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ADAPTIVE EXPERIMENTAL DESIGN FOR OPTIMIZING COMBINATORIAL

STRUCTURES

Abstract

by Aryan Deshwal, Ph.D.
Washington State University

July 2024

Chair: Janardhan Rao Doppa

Many real-world scientific and engineering problems can be formulated as in-

stances of goal-driven adaptive experimental design, wherein candidate experiments

are chosen sequentially, with each choice informed by the outcomes of past experi-

ments. The objective of this sequential decision-making process is to achieve a specific

goal or learn about an unknown quantity of interest in a resource-efficient manner.

Different goals lead to distinct instantiations of adaptive experimental design. For

instance, in active learning, the goal is to iteratively select input examples to be

labeled, with the goal of learning a predictor from a hypothesis class that achieves

the highest accuracy with minimum number of labeled inputs. Similarly, in bandit

problems (e.g., A/B testing and advertising), the learner repeatedly chooses an arm

from a set of available options, aiming to maximize the cumulative reward over time.

vi



In this dissertation, we focus on another important instantiation of adaptive exper-

imental design: expensive black-box optimization over combinatorial spaces. In this

problem setting, the goal is to identify the optimal input design within a large input

design space consisting of discrete or hybrid structures, where the evaluation of each

input design requires performing an experiment which is expensive in terms of the

consumed resources (computational or physical). For example, in materials discov-

ery, we are commonly interested in searching the space of candidate materials for a

desired property while minimizing the total resource-cost of physical lab experiments

for their evaluation. Remarkably, a large number of scientific discovery and engi-

neering design problems including biological sequence design, nanoporous materials

discovery, molecule optimization, and manycore systems design can be formulated as

an instance of this general problem setting.

Bayesian optimization (BO) is an effective framework for tackling the challenge

of expensive black-box optimization. The key idea behind BO is to learn a surrogate

model from past experiments and use it intelligently select the sequence of experi-

ments to find high-quality inputs by minimizing the number of experiments. In spite

of the huge successes of BO, current approaches focus primarily on fixed-size contin-

uous spaces and there is little principled work on combinatorial search spaces. Unlike

continuous spaces, combinatorial spaces come with many unique challenges such as

difficulty of defining a general representation, non-smoothness, etc. which require

vii



specialized treatment for different types of structures (e.g., sequences, graphs, permu-

tations etc). In this thesis, we explore and address the challenges of this new problem

space by developing a series of novel approaches for Bayesian optimization over combi-

natorial spaces. First, we develop novel Gaussian process based surrogate models for

a wide variety of combinatorial structures motivated by real-world applications (e.g.,

high-dimensional binary/categorical spaces, hybrid inputs containing a mixture of

continuous and discrete variables, varying-sized graphs, and permutations.). Second,

we developed a general tool for sampling functions from GP posteriors using explicit

feature maps for discrete diffusion kernels referred to as Mercer features (analogous

to random fourier features). Mercer features allow us to leverage advanced decision

policies to select experiments in continuous spaces for discrete spaces. Third, we de-

velop effective search strategies for large combinatorial spaces to select the candidate

input with highest utility for experimental evaluation. For binary spaces, we showed

a connection between optimization of Thompson sampling acquisition function with

the binary quadratic optimization and derived an efficient submodular optimization

approach. For permutation spaces, we derive a tractable approach with Thompson

sampling by formulating it as a quadratic assignment problem. We also developed a

general learning-to-search framework that allows using machine learning to improve

the accuracy of search procedures to select inputs for evaluation. This framework is

applicable for any complex surrogate model and acquisition function pair.
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CHAPTER ONE

INTRODUCTION

The society is facing many sustainability challenges ranging from climate change

to health, water, food, and manufacturing. Artificial intelligence (AI) and Machine

learning (ML) holds tremendous promise towards addressing these challenges by accel-

erating discovery of new advances in science and engineering. For example, AI-driven

rapid discovery of nanoporous materials have the potential to solve some of society’s

biggest challenges, from absorbing carbon dioxide from air to storing hydrogen gas

for fuel. Similarly, AI-driven drug/vaccine design could help find significantly better

therapeutics for major human ailments. The design of high performance and low-

power hardware by overcoming Moore’s law will enable sustainable computing from

edge to cloud.

One important class of real-world problems commonly faced by scientists and

engineers that lies at the heart of achieving these transformative goals is that of

(goal-directed) adaptive experimental design where we need to select a sequence of

experiments in order to achieve a goal1. In this thesis, we focus on this problem setting

where the goal is to find the best design over a given input design space in order

to optimize an objective of interest guided by expensive experiments. Commonly,

evaluating each candidate input design requires performing an expensive physical

1Broadly, adaptive experimental design also includes areas such as bandits and active learning
but this dissertation is only focused on expensive black-box function optimization problems.
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lab-experiment or computational simulation. This process is iterative and adaptive,

i.e., it is done over multiple rounds and the design of new experiments is conditioned

on the measurements from previous experiments.

Consider the following design optimization problems motivated by science and engi-

neering applications:

• Hardware design optimization, where evaluating each design involves performing

a computationally-expensive simulation to emulate the real hardware.

• Material design optimization, where making and evaluating a candidate material

involves performing an expensive physical lab experiment.

• Microbiome design optimization, where we need to perform an expensive physi-

cal experiment to evaluate each design in the form of a subset of microbes, their

relative concentrations, and environmental conditions.

In all of these problems, the design space is very large and each candidate design

is a discrete combinatorial structure (e.g., set, sequence, graph, permutation) or a

hybrid structure (mixture of discrete and continuous design variables). For exam-

ple, each hardware design can be seen as a discrete structure, where design variables

correspond to the locations of processing elements (cores) and locations of the com-

munication links for data transfer between cores. Similarly, each microbiome design

can be seen as a hybrid structure, where discrete design variables correspond to the

2



subset of microbes and continuous design variables correspond to the relative concen-

trations of those microbes and the environmental conditions. Many design optimiza-

tion problems in engineering and scientific domains including the above examples are

instantiations of the following adaptive experimental design problem: optimizing the

design of discrete and hybrid structures guided by expensive experiments, where ex-

pense is measured by the resources consumed by the experiments. These experiments

are often performed in a heuristic manner by the humans without formally reasoning

about the available (computational or physical) resource budget and the usefulness

of potential information that they may provide.

This dissertation explores a new problem space of optimizing discrete and hybrid

spaces via expensive evaluations. This problem space has very limited prior work.

The SMAC algorithm [106], an instantiation of the Bayesian Optimization (BO)

framework [192], is a canonical baseline. The key idea behind the BO framework is

to build a cheap surrogate model (e.g., Gaussian Process) using the real experimental

evaluations and employ it to intelligently select the sequence of experiments using an

acquisition strategy guided by the surrogate model. In spite of the huge successes of

BO [66, 83], current approaches focus primarily on continuous spaces and there is little

principled work on discrete and hybrid spaces. Unlike continuous spaces, discrete

spaces come with many unique challenges which form the key research questions

addressed in this thesis [70]. We describe the challenges in detail below:
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1.1 Key Research Challenges

• Defining an effective surrogate model over combinatorial structures:

The first challenge lies in constructing a surrogate model that can accurately

represent and predict the behavior of objective functions over combinatorial

spaces in small-data setting. This task is considerably more complex than in

continuous spaces because unlike continuous spaces, combinatorial spaces often

lack a natural ordering, making it difficult to define concepts such as smooth-

ness or continuity. This makes it important to consider specialized treatment

of different types of combinatorial structures (sequences, graphs, permutations

etc.). Moreover, in real-world domains, we typically need to deal with high-

dimensional combinatorial spaces which further complicates the modeling chal-

lenge.

• Optimizing acquisition functions over large combinatorial spaces: In

each step of Bayesian optimization, we need to optimize an acquisition/utlity

function to select the most promising next structure to evaluate. First, in order

to define many modern acquisition functions from the continuous BO literature

for combinatorial spaces, we need to address the challenge of sampling from

the surrogate model’s posterior. For example, this is required in parallelizable

approaches such as Thompson sampling [] and information-theoretic acquisition
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functions such as input/output space entropy search []. Second, it is challeng-

ing to search over exponentially large combinatorial spaces since traditional

continuous optimization techniques such as gradient descent are not applicable.

Additionally, these two challenges are related in the sense that there is an

inherent trade-off between complexity of the surrogate model and tractability

of acquisition function optimization.

1.2 Technical Contributions

The main contribution of this dissertation is the development and evaluation of a

series of algorithmic ideas to address the above-mentioned challenges of Bayesian

optimization (BO) over combinatorial spaces to significantly push the frontiers of

adaptive experimental design research area. Specific contributions include:

• Developing new Gaussian Process (GP) based probabilistic models over different

kinds of combinatorial structures:

– High-dimensional fixed size structures [68]: We developed a novel dic-

tionary embeddings based GP model for handling the challenge of high-

dimensional binary/categorical spaces. We theoretically analyze this model

to show that dictionary kernel reduces regret bounds for BO by reducing

the cardinality of the search space. To the best of our knowledge, this

is the first result showing a direct connection between GP modeling of
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combinatorial structures and compressed sensing techniques.

– Hybrid/Mixed structures [63]: We developed a GP surrogate model for

hybrid spaces by designing a novel diffusion kernel via additive GP for-

mulation. The representation power of kernel methods is typically studied

in terms of the notion of universality: whether given sufficient data, the

function class of the kernel can approximate any black-box function de-

fined over hybrid spaces or not. We proved that this hybrid diffusion

kernel satisfies this property of universality by composing a known result

for continuous diffusion kernels with a novel result for discrete diffusion

kernels.

– High-dimensional varying size structures [58]: We developed the LAD-

DER approach that combines kernels over latent space of a deep gener-

ative model (DGM) with expert-designed structured kernels to improve

surrogate models. For example, kernels over morgan fingerprints (capture

different substructures in a molecule while being invariant to atom rela-

beling) are a good example of structured kernels. This approach has the

advantage that it can leverage any advances in both DGMs as well as

structured kernels in a plug-and-play manner.

• Developing tractable and effective approaches for acquisition function optimiza-

tion in specialized and general scenarios:
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– We construct explicit feature maps for diffusion kernels over fixed-size bi-

nary design variables referred to as Mercer features [64]. They are analo-

gous to random fourier features for continuous diffusion kernels and al-

low us to sample functions from Gaussian process posterior using the

dual weight-space representation of GPs. Mercer features allow us to

leverage advanced acquisition functions (e.g., Thompson sampling and

input/output space entropy search) to select experiments in continuous

spaces for discrete spaces. GPs parameterized in terms of mercer features

allow us to study the trade-off between surrogate modeling and acquisi-

tion function optimization for binary (and categorical spaces via binary

encoding). For example, we developed tractable submodular optimization

approach for Thompson sampling acquisition function.

– We developed two algorithms for BO over permutation spaces with vary-

ing trade-offs between complexity of surrogate model and tractability of

acquisition function optimization [67]. We also proved first regret bounds

for the tractable algorithm based on Thompson sampling.

– We designed a general learning-to-search framework referred to as L2S-

DISCO [61] for effectively solving acquisition function optimization prob-

lems involving arbitrarily complex surrogate models and acquisition func-

tions. The key idea is to use machine learning to improve the accuracy of
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search procedures to select structures for evaluation by leveraging search

experience from both past and current BO iteration.

1.3 Outline of the Thesis

The remaining part of the dissertation is organized as follows:

In Chapter 2, we formally describe the overall problem setup and its different

instantiations considered in this thesis. Next, we provide background on the generic

Bayesian optimization (BO) framework and its key components. Finally, we describe

the two key challenges in extending BO for continuous spaces to combinatorial spaces.

In Chapter 3, we address the challenge of defining surrogate models over high-

dimensional fixed-size combinatorial inputs by constructing a novel dictionary embed-

dings based Gaussian Process model. We analyze its theoretical properties showing

that the regret bounds for GP bandits trained on the embeddings is a function of

measure of dictionary’s variability similar to the mutual coherence property which is

widely studied in compressed sensing. Our experiments on diverse real-world bench-

marks from AutoML, satisfiability, pest-control domains demonstrate the effectiveness

of the proposed surrogate model and corresponding BO performance.

In Chapter 4, we tackle the challenge of hybrid input spaces that represent a

generalization of continuous and discrete spaces. We developed a GP surrogate model

for hybrid spaces by designing a diffusion kernel via additive GP formulation. We

theoretically analyze the modeling strength of additive hybrid kernels. We evaluate
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the proposed method on diverse synthetic and real-world benchmarks showing that

it significantly outperforms the state-of-the-art methods.

In Chapter 5, we consider optimization problems over the input space consisting of

all permutations over d objects. We propose and evaluate two algorithms for Bayesian

optimization over permutation spaces that make varying trade-offs between the com-

plexity of statistical model and tractability of search for selecting permutations for

evaluation. Our experiments on synthetic benchmarks and three important real-world

applications from the domain of computer-aided design of integrated circuits (ICs)

demonstrate the effectiveness of both algorithms.

In Chapter 6, we consider the problem space of richer varying sized combinato-

rial structures where we have additional access to a large database of unsupervised

structures from the input space. We develop a Gaussian process model that synergis-

tically combines the strengths of deep generative models and structured kernels. We

demonstrate its effectiveness in BO on two real-world benchmarks of chemical design

and arithmetic expressions optimization.

In Chapter 7, we revisit the problem space of fixed-size combinatorial inputs (con-

cretely binary or categorical spaces). We develop Mercer features which are explicit

feature map for discrete diffusion kernels. We describe how Mercer features allows

efficient sampling from GP posteriors which is a key step in many modern acquisi-

tion function strategies. Furthermore, we develop a efficient and scalable submodular
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optimization formulation of the Thompson Sampling based acquisition function opti-

mization. Experimental results on multiple synthetic and real world benchmarks (e.g.,

biological sequence design tasks) demonstrate the effectiveness of this approach.

In Chapter 8, we focus on the problem of acquisition function optimization over

general combinatorial spaces. We develop a general learning to search framework that

works with any choice of the surrogate model and acquisition function. Experimen-

tal results on multiple benchmarks demonstrate the effective of this learned search

strategy.

In the final Chapter 9, we provide a summary of the thesis’ contributions and

discuss some future directions to expand on this work.
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CHAPTER TWO

PROBLEM SETUP AND BACKGROUND

In this chapter, we formally define the overall problem setting that we address in

this dissertation and provide an overview of the generic Bayesian optimization (BO)

framework along with the key challenges in extending BO to combinatorial spaces.

2.1 Problem Setup

Without loss of generality, let X be an input space. We are given an unknown real-

valued objective function f : X 7→ R, which can evaluate each input x ∈ X to produce

an evaluation y = f(x). Each evaluation f(x) is expensive in terms of the consumed

resources. For example, in hardware design optimization application, x corresponds to

a candidate hardware design with some choices to input variables (e.g., placement of

cores and communication links), and f(x) corresponds to running a computationally-

expensive simulation to mimic the real hardware. Similarly, in nanoporous design

optimization application, x corresponds to a candidate nanoporous material (e.g.,

selection of topology, inorganic nodes, and organic linkers), and f(x) corresponds to

making the material in a physical lab and measuring its adsorption property.

The main goal is to find an input x∗ ∈ X that approximately optimizes f by per-

forming a limited number of function evaluations. In this work, unlike the commonly

studied setting of continuous input spaces (X ⊆ Rd), we focus on the problem settings
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where the input space X consists of combinatorial structures (e.g., fixed-size struc-

tures such as sequences, permutations and varying-size structures such as graphs).

Some example combinatorial spaces that we study in this thesis include:

1. X represents the space of all binary structures {0, 1}d where d is the number

of the variables. For example, feature selection in automated machine learn-

ing (AutoML) can be formulated by a binary search space where the inclu-

sion/exclusion of a given feature can be represented by a binary parameter.

2. X represents the categorical space {0, k}d where d is the number of the variables

and k is the number of candidate values each variable can take. For example,

each candidate input in manycore systems design can be seen as a categorical

sequence where each design variable corresponds to a choice from a fixed set of

processing elements (CPUs, GPUs, TPUs, domain-specific accelerator).

3. X = Sd represents the space of all permutations of a given set of d objects.

Given [1, d] := {1, 2, · · · , d}, indexing the d objects, a permutation is defined as

a bijective mapping π : [1, d] 7→ [1, d]. We refer to the set of all permutations of

d objects by Sd. For example, in the design of integrated circuits (ICs), we need

to find the best placement of a set of functional blocks which requires searching

over the space of permutations of the blocks.

4. X = Xd×Xc represents the space of hybrid structures where x = (xd ∈ Xd, xc ∈
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Xc) ∈ X be represented using m discrete variables and n continuous variables,

where xd and xc stands for the discrete and continuous sub-space of X . For

example, in microbiome analysis, the inclusion/exclusion of a microbial species

is a binary parameter and environmental variables correspond to continuous

parameters making it a hybrid search space.

5. X represents the space of varying sized combinatorial structures (trees, graphs).

For example, in drug design application, each candidate molecule can be repre-

sented as a graph.

2.2 Bayesian Optimization Background

Bayesian Optimization (BO) is an effective framework for solving global opti-

mization problems using black-box evaluations of expensive objective functions. BO

algorithms learn a cheap surrogate model from training data obtained from past func-

tion evaluations. They intelligently select the next input for evaluation by trading-off

exploration (inputs for which the statistical model has high uncertainty) and ex-

ploitation (inputs for which the model has high prediction value) to quickly direct

the search towards optimal inputs. The three key elements of BO framework are:

1) Statistical Model of the true function f(x). Gaussian Process (GP) [220] is

the most commonly used model. It is characterized by a mean function µ : X 7→ R

and a covariance or kernel function κ : X ×X 7→ R. The kernel is an important object
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that characterizes the space of functions represented by GP models. For example,

two popular kernels for continuous input spaces are given below:

• Squared Exponential Kernel (also known as Radial Basis Function (RBF) Ker-

nel):

k(x, x′) = exp(−d(x, x′)2

2l2
)

• Matern 5/2 Kernel

k(x, x′) = (1 +
√
5 · d(x, x′)2 +

5

3
· d(x, x′)2) · exp

(
−
√
5 · d(x, x′)2

)

where d(x, x′) is the euclidean distance between two inputs x and x′ and l is a length-

scale hyper-parameter of the kernel.

2) Acquisition Function (AF) to score the utility of evaluating a candidate

input x ∈ X based on the statistical model. Some popular acquisition functions

in the BO literature include expected improvement (EI), upper confidence bound

(UCB), lower confidence bound (LCB), Thompson sampling (TS), and max-value

entropy search (MES) [216]. For the sake of completeness, we formally define some
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of the acquisition functions:

UCB(x) = µ(x) + β1/2σ(x) (2.1)

TS(x) = f(x) with f(.) ∼ GP (2.2)

EI(x) = σ(x)(γΦ(γ) + ϕ(γ)), γ =
τ − µ(x)

σ(x)
(2.3)

There are also reduction-style acquisition functions for multi-objective BO [24, 3]

building on the above single-objective acquisition functions.

3) Optimization Procedure to select the best scoring candidate input according

to acquisition function AF depending on the statistical model. For continuous input

spaces, first and second order gradient based algorithms like L-BFGS and hierarchical

partitioning algorithms like DIRECT [120] are commonly employed for acquisition

function optimization.

2.3 Key Challenges for Combinatorial Spaces

There are two key challenges in employing Bayesian optimization framework for

combinatorial input spaces. The first challenge is to define an effective surrogate

model over combinatorial structures. The second challenge is, given such a surrogate

model, to search through the combinatorial space to identify the most promising next

structure to evaluate, i.e., acquisition strategy. Each of our proposed approach tackles
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Figure 2.1: Overview of key steps of the Bayesian optimization procedure.

one or both of these challenges for different combinatorial spaces.

