas and call
them “training with exploration”
 Miguel Ballesteros, Yoav Goldberg, Chris Dyer, Noah A. Smith: Training with

Exploration Improves a Greedy Stack-LSTM Parser. CoRR abs/1603.03793
(2016)

 Imitation learning ideas are also employed in training
recurrent neural networks (RNNs) under the name
“scheduled sampling”
 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer: Scheduled Sampling

for Sequence Prediction with Recurrent Neural Networks. NIPS 2015

57

Part 4: Control Knowledge Learning:

Beam Search Methods

58

Beam Search Framework

Given

 Search space definition (ordered or unordered)

 Training examples (input-output pairs)

 Beam width B (>1)

Learning Goal

 Learn a heuristic function to quickly guide the search to the
correct “complete’’ output

Key Idea:

Structured prediction as a search problem in the space of
partial outputs

 Training examples define target paths from initial state to
the goal state (correct structured output)

59

Beam Search Framework: Key Elements

1) Search space; 2) Search procedure; 3) Heuristic function

Represent heuristic function as a linear function

 𝐻 𝑛 = 𝑤 ∙ 𝜓(𝑛) , where 𝜓(𝑛) stands for features of node 𝑛

Target node

Non-Target node

60

Beam Search: Illustration

61

Beam Search: Illustration

62

Beam Search: Illustration

63

Beam Search: Illustration

…

64

Beam Search: Illustration

…

65

Beam Search Framework: Inference

Input: learned weights 𝑤; beam width B;
structured input 𝑥

repeat

 Perform search with heuristic 𝐻 𝑛 = 𝑤 ∙ 𝜓(𝑛)

until reaching a terminal state

Output: the complete output y corresponding
to the terminal state

66

Beam Search Framework:

Generic Learning Template

Three design choices

 How to define the notion of “search error”?

 How to “update the weights” of heuristic function
when a search error is encountered?

 How to “update the beam” after weight update?

67

Beam Search Framework:

Learning Instantiations

 Early update

 Max-violation update

Learning as Search Optimization (LaSO)

[Collins and Roark, 2004]

[Huang et al., 2012]

[Daume et al., 2005], [Xu et al., 2009]

68

Beam Search Framework: LaSO

Search error: NO target node in the beam
We cannot reach the goal node (correct structured output)

Weight update: perceptron update
𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝛼 ∙ (𝜓𝑎𝑣𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜓𝑎𝑣𝑔(𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡))

𝜓𝑎𝑣𝑔 𝑡𝑎𝑟𝑔𝑒𝑡 = Average features of all target nodes in the

candidate set

𝜓𝑎𝑣𝑔 𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡 = Average features of all non-target nodes

in the candidate set

 Intuition: increase the score of target nodes and decrease the
score of the non-target nodes

Beam update: reset beam with target nodes in
the candidate set

69

LaSO Training: Illustration






















B

vF

CP

vF
ww

ji

CP ji Bv

,

v

*

)()(
,

*
























B

vF

CP

vF
ww

ji

CP ji Bv

,

v

*

)()(
,

*



…

…

An error occurs

An error occurs

Basic Idea: repeatedly conduct search on training examples

update weights when error occurs
solution node

non-solution node

70

Beam Search Framework: LaSO

repeat

For every training example (𝑥, 𝑦)

 Perform search with current heuristic (weights)

 If search error , update weights

 Reset beam with target nodes in the candidate set

 Continue search

until convergence or max. iterations

71

LaSO Convergence Results

Under certain assumptions, LaSO-BR converges to a
weight vector that solves all training examples in a finite
number of iterations

 Interesting convergence result

Mistake bound depends on the beam width

Formalizes the intuition that learning becomes easier as we
increase the beam width (increase the amount of search)

First formal result of this kind

72

Part 5: HC-Search: A Unifying

Framework for Cost Function and

Control Knowledge Learning

73

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

74

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

75

HC-Search: A Unifying View

Cost Function Learning Approaches

 Don’t learn search control knowledge

Control Knowledge Learning Approaches

Don’t learn cost functions

HC-Search Learning Framework

 Unifies the above two frameworks and has many advantages

 Without H, degenerates to cost function learning

 Without C, degenerates to control knowledge learning

 Supports learning to improve both speed and accuracy of
structured prediction

76

HC-Search framework: Inspiration

HC-Search Framework

Traditional AI Search for combinatorial optimization

+

Learning

77

HC-Search Framework: Overview

Key Idea:

Generate high-quality candidate outputs by conducting a
time-bounded search guided by a learned heuristic H

Score the candidate outputs using a learned cost function C
to select the least cost output as prediction

Heuristic Learning

 can be done in primitive space (e.g., IJCAI’16 paper on
incremental parsing)

 OR complete output space

IJCAI’16 paper on computing M-Best Modes via Heuristic Search

78

HC-Search framework: Overview

 Key Ingredients:

Define a search space over structured outputs

Learn a cost function 𝑪 to score potential outputs

Use a search algorithm to find low cost outputs

Learn a heuristic function 𝑯 to make search efficient

Our approach:

o Structured Prediction as a search process in the
combinatorial space of outputs

79

HC-Search Illustration: Search Space

, praual

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node Nodes = input-output pairs

80

HC-Search Illustration: Cost Function

, praual

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node

0.92

0.88 0.81 0.89 0.85

0.95 0.84 0.91

0.95 0.68 0.83

0.60 0.77

Cost

How bad is a node?