2.4 Related Work

There was limited prior work on this problem space before this dissertation. However,

since the starting of this thesis’ work, multiple methods have been proposed in the

literature for solving similar problems. With this context, we describe the related

work in this section. We will divide the related work along the two key challenges

mentioned above: surrogate modeling and acquisition function optimization.

2.4.1 Surrogate Modeling on Combinatorial Structures

Fixed-size structures: First, we focus on the surrogate models that have been

proposed for the low-dimensional setting. These models, however, are typically not
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effective for high-dimensional spaces. BOCS [17] targets binary spaces and employs

a second-order Bayesian linear regression surrogate model, which exhibits poor scal-

ing in the input dimension and may not support applications where the underlying

black-box function requires a more complex model. SMAC [106] employs random

forest as the surrogate model which naturally handles both discrete and continuous

inputs. However, random forest are prone to poor uncertainty estimation especially in

small-data setting [130]. Prior work also considers different instantiations of Gaussian

Process (GP) models which provide better uncertainty estimation. COMBO [169] em-

ploys GPs with discrete diffusion kernels over a combinatorial graph representation of

the input space. Garrido-Merchán and Hernández-Lobato [89] round the input vari-

ables before passing it to a GP with a canonical kernel. Kim et al. [131] proposed an

approach for combinatorial spaces based on continuous embeddings. Papalexopoulos

et al. [173] employ a feed-forward neural network as surrogate model.

As opposed to continuous spaces which has seen a considerably large amount

of work [79, 218, 142, 174, 163, 78, 88, 124, 84], there is still limited work on BO

over fixed-size high-dimensional combinatorial inputs. CASMOPOLITAN [215], uses

adaptive trust regions from continuous spaces [79] by replacing the standard Euclidean

distance with Hamming distance for discrete (sub)spaces. Bounce [175] is a recent

approach that uses nested-embeddings along with trust region search to scale BO to

high-dimensional combinatorial sequences.
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Hybrid structures: There is also related work on approaches for constructing sur-

rogate models over hybrid spaces with both discrete and continuous variables. Tree-

Parzen Estimators (TPEs) [29] are applicable to hybrid spaces and consider density

estimation in the input space which is potentially challenging in high-dimensional

settings. CoCaBO [184] employs a sum kernel (summing a Hamming kernel over dis-

crete subspace and a RBF kernel over continuous subspace) to learn GP models and

showed good results over SMAC and TPE. Unfortunately, the sum kernel captures

limited interactions between discrete and continuous variables. Oh et al. [170] extends

COMBO’s graph representation and leverages distances on continuous variables to

modulate the graph Fourier spectrum in order to couple the two types of sub-spaces.

Varying-size structures: Moss et al. [157] propose using Gaussian processes with

string kernels [145] for BO that are naturally applicable to varying sized sequences.

Most approaches for richer varying-sized structures (for e.g. graph inputs) rely on

using deep generative models to create a latent space and apply continuous BO meth-

ods (often referred to as “latent space BO”): [91, 210, 77, 122, 165, 153]. One key

assumption in all these methods is availability of a large dataset of unsupervised

structures which is required to learn the deep generative model.

2.4.2 Acquisition Function Optimization (AFO) over Combinatorial Structures

As described earlier, optimizing the acquisition function (sometimes referred as

the inner-loop problem) over combinatorial inputs is itself a hard challenge. A popular
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approach for fixed-size discrete spaces is greedy-hill climbing local search. The base

local search procedure is usually augmented with a combination of multiple random

restarts or simulated annealing [169, 49]. This can be naturally extended to hybrid

search spaces by performing alternating search over continuous and discrete subspaces

[170, 215]. BOCS [16] linear model allow semi-definite formulation of the AFO prob-

lem which can be handled by specialized semi-definite programming (SDP) solvers.

Papalexopoulos et al. [173] develop a mixed integer linear programming formulation

exploiting piecewise-linear activation functions like RELU in the neural network sur-

rogates. Most latent space BO approaches can naturally use gradient-based methods

in the continuous embedding space of the deep generative model.
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CHAPTER THREE

DICTIONARY-BASED SURROGATE MODEL FOR

HIGH-DIMENSIONAL COMBINATORIAL SPACES

In this chapter, we consider the problem of optimizing expensive black-box func-

tions over fixed-size high-dimensional combinatorial spaces which arises in many

science, engineering, and ML applications. We propose a novel surrogate modeling

approach for efficiently handling a large number of binary and categorical parame-

ters. The key idea is to select a number of discrete structures from the input space

(the dictionary) and use them to define an ordinal embedding for high-dimensional

combinatorial structures. This allows us to use existing Gaussian process models

for continuous spaces. We develop a principled approach based on binary wavelets

to construct dictionaries for binary spaces, and propose a randomized construction

method that generalizes to categorical spaces. We provide theoretical justification to

support the effectiveness of the dictionary-based embeddings. Our experiments on di-

verse real-world benchmarks demonstrate the effectiveness of our proposed surrogate

modeling approach over state-of-the-art BO methods.

3.1 Problem Setup

We are given a high-dimensional combinatorial space X , i.e., the number of dis-

crete variables d is large. We assume we are optimizing a black-box objective function
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f : X 7→ R, which we can evaluate on each structure x ∈ X . For example, in feature

selection for Auto ML tasks, x is a binary structure corresponding to a subset of fea-

tures and f(x) is the performance of a trained ML model using the selected features.

Our goal is to find a structure x ∈ X that approximately optimizes f given a small

number of function evaluations.

3.2 Dictionary Embeddings

In this section, we introduce the idea of a Hamming embedding via dictionaries

(HED), a novel embedding for binary and categorical inputs that embeds the inputs

into an ordinal feature space. In particular, we employ a GP over the embedding

ϕA(x) based on a dictionary A containing m discrete d-dimensional elements from

the input space X . The embedding ϕA(x) of size m is obtained by computing the

Hamming distance h between x ∈ X and each element of the dictionary ai ∈ A. That

is,

[ϕA(x)]i = h(ai,x).

HED has several advantages. First, it allows us to transform the challenging

task of building models over high-dimensional discrete spaces into an application of

GPs to the well-understood continuous space settings. This subsequently allows us

to perform inference of lengthscales associated with the embedding representations,

in contrast to the original categorical space where one lengthscale models the effect

21



of a single category change. Further, the efficient inference of lengthscales due to

the embedding enables Automatic Relevance Determination (ARD) to prune away

redundant dimensions effectively, which we prove reduces the cardinality of the input

space. We show theoretically that this improves the sample-efficiency of GP ban-

dits (UCB), commonly used for BO, and produces state-of-the-art results for BO on

high-dimensional combinatorial spaces. Further, while the core kernel is for binary

spaces, it can easily be extended to hybrid spaces with both continuous and discrete

parameters by using a product kernel.
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Figure 3.1: Mean predictions and associated 95% predictive intervals on a MaxSAT
problem with 60 binary variables (see details in Sec. 3.6), comparing
näıve random (left) and binary wavelet (right) dictionaries, using 50
training points and predicting on 50 test points.
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3.3 Dictionary Construction Procedure

The effectiveness of HED depends on the dictionary construction. A näıve ap-

proach is to simply pick elements from the binary space uniformly at random. How-

ever, this näıve approach turns out to exhibit poor predictive or BO performance on

the test problems considered in this work. For example, Fig. 3.1a illustrates the poor

predictive performance of a GP using a dictionary kernel with a uniformly random

binary dictionary on a MaxSAT test problem with 60 binary variables.

Another idea is to use deterministic dictionary construction methods, such as

multi-resolution wavelets [147], effective and well-known tools for studying real-valued

signals at different scales by applying a set of orthogonal transforms to the data. In

the context of binary spaces, binary wavelet transforms [205] are highly related to

the well-known orthogonal Hadamard matrices, and are applied in signal processing,

spectroscopy, and cryptography [98, 103]. In contrast to the näıve random dictionary,

sub-sampled binary wavelet dictionaries lead to great predictive performance on the

same MaxSAT problem, as shown in Fig. 3.1b.

3.3.1 Binary Wavelet Dictionaries

Now, we describe the randomized dictionary construction approach based on Bi-

nary wavelet transform for binary spaces X={0, 1}d. At a high-level, this approach

has two key steps. First, we employ a deterministic recursive procedure to construct
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a pool of basis vectors over binary structures. Second, we randomly select a subset

of k diverse vectors as our dictionary A. We explain the details of these two steps

below.

Recursive algorithm for binary wavelet design. The effectiveness of surrogate

model critically depends on the dictionary employed to embed the discrete inputs. We

define our dictionary matrix A[k×d] as a subsampled (k-sized) set of basis vectors over

the binary space {0, 1}d which is characterized by the constituent vectors varying over

a range of sequencies. The notion of sequency is defined as the number of changes from

1 to 0 and vice versa (analogous to the notion of frequency in Fourier transforms).

Multi-resolution wavelets [147] are effective well-known techniques for studying

real-valued signals at different scales by applying a set of orthogonal transforms to

the data. Specifically, binary wavelet transforms [205] allow us to study data defined

over binary spaces (concretely {0, 1}d with mod 2 arithmetic) at different scales.

Hence, they are a natural choice for constructing our pool of basis vectors.

We construct the randomized dictionary A by randomly sampling from a deter-

ministic binary wavelet transform matrix Bd generated by a recursive procedure as

described in [205] (where such matrices were used for image compression). The key

idea behind the procedure is to recursively generate binary matrices whose vectors

are ordered in terms of increasing sequency. Algorithm 1 provides the pseudo-code

of this recursive method.
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Algorithm 1 Binary Wavelet (n) Transform

requires: input dimension n

1: if n == 2: return

[
1 1
1 0

]

2: if n == 4: return


1 1 1 1
1 0 0 0
1 0 1 1
1 0 1 0


3: Bn−4= Binary Wavelet (n-4)
4: Compute upper left n− 2× n− 2 matrix Γ

Γ =

[
1[2,2] 1[2,n−4]

1[n−4,2] ¬Bn−4

]
5: Set lower left block ∆T ←

[
1 0 1 · · ·
1 0 1 · · ·

]
6: Set lower right block Λ←

[
1 1
1 0

]
7: return Bn =

[
Γ ∆
∆T Λ

]

Given Bd, the dictionary A is constructed by subsampling row vectors from Bd

i.e. A = PBd where P randomly samples m vectors uniformly. The random sampling

using P picks vectors that are spread over a range of sequencies in contrast to the

alternative choice of picking top-m rows from Bd which restricts the chosen vectors

to limited range of sequencies. Our experiments demonstrate the effectiveness of

randomized dictionaries over the top-m alternative.

While binary wavelets constitute powerful dictionary designs for predictive and

optimization problems in binary search spaces (for associated optimization results,

see Fig. 3.4), their construction for non powers-of-two is non-trivial, and even their

existence for arbitrary dimensions is an open problem [95, 19, 69]. For this reason,
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we sub-sample the columns of the power-of-two dimensional binary wavelets for our

experiments in non-power-of-two dimensions.

3.3.2 Diverse Random Dictionaries

To alleviate the difficulties around the general construction of binary wavelets, and

to generalize our method to categorical spaces, we propose a randomized procedure

that produces dictionary rows with a large range of sparsity levels. We refer to this

randomized procedure as “diverse random.”

Algorithm 2 provides pseudo-code for constructing diverse random dictionaries

defined over binary input spaces {0, 1}d. The key principle of this construction pro-

cedure is to diversify the dictionary rows by generating binary vectors determined by

different bias parameters (θ) of the Bernoulli distribution, unlike the näıve random

where θ is always 1/2. Therefore, the rows of the näıve random dictionaries tend

to have close to d/2 non-zeros as d grows, whereas the diverse random dictionaries

exhibit a large range of sparsity levels due to varying θ. This algorithm can easily be

generalized to inputs with categorical variables of different sizes, see Algorithm 3 for

details. To summarize, the diverse random dictionaries can be constructed for arbi-

trary dimensions, extends naturally to categorical inputs, and as we will show later

exhibits strong optimization performance on a wide range of benchmark problems.
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Algorithm 2 Dictionary design for binary input space {0, 1}d with diversely sparse
rows
requires: dictionary size m

1: Dictionary A← empty
2: for i=1, 2, . . . ,m do
3: ai ← empty
4: Sample Bernoulli parameter θ ∼ Uniform(0, 1)
5: for j=1, 2, . . . , d do
6: Sample binary number a ∼ Bernoulli(θ)
7: ai ← ai ∪ a
8: end for
9: Add ai to dictionary: A← A ∪ ai

10: end for
11: return the dictionary A of size m× d

Algorithm 3 Dictionary design for discrete spaces with categorical variables via
diverse parameters

Input: candidate sets C(v1), . . . , C(vd), dictionary size m Output: the dictionary
A of size m× d

1: Dictionary A← empty
2: τmax ← maxj τj
3: for i=1, 2, . . . ,m do
4: ai ← empty
5: Sample θ ∼ ∆τmax

6: for j=1, 2, . . . , d do
7: θj ← sample (w/o repl.) τj elements from θ
8: θj ←− θj/∥θj∥1 (Normalize to yield distribution)
9: a← sample from C(vj) with probabilities θj

10: ai ← ai ∪ a
11: end for
12: Add ai to dictionary: A← A ∪ ai

13: end for

Representation of hybrid input spaces. We have focused on a purely combi-

natorial input spaces X , but can naturally extend our approach to hybrid search

spaces consisting of both discrete and continuous parameters. In this setting, we aim
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to model an input space Xd × Xc where each x in this space is represented by x =

(xd ∈ Xd, xc ∈ Xc) where xd and xc stands for the discrete and continuous parameters.

For notational convenience, we will keep referring to the hybrid space Xd ×Xc as X .

To extend our approach to this hybrid inputs setting, we use a product kernel lever-

aging the HED embedding for discrete parameters and a standard, e.g., Matérn-5/2

kernel with ARD for the continuous parameters.

3.4 BODi: Bayesian Optimization with Dictionary Embeddings

Our proposed BODi method is a straightforward instantiation of the generic BO

framework. We use a GP with a standard Matérn-5/2 kernel with ARD on the

HED embedding as the surrogate model, and we adopt the commonly used Expected

Improvement (EI) acquisition function for single-objective problems. In our setting,

EI takes as inputs the surrogate model M and the embedding ϕA(x) to score the

utility of evaluating the structure x ∈ X . In order to optimize the acquisition function

over the discrete space X , we employ local search from randomly generated initial

conditions.

Algorithm 4 shows the pseudo-code of our method. We use a small random initial

training set of elements in X and their function evaluations to construct an initial

surrogate model M(ϕA(x)). We generate a new dictionary A in each BO iteration

using a randomized procedure described in Alg. 2, and refit the GP model using the

corresponding embedding ϕA(x). For each BO iteration j, we select the next structure
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xj by optimizing the acquisition function. We add xj and the corresponding function

value f(xj) to the training data Dj and train a new surrogate modelM(ϕA(x)) using

Dj. We repeat these steps until the query budget is exhausted and return the best

input xbest ∈ X .

Algorithm 4 BODi (m) Algorithm

requires: black-box objective f , discrete space X with dimensionality d, dictionary
size m

1: D0 ← small random initial training data
2: for j = 1, 2, . . . do
3: Construct dictionary A of size m
4: Compute low-dimensional embedding ϕA(x) for

5: each input structure x ∈ Dj using dictionary A
6: Fit a GPM on the embedded space ϕA(x)
7: Maximize the acquisition function in the discrete

space X : xj = argmaxx∈X α(M(ϕA(x)))
8: Evaluate the selected structure xj to get f(xj)
9: Aggregate training data: Dj ← Dj−1 ∪ {xj, f(xj)}
10: end for
11: return xbest = argmin{f(x1), f(x2) · · · }

To optimize the acquisition function over hybrid search spaces, we perform al-

ternating search over continuous and discrete subspaces, a common approach in BO

over hybrid spaces [170, 65, 215]. We use local search for discrete parameters and

gradient-based optimization for continuous parameters. While acquisition function

optimization over discrete spaces is a challenging problem, local search with restarts

has been shown to be effective in practice [169].
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3.5 Theoretical Analysis of BODi

In the following, we derive a surprising relationship for the Hamming embedding

with an affine transformation, explaining why canonical linear embeddings (e.g. Gaus-

sian) do not perform well. We also provide a regret bound for BO with the dictionary

kernel that crucially relies on a reduction in the cardinality – not the dimensionality

– of the embedded search space. Our results are stated for binary search spaces,

but can be readily generalized to categorical variables using a binary encoding, e.g.,

one-hot encoding, or more efficiently with ⌈log2(c)⌉ bits for c categories.

Our first proposition shows that the Hamming embedding of vectors in {0, 1}d is

equivalent to an affine transformation of the {±1}-encoding of the binary vector.

Proposition 1 (Affine Representation). Let A ∈ {0, 1}m×d, x ∈ {0, 1}d. Then

2ϕA(x) = d1m − Āx̄, (3.1)

where āij = 2aij − 1 and x̄i = 2xi − 1 ∈ {−1, 1}.

Proof. Our first proposition shows that the Hamming embedding of vectors in {0, 1}d

is equivalent to an affine transformation of the {−1, 1}-encoding of the original binary

vector.
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Proposition 1 (Affine Representation). Let A ∈ {0, 1}n×d, x ∈ {0, 1}d. Then

2ϕA(x) = d1n − Āx̄, (3.2)

where Āij = 2Aij − 1 and x̄i = 2xi − 1 ∈ {−1, 1}.

Proof. Let ai be the ith column in A, and xi the ith entry of x. Then

ϕA(x) =
d∑
i

(¬aixi + ai¬xi)

=
d∑
i

([1n − ai]xi + ai[1− xi])

=
d∑
i

(1nxi − 2aixi + ai)

= 1n(1
⊤
d x)−A(2x− 1)

= [(1n1
⊤
d )(2x− 1) + d1n]/2−A(2x− 1)

= [d1n − (2A− 1n,d)(2x− 1d)]/2

= (d1n − Āx̄)/2.

Multiplying both sides by two finishes the proof.
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Plugging the affine representation into the embedded distance formula yields

2∥ϕA(x)− ϕA(x
′)∥ = ∥(d1n − Āx̄)− (d1n − Āx̄′)∥

= ∥Āx̄− Āx̄′∥

= ∥Ār̄∥,

where r̄ = x̄− x̄′. That is, the distance computation only relies on a linear projection

of the difference vector r̄ of the {−1, 1}-encoding of the centered input vectors. As

a further consequence, if the wavelet dictionary is chosen, the embedding is a sub-

sampled Hadamard transform up to a constant shift, which we could implement by

means of the Fast Hadamard Transform in d log d time.

Plugging Eq. (3.1) into the embedded distance formula yields

2∥ϕA(x)− ϕA(x
′)∥2 = ∥Ār̄∥2,

where r̄ = x̄−x̄′. That is, the distance computation only relies on a linear projection of

the difference vector r̄ of the {±1}-encoding of the binary input vectors. Furthermore,

the embedding associated with the wavelet dictionary described is thus equivalent up

to a constant shift to a sub-sampled Hadamard transform, a type of Fourier transform

on Boolean fields.

Proposition 1 proves the equivalence of the dictionary-based kernel to a canonical
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kernel (e.g. Matérn) evaluated on linearly projected input data. Given the significant

prior work on BO on subspaces [218, 142] and on properties of linear projections [139],

one might assume that canonical linear embedding designs like Gaussian random ma-

trices will perform well in our setting. However, this is not the case, as we demonstrate

in the empirical evaluation.

To understand why, first note that BODi is effectively carrying out the optimiza-

tion in the transformed search space

SA =
{
ϕA(x) | x ∈ {0, 1}d

}
.

While linear embeddings generally reduce the dimensionality of the search space, they

do not necessarily lead to a reduction in the cardinality |SA|, a key quantity in regret

bounds for BO in finite search spaces. Indeed, while Gaussian random projections

satisfy many desirable properties, including approximate distance preservation and

dimensionality reduction, our next result shows that even a one-dimensional Gaussian

random projection preserves the full cardinality of the original search space almost

surely.

Proposition 2. Define Sa = {a⊤x | x ∈ {±1}d}, and let a ∼ N (0, Id). Then

|Sa| = 2d almost surely.

Proof. Given x,x′ ∈ {−1, 1}d, suppose x ̸= x′ and a⊤x = a⊤x′. Therefore, a⊤(x −
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x′) = 0. Since x − x′ ̸= 0, this can only hold if a ⊥ (x − x′). But {a | a ⊥ (x −

x′)} is (d− 1)-dimensional, and therefore a nullset under the Gaussian measure in d

dimensions [186]. Therefore, a⊤(x−x′) ̸= 0 almost surely. Since the set {−1, 1}d has

finite cardinality 2d, and by the subaddativity of any probability measure µ,

µ

 ⋃
x,x′∈{−1,1}d

{a | a ⊥ (x− x′) = 0}

 ≤ ∑
x,x′∈{−1,1}d

µ ({a | a ⊥ (x− x′) = 0}) = 0.

Thus, all distinct x ∈ {−1, 1}d map to distinct values a⊤x almost surely, so |Sa| =

|{−1, 1}|d = 2d.

In contrast, our next result presents a bound on the cardinality of SA that depends

on a measure of the variability µA of the dictionary rows and grows only polynomially

with d.

Proposition 3 (Embedding Cardinality). Let A ∈ {0, 1}m×d. Then the cardinality

of the embedded search space SA can be bounded above by

|SA| ≤ [(µA + 1)(d+ 1− µA)]
⌊m/2⌋ (d+ 1)m mod 2

where µA = maxi,j max(h(ai, aj), h(¬ai, aj)), and h is the Hamming distance.

Proof. First, we consider one anchor point. Let d ∈ N, and a ∈ Bd. Then for any
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x ∈ Bd, ϕ(a,x) ∈ N and

0 ≤ ϕa(x) = h(a,x) =
∑
i

δ(ai, xi) ≤ d,

so ϕa(x) ∈ [d] and |S| = d + 1. Näıvely generalizing this to n dimensions would

yield |S| ≤ (d + 1)n. However, the true cardinality is much lower, because having

certain elements in common with one anchor point will restrict the corresponding

dimensions to be the same with another anchor point. The next paragraph will make

this intuition precise.

Next, we consider two anchor points. Let d ∈ N, and a1, a2 ∈ Bd. Then for any

x ∈ Bd, Suppose A = [a1, a2], and let

s = {i ∈ [d] | [a1]i = [a2]i}

be the set of indices for which the anchors have take the same values, and ¬s = [d]\s,
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|s| = k. Then we can express the embedding as

ϕA(x) = ϕAs
(xs) + ϕA¬s

(x¬s)

= [h(a1,s,xs), h(a2,s,xs)] + [h(a1,¬s,x¬s), h(a2,¬s,x¬s)]

= [h(a1,s,xs), h(a1,s,xs)] + [h(a1,¬s,x¬s), h(¬a1,¬s,x¬s)]

= [xs, xs] + [h(a1,¬s,x¬s), (d− h(a1,¬s,x¬s))]

= [xs, xs] + [x¬s, (d− x¬s)],

where xs = h(a1,s,xs). Now, ns = h(as,xs) ∈ [k] and n¬s ∈ [d−k]. The cardinality of

the embedding space is exactly (k+1)(d+1− k), because a subset of d− k variables

always take the same values in both dimensions, and the remaining k move linearly

independently to the first. Differentiating the cardinality with respect to k:

d

dk
(k + 1)(d+ 1− k) = d− 2k ≤ 0 for ⌈d/2⌉ ≤ k ≤ d,

we see that the cardinality is an even symmetric function around k = ⌈d/2⌉, where

it achieves its maximum. This inspires the definition of the coherence-like quan-

tity µA, whose value is monotonically related to the cardinality equation above,

and satisfies ⌈d/2⌉ ≤ µA ≤ d. Further, note that for two anchor points, µA =

max(h(¬a1, a2), h(a1, a2)) = max(k, d− k). For m row, µA is an upper bound on any

pairwise similarity between all rows and their negations. Therefore, we can apply the

36



bound above to ⌊m/2⌋ pairs and have at most (d+1) more values from the remaining

dimension if m is odd.

The affine representation of Prop. 1 implies a strong similarity of µA to the co-

herence of the dictionary rows:

2µA = d+max
i,j

∣∣ā⊤
i āj

∣∣ .
The mutual coherence of dictionary columns is a central quantity in the theory of

compressed sensing [211]. Further, µA provides a theoretical motivation for the dic-

tionary designs. Indeed, the binary wavelet dictionary reaches the lowest possible

coherence of d/2 in power-of-two dimensions and leads to great performance on a

variety of benchmarks (see Fig. 3.4). Intuitively, we want to reduce the cardinality

of the search space enough to accelerate optimization, but not so much that it fails

to be a useful inductive bias. Note that d/2 ≤ µA ≤ d and the bound attains its

maximum for µA = d/2. For example, having duplicate elements in the dictionary

would imply µA = d, and lead to a much larger drop in the cardinality for the same

m than for the binary wavelet dictionary.

We now prepare to apply the bound of Prop. 3 in conjunction with the seminal

result of [199] to provide an improved regret bound for BODi. Recall that the regret at

iteration t is defined by rt = f(x∗)−f(xt), where x
∗ is an optimal point and xt is the
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point chosen in the tth iteration. The cumulative regret is RT =
∑T

t=1 f(x
∗)− f(xt)

and is a key quantity in the theoretical study of BO algorithms. Many BO methods

are no-regret (i.e. limT→∞ RT/T = 0), though the rate with which RT approaches

zero varies significantly.

[199] prove a regret bound that is sub-linear in T for GP-based optimization

with the upper confidence bound (UCB) acquisition function argmaxx µt−1(x) +

√
βtσt−1(x), where µt (resp. σ2

t ) are the predictive mean (resp. variance) of the

GP after t iterations. The bound mainly depends on two quantities: (1) The infor-

mation gain after T iterations γT = log |I + σ−2KT |, where KT is the kernel matrix

evaluated on the inputs {xt}Tt=1 that were chosen in the first T iterations and σ is the

standard deviation of the observations noise. (2) The cardinality of the search space

|S|, which we bound in Prop. 3 for BODi. Notably, γT depends on the kernel function

and for the Matérn-ν kernel in our experiments, γT = O(T d(d+1)/(2ν+d(d+1)) log T ). In

the following, we use O∗ to refer to O with log factors suppressed.

Theorem 4. Let A have m rows, δ ∈ (0, 1), and βt = 2 log(|SA|t2π2/6δ). Then

the cumulative regret associated with running UCB for a sample f of a zero-mean

GP with kernel function kBODi(x,x
′) = kbase(ϕA(x),ϕA(x

′)), is upper-bounded by

O∗(
√
TγTm) with probability 1 − δ, where γT is the maximum information gain of

kbase.

Theorem 4 exhibits a reduced dimensionality-dependent regret scaling ofO∗(
√
m),
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compared to O∗(
√
d) for non-embedded binary inputs, as long as m is not too large.

We stress that this is due to the compressed cardinality of the search space, not

the reduced dimensionality of the embedding. However, it is also important to note

that not just the cardinality matters for optimization performance, since there are

two main objectives that are usually at odds: (1) finding a model that is expressive

enough and (2) reducing the complexity of fitting and optimizing this model. Simply

reducing the cardinality of the search space will make it easier to fit the model, but

potentially less likely to accurately model the underlying black-box objective function.

Starting with a large dictionary allows the model to choose from a large number

of elements and adaptively prune redundant dimensions via ARD. In fact, our ex-

periments confirm that larger embedding dimensions tend to improve performance

and that ARD effectively prunes away the majority of embedding dimensions (see

Sec. 3.6.2). The fact that the embedding values are ordinal, rather than binary,

likely aids the inference of appropriate length scales. This results in the search space

cardinality reduction shown by Prop. 3.

3.6 Experiments

We evaluate BODi on wide range of challenging optimization problems for combi-

natorial and hybrid search spaces. We compare against several competitive baselines

including CASMOPOLITAN, COMBO, CoCaBO, SMAC, and random search.
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Experimental Setup. We use expected improvement as the acquisition function

for all experiments. However, note that our approach is agnostic to this choice and any

other acquisition function can be employed, which makes it easy to extend BODi to,

e.g., multi-objective, multi-fidelity, and constrained settings. We employ a Matérn-

5/2 kernel with ARD for both discrete and continuous variables. When considering

combinatorial search spaces, we optimize the acquisition function using hill-climbing

local search, similarly to the approach used by CASMOPOLITAN [215]. We follow

Alg. 2 and m = 128 and the diverse random approach to construct dictionaries for

all experiments. The choice m = 128 is investigated in an ablation study in Fig. 3.3c.

Our code is built on top of the popular GPyTorch [87] and BoTorch [15] libraries.

We use the open-source implementations for all the baselines: CASMOPOLITAN 1,

COMBO 2, CoCaBO 3, and SMAC 4.

1
https://github.com/xingchenwan/Casmopolitan

2
https://github.com/QUVA-Lab/COMBO

3
https://github.com/rubinxin/CoCaBO_code

4
https://github.com/automl/SMAC3
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(a) LABS (50 binary parameters)
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(b) MaxSAT (60 binary parameters)
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(c) Pest Control (25 categorical
parameters with 5 possible values)

Figure 3.2: We compare BODi to CASMOPOLITAN, COMBO, SMAC, and ran-
dom search on three high-dimensional combinatorial test problems.
We find that BODi consistently performs the best followed by CAS-
MOPOLITAN and COMBO.

41



3.6.1 Combinatorial Test Problems

LABS. The goal in the Low Auto-correlation Binary Sequences (LABS) problem is

to find a binary sequence {1,−1} of length n that maximizes the Merit factor (MF):

max
x∈{1,−1}n

MF(x) =
n2

E(x)
,

E(x) =
n−1∑
k=1

(
n−k∑
i=1

xixi+k

)2

This problem has diverse applications in multiple fields [30, 172], including commu-

nications where it is used in high-precision interplanetary radar measurements of

space-time curvature [193]. We evaluate all methods on the 50-dimensional version of

this problem. Fig. 3.2a plots the negative MF and shows that BODi finds significantly

better solutions than the baselines. While COMBO and CASMOPOLITAN perform

worse than BODi, they find better solutions than SMAC. Random search performs

quite poorly, indicating the importance of employing model-guided search techniques

for challenging problems (the combinatorial space for LABS has 250 ≈ 1.2×1015 con-

figurations). Note that Packebusch and Mertens [172] published the optimizer xopt

of the 50-dimensional LABS problem with MF(xopt) = 8.170, which was computed

with a branch-and-bound algorithm at exponential computational cost. We empha-

size that our results here are not meant to advocate for the solution of this particular

LABS problem using BO, but to serve as a comparison of the BO algorithms, which
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are designed to be sample efficient, on a challenging combinatorial optimization task.

Weighted maximum satisfiability. The goal of this problem is to find a 60-

dimensional binary vector that maximizes the combined weights of satisfied clauses.

We use the benchmark problem frb-frb10-6-4.wcnf5 of the Maximum Satisfiability

Competition 20186, similar to Oh et al. [169] and Wan et al. [215]. Satisfiability

problems are ubiquitous and frequently arise in many fundamental areas of computer

science [32]. Fig. 3.2b shows that BODi is quickly able to find a close-to-optimal

solutions even though this combinatorial search space has as many as 260 ≈ 1.2×1018

possible configurations. The strong performance of BODi on this problem is due to

the superior model performance of the GP trained on the HED, see Sec. 3.6.2.

Pest control. This problem concerns the control of pest spread in a chain of 25

stations where a categorical choice of 5 possible options can be made at each station

to use a pesticide differing in terms of their cost and effectiveness. This problem is

challenging due to the 525 ≈ 3.0×1017 total number of configurations. From Fig. 3.2c

we observe that BODi quickly converges to a solution with objective value around

≈ 12 and substantially outperforms the other baselines on this problem.

5
https://maxsat-evaluations.github.io/2018/index.html

6
http://sat2018.azurewebsites.net/competitions/
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(a) Mixed Ackley (50 binary parameters,
3 continuous parameters)
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(b) SVM (50 binary parameters,
3 continuous parameters)

0 25 50 75 100 125 150 175 200
Number of iterations

3.5

3.0

2.5

2.0

1.5

Be
st

 o
bj

ec
tiv

e 
va

lu
e

8 anchor points
16 anchor points
32 anchor points
64 anchor points
128 anchor points
256 anchor points

(c) LABS ablation (50 binary parame-
ters)

Figure 3.3: (Left, Middle) We compare BODi to CASMOPOLITAN, CoCaBO,
SMAC, and random search and two high-dimensional problems with
both discrete and continuous parameters. BODi converges faster than
CASMOPOLITAN on the Ackley problem and performs better on the
SVM problem. (Right) We study the sensitivity of BODi to the size of
the dictionary (m) and observe consistent performance as long as we do
not use dictionaries with too few elements.

3.6.2 Model Performance

To validate that a GP using the HED provides accurate and well-calibrated esti-

mates relative to categorical overlap kernels (used in CASMOPOLITAN, [215]), and

the diffusion kernel (used in COMBO, [169]), we examine the predictive performance
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of these different kernels on a 60-dimensional MaxSAT problem. We generate 50

training points and 50 test points and compare the test predictions of the dictionary-

based kernel with the GP relative to the overlap kernel and diffusion kernel. The

mean predictions on the test set with associated 95% predictive intervals are shown

in Fig. 3.5.

The HED with diverse random dictionary elements gives rise to an accurate model

of the unknown black-box function, while overlap and diffusion kernels fail to produce

accurate test predictions. In addition, we also observe that HED with a Gaussian

random dictionary – computed via the affine representation of Prop. 1 – performs

poorly. Finally, even though we use dictionaries with m = 128 elements in Fig. 3.5,

it turns out that only 4 of them have a lengthscale below 10 in the fitted GP model.

This shows that ARD is able to effectively prune away the majority of dictionary

elements and only use a small number of them, which leads to a tighter regret bound

according to Thm. 4.

3.6.3 Hybrid Test Problems

Mixed Ackley. We consider a hybrid version of the standard Ackley problem

from [215] with 50 binary and 3 continuous variables. We see that BODi makes

quick progress and approaches the global optimal value of 0 (Fig. 3.3a). Except for

CASMOPOLITAN, all other baselines perform poorly on this problem. Notably, the

sub-sampled binary wavelet dictionary also performs particularly well on this prob-
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(b) MaxSAT (60 binary parameters)
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(c) Ackley (50 binary
parameters, 3 continuous parameters)

0 25 50 75 100 125 150 175 200
Number of iterations

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Be
st

 te
st

 R
M

SE

BODi (Diverse Random)
BODi (Binary Wavelet 8)
BODi (Binary Wavelet 16)
BODi (Binary Wavelet 32)
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Figure 3.4: Results comparing the two dictionary construction choices for BODi
(i.e., diverse random and binary wavelet). Overall, we find that binary
wavelet design performs reasonably well but diverse random is a more
robust choice considering all the benchmarks. Moreover, the diverse
random choice can also be employed for categorical parameters unlike
the binary wavelet construction which is limited to binary parameters.

lem, see Fig. 3.4c.

Feature selection for SVM training. In this problem, we consider joint feature

selection and hyperparameter optimization for training a support vector machine

(SVM) model on the UCI slice dataset [75]. We optimize over the inclusion/exclusion
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of 50 features, and additionally tune the C, ϵ, and γ hyperparameters of the SVM.

The goal is to find the optimal subset of features and values of the continuous hy-

perparameters in order to minimize the RMSE on a held-out test set. Fig. 3.3b

shows that BODi performs slightly better than CASMOPOLITAN on this real-world

problem.

3.6.4 Ablation Study

We perform an ablation study on the sensitivity of BODi to the number of elements

of the dictionary (dictionary size). We consider the 50-dimensional LABS problem.

The results in Fig. 3.3c show that dictionaries with m = 128 or m = 256 elements

perform the best (albeit differences in performance are relatively small, at least for

larger m). We observe that using a small dictionary (with m = 16 or m = 32

elements) results in inferior performance. On the other hand, using a large number of

elements increases the runtime of our method, which is why we opted for the choice

of m = 128 for all experiments.

3.7 Summary

We introduced a novel dictionary kernel for GP models, which is suitable for high-

dimensional combinatorial search spaces (and can be straightforwardly extended to

hybrid search spaces). While we focused on using our dictionary-based modeling

approach for BO, the implications of our contributions go far beyond BO alone and
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Figure 3.5: Mean predictions and associated 95% predictive intervals on then
MaxSAT problem for BODi with diverse random dictionary (top left),
BODi with a Gaussian random dictionary via the affine representation
of Eq. (3.1) (top right), Casmopolitan (bottom left), and COMBO (bot-
tom right). We use 50 training points and predict on 50 test points.
BODi with the diverse random dictionary performs much better than
with the Gaussian random embedding, validating our theoretical results
in Sec. 3.5. Our kernel also outperforms the isotropic kernel used by
CASMOPOLITAN and the diffusion kernel used by COMBO.

are relevant for kernel-based methods more generally. In the context of BO, our

dictionary kernel is agnostic to the choice of acquisition function and can be easily

applied to settings such as multi-objective and multi-fidelity optimization, and can

also be combined with ideas such as trust region optimization. BODi showed strong

performance on a diverse set of problems and outperformed several strong baselines

such as CASMOPOLITAN and COMBO.

Our work has a few limitations and raises a number of interesting questions that
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warrant further exploration. While BODi is agnostic to the choice of acquisition

function, we only evaluated its performance on single-objective problems. In addition,

rather than randomly generating a diverse set of dictionary elements, we may be

able to further improve the dictionary-based GP model by optimizing the dictionary

as part of the model fitting procedure. This may be particularly useful in cases

where we have access to historical data that can help us discover suitable dictionaries.

Alternatively, there may be ways of generating the dictionaries in a way that is more

aligned with the goal of BO, which is not to fit a globally accurate model but rather

identify the location of the global optimum. Finally, BODi may also benefit from

recently proposed methods for efficient acquisition function optimization in hybrid

search spaces [54].
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CHAPTER FOUR

DIFFUSION KERNEL BASED SURROGATE MODEL

FOR HYBRID SPACES

In this chapter, we address the problem of optimizing hybrid structures (mixture of

discrete and continuous input variables) via expensive black-box function evaluations.

Unlike the previous chapter, where we focused on high-dimensional input spaces, here

we consider low/moderate dimensional input spaces. This problem arises in many

real-world applications. For example, in materials design optimization via lab experi-

ments, discrete and continuous variables correspond to the presence/absence of prim-

itive elements and their relative concentrations respectively. The key challenge is to

accurately model the complex interactions between discrete and continuous variables.

We propose a novel approach referred as Hybrid Bayesian Optimization (HyBO) by

utilizing diffusion kernels, which are naturally defined over continuous and discrete

variables. We develop a principled approach for constructing diffusion kernels over

hybrid spaces by utilizing the additive kernel formulation, which allows additive in-

teractions of all orders in a tractable manner. We theoretically analyze the modeling

strength of additive hybrid kernels and prove that it has the universal approximation

property. Our experiments on synthetic and six diverse real-world benchmarks show

that HyBO significantly outperforms the state-of-the-art methods.
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4.1 Problem Setup

Let X be a hybrid space to be optimized over, where each element x ∈ X

is a hybrid structure. Without loss of generality, let each hybrid structure x =

(xd ∈ Xd, xc ∈ Xc) ∈ X be represented using m discrete variables and n continuous

variables, where xd and xc stands for the discrete and continuous sub-space of X . Let

each discrete variable vd from xd take candidate values from a set C(vd) and each

continuous variable vc from xc take values from a compact subset of R. We assume

an unknown, expensive real-valued objective function f : X 7→ R, which can evaluate

each hybrid structure x (also called an experiment) and produces an output y = f(x).