81

HC-Search Illustration: Making Predictions

Assume we have a
good cost function.

How to make predictions?

82

HC-Search Illustration: Greedy Search

, praualroot node

83

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

84

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

0.88 0.81 0.89 0.85

Heuristic value

85

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

0.88 0.81 0.89 0.85

86

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

87

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…
0.95 0.84

88

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…
0.95 0.84

89

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

90

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.95 0.68

91

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.95 0.68

92

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

93

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

Set of all outputs generated within time limit

94

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.650.56

0.81 0.67 0.76 0.71

0.95

Cost

95

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.650.56

0.81 0.67 0.76 0.71

0.95

Best cost output

96

HC-Search Illustration: Greedy Search

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.650.56

0.81 0.67 0.76 0.71

0.95

ො𝑦 = sraucl

Best cost output

97

HC-Search: Properties

Anytime predictions

Stop the search at any point and return the best cost output

Minimal restrictions on the complexity of heuristic and
cost functions

Only needs to be evaluated on complete input-output pairs

Can use higher-order features with negligible overhead

Can optimize non-decomposable loss functions

 e.g., F1 score

Error Analysis: Heuristic error + Cost function error

 engineering methodology guided by the error decomposition

98

HC-Search: Key Learning Challenges

Search Space Design:

How can we automatically define high-quality search
spaces ?

Heuristic Learning:

How can we learn a heuristic function to guide the
search to generate high-quality outputs ?

Cost Function Learning:

How can we learn a cost function to score the
outputs generated by the heuristic function ?

99

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

100

HC-Search: Loss Decomposition

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

101

HC-Search: Loss Decomposition

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

Loss = 0.22

102

HC-Search: Loss Decomposition

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

Loss = 0.22

Minimum loss output
Loss = 0.09

103

HC-Search: Loss Decomposition

Overall loss 𝝐 = 0.22

Generation loss 𝝐𝑯 = 0.09

(Heuristic function)

Selection loss 𝝐𝑪 = 0.22 – 0.09

(Cost function)

104

HC-Search: Loss Decomposition

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall
expected loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

𝑪 𝒙, 𝒚 = 𝒘𝒄 ⋅ 𝝓𝑯 𝒙, 𝒚
𝑯 𝒙, 𝒚 = 𝒘𝑯 ⋅ 𝝓𝑪 𝒙, 𝒚

105

HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss

(Heuristic function)
Selection loss

(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition

Doppa, J.R., Fern, A., Tadepalli, P. HC-Search: A Learning Framework for Search-based Structured Prediction.

Journal of Artificial Intelligence Research (JAIR) 2014.

106

HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss

(Heuristic function)
Selection loss

(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)

107

HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss

(Heuristic function)
Selection loss

(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)

Step 2: መ𝐶 = arg𝑚𝑖𝑛𝐶∈𝑪 𝜖𝐶| ෡𝐻 (cost function training)

108

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

109

HC-Search: Heuristic learning

Learning Objective:
Guide the search quickly towards high-quality (low loss)

outputs

110

HC-Search: Heuristic Learning

Key idea: Imitation of true loss function

Conduct searches on training example using the true loss
function as a heuristic

(generally is a good way to produce good outputs)

Learn a heuristic function that tries to imitate the observed
search behavior

• Given a search procedure (e.g., greedy search)

111

Greedy Search: Imitation with true loss

, praual

, araual , strual , ptrual , practi

…… …

, struct , struat

…

root node

5

5
2 3 6

10

True loss

, strual , struct = 2Hamming Loss

112

Greedy Search: Imitation with true loss

, praual

, araual , strual , ptrual , practi

…… …

, struct , struat

…

root node

5

5
2 3 6

10

True loss

Generation loss 𝜖𝐻∗= 0

113

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

…… …

, strual , araual<

, strual < , ptrual

, strual < , practi

…

5

5
2 3 6

2

2

2

5

3

6

114

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

…… …

, struct , struat

…… …

5

5
2 3 6

10

115

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

…… …

, struct , struat

…… …

, struct , struat<

…

5

5
2 3 6

10

0 1

116

HC-Search: Heuristic Function Learning

Rank Learner

Heuristic function ෡𝑯

Ranking examples

Can prove generalization bounds on learned heuristic

[Doppa et al., 2012]

117

HC-Search: Learning

𝝐 = 𝝐𝑯 + 𝝐𝑪|𝑯

Overall loss
Generation loss

(Heuristic function)
Selection loss

(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: ෡𝐻 = arg𝑚𝑖𝑛𝐻∈𝑯 𝜖𝐻 (heuristic training)

Step 2: መ𝐶 = arg𝑚𝑖𝑛𝐶∈𝑪 𝜖𝐶| ෡𝐻 (cost function training)

118

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

119

HC-Search: Cost Function Learning

Learning Objective:
Correctly score the outputs generated by the heuristic as per

their losses

120

HC-Search: Cost function Learning

Set of all outputs generated by the heuristic ෡𝑯

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

121

HC-Search: Cost function Learning

Key Idea: Learn to rank the outputs generated by the
learned heuristic function ෡𝐻 as per their losses

, praualroot node

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.22 0.29

0.390.22

0.81 0.37 0.76 0.71

Loss

0.5

Best loss output

122

HC-Search: Cost function Learning

Create a ranking example between every pair of
outputs (𝑦𝑏𝑒𝑠𝑡 , 𝑦) such that: 𝐶 𝑥, 𝑦𝑏𝑒𝑠𝑡 < 𝐶(𝑥, 𝑦)

Learning to Rank:

<

…

…

…

…

Best loss outputs

Non-best loss outputs

123

HC-Search: Cost function Learning

Rank Learner

Cost function ෡𝑪

Ranking examples

<

<

…

…

<

<

Can borrow generalization bounds from rank-learning literature
[Agarwal and Roth, 2005 & Agarwal and Niyogi, 2009]

124

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

125

HC-Search: Search Space Design

Objective:
High-quality outputs can be located at small depth

Target depth = 5

126

HC-Search: Search Space Design

Objective:
High-quality outputs can be located at small depth

Solution #1:

Flipbit Search Space [JMLR, 2014]

Solution #2:

Limited Discrepancy Search (LDS) Space [JMLR, 2014]

Defined in terms of a greedy predictor or policy

Solution #3:

Segmentation Search Space for computer vision tasks [CVPR, 2015]

127

Flip-bit Search Space

, praual

…… …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node Output of recurrent

classifier

128

Multi-Label Prediction: Problem

Input Output

1

1

1

0

0

0

…

…

sky

water

sand

computer

chair

mountains

129

Multi-Label Prediction: Problem

Commonly arises in various domains

 Biology – predict functional classes of a protein/gene

 Text – predict email tags or document classes

 …

130

Multi-Label Prediction

Benchmark data

Dataset Domain #TR #TS #F #L 𝑬[𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15

131

Multi-Label Prediction

Benchmark data

Dataset Domain #TR #TS #F #L 𝑬[𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15

Label vectors are highly sparse

132

Multi-Label Prediction via HC-Search

HC-Search

 Exploit the sparsity property (Null vector + flip bits)

𝑥 , y = 000000root node

𝑥 , y = 100000 𝑥 , y = 001000 𝑥 , y = 000001

… …

𝑥 , y = 101000 𝑥 , y = 001001

…

𝑥 , y = 111000 𝑥 , y = 101100 𝑥 , y = 001011

… …

133

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

134

Engineering Methodology

Select a time-bounded search architecture

 High-quality search space (e.g., LDS space or its variant)

 Search procedure

 Time bound

 Effectiveness can be measured by performing LL-Search (loss
function as both heuristic and cost function)

Training and Debugging

 Overall error = generation error (heuristic) + selection error
(cost function)

 Take necessary steps to improve the appropriate error guided
by the decomposition

135

Outline of HC-Search Framework

Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning

 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

136

HC-Search vs. CRF/SSVM

 Inference in CRF/SSVM

 Cost function needs to score exponential no. of outputs

 Inference in HC-Search

 Cost function needs to score only the outputs generated
by the search procedure guided by heuristic 𝐻

F(x) = 𝐚𝐫𝐠 𝐦𝒊𝒏
𝒚 ∈ 𝒀(𝒙)

𝑪(𝒙, 𝒚)

F(x) = 𝐚𝐫𝐠 𝐦𝒊𝒏
𝒚 ∈ 𝒀𝑯(𝒙)

𝑪(𝒙, 𝒚)

137

HC-Search vs. Re-Ranking Algorithms

Re-Ranking Approaches

 k-best list from a generative model
Michael Collins: Ranking Algorithms for Named Entity Extraction: Boosting and the Voted
Perceptron. ACL 2002: 489-496

 Diverse M-best modes of a probabilistic model
Payman Yadollahpour, Dhruv Batra, Gregory Shakhnarovich: Discriminative Re-ranking of
Diverse Segmentations. CVPR 2013: 1923-1930

No guarantees on the quality of generated candidate set

HC-Search

 Candidate set is generated via generic search in high-quality
search spaces guided by the learned heuristic

 Minimal restrictions on the representation of heuristic

 PAC guarantees on the quality of candidate set

138

HC-Search: A “Divide-and-Conquer” Solution

HC-Search is a “Divide-and-Conquer’’ solution
with procedural knowledge injected into it

 All components have clearly pre-defined roles

 Every component is contributing towards the
overall goal by making the role of other components
easier

139

HC-Search: A “Divide-and-Conquer” Solution

Every component is contributing towards the overall
goal by making the role of other components easier

 LDS space leverages greedy classifiers to reduce the target
depth to make the heuristic learning easier

 Heuristic tries to make the cost function learning easier by
generating high-quality outputs with as little search as possible

140

Important References

 Advances in cost function learning
 Amortized inference and learning with ILP:
Vivek Srikumar, Gourab Kundu, Dan Roth: On Amortizing Inference Cost for Structured Prediction. EMNLP 2012