For example, in high-entropy alloys optimization application, xd corresponds to the

presence/absence of metals and xc corresponds to their relative concentrations, and

f(x) corresponds to running a physical lab experiment using additive manufacturing

techniques. The main goal is to find a hybrid structure x ∈ X that approximately

optimizes f by conducting a limited number of evaluations and observing their out-

comes.
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Algorithm 5 HyBO Approach
Input: X = Hybrid input space, K(x, x′) = Kernel over hybrid structures, AF(M, x) = Acquisition

function parametrized by modelM and input x, F(x) = expensive objective function

Output: x̂best, the best structure

1: Initialize D0 ← initial training data; and t← 0

2: repeat

3: Learn statistical model: Mt ← GP-Learn(Dt, K)

4: Compute the next structure to evaluate:

xt+1 ← argmaxx∈X AF(Mt, x)

xc ← Optimize continuous subspace conditioned on assignment to discrete variables xd

xd ← Optimize discrete subspace conditioned on assignment to continuous variables xc

5: Evaluate objective function F(x) at xt+1 to get yt+1

6: Aggregate the data: Dt+1 ← Dt ∪ {(xt+1, yt+1)}

7: t← t+ 1

8: until convergence or maximum iterations

9: x̂best ← argmaxxt∈D yt

10: return the best uncovered hybrid structure x̂best

4.2 Diffusion Kernels over Hybrid Structures

We first provide the details of key mathematical and computational tools that

are needed to construct hybrid diffusion kernels. Next, we describe the algorithm

to automatically construct additive diffusion kernels over hybrid structures. Finally,

we present theoretical analysis to show that hybrid diffusion kernels satisfy universal
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approximation property.

4.2.1 Key Mathematical and Computational Tools

Diffusion kernels [136, 137] are inspired from the diffusion processes occurring in

physical systems like heat and gases. The mathematical formulation of these processes

naturally lends to kernels over both continuous and discrete spaces(e.g., sequences,

trees, and graphs).

Diffusion kernel over continuous spaces. The popular radial basis function

(RBF) kernel (also known as Gaussian kernel) [136] is defined as follows:

k(x, x′) =
1

2πσ2
e−∥x−x′∥2/2σ2

(4.1)

where σ is the length scale hyper-parameter. This is the solution of the below con-

tinuous diffusion (heat) equation:

∂

∂t
kx0(x, t) = ∆kx0(x, t) (4.2)

where ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
· · · ∂2

∂x2
D

is the second-order differential operator known as the

Laplacian operator, and kx0(x, t) = k(x, x′) with x′ = x0 and t = σ2/2.
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4.2.2 Diffusion Kernel over Discrete Spaces

The idea of diffusion kernels for continuous spaces is extended to discrete struc-

tures (e.g., sequences, graphs) [135] by utilizing the spectral properties of a graph

representation of the discrete space. A discrete analogue of the Equation 4.2 can be

constructed by employing the matrix exponential of a graph and the graph Laplacian

operator L as given below:

∂

∂β
eβL = LeβL (4.3)

where L is the graph Laplacian of a suitable graph representation of the discrete

input space and β is a hyper-parameter of the resulting diffusion kernel similar to the

length scale parameter σ of the RBF kernel. The solution of Equation 4.3 defines a

positive-definite kernel for discrete spaces known as the discrete diffusion kernel.

According to Equation 4.3, one important ingredient required for defining diffu-

sion kernels on discrete spaces is a suitable graph representation for discrete spaces.

One such representation was proposed in a recent work [168]. In this case, the entire

discrete space is represented by a combinatorial graph G. Each node in the vertex set

V of the graph corresponds to one candidate assignment of all the discrete variables.

Two nodes are connected by an edge if the Hamming distance between the corre-

sponding assignments for all discrete variables is exactly one. The diffusion kernel
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over this representation is defined as follows:

k(V, V ) = exp(−βL(G)) (4.4)

k(V, V ) = Φ exp(−βΠ)ΦT (4.5)

where Φ = [ϕ1, · · · , ϕ|V |] is the eigenvector matrix and Π = [π1, · · · , π|V |] is the eigen-

value matrix, where ϕi’s and πi’s are the eigenvectors and eigenvalues of the graph

Laplacian L(G) respectively. Although this graph representation contains an expo-

nential number of nodes, [168] computes the graph Laplacian L(G) by decomposing

it over the Cartesian product (⋄) of m (number of discrete variables) sub-graphs

(G1, G2 · · · , Gm) with each sub-graph Gi representing one variable individually. This

algorithmic approach has time-complexity O(
∑m

i=1(C(vi))
3), where C(vi) is the num-

ber of candidate values (arity) for the ith discrete variable. However, this method is

computationally expensive, especially, for problems with large-sized arity.

To avoid this computational challenge, we leverage prior observation in [135] which

provides a closed-form of the discrete diffusion kernel by exploiting the structure of

the above combinatorial graph representation. We explain this observation for binary

variables {0, 1}. From its definition in Equation 4.4, the discrete diffusion kernel over

single-dimensional input will be:

55



k(xd, x
′
d) =


(1− e−2β) if xd ̸= x′

d

(1 + e−2β) if xd = x′
d

(4.6)

Since the kernel over m > 1 dimensions is defined using the Kronecker product over

m dimensions, the above expression is easily extended to multiple dimensions setting

giving:

k(xd, x
′
d) =

m∏
i=1

(1− e−2βi)

(1 + e−2βi)

δ(xi
d,x

′i
d )

(4.7)

where δ(xi
d, x

′i
d) = 0 if xi

d is equal to x′i
d and 1 otherwise. The subscript d denotes

that the variables are discrete and the superscript refers to the ith dimension of the

discrete subspace. For general (discrete spaces with arbitray categories), we follow the

same observation [135] and use the following constant-time expression of the discrete

diffusion kernel in our method:

k(xd, x
′
d) =

m∏
i=1

(
1− e−C(vi)βi

1 + (C(vi)− 1)e−C(vi)βi

)δ(xi
d,x

′i
d )

(4.8)

56



4.2.3 Diffusion Kernels over Hybrid Spaces

Unifying view of diffusion kernels. Our choice of diffusion kernels is motivated

by the fact that they can be naturally defined for both discrete and continuous spaces.

In fact, there is a nice transition of the diffusion kernel from discrete to continuous

space achieved by continuous space limit operation. More generally, both discrete

and continuous diffusion kernel can be seen as continuous limit operation on two

parameters of random walks: time and space. For illustration, consider a random

walk on an evenly spaced grid where mean time of jump is t and mean gap between

two points is s. If t → 0, the resulting continuous time and discrete space random

walk generates the diffusion kernel on discrete spaces. Additionally, in the limit of

the grid spacing s going to zero, the kernel will approach the continuous diffusion

kernel.

Algorithm to construct hybrid diffusion kernels. We exploit the general formu-

lation of additive Gaussian process kernels [76] to define an additive hybrid diffusion

kernel over hybrid spaces. The key idea is to assign a base kernel for each input

dimension i ∈ {1, 2, · · · ,m+n}, where m and n stand for the number of discrete and

continuous variables in hybrid space X ; and construct an overall kernel by summing

all possible orders of interactions (upto m + n) between these base kernels. In our

case, the RBF kernel and the discrete diffusion kernel acts as the base kernel for

continuous and discrete input dimensions respectively. The pth order of interaction
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(called pth additive kernel) is defined as given below:

Kp = θ2p
∑

1≤i1<i2<··· ,ip≤m+n

(
p∏

d=1

kid(xid , x
′
id
)

)

where θp is a hyper-parameter associated with each additive kernel and kid is the

base kernel for the input dimension id. In words, the pth additive kernel is a sum

of
(
m+n
p

)
terms, where each term is a product of p distinct base kernels. Estimation

of θp hyper-parameter from data allows automatic identification of important orders

of interaction for a given application. The overall additive hybrid diffusion kernel

KHY B(x, x
′) over hybrid spaces is defined as the sum of all orders of interactions as

given below:

KHY B =
m+n∑
p=1

Kp (4.9)

KHY B =
m+n∑
p=1

(θ2p
∑

i1,··· ,ip

p∏
d=1

kid(xid , x
′
id
)) (4.10)

It should be noted that the RHS in Equation 4.10 requires computing a sum over

exponential number of terms. However, this sum can be computed in polynomial

time using Newton-Girard formula for elementary symmetric polynomials [76]. It is
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an efficient formula to compute the pth additive kernel recursively as given below:

Kp = θ2p ·

(
1

p

p∑
j=1

(−1)(j−1)Kp−jSj

)
(4.11)

where Sj =
∑m+n

i=1 kj
i is the jth power sum of all base kernels kj and the base case for

the recursion can be taken as 1 (i.e., K0 = 1). This recursive algorithm for computing

additive hybrid diffusion kernel has the time complexity of O((n+m)2).

Data-driven specialization of kernel for a given application. In real-world

applications, the importance of different orders of interaction can vary for optimizing

the overall performance of BO approach (i.e., minimizing the number of expensive

function evaluations to uncover high-quality hybrid structures). For example, in some

applications, we may not require all orders of interactions and only few will suffice.

The θp hyper-parameters in the additive hybrid diffusion kernel formulation allows

us to identify the strength/contribution of the pth order of interaction for a given

application in a data-driven manner. We can compute these parameters (along with

the hyper-parameters for each base kernel) by maximizing the marginal log-likelihood,

but we consider a fully Bayesian treatment by defining a prior distribution for each

of them. This is important to account for the uncertainty of the hyper-parameters

across BO iterations. The acquisition function AF(x) is computed by marginalizing
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the hyper-parameters as given below:

AF(x;D) =
∫
AF(x;D,Θ)p(Θ|D)dΘ (4.12)

where Θ is a variable representing all the hyperparameters (σ for continuous diffusion

kernel, β for discrete diffusion kernel, and θ for strengths of different orders of inter-

action in hybrid diffusion kernel) and D represents the aggregate dataset containing

the hybrid structure and function evaluation pairs. The posterior distribution over

the hyper-parameters is computed using slice sampling [164].

4.2.4 Theoretical Analysis

Intuitively, a natural question to ask about the modeling power of a kernel is

whether (given enough data) it can approximate (with respect to a suitable metric)

any black-box function defined over hybrid spaces. This is a minimum requirement

that should guide our choice of kernel in the given problem setting. This question has

been studied widely in the form of a key property called universality of a kernel [201,

154, 200, 151]. In this section, we prove the universality of the additive hybrid diffusion

kernel by combining the existing result on the universality of RBF (Gaussian) kernel

with a novel result proving the universality of discrete diffusion kernels.

Proposition 5. [201, 154] Let Xc be a compact and non-empty subset of Rn. The

RBF kernel in Equation 4.1 is a universal kernel on Xc.
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A kernel k defined on an input space Xc has a unique correspondence with an associ-

ated Reproducing Kernel Hilbert Space (RKHS) of functions Hk defined on Xc [202].

For compact metric input spaces Xc, a kernel k is called universal if the RKHS Hk

defined by it is dense in the space of continuous functions C(Xc). [201] proved the

universality of the RBF (Gaussian) kernel with respect to the uniform norm. [154]

established universality for a larger class of translation invariant kernels. [200] dis-

cussed various notions of universality and connected to the concept of characteristic

kernels.

Proposition 6. Let Xd be the discrete space {0, 1}m and a psuedo-boolean function

on Xd is defined as f : Xd 7→ R. The discrete diffusion kernel is a universal kernel

on Xd.

Proof. A Reproducing Kernel Hilbert SpaceHk associated with a kernel k : X×X 7→

R is defined as:

Hk = cl(span{k(x, ·),∀x ∈ X}) (4.13)

where cl represents the closure and k(x, ·) is called as the feature map of x [202].

In our setting, a kernel k defined on discrete input space Xd is universal if and only

if any pseudo-Boolean function f can be written as a linear combination of functions
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(k(xid , ·), ∀xid ∈ Xd) in the RKHS Hk [151, 93], i.e.

∀f : Xd 7→ R; ∃ai ∈ R; f =
∑
i

aik(xid , ·); (4.14)

We prove that this is true by computing the explicit form of functions (k(xid , ·),∀xid ∈

Xd) existing in the RKHS Hk of the discrete diffusion kernel. To see this, we exploit

the structure of the combinatorial graph representation of the discrete space discussed

in Section 4.2.1. The discrete diffusion kernel is defined in terms of the eigenvectors

ϕi and eigenvalues πi of the graph Laplacian L(G) as follows:

k(xd, x
′
d) =

2n∑
i=1

ϕi[xd] exp(−βπi)ϕi[x
′
d] (4.15)

Since the combinatorial graph G is generated by the Cartesian product over sub-

graphs Gi (one for each discrete variable), the eigenvectors term ϕi[xd] can be calcu-

lated via an explicit formula, i.e., ϕi[xd] = −1w
T xd , where w is a binary vector of size

n [48] (number of discrete variables).

k(xd, x
′
d) =

2n∑
i=1

−1wT xd exp(−βπi)− 1w
T x′

d (4.16)

< k(xd, ·),k(x′
d, ·) >=

2n∑
i=1

−1wT xd exp(−βπi)− 1w
T x′

d (4.17)

where the inner product in LHS follows from the reproducing property [202] of a
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kernel k. Therefore, the functions k(xd, ·) in the RKHS Hk of the discrete diffusion

kernel are of the form {−1wj
T xd ;wj ∈ [0, 2n − 1]}, which is the well-known Walsh

Basis [214] for pseudo-Boolean functions. Therefore, any pseudo-Boolean function f

can be represented by a linear combination of functions in Hk since they form a basis.

Theorem 7. Let Xc be a compact and non-empty subset of Rn and κc be RBF kernel

on Xc. Let Xd be the discrete space {0, 1}m and κd be discrete diffusion kernel on Xd.

The additive hybrid diffusion kernel defined in Eqn 4.10, instantiated with kc and kd

for continuous and discrete spaces respectively, is a universal kernel for the hybrid

space Xc ×Xd.

According to Equation 4.9, any pth order of interaction term in the additive hybrid

diffusion kernel is defined as
(∏p

d=1 kid(xid , x
′
id
)
)
. Therefore, if each kid is universal

over its corresponding dimension Xid (which is true from Propositions 1 and 2),

we need to show that the product
(∏p

d=1 kid(xid , x
′
id
)
)
is universal over the union of

dimensions Xi1 ×Xi2 · · · × Xip . This was proven by Lemma A.5 in [203]. We provide

the lemma here for completeness.

Lemma 8. From [203] Let X ⊂ Rm be a compact and non-empty subset, I, J ⊂

{1, . . . ,m} be non-empty, and kI and kJ be universal kernels on XI×XJ , respectively.

Then kI ⊗ kJ defined by

kI ⊗ kJ(x, x
′) := kI(xI , x

′
I) · kJ(xJ , x

′
J)
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for all x, x′ ∈ XI ×XJ is a universal kernel on XI ×XJ .

Since both continuous and discrete spaces are compact and Lemma 8 is true for

arbitrary compact spaces, each order of interaction is universal with respect to its

corresponding ambient dimension Xi1 × Xi2 · · · × Xip . In particular, it is true for

m + nth order of interaction which is defined over the entire hybrid space Xc × Xd

which proves the theorem.

4.3 Experiments and Results

We first describe our experimental setup. Next, we discuss experimental results

along different dimensions.

4.3.1 Benchmark Domains

Synthetic benchmark suite. bbox-mixint is a challenging mixed-integer blackbox

optimization benchmark suite [212] that contains problems of varying difficulty. This

benchmark suite is available via COCO platform1. We ran experiments with multiple

problems from this benchmark, but for brevity, we present canonical results on four

benchmarks (shown in Table 4.1) noting that all the results show similar trends.

Real world benchmarks. We employ six diverse real-world domains.

1) Pressure vessel design optimization. This mechanical design problem

[127, 207] involves minimizing the total cost of a cylindrical pressure vessel. There

1https://github.com/numbbo/coco
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Name Name in the suite Dimension

Function 1 f001 i01 d10 10 (8d, 2c)
Function 2 f001 i02 d10 10 (8d, 2c)
Function 3 f001 i01 d20 20 (16d, 4c)
Function 4 f001 i02 d20 20 (16d, 4c)

Table 4.1: Benchmark problems from bbox-mixint suite.

are two discrete (thickness of shell and head of pressure vessel) and two continuous

(inner radius and length of cylindrical section) variables.

2) Welded beam design optimization. The goal in this material engineering

domain [57, 182] is to design a welded beam while minimizing the overall cost of the

fabrication. There are six variables: two discrete (type of welding configuration and

bulk material of the beam) and four continuous (weld thickness, welded joint length,

beam width and thickness).

3) Speed reducer design optimization. In this domain from NASA [39], the

goal is to minimize the weight of a speed reducer defined over seven input variables:

one discrete (number of teeth on pinion) and six continuous (face width, teeth module,

lengths of shafts between bearings, and diameters of the shafts)

4) Optimizing control for robot pushing. This is a 14 dimensional control

parameter tuning problem, where a robot is trying to push objects toward a goal

location [217]. We consider a hybrid version of this problem by discretizing ten input

variables corresponding to location of the robot and number of simulation steps. The

remaining four parameters corresponding to rotation are kept as continuous.
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5) Calibration of environmental model. The problem of calibration and

uncertainty analysis of expensive environmental models is very important in scientific

domains [33, 13]. There are four input variables (one discrete and three continuous).
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Figure 4.1: Results of HyBO and state-of-the-art baselines on bbob-mixint bench-
mark suite for functions shown in Table 4.1.

6) Hyper-parameter optimization. We consider hyper-parameter tuning of

a neural network model on a diverse set of benchmarks [90]: five discrete (hidden

layer size, activation type, batch size, type of learning rate, and whether to use

early stopping or not) and three continuous (learning rate initialization, momentum

parameter, and regularization coefficient) hyper-parameters.
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4.3.2 Experimental Setup

Baseline methods. We compare HyBO with four strong baselines: 1) CoCaBO, a

state-of-the-art method [184]; 2) SMAC [105]; 3) TPE [29]; 4) HyBO w/o Marg is a special

case of HyBO, where we do not perform marginalization over the hyper-parameters

of the hybrid diffusion kernel; and 5) Cont-BO treats discrete variables as continuous

and performs standard BO over continuous spaces (both modeling and acquisition

function optimization). We did not include MiVaBO [56] as there was no publicly

available implementation [55] 2.

Configuration of algorithms and baselines. We configure HyBO as follows. We

employ uniform prior for the length scale hyperparameter (σ) of the RBF kernel.

Horse-shoe prior is used for β hyper-parameter of the discrete diffusion kernel (Equa-

tion 4.8) and hyper-parameters θ of the additive diffusion kernel (Equation 4.9). We

employ expected improvement [155] as the acquisition function. For acquisition func-

tion optimization, we perform iterative search over continuous and discrete sub-spaces

as shown in Algorithm 5. For optimizing discrete subspace, we run local search with

20 restarts. We normalize each continuous variable to be in the range [−1, 1] and em-

ployed CMA-ES algorithm 3 for optimizing the continuous subspace. We found that

the results obtained by CMA-ES were not sensitive to its hyper-parameters. Specif-

ically, we fixed the population size to 50 and initial standard deviation to 0.1 in all

2Personal communication with the lead author.
3https://github.com/CMA-ES/pycma
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our experiments. We employed the open-source python implementation of CoCaBO

4, SMAC 5, and TPE 6.

All the methods are initialized with same random hybrid structures. We replicated

all experiments for 25 different random seeds and report the mean and two times the

standard error in all our figures.

Evaluation metric. We use the best function value achieved after a given number of

iterations (function evaluations) as a metric to evaluate all methods. The method that

uncovers high-performing hybrid structures with less number of function evaluations

is considered better.

4.3.3 Results and Discussion

Dataset Cont-BO TPE SMAC CoCaBO HyBO

blood 76.09 (0.33) 76.71 (0.43) 76.66 (0.42) 76.98 (0.46) 77.82 (0.46)
kc1 85.19 (0.13) 85.64 (0.07) 85.45 (0.09) 85.42 (0.10) 85.47 (0.12)
vehicle 80.50 (1.12) 80.91 (1.05) 83.67 (1.01) 82.88 (1.22) 86.10 (0.89)
segment 87.25 (1.00) 87.79 (0.54) 89.99 (0.69) 89.64 (0.73) 91.43 (0.28)
cnae 95.37 (0.10) 95.69 (0.08) 95.61 (0.06) 95.68 (0.11) 95.64 (0.14)
jasmine 77.32 (0.22) 77.89 (0.07) 77.46 (0.19) 77.51 (0.20) 77.12 (0.17)

Table 4.2: Results on the task of hyper-parameter tuning of neural network models.
Bold numbers signify statistical significance.

Results on mixed integer benchmark suite. Figure 4.1 shows the canonical

results on four benchmarks from bbox-mixint listed in Table 4.1 noting that all re-

4https://github.com/rubinxin/CoCaBO_code
5https://github.com/automl/SMAC3
6https://github.com/hyperopt/hyperopt
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Figure 4.2: Results showing mean absolute test error with increasing size of training
set on the bbob-mixint synthetic benchmarks.

sults show similar trends. HyBO and its variant HyBO-Round performs significantly

better and converges much faster than all the other baselines. One key reason for

this behavior is that hybrid diffusion kernel accounts for higher-order interactions

between variables. Cont-BO performs the worst among all the methods. This shows

that simply treating discrete variables as continuous is sub-optimal and emphasizes

the importance of modeling the structure in discrete variables.

Ablation results for statistical models. To understand the reasons for the better

performance of HyBO, we compare the performance of its surrogate model based on
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Figure 4.3: Results comparing the proposed HyBO approach with state-of-the-art
baselines on multiple real world benchmarks.

Benchmark TPE SMAC CoCaBO HyBO
Synthetic Function 1 0.012 2.34 2.30 50
Synthetic Function 2 0.012 0.98 1.31 50
Synthetic Function 3 0.026 2.99 3.18 180
Synthetic Function 4 0.026 1.98 2.96 180
Pressure Vessel Design 0.003 0.34 0.85 20
Welded Beam Design 0.004 0.64 1.02 40
Speed Reducer Design 0.006 1.38 0.94 40
Push Robot 0.017 1.94 1.70 90
Environment model 0.005 0.31 0.50 40

Table 4.3: Computational cost in average wall-clock time (seconds) per BO itera-
tion.

hybrid diffusion kernels with those of CoCaBO and SMAC. We perform the following

experiment. We constructed testing dataset (pairs of hybrid structures and their

function evaluations) of size 200 via uniform random sampling. We compute the

mean absolute error (MAE) of the three surrogate models as a function of training
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set size. The results are shown in Figure 4.2 which depicts the mean and two times

standard error of the MAE on 25 random testing datasets. HyBO clearly has very low

error compared to CoCaBO and SMAC on Function 1 and 2. Although HyBO has

similar MAE to CoCaBO in the beginning on Function 3 and 4, it rapidly decreases

as the training set size increases which is not the case for other two methods. This

experiment provides strong empirical evidence for the fact that the proposed surrogate

model in HyBO can model hybrid spaces more accurately when compared to CoCaBO

and SMAC.

Ablation results for marginalization in HyBO. Bayesian treatment of hyper-

parameters (marginalization) is one key component of our proposed HyBO method.

However, to decouple the efficacy of additive diffusion kernel from the usage of

marginalization, we performed experiments using HyBO without marginalization

(HyBO w/o Marg in Figures). As evident from Figure 4.1, HyBO w/o Marg finds bet-

ter solutions than all the baselines albeit with slower convergence which is improved

by adding marginalization.

Results for real-world domains. Figure 4.3 shows comparison of HyBO approach

with baseline methods on all real-world domains except hyper-parameter optimiza-

tion. We make the following observations. 1) HyBO consistently performs better

than all the baselines on all these benchmarks. 2) Even on benchmarks such as speed

reducer design and welded beam design where HyBO finds a similar solution as Co-
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CaBO, it does so with much faster convergence. 3) CoCaBO performs reasonably

well on these benchmarks but its performance is worse than HyBO demonstrating

that its sum kernel (along with Hamming kernel for discrete spaces) is less power-

ful than hybrid diffusion kernel of HyBO. 4). TPE has the worst performance on

most benchmarks possibly a direct result of its drawback of not modeling the inter-

actions between input dimensions. 5) SMAC performs poorly on all the benchmarks

potentially due to poor uncertainty estimates from random forest surrogate model.

Table 4.2 shows the final accuracy (mean and standard error) obtained by all

methods including HyBO on the task of tuning neural network models for six different

datasets (BO curves are similar for all methods). HyBO produces comparable or

better results than baseline methods.

Computational cost analysis. We compare the runtime of different algorithms

including HyBO. All experiments were run on a AMD EPYC 7451 24-Core machine.

Table 4.3 shows the average wall-clock time (in seconds) per BO iteration. We can

see that HyBO is relatively expensive when compared to baseline methods. However,

for real-world science and engineering applications, minimizing the cost of physical

resources to perform evaluation (e.g., conducting an additive manufacturing exper-

iment for designing materials such as alloys) is the most important metric. The

computational cost for selecting inputs for evaluation is a secondary concern. HyBO

uses more time to select inputs for evaluation to minimize the number of function
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evaluations to uncover better structures. We provide a finer-analysis of the HyBO

runtime in Table 4.4. Each kernel evaluation time with all orders of interactions is

very small. The overall runtime is spent on two major things: a) Sampling from

posterior distributions of hyperparameters using slice sampling; and b) AFO using

CMA-ES + local search. We can reduce the sampling time by considering HyBO

without marginalization which shows slightly worse performance, but takes only 10

percent of the sampling time in HyBO.

Orders of
interaction

HyBO
iteration

AFO Sampling
Kernel
eval.

2 62 46 16 0.005
5 68 50 18 0.006
10 102 68 34 0.010
20 (HyBO) 180 114 66 0.020

Table 4.4: Average runtime (seconds) for different orders of interaction within hy-
brid kernel for synthetic Function 3.

4.4 Summary

We studied a novel Bayesian optimization approach referred as HyBO for opti-

mizing hybrid spaces using Gaussian process based surrogate models. We presented

a principled approach to construct hybrid diffusion kernels by combining diffusion

kernels defined over continuous and discrete sub-spaces in a tractable and flexible

manner to capture the interactions between discrete and continuous variables. We

proved that additive hybrid kernels have the universal approximation property. Our
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experimental results on diverse synthetic and real-world benchmarks show that HyBO

performs significantly better than state-of-the-art methods.
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CHAPTER FIVE

BAYESIAN OPTIMIZATION OVER PERMUTATION SPACES

In this chapter, we consider the problem of optimizing expensive to evaluate black-

box functions over an input space consisting of all permutations of d objects which is

an important problem with many real-world applications. For example, placement of

functional blocks in hardware design to optimize performance via simulations. The

overall goal is to minimize the number of function evaluations to find high-performing

permutations. The key challenge in solving this problem using the Bayesian optimiza-

tion (BO) framework is to trade-off the complexity of statistical model and tractability

of acquisition function optimization. We propose and evaluate two algorithms for BO

over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP)

surrogate model with Kendall kernels and a Tractable acquisition function optimiza-

tion approach based on Thompson sampling to select the sequence of permutations for

evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and

a Heuristic search approach to optimize expected improvement acquisition function.

We theoretically analyze the performance of BOPS-T to show that their regret grows

sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show

that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algo-

rithm for combinatorial spaces. To drive future research on this important problem,

we make new resources and real-world benchmarks available to the community.
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5.1 Problem Setup

In this chapter, we consider optimization problems with the input space consisting

of all permutations over d objects. Given [1, d] := {1, 2, · · · , d}, indexing the d objects,

a permutation is defined as a bijective mapping π : [1, d] 7→ [1, d]. The set of all

permutations along with the composition binary operation ((π1 ◦ π2)(x) = π1(π2(x))

is known as the Symmetric group Sd which has a cardinality |Sd|= d!.

Let f : Sd 7→ R be a black-box objective function that is expensive to evaluate.

Our goal is to optimize f while minimizing the number of function evaluations:

π∗ = argmin
π∈Sd

f(π) (5.1)

For a concrete example problem, consider the domain of design and optimization of

integrated circuits (ICs). There are many applications in IC design, where we need to

optimize over permutations of functional blocks of different granularity (small cells to

processing cores). Some example objectives include performance and manufacturing

cost. We need to perform expensive computational simulations to evaluate each

candidate permutation.
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5.2 BO Algorithms for Permutation Spaces

In this section, we provide two algorithms for BO over permutation spaces that

make varying trade-offs between the complexity of statistical model and tractabil-

ity of acquisition function optimization. First, BOPS-T employs a simple statistical

model with an efficient Semi-definite programming (SDP) relaxation based optimiza-

tion method. Second, BOPS-H employs a complex statistical model and performs

heuristic search for optimizing the acquisition function. We employ Gaussian pro-

cesses (GPs) [180] as the surrogate model in both algorithms. GPs are effective

statistical models commonly used for BO as they provide a principled framework for

uncertainty estimation. They are fully characterized by a kernel k [123] which in-

tuitively captures the similarity between two candidate inputs from the same input

space.

5.2.1 BOPS-T Algorithm

Surrogate model. The similarity between any two permutations (π, π′) can be

naturally defined by considering the number of pairs of objects ordered in the same

way or in opposite ways. This is captured by the notion of the number of discordant

pairs nd(π, π
′), also known as Kendall-tau distance [128]. nd(π, π

′) counts the number
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of pairs of objects ordered oppositely by π and π′ as defined below:

nd(π, π
′) =

∑
i<j

[1π(i)>π(j)1π′(i)<π′(j)

+ 1π(i)<π(j)1π′(i)>π′(j)]

(5.2)

A related notion of concordant pairs nc(π, π
′) counts the number of object pairs

ordered similarly by π and π′:

nc(π, π
′) =

(
d

2

)
− nd(π, π

′) (5.3)

Kendall kernels [113] are positive-definite kernels defined over permutations using

the notion of discordant and concordant pairs as follows:

k(π, π′) =
nc(π, π

′)− nd(π, π
′)(

d
2

) (5.4)

Because of their proven effectiveness over permutations [113, 114], we propose using

Kendall kernels with GPs as surrogate model in our BOPS-T algorithm.

For our surrogate model, we consider the weight-space formulation of the GP.

This weight-space formulation is essential for the SDP based acquisition function

optimization approach described in the next section. In the weight-space view, we
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can reason about GPs as a weighted sum of basis functions ϕ = {ϕi(·)}, i.e.,

wTϕ(·); w ∼ N(0, I) (5.5)

whereN(·) represents multi-variate Gaussian distribution and I is the identity matrix.

Every kernel has a canonical feature map (as per the Moore-Aronszajn theorem [12])

ϕ : Sd 7→ Hk, Hk being its associated Reproducing Kernel Hilbert Space (RKHS),

that is employed as the basis function in 5.5. The feature map expression for Kendall

kernel (constructed by [113]) is given below:

ϕ(π) = {

√(
d

2

)−1 (
1π(i)>π(j) − 1π(i)<π(j)

)
}(1≤i<j≤d) (5.6)

Acquisition function and optimizer. In order to sequentially select the next per-

mutation for evaluation guided by the learned surrogate model, we employ Thompson

sampling as our acquisition function. Thompson sampling is a powerful, practitioner-

friendly, and parameter-free approach for appropriately balancing the exploration vs.

exploitation dilemma [187] in sequential bandit optimization. The key idea is to

sample a function from the surrogate model’s posterior and select its optimizer as the

next permutation for evaluation. In the weight-space view of GPs, this corresponds to

sampling a weight vector ŵ from its posterior and solving the following optimization
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problem:

πnext = argmin
π∈Sd

ŵTϕ(π) (5.7)

It should be noted that the sampled weight vector ŵ is an exact function defined by

GP (with Kendall kernel) over permutation spaces and has no approximation error

when compared to the function space approach. This is in contrast to the common

practice of using Thompson sampling over continuous spaces, where random Fourier

features based weight-space representation of GPs is used which inevitably results in

approximation error because of sampling a finite number of features from an infinite

feature space.

We now show that the above acquisition function optimization problem (5.7) is

a Quadratic Assignment Problem (QAP) [38]. To observe that, the objective in 5.7

is written in an equivalent form in terms of Pd, the set of all possible permutation

matrices P of size d× d, as follows:

min
P∈Pd

Tr(WPAP T ) (5.8)
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where Tr is the matrix trace operation and A is a d× d matrix defined as follows:

A =


1 if i < j

−1 if i > j

0 if i == j

∀i, j ∈ [1, d]

and W is another d× d matrix given as follows:

W =


w (i−1)

2
(2d−i)+(j−i)

if i < j

0 if i ≥ j

∀i, j ∈ [1, d]

Concretely, the equivalence of objectives in 5.7 and 5.8 can be seen as follows:

Tr(WPAP T ) =
d∑

i=1

(WPAP T )ii (5.9)

Equation 5.9 is the definition of the trace of a matrix. Now, considering each entry
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(WPAP T )ii in 5.9:

(WPAP T )ii =
d∑

j=1

Wij · (PAP T )ji (5.10)

=
d∑

j>i

w (i−1)
2

(2d−i)+(j−i)
· (PAP T )ji (5.11)

=
d∑

j>i

w (i−1)
2

(2d−i)+(j−i)
· Aπ(j)π(i) (5.12)

where 5.11 follows from the definition of W and 5.12 follows from the fact that pre-

multiplying (post-multiplying) by a permutation matrix permutes the rows (columns)

of A. Using 5.12 in 5.9:

Tr(WPAP T ) =
d∑

i=1

d∑
j>i

w (i−1)
2

(2d−i)+(j−i)
· Aπ(j)π(i) (5.13)

By noting that Aπ(j)π(i) is exactly the feature map in 5.6 (upto multiplication by a

constant

√(
d
2

)−1
which doesn’t change the optimal solution), the equivalence between

5.7 and 5.8 is established.

Although, in general, Quadratic assignment probem is NP-hard [188], we leverage

existing Semi-definite programming (SDP) based strong relaxations [227] to obtain

good approximate solutions to the acquisition function optimization problem. Us-

ing the invariance of the trace under cyclic permutations and vectorization identity

82



(vec(APW ) = (W T ⊗ A)vec(P )), objective in 5.8 is standardized as:

min
P,Q

((W T ⊗ A)Q) (5.14)

P ∈ Pn

Q = vec(P )vec(P )T

where vec(P ) is the column-wise vectorization of P . We leverage the clique-based

SDP relaxation approach of [80] which can exploit matrix sparsity (e.g., zeros in

the upper-triangular matrix W ) for solving 5.14. The key idea is to enforce semi-

definiteness only over groups of Q’s entries (i.e., cliques) to get a relaxation that can

be solved using fast and accurate algorithms.

5.2.2 BOPS-H Algorithm

Surrogate model. We propose to employ Mallows kernel which plays a role on the

symmetric group Sd similar to the Gaussian (RBF) kernel on the Euclidean space.

Given a pair of permutations π and π′, the Mallows kernel is defined as the exponen-

tiated negative of the number of discordant pairs nd(π, π
′) between π and π′ i.e.

kmπ, π
′ = exp(−lnd(π, π

′)) (5.15)
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where l ≥ 0 is a hyper-parameter of the kernel similar to the length-scale hyper-

parameter of the Gaussian kernels on Euclidean space. A key measure of the expres-

sivity of a kernel is based on a property called universality which captures the notion

of whether the RKHS of the kernel is rich enough to approximate any function on a

given input space arbitrary well. It was recently shown [150] that Mallows kernel is

universal over the space of permutations in contrast to the Kendall kernel discussed

in the previous section. Therefore, Mallows kernels are more powerful than Kendall

kernels and allows us to capture richer structure in permutations when used to learn

GP based surrogate models. Indeed, our experiments also demonstrate empirically

the superior modeling capability of Mallows Kernel.

Acquisition function and optimizer. Unlike Kendall kernel, the feature space

of Mallows Kernel is exponentially large [150] making it practically inefficient to

sample functions from the GP posterior (in the weight-space style as described ear-

lier).Therefore, we propose to employ expected improvement (EI) as our acquisition

function. The additional complexity of GP based statistical model with Mallows ker-

nel makes the acquisition function optimization problem πnext = argminπ∈Sd
AF (π)

is intractable for EI. Therfore, we propose to perform Heuristic search in the form

of local search with multiple restarts that has been shown to be very effective in

practice for solving combinatorial optimization problems. To search over only valid

permutations π ∈ Sd, at each local search step, we consider only those neighbors
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which are permutations of the current state. Otherwise, we will be searching over a

huge combinatorial space with both valid (permutations) and invalid structures (non-

permutations) as done by COMBO: may not result in producing a permutation from

its acquisition function optimization procedure. Indeed, we observed this behavior

in our experiments with COMBO. We use the modified local search procedure over

permutations for both COMBO and our BOPS-H algorithm in experiments.

5.3 Theoretical Analysis for BOPS-T

In this section, we analyze the theoretical properties of our BOPS-T algorithm

in terms of regret metric [197], which is a commonly used measure for analyzing BO

algorithms. Note that there is no prior regret bound analysis for BO algorithms for

EI even in continuous spaces. Hence, we leave the analysis of BOPS-H algorithm for

future work. Let simple regret R be defined as follows:

R =
T∑
t=1

(f(πt)− f(π∗)) (5.16)

where πt is the permutation picked by the BO algorithm at time (iteration) t. In

our case of using Thompson sampling as an acquisition function, it is natural to

consider the expected form of this regret [187] where the expectation is taken over

the distribution of functions as given by the GP prior with Kendall kernel. We analyze
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this expected form of regret, also known as Bayesian regret:

BR =
T∑
t=1

E(f(πt)− f(π∗)) (5.17)

where the expectation is over the distribution of functions f ∼ GP (0, k). The below

theorem bounds the Bayesian regret of our BOPS-T algorithm:

Theorem 9. Let f ∼ GP (0, k) with Kendall kernel k (5.4), the Bayesian regret of

the BOPS-T algorithm after T observations yi = f(πi) + ϵi, i ∈ {1, 2, · · ·T} with ϵi

being Gaussian distributed i.i.d. noise ϵi ∼ N(0, σ2) is : BR = O∗(d3/2
√
T ), where

O∗ denotes upto log factors.

Proof. The key quantity in bounding the regret of Bayesian optimization with Gaus-

sian processes (also known as GP bandits) is an information-theoretic quantity called

as maximum information gain γT [197] that depends on the kernel k and intuitively

captures the maximum information that can be gained about f after T observations,

i.e.,

γT = max
A⊂Sd,|A|=T

I(yA; f) (5.18)

where I is the mutual information and A is a subset of permutations with correspond-

ing function evaluations yA.
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[187] proved the Bayesian regret for Thompson sampling by characterizing it in

terms of upper confidence bound based results from [197]:

Proposition 10. (Proposition 5 [187]). If |X| < ∞, {f(x) : x ∈ X} follows a mul-

tivariate Gaussian distribution with marginal variances bounded by 1, the Bayesian

regret for Thompson sampling based bandit policy is given as:

BR = 1 + 2

√
TγT ln (1 + σ2)−1 ln

(
(T 2 + 1)|X|√

2π

)
(5.19)

where X is the action space.