Gourab Kundu, Vivek Srikumar, Dan Roth: Margin-based Decomposed Amortized Inference. ACL 2013

Kai-Wei Chang, Shyam Upadhyay, Gourab Kundu, Dan Roth: Structural Learning with Amortized Inference. AAAI
2015

 PAC theory for ILP inference:
Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, David Sontag: Train and Test Tightness of LP Relaxations in
Structured Prediction. ICML 2016

 Decomposed learning:
Rajhans Samdani, Dan Roth: Efficient Decomposed Learning for Structured Prediction. ICML 2012

 Structured prediction cascades:
David J. Weiss, Benjamin Taskar: Structured Prediction Cascades. AISTATS 2010: 916-923

141

Important References

 Classifier-based structured Prediction
 Recurrent classifier:
Thomas G. Dietterich, Hermann Hild, Ghulum Bakiri: A Comparison of ID3 and Backpropagation for English Text-
to-Speech Mapping. Machine Learning 18(1): 51-80 (1995)

 PAC Results and Error Propagation:
Roni Khardon: Learning to Take Actions. Machine Learning 35(1): 57-90 (1999)

Alan Fern, Sung Wook Yoon, Robert Givan: Approximate Policy Iteration with a Policy Language Bias: Solving
Relational Markov Decision Processes. J. Artif. Intell. Res. (JAIR) 25: 75-118 (2006)

Umar Syed, Robert E. Schapire: A Reduction from Apprenticeship Learning to Classification. NIPS 2010

Stéphane Ross, Drew Bagnell: Efficient Reductions for Imitation Learning. AISTATS 2010: 661-668

 Advanced Imitation Learning Algorithms:
SEARN: Hal Daumé III, John Langford, Daniel Marcu: Search-based structured prediction. Machine Learning
75(3): 297-325 (2009)

DAgger: Stéphane Ross, Geoffrey J. Gordon, Drew Bagnell: A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning. AISTATS 2011: 627-635

AggreVaTe: Stéphane Ross, J. Andrew Bagnell: Reinforcement and Imitation Learning via Interactive No-Regret
Learning. CoRR abs/1406.5979 (2014)

LOLS: Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, John Langford: Learning to Search
Better than Your Teacher. ICML 2015: 2058-2066

Yuehua Xu, Alan Fern, Sung Wook Yoon: Iterative Learning of Weighted Rule Sets for Greedy Search. ICAPS
2010: 201-208

Alan Fern, Sung Wook Yoon, Robert Givan: Approximate Policy Iteration with a Policy Language Bias: Solving
Relational Markov Decision Processes. J. Artif. Intell. Res. (JAIR) 25: 75-118 (2006)

142

Important References

 Easy-first approach for structured Prediction
Yoav Goldberg, Michael Elhadad: An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing.
HLT-NAACL 2010

Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nate Chambers, Mihai Surdeanu, Dan Jurafsky,
Christopher D. Manning: A Multi-Pass Sieve for Coreference Resolution. EMNLP 2010

Lev-Arie Ratinov, Dan Roth: Learning-based Multi-Sieve Co-reference Resolution with Knowledge. EMNLP-
CoNLL 2012

Veselin Stoyanov, Jason Eisner: Easy-first Coreference Resolution. COLING 2012

Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad
Tadepalli: Learning Greedy Policies for the Easy-First Framework. AAAI 2015

 Learning Beam search heuristics for structured prediction
Michael Collins, Brian Roark: Incremental Parsing with the Perceptron Algorithm. ACL 2004

Hal Daumé III, Daniel Marcu: Learning as search optimization: approximate large margin methods for structured
prediction. ICML 2005

Yuehua Xu, Alan Fern, Sung Wook Yoon: Learning Linear Ranking Functions for Beam Search with Application to
Planning. Journal of Machine Learning Research 10: 1571-1610 (2009)

Liang Huang, Suphan Fayong, Yang Guo: Structured Perceptron with Inexact Search. HLT-NAACL 2012

143

Important References

 HC-Search Framework for structured Prediction
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli: HC-Search: A Learning Framework for Search-based
Structured Prediction. J. Artif. Intell. Res. (JAIR) 50: 369-407 (2014)

Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli: Structured prediction via output space search. Journal of
Machine Learning Research 15(1): 1317-1350 (2014)

Janardhan Rao Doppa, Jun Yu, Chao Ma, Alan Fern, Prasad Tadepalli: HC-Search for Multi-Label Prediction: An
Empirical Study. AAAI 2014

Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, Thomas G. Dietterich: HC-Search for structured
prediction in computer vision. CVPR 2015

144

Part 6: Integrating Deep Learning and

Structured Prediction

Liping Liu

Tufts University

145

Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction

146

Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction

147

Conditional Random Field (CRF)

The basic form

𝑃(𝑦 | 𝑥; 𝑤) =
1

𝑍 𝑤
exp σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦)

partition function 𝑍 𝑤 = σ𝑦∈𝒴 exp σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦)

The function 𝜙𝑘 𝑥, 𝑦 = 𝜙𝑘(𝑥, 𝑦𝑖𝑘)often defines the

potential of a single label or a pair of labels

148

CRF extensions with Deep models

Deep structured models [Chen et al. ICML 2015]