This proposition is directly applicable in our setting because the action space,

being the cardinality of the symmetric group Sd, is finite (i.e., |Sd| = d!) and the

function {f(π) : π ∈ Sd} follows a multivariate Gaussian distribution (by definition

of Gaussian process with Kendall kernel). We compute the specific terms in the

right-hand side of 5.19 that are applicable in our setting to prove the regret bound.

The maximum information gain for kernels with finite feature maps can be com-

puted in the weight-space form (Sec 5.2.1) as a special case of linear kernel [197].

γT ≤ C log |I + σ−2K| (5.20)

where C = 1/2 · (1− 1/e)−1 is a constant, K is a T × T matrix with each entry Kij
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= k(πi, πj). As per kernel trick,

K = ΦTΦ (5.21)

where Φ is a matrix with Σ1/2ϕ(πi), i ∈ {1, 2, · · · , T} as the columns (5.6). Therefore,

γT ≤ C ln |I + σ−2ΦTΦ| (5.22)

By Schur’s complement:

γT ≤ C ln |I + σ−2ΦTΦ| ≤ C ln |I + σ−2ΦΦT | (5.23)

By Hadamard’s inequality:

γT ≤ C ln |I + σ−2ΦΦT | (5.24)

≤ C

(d2)∑
i=1

ln(1 + σ−2λi) (5.25)

where {λ1, λ2, · · · } is the eigenvalue set of the matrix ΦΦT .

By Gershgorin circle theorem [213], all the eigenvalues of a matrix is upper

bounded by the maximum absolute sum of rows, i.e. λi ≤ d2T with the assump-
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tion that ∥Σ1/2ϕ(π)∥ ≤ 1.

γT = O(d2 ln(d2T )) (5.26)

Now, using Stirling’s approximation, we can bound the ln(|X|) term in 5.19, where

|X| = |Sd| in our case:

ln(|Sd|) = O(d ln d) (5.27)

Plugging 5.26 and 5.27 in 5.19 and ignoring constants, we get the following ex-

pression:

BR = O(
√
Td2 ln d2T (lnT 2 + d ln d)) (5.28)

BR = O(
√

(Td2 ln d2T lnT 2 + Td3 ln d2T ln d)) (5.29)

BR = O∗(d3/2
√
T ) (5.30)

Hence, ignoring log factors, our proposed BOPS-T algorithm achieves sublinear

(time) regret.
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Figure 5.1: Results comparing BOPS-T, BOPS-H, and COMBO (best objective
function value vs. number of BO iterations) on both synthetic and real-
world benchmarks: (Top row) QAP, TSP, CP; and (Bottom row) FP1,
FP2, and HMD.

5.4 Experiments and Results

In this section, we describe the benchmarks and experimental setup followed by

results and discussion.

5.4.1 Benchmarks

We employ diverse and challenging benchmarks for black-box optimization over

permutations for our experiments. We have the following two synthetic benchmarks.

1) Quadratic assignment problem (QAP). QAPLIB [37] is a popular library

that contains multiple QAP instances. Each QAP instance contains a cost matrix

(A) and distance matrix (B) sized n×n, where n is the number of input dimensions.
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The goal is to find the best permutation that minimizes the quadratic assignment

objective Tr(APBP T ), where P is an n×n permutation matrix. We use input space

with n = 15 dimensions in our experiments.

2) Traveling salesman problem (TSP). TSP problems are derived from low-

dimensional variants of the printed circuit board (PCB) problems from the TSPLIB

library [181]. The overall goal is to find the route of drilling holes in the PCB that

minimizes the time taken to complete the job. We use input space with d = 10

dimensions from the data provided in the library.

We perform experiments on three important real-world applications from the do-

main of computer-aided design of integrated circuits (ICs). These applications are

characterized by permutations over functional blocks at different levels of granularity

that arise in different stages of design and optimization of ICs. Importantly, even

tiny improvements in solution has huge impact (e.g., improved performance over the

lifespan of the IC or reduced cost for manufacturing large samples of the same IC). A

big challenge in the combinatorial BO literature is the availability of challenging real-

world problems to evaluate new approaches. Hence, we provide our three real-world

benchmarks as a new resource to allow rapid development of the field.

3) Floor planning (FP). We are given k rectangular blocks with varying width

and height, where each block represents a functional module performing certain task.

Each placement of the given blocks is called a floor-plan. Our goal is to find the
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floor plan that minimizes the manufacturing cost per chip. We use two variants of

this benchmark with 10 blocks (FP1 and FP2) that differ in the functionality of the

blocks.

4) Cell placement (CP). We are given 10 rectangular cells with same height and a

netlist that contains the connection information among the cells. The goal is to place

the 10 rectangular cells for optimizing the performance of the circuit. Intuitively,

shorter nets have shorter delays, so placements with shorter wire-length will result in

higher performance.

5) Heterogeneous manycore design (HMD). This is a manycore architecture

optimization problem from the rodinia benchmark [43]. We are given 16 cores of three

types: 2 CPUs, 10 GPUs, and 4 memory units. They are connected by a mesh net-

work (each core is connected to its four neighboring cores) to facilitate data transfer.

The goal is to place the given 16 cores to optimize the energy delay product (EDP)

objective that captures both latency and energy, two key attributes of a manycore

chip.

5.4.2 Experimental Setup

Configuration of algorithms. We compare our proposed BOPS-T and BOPS-

H algorithms with the state-of-the-art combinatorial BO algorithm COMBO [? ].

COMBO employs a diffusion kernel based GP surrogate model and optimizes expected

improvement acquisition function using local search with restarts to select inputs for
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Figure 5.2: Results comparing the three surrogate models of BOPS-T, BOPS-H and
COMBO on negative log-likelihood (NLL) metric computed on a test
set on five benchmarks: (Top row) QAP, TSP, CP; and (Bottom row)
FP1, FP2.

evaluation. Each local search step considers all neighbors of the current structure in

the combinatorial graph (i.e., structures with Hamming distance one). We modify

COMBO’s local search procedure (https://github.com/QUVA-Lab/COMBO) to con-

sider only those neighbors which are permutations of the current state thereby helping

COMBO to avoid searching a large combinatorial space with huge number of invalid

structures (non-permutations).

We used the SDP relaxation based QAP solver code from (https://github.com/

fsbravo/csdp) for implementing BOPS-T. BOPS-H is built using popular GPyTorch

[87] and BoTorch [15] libraries. We used 10 restarts for local search based EI opti-

mization for BOPS-H. BOPS-T, BOPS-H, and COMBO are initialized with the same

20 random permutations in each experiment.
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Evaluation metric. We plot the objective function value of the best permutation

over different BO iterations. Each experiment is repeated 20 times and we plot the

mean of the best objective value plus and minus the standard error.

5.4.3 Results and Discussion

In this section, we present and discuss our experimental results along different

dimensions.

Figure 5.1 shows the results for BO performance (best objective value vs. number

of function evaluations / BO iterations) of BOPS-T, BOPS-H, and COMBO on all

six benchmarks. Below we discuss these results in detail.

BOPS-T vs. BOPS-H. Recall that BOPS-T and BOPS-H makes varying trade-offs

between the complexity of statistical model and tractability of acquisition function

optimization: BOPS-T uses simple model and tractable search; and BOPS-H employs

complex model and heuristic search. From Figure 5.1, we can observe that BOPS-H

performs significantly better than BOPS-T on all six benchmarks.

BOPS vs. COMBO. From the results shown in Figure 5.1, we make the follow-

ing observations: 1) BOPS-H performs significantly better than both BOPS-T and

COMBO on all six benchmarks; and 2) BOPS-T is comparable or slightly better than

COMBO on all benchmarks except TSP and CP.

We hypothesize that the performance of different BO algorithms, namely, BOPS-

H, BOPS-T, and COMBO is proportional to the quality of their surrogate models in
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terms of making predictions on unknown permutations and their uncertainty quan-

tification ability. To verify this hypothesis, we compare the three surrogate models

quantitatively in terms of their performance on the log-likelihood metric.

Comparison of surrogate models. We compare the three surrogate models on the

log-likelihood metric [158] because it captures both the prediction and uncertainty

quantification of a model which are essential for the effectiveness of BO. We plot

the negative log-likelihood (NLL) of the three surrogate models on a testing set of

50 instances as a function of the increasing size of training data. Each experiment

is replicated with 10 different training sets and each method is evaluated using the

median of the NLL metric on 10 different test sets of 50 permutations each. Figure 5.2

shows the results on all benchmarks except HMD. We do not show results on HMD

since each function evaluation is much more expensive when compared to all other

benchmarks, and we are generating multiple replications of the training and testing

sets (10 × 10 = 100 runs). We make the following observations from Figure 5.2: 1)

BOPS-H shows the best performance among the three surrogate models; 2) BOPS-T

does better than COMBO on all benchmarks other than cell-placement. Since both

COMBO and BOPS-H employ the same acquisition function (EI) and optimizer (local

search), it is evident that the gains in the BO performance comes from the superior

surrogate model of BOPS-H.
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5.5 Summary

We proposed and evaluated two effective Bayesian optimization algorithms with

varying trade-offs for optimizing expensive black-box functions over the challenging

input space of permutations. The results point to a key conclusion that it is impor-

tant to use an appropriate model that exploits the specific structure of permutation

spaces, which is different than the generic combinatorial space over categorical vari-

ables. We characterized the importance of this problem setting by describing three

important real-world applications from the domain of computer-aided design of inte-

grated circuits. Furthermore, we make all these benchmarks available to drive future

research in this problem space.
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CHAPTER SIX

SURROGATE MODELS COMBINING STRENGTHS OF DEEP

GENERATIVE MODELS AND STRUCTURED KERNELS

In this chapter, we consider the problem of optimizing expensive black-box func-

tion defined over richer varying-sized combinatorial spaces (e.g., sequences, trees, and

graphs). For example, optimizing molecules for drug design using physical lab exper-

iments. A recent BO approach for combinatorial spaces is through a reduction to BO

over continuous spaces by learning a latent representation of structures using deep

generative models (DGMs). The selected input from the continuous space is decoded

into a discrete structure for performing function evaluation. However, the surrogate

model over the latent space only uses the information learned by the DGM, which

may not have the desired inductive bias to approximate the target black-box function.

To overcome this drawback, this chapter proposes a principled approach referred as

LADDER. The key idea is to define a novel structure-coupled kernel that explicitly

integrates the structural information from decoded structures with the learned latent

space representation for better surrogate modeling. Our experiments on real-world

benchmarks show that LADDER significantly improves over the BO over latent space

method, and performs better or similar to state-of-the-art methods.
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6.1 Problem Setup and Background

Let X be a space of combinatorial structures (e.g., sequences, trees, and graphs).

We assume the availability of a black-box objective function f : X 7→ R defined

over the combinatorial space X . Evaluating each candidate structure x ∈ X using

function f (also called an experiment) is expensive in terms of the resources consumed

and produces an output y = f(x). For example, in the drug design application, each

x ∈ X is a molecule, and f(x) corresponds to running a physical lab experiment.

Our overall goal is to find a structure x ∈ X that approximately optimizes f by

minimizing the number of experiments and observing their outcomes.

We are also provided with a database of unsupervised structures Xu ⊂ X . Unsu-

pervised means that we do not know the function evaluations f(x) for structures in

Xu. This assumption is satisfied by many scientific applications including chemical

design and material design. We assume the availability of a latent space Z learned

from unsupervised structures Xu using a encoder-decoder style deep generative model,

e.g., variational autoencoders (VAEs) for structured data such as junction tree VAE

[115] and grammer VAE [121]. Formally, the encoder denoted by Υ embeds a given

combinatorial structure x ∈ X into a point in the latent space z ∈ Rd = Υ(x) where

d is the number of dimensions of the latent space Z and the decoder denoted by Φ

converts a given point from latent space z′ ∈ Z into a structured object x′ ∈ X =

Φ(z′). Encoder Υ and decoder Φ are typically realized by neural networks.
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6.2 LADDER: Latent Space BO guided by Decoded Structures

In this section, we first discuss the challenges with the Näıve latent space BO

approach. Next, we describe our proposed LADDER approach with a focus on the

novel surrogate model by combining kernels over structured data and latent space

representation, which is our key technical contribution.

6.2.1 Challenges with the Näıve Latent Space BO approach

As mentioned above, the Näıve latent space BO approach builds a surrogate model

over the latent space using kernels for continuous spaces (e.g., Matern or Squared

Exponential kernel) and performs acquisition function optimization in the latent space

using optimizers for continuous spaces (e.g., gradient-based methods) to select point

z ∈ Z for evaluation. However, the expensive objective function f(x) is defined over

the space of combinatorial structures X and not the latent space Z. Therefore, we

need to decode this point z using the decoder Φ to get the corresponding combinatorial

structure x=Φ(z) for function evaluation f(x). All the existing work on BO over

latent space do not account for this decoding process. As a consequence, we need to

deal with two inter-related challenges, which are especially significant for small-data

settings.

• Challenge #1: The kernel over the latent space only uses the information

learned by the deep generative model. It doesn’t explicitly incorporate infor-
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mation about the decoded structure. This means the corresponding Gaussian

process surrogate model may not have the desired inductive bias to approxi-

mate the black-box objective function. Therefore, we are not able to leverage

this potentially useful inductive bias and rich structural information available

in decoded structures.

• Challenge #2: The surrogate statistical model itself might not generalize well

beyond the training examples from the latent space (set of points in the latent

space and their corresponding function evaluations). This is especially true

in the small-data setting for latent spaces learned using DGMs in real-world

scientific applications, where the number of dimensions of latent space can be

large when compared to the standard BO setup.

Indeed, we provide empirical evidence to demonstrate these challenges and our

key hypothesis in Figure 6.2. We show that by incorporating the rich structural

information from the decoded output, we can address both these challenges to improve

the overall BO performance.

6.2.2 Overview of LADDER Algorithm and Key Advantages

LADDER is an instantiation of the latent space BO framework that employs

a novel surrogate statistical model to address the two challenges with the Näıve

method. The surrogate model is a Gaussian process that combines the complementary
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Figure 6.1: High-level conceptual illustration of our proposed LADDER approach,
which acts as a “ladder” in connecting the rich structural information of
each structure in the combinatorial space with its corresponding latent
space representation. Structure-coupled kernel is the key element that
enables this connection to build an effective Gaussian process based
surrogate model.
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strengths of the latent space representation with the rich structural information from

decoded outputs using structured kernels (e.g., string kernels and graph kernels). The

key idea is to define a structure-coupled kernel that extends the continuous kernel on

the evaluated points in the latent space to unknown points using the rich information

from structured kernels. We employ expected improvement (EI) as the acquisition

function. For optimizing the acquisition function to select high utility inputs from the

latent space, we employ evolutionary search due to its recent successes [146] including

policy search in high-dimensional spaces [189].

Figure 6.1 shows a high-level illustration of LADDER and Algorithm 1 provides

the complete pseudo-code. We use a small set of initial training data in the form of

points in the latent space and their corresponding function evaluations to bootstrap

the GP based surrogate model using the structure-coupled kernel. In each iteration

t, we optimize the acquisition function to select a point zt from the latent space

Z for evaluation. The corresponding decoded structure xt=Φ(zt) is evaluated to

measure the outcome f(xt). The GP model with structure-coupled kernel is updated

using the new 3-tuple training example {zt,xt, f(xt)}. We repeat these sequence of

steps until covergence or maximum query budget and then return the best uncovered

combinatorial structure x̂ ∈ X as the output.

Advantages of LADDER. Some of the key advantages of our proposed approach

are listed below.
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• We are allowed to employ any existing trained deep generative model for struc-

tured data in a plug-and-play manner with LADDER. Therefore, any advances

in the latent-space generative modeling technology will directly improve the

overall BO performance.

• LADDER is a generic approach that is applicable to any combinatorial space

of structures (e.g., sequences, trees, graphs, sets, and permutations). This

method just requires an appropriate structured kernel over the given combinato-

rial space. Therefore, we can leverage a large body of research on generic kernels

over structured data (e.g., string kernels and graph kernels) and hand-designed

kernels based on domain knowledge for specific applications. For example, in

our experiments, we employ sub-sequence string kernel (generic) and finger-

print kernel (domain-specific) to concretely instantiate the LADDER approach

for strings and molecules respectively to demonstrate its flexibility.

• Combines the complementary strengths of latent space representations and

structured kernels in a principled manner to create highly-effective surrogate

statistical models.

6.2.3 Novel Surrogate Statistical Model via Structure-coupled Kernel

We consider Gaussian process (GP) [180] as the surrogate model of the expensive

black-box objective function f(x ∈ X ). GPs are known to have excellent statistical
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Algorithm 6 Latent Space Bayesian Optimization guided by Decoded Structures
(LADDER)

1: Input: Objective function f(x), Encoder (Υ) - Decoder (Φ) style model for latent
space Z, Kernel for latent space l(zi ∈ Z, zj ∈ Z), Kernel for combinatorial space
k(xi ∈ X ,xj ∈ X )

2: Initialize dataset D0 by evaluating few random points: D0 ← {Z0,X0, f(X0)};
t← 0

3: // slight abuse of notation here since Z0 is the set of initial points from latent
space Z and X0 is the set of corresponding decoded structures from X with
function evaluations f(X0)
repeat

4: Learn Gaussian process model on the dataset Dt with the proposed kernel in
Equation 6.4

5: Optimize acquisition function over the latent space Z to find the next point zt
for evaluation

6: Compute the decoded structure xt for point zt using decoder Φ
7: Evaluate the combinatorial structure xt to get f(xt)
8: Add new training triple: Dt+1 ← Dt ∪ {zt,xt, f(xt)}; increment the iteration

t← t+ 1
UNTIL convergence or maximum iterations

9: Output: best uncovered structure and the corresponding function value

properties including principled uncertainty quantification, which is critical for the

effectiveness of BO algorithms. A GP model defines a prior distribution on functions

which is entirely characterized by a kernel defined over a pair of inputs. Most of

the existing work on latent space BO employs a standard continuous space kernel

represented by l(zi ∈ Z, zj ∈ Z), e.g., Radial Basis Function (RBF) / Gaussian and

Matern kernels, over points in the latent space to create the GP model. However,

this surrogate model is highly-ineffective for small data settings, especially when the

number of dimensions of latent space is large, which is the common case for deep

generative models for scientific applications.
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Structure-coupled kernel. We propose to utilize the rich structural information

that is available from the decoded combinatorial structure x corresponding to each

point z from the latent space Z. The key idea behind our approach is to integrate

the structure information from the decoded outputs with the learned representation

of inputs from the latent space to achieve better surrogate modeling performance.

To include this structure information in a principled manner within a GP model,

we leverage the Generalized Nystrom extension idea [191, 219] to extrapolate the

eigenfunctions of the kernel matrix over latent space (L = {Lij = l(zi, zj)|zi, zj ∈ Z})

with basis functions from a kernel k(xi ∈ X ,xj ∈ X ) defined over the decoded

combinatorial structures.

Without loss of generality, let m be the number of evaluated inputs from the

latent space, which are denoted as Z = {z1, z2, · · · , zm}. For example, these are

the points accumulated after m iterations of the latent space BO approach. Let the

corresponding set of decoded structures be X = {x1 = Φ(z1),x2 = Φ(z2), · · · ,xm

= Φ(zm)} with their function evaluations {f(x1), f(x2), · · · , f(xm)}. Given kernels

l : z × z → ℜ and k : x × x → ℜ with L and K representing their corresponding

kernel matrices, Generalized Nystrom extension generates an m-dimensional feature

vector ξ(z) for a point z in the latent space. The ith component of ξ(z) is given as
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follows:

ξi(z) = kz
TK−1vi i ∈ {1, 2, · · · ,m} (6.1)

where kz is an m-dimensional vector evaluated between x (decoded output of latent

space input z) and other combinatorial structures from X:

kz = [k (Φ(z),Φ(z1)) , · · · , k (Φ(z),Φ(zm))] = [k (x,x1) , · · · , k (x,xm)] (6.2)

K is an m ×m kernel matrix for combinatorial structures in the set X, i.e., Kij =

k(Φ(zi),Φ(zj)) = k(xi,xj), and vi is the eigenvalue-scaled eigenvector of the kernel

matrix L defined over the latent space inputs in the set Z, i.e. V = [v1, v2, · · · vm] =

UΣ1/2, where U and Σ are eigenvectors and eigenvalues of L respectively.