Replace linear potential 𝑤𝑘𝜙𝑘(⋅) with a deep function

𝑓𝑘(𝑥, 𝑦; 𝑤) to extract information from complex object 𝑥

Structured Prediction Energy Network (SPEN)

[Belanger et al. ICML 2016, 2017]

Replace σ𝑘𝑤𝑘 ⋅ 𝜙𝑘(𝑥, 𝑦) with a deep function 𝐹 𝑥, 𝑦; 𝑤 ,

so 𝑃(𝑦 | 𝑥; 𝑤) =
1

𝑍 𝑥,𝑤
exp 𝐹 𝑥, 𝑦; 𝑤

Deep Value Network (DVN) [Gygli et al. ICML

2017]

Learn a deep model 𝑣 𝑥, 𝑦; 𝑤 to fit the negative loss

(DVN)

149

Deep Structured Models

Deep structured models [Chen et al. ICML 2015]

The potential 𝐹 𝑥, 𝑦;𝑤 is decomposable by nodes or

node pairs,

𝐹 𝑥, 𝑦;𝑤 = σ𝑘 𝑓𝑘(𝑥, 𝑦𝑖𝑘; 𝑤)

𝑓𝑘(𝑥, 𝑦; 𝑤) is still a single or a pairwise potential

DSM approximates the partition function with loopy

belief propagation
log 𝑍 𝑥,𝑤 = max

𝑝
𝐸𝑝 𝐹 𝑥, 𝑦𝑖𝑘; 𝑤 + 𝐻[𝑝]

(Treat 𝑤 as a constant here)

Approximate marginal of dist 𝑝 by local beliefs

150

Structured Prediction Energy Network

SPEN [Belanger et al. ICML 2016, 2017] allows

high order label interactions through non-linear

transformation of label vectors
min
𝑦

𝐸𝑥(𝑦) 𝑠. 𝑡. 𝑦 ∈ 0, 1 𝐿

Training in the same way as structured SVM

Minimize the hinge loss

min
𝑤

max
𝑦

Δ 𝑦𝑖 , 𝑦 − 𝐸𝑥𝑖 𝑦 + 𝐸𝑥𝑖 𝑦𝑖 +

 Inner optimization problem is solved by LP relaxation,

relaxing the space of discrete labels to a continuous one

151

Deep Value Networks (DVN)

DVN [Gygli et al. ICML 2017] fit negative loss

values

Train a network 𝑣(𝑥, 𝑦; 𝜃) such that

𝑣 𝑥, 𝑦; 𝜃 ≈ −𝑙𝑜𝑠𝑠(𝑦, 𝑦∗)

Trained with samples (𝑥, 𝑦′, −𝑙𝑜𝑠𝑠(𝑦′, 𝑦∗)), with 𝑦′
being

Training label 𝑦∗

 Inference result ො𝑦 = argmax 𝑣(𝑥, 𝑦; 𝜃)

Random samples

Adversarial samples

 Inference is done by optimization of 𝑦 in the

continuous space

152

Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction

153

RNN for Structured Prediction

RNN can output predictions with structures

 Input 𝑥, 𝑦𝑡−1
Output 𝑦𝑡 at time 𝑡

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

loss

𝑦𝑡

loss

154

RNN for Structured Prediction

RNN can output predictions with structures

 Input 𝑥, 𝑦𝑡−1
Output 𝑦𝑡 at time 𝑡

Considerations for structured prediction

How to avoid exposure bias (i.e. teacher forcing makes

training and testing different)?

How to include loss function in training?

155

RNN for Structured Prediction

Two issues

Exposure bias (teacher enforcing)

Loss-evaluation mismatch

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

𝑦𝑡

ℎ𝑡

𝑥

ℎ𝑡−1

𝑥

𝑦𝑡−1

𝑜𝑡−1 𝑜𝑡

… …

𝑦𝑡

loss

156

Structured Prediction as an RL Problem

Formulation as reinforcement learning

(𝑥, 𝑜𝑡−1, ℎ𝑡) as a state

Negative loss as reward

 Reward is given at the last step

 Zero reward for intermediate steps

Output 𝑦𝑡 at each step as action

RNN as a policy

Tackle two issues together

Minimize loss by maximize reward

Learning naturally corrects exposure bias

157

Training RNN with policy gradient

Learn RNN with MIXER [Ranzato, ICLR 2016]

First time steps are trained by maximize likelihood

The last few steps are trained by REINFORCE

 REINFORCE is a one policy gradient algorithm

 Use a single sample from RNN to estimated expected reward

158

Actor-Critic Algorithm for RNN Learning

An actor-critic algorithm for sequence prediction

[Bahdanau et al. ICLR 2017]

Actor: RNN(𝜃)

Critic: another network to estimated Q function

Learning Procedure

Update actor/RNN with gradient,

𝑑𝑉

𝑑𝜃
= 𝐸𝑦∼𝑅𝑁𝑁(𝜃) ෍

𝑡

෍

𝑦𝑡
′

𝑑 𝑝 𝑦𝑡
′ 𝑦𝑡−1, ℎ𝑡
𝑑𝜃

෠𝑄(𝑦𝑡
′, 𝑦1:𝑡−1))

Update critic/estimation of ෠𝑄

159

Motivation

Deep models as non-linear functions

 mapping from the input to the output

 non-linear

 need fast training

How about replacing functions with deep

models?

 potential function for CRF

 search function for search based predicting models

 attention model for structured prediction

160

Structure design of structured prediction

A single label does not need all inputs

Let the model to decide which to use

𝑥1 𝑥2

𝑦2𝑦1

𝑥3 𝑥4

𝑦3 𝑦3

𝑥0

𝑦0

161

Attention Model

Attention model for image captioning [Xu et al.