The reader should note that the term k(Φ(zi),Φ(zj)) in (6.2) means that the

structured kernel is applied to the decoded structures xi = Φ(zi) and xj = Φ(zj) of

latent space inputs zi and zj respectively. This is a key term in the above expression

because it integrates each input from latent space with its decoded structure in the

new feature map ξ(z). For any two inputs z and z′ in the latent space, the resulting

structure-coupled kernel denoted as c(z, z′) is defined as the dot product of their
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corresponding feature vectors ξ(z) and ξ(z′):

c(z, z′) = ξ(z)T ξ(z′) (6.3)

c(z, z′) = kz
TK−1LK−1kz′ (6.4)

Intuitively, by this construction, we are extending the kernel over the latent space l

on the evaluated points Z to non-evaluated points in the latent space by utilizing the

rich structural features from kernel k defined over combinatorial spaces. For training

points (candidate inputs from latent space along with their function evaluations), the

resulting kernel matrix will be L since Equation 6.4 becomes KK−1LK−1K = L. For

latent space points not in the training set, the structured kernel k acts like a smooth

extrapolating kernel. It can also be seen by interpreting the Equation 6.4 through

the definition of a kernel in terms of the empirical kernel map 1(with respect to the

decoded structured outputs) endowed with a dot product induced by the positive 2

definite matrix K−1LK−1, i.e.,

c(z, z′) =< kz,kz′ >K−1LK−1=< kz,K
−1LK−1kz′ > (6.5)

Importantly, the above general construction of structure-coupled kernel allows us

1We refer to empirical kernel map as commonly defined in [190] (Definition 3)
2Positive definiteness of K−1LK−1 can be easily seen as a consequence of the following three

facts: i) K and L, being kernel matrices, are positive definite; ii) inverse of a psd matrix is psd; and
iii) MNM is psd if M and N are two psd matrices.
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to leverage extensive research on kernel methods for highly-structured data, which

try to exploit structural features of combinatorial objects. For example, string kernels

[144] count the number of common sub-strings in string inputs, fingerprint kernels

[179] capture neighborhood-aggregated properties of molecules, and features such as

number of random walks and shortest paths are utilized by graph kernels [34].

6.3 Experiments and Results

In this section, we empirically evaluate the effectiveness of the proposed LADDER

approach on real-world benchmarks, and perform comparison with baseline methods.

6.3.1 Real-world Benchmarks

We employ two widely used real-world benchmarks for combinatorial Bayesian

optimization.

Arithmetic expressions optimization. In this benchmark, the goal is to search

in the space of uni-variate arithmetic expressions (generated from a given grammar)

to find the best expression that fits a given target expression [121]. As described in

[121], the latent space model is trained on 100K randomly generated expressions from
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the following grammar:

S → S ’+’ T | S ’*’ T | S ’/’ T | T

T → ’(’ S ’)’ | ’sin(’ S ’)’ | ’exp(’ S ’)’

T → ’v’ | ’1’ | ’2’ | ’3’

We follow the same setup as discussed in the state-of-the-art paper for this benchmark

[210]. We consider the log mean-squared error between an expression x and the target

expression x∗ = 1/3 · v · sin(v2) (computed over 1000 evenly-spaced values of v in the

interval [−10, 10]) as the objective function which should be minimized.

Chemical design optimization. This benchmark considers finding molecules with

best drug-like properties [121] and is similar in prototype for many scientific appli-

cations. Specifically, the goal is to maximize the water-octanol partition coefficient

(logP) over the space of molecules. The latent space model is trained on the Zinc

molecule dataset of 250K molecules. For consistency purposes, all our results are

shown as minimization obtained by taking a negation of the logP objective.

6.3.2 Experimental Setup

Configuration of algorithms. The BO part of the source code is written using

the popular GpyTorch [85] and BoTorch [14] libraries for all BO methods including

LADDER. We employ ARD (automatic relevance determination) Matern kernel for
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the latent space inputs in all our experiments. Matern kernel is commonly advocated

as a better choice than RBF kernel for BO algorithms since the sample functions

from the latter are impractically smooth [196]. Hyperparameters of Gaussian process

models are fitted by marginal likelihood maximization after every BO iteration. We

employed Junction tree VAE [115] and Grammar VAE [121] as the latent-space model

for chemical design and arithmetic expression optimization benchmarks respectively.

Both pretrained encoder-decoder models are taken from the source code provided by

the authors’ of [210] 3. We employed expected improvement (EI) as the acquisition

function for all the BO methods. All experiments are performed on a machine with

the following configuration: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz with 128

GB RAM.

LADDER instantiations. In addition to the encoder-decoder style latent space

model, which is same as the Näıve latent space BO (LSBO), LADDER also requires

an appropriate structured kernel for the given combinatorial space. To demonstrate

the generality of our proposed approach, we instantiate LADDER with two different

kernels for our two optimization benchmarks. We employed sub-sequence string kernel

for the arithmetic expressions task and fingerprints kernel for the chemical design task.

We briefly describe both kernels below.

• Sub-sequence string kernel. This kernel captures the similarity between two

3https://github.com/cambridge-mlg/weighted-retraining/

110

https://github.com/cambridge-mlg/weighted-retraining/


strings by counting the number of matching substrings, where the substrings

can be non-contiguous [144, 40]. Following the notation in [157], given an al-

phabet Π, the kernel between two strings s1 and s2 is given as: k(s1, s2) =∑
u∈Πn ρ(s1)ρ(s2) where ρ(s) = λ

|u|
m ·Σ1<i1<···<i|u|<|s|

(
λ
i|u|−i1
g 1u(si1 , · · · , si|u|)

)
for any string s where λg and λm are gap decay and match decay hyper-

parameters. Since arithmetic expressions are naturally represented as strings,

we use this kernel for the arithmetic expressions task.

• Fingerprints kernel. There is a large body of work in the chemical informatics

literature for designing structural features for molecular inputs. These hand-

engineered features by domain experts are commonly known as molecular finger-

prints [152]. We employ Morgan fingerprints [183] which are high-dimensional

binary features to capture different substructures in a molecule while being

invariant to atom relabeling. Since combinatorial structures in the chemical

design task are molecules, given two molecules m1 and m2, we consider the dot

product of their Morgan fingerprints as the structured kernel for the chemi-

cal design task. Hence, we refer to this kernel as the Fingerprints kernel. We

employed 2048-bit fingerprints with a bond radius of 3 [156].

In all our results and figures, the corresponding structured kernel for LADDER is

denoted in the parenthesis, e.g., LADDER (String). We employed the evolutionary

search algorithm CMA-ES [97] as the acquisition function optimizer for LADDER.

111



The parameters of CMA-ES4 were fixed with sigma = 0.2 and a population size of 50.

The performance of CMA-ES was found to be highly robust to different choice of these

parameters. We ran CMA-ES from 10 different starting inputs for 10 iterations each

and picked the best optimizer found. As discussed later, we consider one instance of

Näıve LSBO with the same configuration of CMA-ES optimizer for fair comparison

and to test our key hypothesis that surrogate modeling within LADDER is better.

We use 10 random points (uniformly picked from the dataset) to initialize the GP

models.

Evaluation metric. We evaluate all methods on the best objective (log MSE for

the arithmetic expressions task and logP for the chemical design task) value uncovered

as a function of the number of experiments (expensive function evaluations). The

method that finds high-performing structures with less number of function evaluations

is considered better.

We ran each method on all benchmarks for 10 different runs with the same ini-

tialization (small number of randomly selected structures and function evaluations).

We plot the mean and two times the standard error for all our experimental results.

6.3.3 Results and Discussion

Comparison of surrogate models. Recall that the key hypothesis of this chapter is

that surrogate model employed by the Näıve LSBO approach (GP model with Matern

4https://github.com/CMA-ES/pycma

112



20 40 60 80 100
Training set size

0.55

0.60

0.65

0.70

0.75

M
ea

n 
ab

so
lu

te
 e

rro
r

LADDER (String)
Naive LSBO

(a) Arithmetic expression optimization

20 40 60 80 100
Training set size

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

M
ea

n 
ab

so
lu

te
 e

rro
r

LADDER (Fingerprint)
Naive LSBO

(b) Chemical design optimization

Figure 6.2: Mean absolute error results comparing the quality of model fit for vary-
ing sizes of training sets with two models: GP model with Matern kernel
(Näıve LSBO) and GP model with the proposed structure-coupled ker-
nel (LADDER). Lower MAE values mean better surrogate model.

kernel in our case) is ineffective and GP model with our proposed structure-coupled

kernel for small-data settings. To test this hypothesis, we compare the quality of

the model fit for these two GP models (Näıve LSBO and LADDER) by evaluating

the mean absolute error (MAE) of their predictions on a testing set. To perform

this experiment, we generate 50 (uniformly) random training sets of different sizes

and evaluate the models on 20 random testing sets. The averaged MAE results

over these 1000 training and testing set pairs are shown in Figure 6.2. We make

following observations. 1) The standard GP model on latent space denoted by Näıve

LSBO shows some improvement in MAE for the arithmetic expressions task while

the improvement is minimal for the chemical design task. 2) Our proposed surrogate

model, i.e., GP with structure-coupled kernel, denoted by LADDER has significantly

lower MAE than Näıve LSBO on both the benchmarks and continuously decreases as
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a function of the training set size. These strong results corroborate our key hypothesis

and demonstrate the effectiveness of our proposed surrogate model with the structure-

coupled kernel.

Näıve latent space BO vs. LADDER. A natural question based on the above

results is whether improved surrogate modeling results in better overall BO perfor-

mance. To answer this question, we compare the BO performance (best uncovered

or incumbent objective value vs. number of function evaluations or iterations) of

Näıve LSBO and LADDER. We consider two choices for acquisition function opti-

mizer within the Näıve LSBO approach: zeroth order CMA based optimizer (same as

LADDER) and second-order gradient based optimizer (L-BFGS). We make the fol-

lowing observations from the results shown in Figure 6.3. 1) LADDER consistently

uncovers significantly better structures than those from the Näıve LSBO approach

on both benchmarks. This is a direct consequence of the better surrogate model of

LADDER since the acquisition function optimizer is kept the same for both methods,

i.e., CMA. 2) L-BFGS based acquisition function optimizer slightly improves the BO

performance of Näıve LSBO but still cannot match the performance of LADDER.

LADDER vs. State-of-the-art. To further analyze LADDER, we compare its

performance with a set of state-of-the-art methods. We include weighted retraining

approach which was recently proposed [210] to update the latent space model as

the BO algorithm progresses (Näıve LSBO w/ retraining). We also consider design
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Figure 6.3: Results comparing the BO performance of LADDER and Näıve latent
space BO.
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Figure 6.4: Results comparing the BO performance of LADDER and different state-
of-the-art methods.

by adaptive sampling (DbAS) [35], the cross-entropy method with probability of

improvement (CEM-PI) [185], the feedback VAE (FB-VAE) [94], and reward-weighted

regression (RWR) [177]. We employ the publicly available implementation of these

baseline methods. We make the following observations from the results shown in

Figure 6.4. 1) LADDER performs significantly better on the arithmetic expressions

task and similar to the best method on the chemical design task. We verify the
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similar performance of LADDER on the chemical design task by performing a two-

sided paired Wilcoxon test at 1% significance. The performance of LADDER and

Näıve LSBO w/ retraining is statistically similar on the chemical design task (p-value

= 0.0489). 2) Retraining the latent space model helps in improving the performance

of Näıve LSBO on both tasks. 3) DbAS and CEM-PI perform similar to Näıve LSBO

w/ retraining since they are special case of retraining method as described in [210].

The discrepancy in LADDER’s performance on the chemical design benchmark can

be attributed to the low-flexibility of fingerprint kernel which doesn’t include any

hyper-parameters (as opposed to string kernel) to tune it for a specific dataset.

6.4 Summary

We introduced a sample-efficient Bayesian optimization (BO) approach for com-

binatorial spaces called LADDER. The key idea behind LADDER is a Gaussian

process based surrogate model that combines the complementary strengths of latent

space representation with rich information about decoded outputs using structured

kernels. We showed that the BO performance of LADDER is better or similar than

state-of-the-art methods and significantly better than the Näıve latent space BO

method. Since LADDER’s key contribution is in the surrogate model part of the BO

procedure, it provides the flexibility to use any acquisition function, which opens up

an avenue for various type of extensions including multi-objective [20, 53, 176, 204],

multi-fidelity [206, 125, 226], and constrained BO [100, 86].
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CHAPTER SEVEN

MERCER FEATURES TO SAMPLE FUNCTIONS

FROM GAUSSIAN PROCESS POSTERIOR

This chapter addresses the BO problem setting for fixed-size combinatorial spaces

(e.g., sequences and graphs) similar to Chapters 3 and 4. The key challenge in this

problem setting is to balance the complexity of statistical models and tractability

of search to select combinatorial structures for evaluation. In this chapter, we pro-

pose an efficient approach referred as Mercer Features for Combinatorial Bayesian

Optimization (MerCBO). The key idea behind MerCBO is to provide explicit feature

maps for diffusion kernels over discrete objects by exploiting the structure of their

combinatorial graph representation. These Mercer features combined with Thomp-

son sampling as the acquisition function allows us to employ tractable solvers to

find next structures for evaluation. Mercer features allow sampling functions from

Gaussian process posteriors which is a key step that enables the use of information-

theoretic acquisition functions [21, 23, 26, 22, 28, 2, 27, 25]. Experiments on diverse

real-world benchmarks demonstrate that MerCBO performs similarly or better than

prior methods.
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7.1 MerCBO Algorithm

Algorithm 7 MerCBO Algorithm

Require: Input space X , Black-box objective f , Order of Mercer features Max, Query budget B

1: Initialize an empty list ϕ = []

2: for i = 1 to Max do

3: Compute the features for the ith order: {
√
e−βλi · (−1)⟨ri,x⟩} and append to ϕ

4: end for

5: Return Mercer features ϕ

6: Initialize a small-sized training set Train with Mercer features computed for input structures

7: while Query budget does not exceed B do

8: Learn Gaussian Process model M using Train

9: Construct Thompson sampling acquisition function by sampling from a parametric approxi-

mation of the GP posterior

10: Find xnext by optimizing Thompson sampling based acquisition function over model M

11: Construct submodular relaxation based lower bound of AFO with parameters

12: while convergence or maximum iterations do

13: Step 2: Solve the relaxed problem using graph cut algorithms

14: Step 3: Update the relaxation parameters to obtain a tighter bound

15: end while

16: Evaluate f at xnext and add to Train: xnext, Mercer Features(xnext, Max), and O(xnext)

17: end while

18: Return Best input xbest and its objective value O(xbest)

We first provide an overview of MerCBO and its advantages.
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Overview of MerCBO algorithm. MerCBO is an instantiation of the generic

BO framework. 1) Gaussian Process with diffusion kernels is the surrogate statistical

model. 2) Thompson sampling is used as the acquisition function α. The proposed

Mercer features are used to sample from a parametric approximation of the GP pos-

terior to construct the Thompson sampling objective. 3) Acquisition function opti-

mization problem is shown to be a Binary Quadratic Program which is solved using

an efficient and scalable submodular-relaxation method. The key idea is to construct

a lower bound of the AFO problem in terms of some unknown relaxation parameters

and iteratively optimize those parameters to obtain a tighter bound. Algorithm 7

shows the complete pseduo-code of MerCBO. We use a small set of input structures

and their function evaluations (denoted Train) to bootstrap the surrogate model. In

each iteration, we select the next structure for evaluation xnext by solving the AFO

problem; add xnext, its function evaluation O(xnext), and mercer features of xnext to

Train. We repeat these sequence of steps until the query budget is exhausted and

then return the best found structure xbest as the output.

Advantages of MerCBO over COMBO and SMAC. 1) Mercer features allow us

to leverage a large number of acquisition functions from the continuous BO litera-

ture including Thompson sampling (TS), PES [99] and MES [216] to improve the

BO performance for combinatorial spaces. 2) Retains the modeling strength of com-

plex GP-based model using diffusion kernels and still allows a tractable and scalable
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AFO procedure with Thompson sampling. 3) Mercer features combined with TS

has many desiderata required for several scientific applications: diversity in explored

structures and selection of large batch of structures for parallel evaluation. Indeed,

our experiments on biological sequence design demonstrate the effectiveness of TS

(embarrassingly parallel) over COMBO with EI.

7.1.1 Preliminaries

Graph Laplacian. Given a graph G = (V,E), its Laplacian matrix L(G) is defined

as D − A, where D is the degree matrix and A is the adjacency matrix of G.

Graph Cartesian Product. Given two graphs G1 = (V1, E1) and G2 = (V2, E2),

their graph Cartesian product (G1□G2) is another graph with vertex set V (G1□G2)

= V1 × V2 consisting of the set Cartesian product of V1 and V2. Two vertices (v1, u1)

and (v2, u2) of G1□G2 (where {v1, v2} ∈ V1 and {u1, u2} ∈ V2) are connected if either,

v1 = v2 and (u1, u2) ∈ E2, or u1 = u2 and v1, v2 ∈ E2.

Combinatorial Graph Representation of Discrete Space. Recall that we need

a graph representation of the discrete space X to employ diffusion kernels for learning

GP models. We consider the combinatorial graph representation (say G=(V,E))

proposed in a recent work [168]. There is one vertex for each candidate assignment of

n discrete variables x1, x2, · · · , xn. There is an edge between two vertices if and only

if the Hamming distance between the corresponding binary structures is one. This
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graph representation was shown to be effective in building GP models for BO over

discrete spaces [168].

7.1.2 Efficient Mercer features for Diffusion Kernel

We are interested in computing explicit feature maps for diffusion kernel over

discrete spaces [135, 168], which is defined using the above combinatorial graph rep-

resentation as follows:

K(V, V ) = U exp(−βΛ)UT (7.1)

where U = [u0, u1, · · · , u2n−1] is the eigenvector and Λ = [λ0, λ1, · · · , λ2n−1] is the

eigenvalue matrix of the graph Laplacian L(G) and β is a hyper-parameter. For any

two given structures x1,x2 ∈ {0, 1}n, the kernel definition is:

K(x1,x2) =
2n−1∑
i=0

e−βλiui([x1])ui([x2]) (7.2)

where ui([x1]) denotes the value of the ith eigenvector indexed at the integer value

represented by x1 in base-2 number system. From the above equation, we can see that

the eigenspace of the graph Laplacian L(G) is the central object of study for diffusion

kernels. The key insight behind our proposed approach is to exploit the structure of

the combinatorial graph G and its Laplacian L(G) for computing its eigenspace in a
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closed-form.

Since G is an exponential-sized graph with 2n vertices, computing the eigenspace

of L(G) seems intractable at first sight. However, G has special structure: G has an

equivalent representation in terms of the graph Cartesian product of n sub-graphs

G1, G2, · · · , Gn:

G = (((G1□G2)□G3 · · · ) · · · )□Gn) (7.3)

where each sub-graph Gi represents the ith binary input variable and is defined as

a graph with two vertices (labeled 0 and 1) and an edge between them. Therefore,

L(G) is equivalently given by:

L(G) = L((((G1□G2)□G3 · · · ) · · · )□Gn)) (7.4)

L(G) = L(G1)⊕ L(G2)⊕ L(G3) · · · ⊕ L(Gn) (7.5)

where Equation 7.5 is due to distributive property of the Laplacian operator over

graph Cartesian product via Kronecker sum operator (⊕) [96] and associative property

of the ⊕ operator.