ICML 2015]

RNN model for image captioning

Output: a sequence of words

 Input: feature vectors extracted from selected image

locations at different time steps

Image is from the paper [Xu et al., ICML 2015]

162

Structured Attention Model

Assume attention sequence has structures

Define attention sequence as CRF

𝑝 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑧 | 𝑜𝑢𝑡𝑝𝑢𝑡 𝑦𝑡 , 𝑖𝑛𝑝𝑢𝑡 𝑥
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜃𝑐(𝑧𝑐))

End-to-end training

Gradient calculation is propagated through the inference

procedure

163

Structured Prediction with Deep Models

– the Trend

Less hand crafted model design

Function design

Structure design

More Utilization of existing network structures

Need to consider the propagation of gradients

164

Structured Prediction with Deep Models

Large data amount calls for flexible models that

support fast training (aka deep models)

Batch training and stochastic gradient are

important ingredients – as in other deep learning

models

Slow inference methods become less favored

Disclaimer:

Only a small portion of the recent literature is covered

here due to time limit.

Many more papers worth reading.

Structured Prediction with Deep Models

– Summary

165

Important References

 Classifier-based structured Prediction
 CRF & Deep models :
Charles Sutton and Andrew McCallum. An Introduction to Conditional Random Fields. Foundations and Trends
in Machine Learning: Vol. 4: No. 4, pp 267-373 (2012).

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Semantic Image
Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR (2015).

Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, and Raquel Urtasun. Learning Deep Structured Models.
ICML (2015).

David Belanger and Andrew McCallum. Structured Prediction Energy Networks. ICML (2016).

Michael Gygli, Mohammad Norouzi, and Anelia Angelova. Deep Value Networks Learn to Evaluate and
Iteratively Refine Structured Outputs. ICML (2017).

Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured Inference Networks for Nonlinear State Space
Models. AAAI (2017).

 RNN
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press (2016).

Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, and Simon Lacoste-Julien. SEARNN: Training RNNs with
global-local losses. ICML Workshop (2017).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba . Sequence Level Training with Recurrent
Neural Networks. ICLR (2016).

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. An Actor-Critic Algorithm for Sequence Prediction. ICLR (2017).

Sam Wiseman and Alexander M. Rush. Sequence-to-Sequence Learning as Beam-Search Optimization. EMNLP
(2016).

166

Important References

 Classifier-based structured Prediction
 Attention models:

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML (2015).

Yoon Kim, Carl Denton, Luong Hoang and Alexander M. Rush. Structured Attention Networks. ICLR (2017).

Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing Multimedia Content using Attention-based
Encoder-Decoder Networks. In IEEE Transactions on Multimedia, 2015.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. Attention-Based
Models for Speech Recognition. In Proceedings of NIPS, 2015.

Multi-Task Structured Prediction

Chao Ma

Oregon State University

Tutorial at Association for the Advancement of Artificial Intelligence (AAAI), 2018167

Many NLP tasks process mentions of entities – things,

people, organizations, etc.

• Named Entity Recognition
• Coreference Resolution
• Entity Linking
• Semantic Role Labeling
• Entity Relation Extraction

……

Entity Analysis in Language Processing

• Named Entity Recognition
• Coreference Resolution
• Entity Linking
• Semantic Role Labeling
• Entity Relation Extraction

……

168

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

i = 2i = 1

Coreference Resolution

169

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbiaycoref = (, , …) Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

Coreference Resolution

170

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (？ , ？ ， ？ ， ？ ， ？ ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

171

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , ？ ， ？ ， ？ ， ？ ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

172

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， ？ ， ？ ， ？ ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

173

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， ？ ， ？ ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

174

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， 4 ， ？ ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

175

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， 4 ， 5 ， ？ ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

176

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， 4 ， 5 ， 6 ， ？)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

177

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， 4 ， 5 ， 6 ， 7)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

Coreference Resolution

178

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbia

ycoref = (1 , 1 ， 2 ， 4 ， 5 ， 6 ， 7)

Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

m1 m2 m3 m4 m5 m7m6

Left-linking Tree formulation for coreference resolution:

m1，m2, m3 m4, m5
m6

m7

coreference clustering

Coreference Resolution

179

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference: Columbiaycoref = (, , …) Columbia University

co-referent link

yi = {1, 2 … i}

i = 2i = 1

Coreference Resolution

180

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference:

Named Entity
Recognition :

Entity Linking:

Columbiaycoref = (, , …)

ylink = (, , …)

yner = (ORG, ORG, …)

Columbia University

co-referent link

yi = {1, 2 … i}

yi = {ORG, PER, GPE, LOC,

FAC, VEL, WEA}

yi = {
https://en.wikipedia.org/wiki/Columbia_University,

https://en.wikipedia.org/wiki/Columbia_District,

https://en.wikipedia.org/wiki/Columbia,_British_Columbia,

https://en.wikipedia.org/wiki/Columbia_College,_Columbia_University,

…

}

https://en.wikip

edia.org/wiki/C

olumbia_Unive

rsity

https://en.wikipedia.org/wiki/

Columbia_University

i = 2i = 1

Named Entity Recognition

181

He left [Columbia] in 1983 with a BA degree, ...

after graduating from [Columbia University], he

worked as a community organizer in Chicago…

Coreference:

Named Entity
Recognition :

Entity Linking:

Columbiaycoref = (, , …)

ylink = (, , …)

yner = (ORG, ORG, …)

Columbia University

co-referent link

yi = {1, 2 … i}

yi = {ORG, PER, GPE, LOC,

FAC, VEL, WEA}

yi = {
https://en.wikipedia.org/wiki/Columbia_University,

https://en.wikipedia.org/wiki/Columbia_District,

https://en.wikipedia.org/wiki/Columbia,_British_Columbia,

https://en.wikipedia.org/wiki/Columbia_College,_Columbia_University,

…

}

https://en.wikip

edia.org/wiki/C

olumbia_Unive

rsity

https://en.wikipedia.org/wiki/

Columbia_University

i = 2i = 1

Entity Linking

182

Graphic Model: Joint Entity Linking, Typing, and

Coreference Task [Greg Durrett and Dan Klein. TACL 2014]

Insolate models

1q
1e

1a

1t
Each mention has a corresponding entity typing tag.

The value of coreference variable indicates the
index of its coreferent antecedent mention.

q is a key word from the mention to query the KB
to get an ranked candidate list. Then e is the best
linking output from the list.

m = “Oregon State University”

m(i) = “Oregon State University”

m = “Oregon State University”

t = ORG

En
ti

ty
 L

in
ki

n
g

C
o

re
fe

re
n

ce
N

ER

m(j) = “OSU located at Corvallis”

a(j) = i

q = “Oregon State”

{ Oregon_State, Oregon_City, University_of_Oregon,

OSU }KB e = OSU (id = EL34233)

Joint Model
This figure is provided by the original author

Learning

 The objective can be optimized using AdaGrad algorithm.

Inference

 Belief propagation is still the best choice, but not efficient enough.

• Solution: use a threshold to prune away most of bad links in for

coreference variables, but keep only k remaining.

Graphic Model: Joint Entity Linking, Typing, and

Coreference Task [Greg Durrett and Dan Klein. TACL 2014]

Summary of Graphic Model Approaches

 The powerful capability of representation.

 Easy to deal with missing labels.

Advantages

Challenges

 The main learning difficulty in these graphic models is its

complicate structure,

 BP

 Huge number of (hidden) variables and parameters.

• Graph decomposition during learning and inference by

ignoring some other parts of the graph.

• Pruning candidate values;

• Fixing some of variable values at early stages

Scoring

function

Input Output
f : X, Y R y

f (x, y) = w · ϕ(x, y)

Search-based inference for Structured Prediction

x y

Learning Inference

Feature Vector

y = argmax f (x, y)
y

^

Intractable in most cases

• Structured Perceptron
• Structured SVM

……
• Beam Search

……

Candidate Methods: Candidate Methods:

This Work

186

Structured SVM Learning with Search-based

Inference

187

{ }

Multi-Task Structured Prediction (MTSP):

models

Input

Output

f 1 : X Y1

= w1 · ϕ1(x, y)

f 2 : X Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

Intermediate
or final outputs

y2

x

y1 y3

Multi-Task Structured Prediction

o How to exploit the interdependencies between tasks?

Intra-task Features

188

Introduce Inter-task Features:

models

Input

Output

f 1 : X Y1

= w1 · ϕ1(x, y)

f 2 : X Y2

= w2 · ϕ2(x, y’)

f 3 : X Y3

= w3 · ϕ3(x, y’’)

y2

x

y1 y3

Multi-Task Structured Prediction

Intra-task Features

Inter-task Features

ϕ(1,2)(x , y , y’) ϕ (2,3)(x , y’ , y”)

ϕ (1,3)(x , y , y”)

189

Pipeline Architecture
Learning k (= 3) independent models, one after another;

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2 w(2,3)w(1,3)

Define a order: Task 1 → Task 2 → Task 3

190

Pipeline Architecture

Task 1:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Learning k (= 3) independent models, one after another;

191

Pipeline Architecture

Task 1:

Task 2:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y), ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Learning k (= 3) independent models, one after another;

192

Pipeline Architecture

Task 1:

Task 2:

Task 3:

y2y1 y3

Predict OutputModels

Before Start: w(1,2)w1 w3w2

Use feature
ϕ1 (x, y)

x

y2y1 y3

w(2,3)w(1,3)

SSVM Learner

tr
ai

n
p

re
d

ic
t

w1

Use feature
ϕ2 (x,y), ϕ(1,2) (x,y,y’)

y2y1 y3

SSVM Learner

w(1,2)w2

tr
ai

n
p

re
d

ic
t

Use feature
ϕ3(x, y) , ϕ(1,3)(x,y,y”)

ϕ(2,3) (x,y’,y”)

y2y1 y3

SSVM Learner

tr
ai

n
p

re
d

ic
t

w3 w(2,3)w(1,3)

Learning k (= 3) independent models, one after another;

193

 The task performs better when it is placed last in order.

 There is no ordering that allows the pipeline to reach

peak performance on all the three tasks.

Pipeline Performance Depends on Task Order

194

y2y1 y3

Pipe direction

Joint Architecture

Task 1 & 2 & 3:

Use all features
ϕ1 (x,y), ϕ2 (x,y), ϕ3(x,y) ,

ϕ(1,2) (x,y,y’), ϕ(1,3)(x,y,y”) ,

ϕ(2,3) (x,y’,y”)

x

SSVM Learner

tr
ai

n
p

re
d

ic
t p

red
ict

w(1,2)w1 w3w2 w(2,3)w(1,3)

y2y1 y3

ϕ = ϕ1 (x,y)ㅇϕ2 (x,y)ㅇϕ3(x,y)ㅇϕ(1,2)(x,y,y’)ㅇϕ(1,3)(x,y,y”)ㅇϕ(2,3) (x,y’,y”)

Vector concatenation

Big Problem: Huge branching factor for search
195

Pruning

Score-agnostic Pruning

Score-sensitive Pruning

A pruner is a classifier to prune the domain of each variable using state

features.

Cost
function

Training
Data

• Can accelerate the training time;

• May or may not improve the testing accuracy;

Pruned
Data

Pruner training &
predicting

SSVM Learner

Cost
function

Training
Data

Pruner training &
predicting

SSVM Learner

testing Testing
Results

Testing
Results

• Can improve the testing accuracy;

• No training speedup, but evaluation does speed up.

196

Cyclic Architecture

Task 1 → Task 2 → Task 3

Connect the tail of pipeline to the head?

Pipeline architecture

197

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

198

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Unshared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

199

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

w2

y1

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

w(1,2)

x y3y1

Use features
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w(2,3)

y2

Unshared-Weight-Cyclic Training

200

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

y3

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

x y3y1

Use features
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

w2 w(1,2) w(2,3)

y2

x

y2

y1

Use features
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Unshared-Weight-Cyclic Training

Weights are

independent

201

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

x

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3y1

w(1,2)w1 w3w2 w(2,3)w(1,3)

202

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Shared-Weight-Cyclic Training

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

w(1,2)w1 w3w2 w(2,3)w(1,3)

203

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

x y3y1

Use features
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)

204

Cyclic Architecture

Define a order: Task 1 → Task 2 → Task 3

Use features
ϕ1 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(1,3) (x,y,y”)

x

y1

Step 1:

Step 2: y2y1 y3Predict initial outputs:

y2 y3

x y3y1

Use features
ϕ2 (x,y),

ϕ(1,2) (x,y,y’),

ϕ(2,3) (x,y’,y”)

T
a
s
k
 2

 T
u

rn

y2

Shared-Weight-Cyclic Training

w(1,2)w1 w3w2 w(2,3)w(1,3)

y3
x

y2

y1

Use features
ϕ3(x,y),

ϕ(1,3)(x,y,y”),

ϕ(2,3) (x,y’,y”)

Weights are shared

205

Summary of Search-based Approaches

206

1. MTSP outperform the STSP by exploiting interdependency, which is captured

by inter-task features.

2. Search-based inference for large structured prediction problems suffers from

local optima and is mitigated by a good initialization.

3. Pipeline architecture is the fastest on both training and testing, but low

accuracy; Joint architecture is good on accuracy, but slow speed; Cyclic is a

trade-off between these two.

4. Score-sensitive pruning of joint MTSP performs the best and takes most time.

5. Unshared weights usually performs better than shared weights.

207

Summary

Different frameworks for structured prediction [Jana]

Cost function learning framework and recent advances

Control knowledge learning framework (greedy and beam search)

HC-Search: A Unifying framework

 Integrating deep learning and structured prediction [Liping]

 Deep learning ∩ cost function learning

 Deep learning ∩ control knowledge learning

Multi-task structured prediction [ChaoMa]

Graphical models approach

Search based learning and inference architectures

208

Future Directions

Design and optimization of search spaces for complex
structured prediction problems

very under-studied problem

Leveraging deep learning advances to improve the
performance of structured prediction approaches

Loose vs. tight integration

Learning to trade-off speed and accuracy of structured
prediction

Active research topic, but relatively less work

What architectures are more suitable for “Anytime”
predictions? How to learn for anytime prediction?

209

Future Directions

Theoretical analysis: sample complexity and
generalization bounds

Lot of room for this line of work in the context of “learning” +
“search” approaches

Understanding and analyzing structured predictors in the
context of integrated applications

 Pipelines in NLP and Vision among others

Amortized inference or speedup learning for other
inference formulations

 (Multi-task) structured prediction with weak supervision

Dan Roth: Incidental Supervision: Moving beyond Supervised
Learning. AAAI 2017