Proposition 11. [96] Given two graphs G1 and G2 with the eigenspace of their Lapla-

cians being {Λ1, U1} and {Λ2, U2} respectively, the eigenspace of L(G1□G2) is given

by {Λ1▷◁Λ2, U1 ⊗ U2} where Λ1▷◁Λ2 = {λ1
i + λ2

j : λ1
i ∈ Λ1, λ2

i ∈ Λ2} and ⊗ is the
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Kronecker product operation.

Property 11 gives a recursive procedure to compute the eigenspace of L(G) based

on its decomposition in Equation 7.5 provided the eigenspace of each of its constituent

L(Gi) is easily computable. Fortunately, in our special case, where each Gi is a

simple graph of two vertices (labeled 0 and 1) with an edge between them, it has two

eigenvalues {0, 2} with corresponding eigenvectors [1, 1] and [1,−1] respectively. The

eigenvector matrix

1 1

1 −1

 is called as a Hadamard matrix of order 2 (21, where

1 in the exponent is the number of input variables) [81, 221]. Applying the ▷◁ and

⊗ operation recursively for n inputs (represented by {Gi : i ∈ {1, 2, · · · , n}}) as

described in property 11, it can be seen that the eigenspace of L(G) has an explicit

form given as:

1. L(G) has n distinct eigenvalues {0, 2, 4, · · · , 2n} where jth eigenvalue occurs

with multiplicity
(
n
j

)
, j ∈ {0, 1, 2, · · ·n}.

2. The eigenvectors of L(G) are given by the columns of Hadamard matrix of order

2n.

Hadamard matrix of order 2n is equivalently defined as:

Hij = (−1)<ri,rj> (7.6)
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where ri is the n-bit representation of the integer i in base-2 system. Using this defi-

nition of Hadamard matrix, each entry of the eigenvectors of L(G) can be computed

in a closed form. Therefore, from Equation 7.2, the kernel value for any pair of struc-

tures x1 and x2, K(x1,x2), can be written in terms of an equivalent sum over binary

vectors:

K(x1,x2) =
2n−1∑
i=0

e−βλi · −1<ri,x1+x2> (7.7)

where ri is the base-2 representation of integer i ranging from 0 to 2n-1. We rearrange

the RHS of Equation 7.7 to delineate the dependency on each input in the pair.

K(x1,x2) =
2n−1∑
i=0

e−βλi · −1<ri,x1> · −1<ri,x2> (7.8)

K(x1,x2) =< ϕ(x1), ϕ(x2) > (7.9)

where ϕ(x) corresponds to the proposed (explicit) Mercer feature maps of any input

structure x and is given as follows:

ϕ(x) = {i ∈ [0, 2n − 1] :
√
e−βλi · −1<ri,x>} (7.10)

As mentioned earlier, the eigenvalues of L(G) are explicitly given by the set {2j :

j ∈ {0, 1, 2, · · ·n}}, where jth eigenvalue occurs with multiplicity
(
n
j

)
. Based on this
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observation, an elegant way of interpreting the feature maps given in 7.10 is based on

the number of 1s in the ri vector (binary expansion of integer i). There are exactly
(
n
j

)
r-vectors with j bits set to 1. Hence, we refer to j as the order of the Mercer feature

maps. The order variable controls the trade-off between the computational cost and

approximation quality of the feature map. We found that the second-order feature

maps1 maintain the right balance as they can be computed efficiently and also allows

to perform a tractable and scalable search for acquisition function optimization as

described in the next section. Moreover, choosing second order is also prudent from

the viewpoint of the definition of diffusion kernels itself, which requires suppressing

higher frequency elements of the eigenspace [168] to define a smooth function over

discrete spaces.

7.1.3 Tractable Acquisition Function Optimization

In this section, we describe a tractable and scalable acquisition function opti-

mization procedure using the proposed Mercer features and Thompson sampling.

Thompson sampling [47, 101, 126] selects the next point for evaluation by maximiz-

ing a sampled function from the GP posterior. We approximate the non-parametric

GP model using a parametric Bayesian linear model f(X) = θTϕ(x) using our pro-

posed Mercer features ϕ(x). Given a Gaussian prior, i.e., θ ∼ N (0, I), the posterior

1Slight abuse of notation. Second-order, from here-on, means concatenation of both first and
second-order features.
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distribution over θ is also a Gaussian with the following mean and covariance:

µ = (ΦTΦ+ σ2I)−1ΦTy (7.11)

Σ = (ΦTΦ+ σ2I)−1σ2 (7.12)

with Φ is the feature matrix with ith row corresponding to ϕ(xi) and y is the output

vector with yi ∼ N (f(xi), σ
2).

Acquisition function optimization problem. We sample θ∗ from the posterior

parametrized by µ and Σ defined in Equation 7.12 and minimize the objective f(x)

= θ∗ϕ(x) with respect to x ∈ {0, 1}n. Suppose x=(x1, x2, · · · , xn) is a candidate

structure with values assigned to n binary variables. We now show how this AFO

problem is an instance of Binary quadratic programming (BQP) problem by using

second-order feature maps from 7.10.

ϕ(x) =

{
0 ≤ i ≤

(
n

2

)
:
√
e−βλi · −1<ri,x>

}
(7.13)

The second-order feature maps are composed of two major parts: features con-

structed by order-1 r-vectors and features constructed by order-2 r-vectors. For

order-1 r-vectors, the set {0 ≤ i ≤ n : −1<ri,x>} is equivalent to {0 ≤ i ≤ n : −1xi}.

Similarly, the order-2 feature maps can also be written as {1 ≤ i ≤ n, i + 1 ≤ j ≤

n : −1(xi+xj)}. Therefore, ignoring the constant corresponding to the 0th index of θ∗,
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the AFO problem minx∈{0,1}n θ
∗ϕ(x) becomes:

min
x∈{0,1}n

n∑
i=1

θ∗i
√
e−βλi · −1xi

+
n∑

i=1

n∑
j=i+1

θ∗ij
√
e−βλn·i+j · −1(xi+xj)

(7.14)

By replacing the −1xi terms in 7.14 with an equivalent term (1− 2xi), we get:

min
x∈{0,1}n

n∑
i=1

θ∗i
√
e−βλi(1− 2xi)

+
n∑

i=1

n∑
j=i+1

θ∗ij
√
e−βλn·i+j(1− 2xi)(1− 2xj)

(7.15)

Rearranging and combining terms with the same degree, we get the following final

expression for AFO which is clearly a Binary quadratic programming (BQP) problem:

min
x∈{0,1}n

bTx+ xTAx (7.16)

where b and A are defined as given below:

bi = −2

(
θ∗i
√
e−βλi +

n∑
j=1

θ∗ij
√
e−βλn·i+j

)
, 1 ≤ i ≤ n (7.17)

Aij = δij · 4
(
θ∗ij
√
e−βλn·i+j

)
, 1 ≤ i, j ≤ n (7.18)
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where δij = 1 if j > i and 0 otherwise.

Efficient submodular-relaxation solver. BQP is a well-studied problem in multi-

ple areas including computer vision [92]. Motivated by the prior success of submodular-

relaxation methods in the structured prediction area [208], we study a fast and scal-

able approach for solving AFO problems based on recent advances in submodular-

relaxation [107]. The key idea is to construct an efficient relaxed problem with some

unknown parameters and optimize those parameters iteratively to improve the accu-

racy of solutions. We provide a high-level sketch of the overall algorithm [60] below.

The objective in 7.16 is called as submodular if Aij ≤ 0 ∀i, j. Submodular func-

tions can be exactly minimized by fast strongly polynomial-time graph-cut algorithms

[82]. However, in general, the objective might not be submodular. Therefore, a sub-

modular relaxation to the objective in Equation 7.16 [107] is constructed by lower

bounding the positive terms A+ of A:

xT (A+ ◦ Γ)1+ 1T (A+ ◦ Γ)x− 1T (A+ ◦ Γ)1

≤ xTA+x

(7.19)

where A = A+ +A−,

A+ = Aij ifAij ≥ 0 and 0 otherwise (7.20)

A− = Aij ifAij ≤ 0 and 0 otherwise (7.21)
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and Γ stands for unknown relaxation parameters. The accuracy of this relaxed prob-

lem critically depends on Γ. Therefore, we perform optimization over Γ parameters

after initializing them by repeating the following two steps.

1. Solve submodular relaxation lower bound of the BQP objective in 7.16 using

minimum graph-cut algorithms.

2. Update relaxation parameters Γ via gradient descent

This submodular-relaxation based AFO solver scales gracefully with the increasing

input dimension n because of the strongly polynomial complexity O(n3) of minimum

graph cut algorithms [4].

7.2 Experiments and Results

Experimental setting. The source code for state-of-the-art baseline methods was

taken from their github links: COMBO (https://github.com/QUVA-Lab/COMBO),

BOCS (https://github.com/baptistar/BOCS), and SMAC (https://github.com/

automl/SMAC3). For a fair comparison, the priors for all GP hyper-parameters and

their posterior computation were kept the same for both COMBO and MerCBO.

COMBO employs a separate hyper-parameter βi for each dimension to enforce spar-

sity, which is important in certain applications. For MerCBO also, we include spar-

sity in sampling θ for Thompson Sampling for all benchmarks other than Ising:

N
(
(ΦTΦ+ σ2Υ−1)−1ΦTy, (ΦTΦ+ σ2Υ−1)−1σ2

)
. It should be noted that we are

129

https://github.com/QUVA-Lab/COMBO
https://github.com/baptistar/BOCS
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3


not introducing any more hyper-parameters than COMBO, but use them in a strong

heirarchical sense [31].

We ran five iterations of submodular relaxation approach for solving AFO prob-

lems and observed convergence. We ran each method on all the benchmarks for 25

random runs and report mean and two times the standard error for results.

7.2.1 Sequential Design Optimization Benchmarks
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Figure 7.1: Results for Ising and LABS domains.

We employed four diverse benchmarks for sequential design: function evaluations

are performed sequentially.

Ising sparsification. The probability distribution p(z) [16, 168] defined by Zero-field
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Ising model Ip is parametrized by a symmetric interaction matrix Jp whose support

is represented as a graph Gp. The goal in this problem is to approximate p(z) with

another distribution q(z) such that the number of edges in Gq are minimized. The

objective function is defined as:

min
x∈{0,1}n

DKL(p||q) + λ∥x∥1

whereDKL is the KL-divergence between p and q, and λ is a regularization parameter.

The results for this 24-dimensional domain are shown in Figure 7.1a and 7.1b. In

COMBO [168], BOCS was shown to perform better than COMBO on this domain.

However, MerCBO shows the best performance among all methods signifying that

the proposed approach augments the performance of GP surrogate model.
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Figure 7.2: Results for power system design of UAVs.

Low auto-correlation binary sequences (LABS). This problem has diverse ap-

plications in multiple fields [30, 172] including communications where it is used in

high-precision interplanetary radar measurements [193]. The goal is to find a binary
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sequence {1,−1} of length n that maximizes the Merit factor (MF) defined as follows:

max
x∈{1,−1}n

MF(x) =
n2

E(x)
,

E(x) =
n−1∑
k=1

(
n−k∑
i=1

xixi+k

)2

where E(x) is the energy of the sequence. This domain allows us to evaluate all

methods on large input dimensions. Results with 40 and 50 dimensions are shown

in Figure 7.1c and 7.1d respectively. MerCBO shows best performance among all

methods showing its effectiveness. COMBO shows poor convergence and matches

MerCBO only on 40 dimensional case at the end of allocated budget. SMAC and

BOCS show poor performance resulting from their inability to model the underlying

structure properly.
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Figure 7.3: Representative results on biological sequence design problem for one
transcription factor.

Electrified aviation power system design. We consider the design of power sys-

tem for unmanned aerial vehicles (UAVs) via a time-based static simulator [209, 25].
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Figure 7.4: Results on biological sequence design with Thompson sampling for six
transcription factors.

Each structure is specified using five design variables such as the battery pack configu-

ration and motor size. Evaluation of each design requires performing a computationally-

expensive simulation. We consider two variants of this design task: (1) Optimize total

energy; and (2) Optimize mass. We employed a dataset of 250,000 candidate designs

for our experiments. The categorical variables are encoded as 16 bit binary variables.

To make the benchmark challenging, we initialized the surrogate models by ran-

domly selecting from worst (in terms of objective) 10% structures. Results for this

benchmark are shown in Figure 7.2. Interestingly, both BOCS and SMAC shows good

performance on both mass and total energy objectives of this benchmark. Since EI

has the tendency to be relatively more exploitative, COMBO shows poor convergence
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but reaches the best value at the end of allocated budget. MerCBO converges much

faster on both problems, but the performance plateaus out on the mass objective.

We attribute this behavior to the naturally exploratory behavior of the Thompson

sampling acquisition function.

7.2.2 Parallel Biological Sequence Design

Motivation. Design of optimized biological sequences such as DNA and proteins

is a fundamental problem with many important applications [223, 5, 222]. These

design problems have the following requirements: uncover a diverse set of structures

(diversity); select a large batch of structures in each round to perform parallel eval-

uations (large-scale parallel experiments); and use parallel experimental resources to

accelerate optimization (real-time accelerated design).

Benefits of Thompson sampling (TS). TS is a powerful approach that meets these

requirements [101]. Any acquisition function is defined as the expectation of a utility

function under the posterior predictive distribution p(y|x, D) =
∫
p(y|θ)p(θ|x, D).

TS approximates this posterior by a single sample θ∗ ∼ p(θ|x, D) which inherently

enforces exploration due to the variance of this Monte-Carlo approximation. In Mer-

CBO, we can sample as many θ (via Mercer features) as required and can employ

scalable AFO solvers for each sample in parallel. However, parallel version of EI (ac-

quisition function employed in COMBO) does not meet most of the requirements as
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it selects the batch of structures for evaluation sequentially.

Experimental setup. We evaluate TS and EI with GP based models on diverse

DNA sequence design problems. The goal is to find sequences that maximize the

binding activity between a variety of human transcription factors and every possible

length-8 DNA sequence [18, 5]. Categorical variables are encoded as 2 bit binary

variables. We multiply objective values by -1 to convert the problem into minimization

for consistency. We compare the parallel version of EI as proposed in [195] and used

in multiple earlier works [101, 126] with parallel TS. For a batch of B evaluations

in each iteration, parallel-EI works by picking the first input in the same way as in

the sequential setting and selects the remaining inputs j = 2 to B by maximizing

the expected EI acquisition function under all possible outcomes of the first j − 1

pending evaluations (aka fantasies [195]). On the other hand, TS is easily scalable and

parallelizable by sampling B θ’s from the GP posterior and optimizing each of them

independently with our MerCBO approach. We run both TS and EI experiments on

a 32 core Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz machine. All reported time

units are in seconds on the same machine.

Discussion of results. Figure 7.3 shows the canonical comparison of parallel TS

with parallel EI (p-EI) on one transcription factor from the DNA-binding affinity

benchmark. The numbers within the plots show the mean objective value for a bud-

get of 500 evaluations. Although parallel-EI is slightly better in terms of optimization
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performance, TS is extremely fast and is useful for practitioners in time-constrained

applications including drug and vaccine design. The diversity of best batch of se-

quences is equally important to hedge against the possibility of some chosen can-

didate designs failing on downstream objectives [5]. Figure 7.3b shows the results

comparing the diversity of sequences (on mean Hamming distance metric) found by

TS versus parallel-EI. There are two key observations that can be made from this

figure. First, increasing the batch size increases the diversity of sequences. Second,

TS finds comparatively more diverse sequences than parallel-EI.

Interestingly, performance of parallel TS improves with increasing batch size. To

justify this observation, we further evaluated parallel TS on six other transcription

factors as shown in Figure 7.4. As evident from the figure, performance of parallel

TS improves with increasing batch size on five out of six benchmarks. This shows

that the exploratory behavior of TS, which can be bad in some sequential settings,

helps in better performance for the parallel setting.

7.3 Summary

We introduced an efficient approach called MerCBO for optimizing expensive

black-box functions over discrete spaces. MerCBO is based on computing Mercer

features for diffusion kernels and fast submodular relaxation based acquisition func-

tion optimization. We showed that MerCBO produces similar or better performance

than state-of-the-art methods on multiple real-world problems.
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CHAPTER EIGHT

L2S-DISCO: A GENERIC LEARNING-TO-SEARCH FRAMEWORK

FOR ACQUISITION FUNCTION OPTIMIZATION

This chapter addresses the BO problem setting for fixed-size combinatorial spaces

(e.g., sequences and graphs) similar to Chapters 3, 4 and 7. The key challenge

is to select a sequence of combinatorial structures to evaluate, in order to identify

high-performing structures as quickly as possible. Our main contribution is to in-

troduce and evaluate a new learning-to-search framework for this problem called

L2S-DISCO. The key insight is to employ search procedures guided by control knowl-

edge at each step to select the next structure and to improve the control knowledge

as new function evaluations are observed. This framework is inspired by the prior

success of integrating learning and search for solving structured prediction problems

[71, 72, 138, 73, 160, 46]. We provide a concrete instantiation of L2S-DISCO for

local search procedure and empirically evaluate it on diverse real-world benchmarks.

Results show the efficacy of L2S-DISCO over state-of-the-art algorithms in solving

complex optimization problems.

8.1 Learning to Search Framework

In this section, we first motivate learning-to-search (L2S) methods for solving

acquisition function optimization (AFO) problems. Subsequently, we describe our
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proposed learning to search framework, L2S-DISCO, and provide a concrete instan-

tiation for local-search based AFO.

8.1.1 Motivation

Search-based AFO solvers. In a search-based optimizer, the overall problem-

solving can be modeled as a computational search process defined in terms of an

appropriate search space over candidate solutions, search procedure to uncover solu-

tions, and search control knowledge to guide the search. For example, a solver, based

on local search with multiple restarts, may use control knowledge that biases the

restart distribution. Similarly, a solver, based on branch-and-bound search, may use

control knowledge corresponding to policies for node expansion and pruning based

on the current state of the solver. An important aspect of search-based optimization

is that we can potentially improve the search control knowledge during a search by

feeding the information about the search progress to machine learning techniques.

Relation between AFO problems. We now give the intuition for why it may be

useful to learn control knowledge across the sequence of AFO problems encountered

during BO. Recall that the change in acquisition function AF(M, x) from iteration

i to i + 1 is due to only one new training example (xi, yi), where xi is the selected

structure in iteration i and yi is its function evaluation. Intuitively, even if the

acquisition function scores of candidate structures in X are changing, the search
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Figure 8.1: Empirical evidence to show how learning can be useful to solve acqui-
sition function optimization. Boxplot shows final acquisition function
values resulting from 100 runs of local search based optimization with
three different restart strategies.

control knowledge can still guide the search towards promising structures and only

require small modifications to account for the slight change in the AFO problem from

previous BO iteration. This motivates using machine learning to adapt the knowledge

in a way that generalizes from prior iterations of AFO to future AFO iterations.

Empirical evidence for the utility of learning. We now provide some empirical

evidence on real-world problems to show how machine learning can be potentially

useful to improve the accuracy of solving AFO problems. We consider local search

with multiple restarts as the AFO solver. In this case, the AFO solver takes as in-

put the objective function AF(M, x) and restarting strategy, and returns the local

optima x̂ ∈ X with associated acquisition function value AF(M, x̂). The accuracy

of local search based AFO solver critically depends on the restart strategy. We per-

formed local search based AF optimization using three different restart strategies on
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optimization problems with binary discrete variables: 1. Completely random (ran-

dom); 2. Assigning the first four discrete variables as zero and remaining randomly

(first-four-zero); and 3. Assigning the last four discrete variables as one and remain-

ing randomly (last-four-one). In figure 8.1, we show the results of solving a single

AFO problem using these three different restart strategies over 100 runs. We plot

the distribution of AF(M, x̂) for these strategies. We can see that different restart

strategies give varied solutions (empirically). This observation can be leveraged to

learn a search heuristic to select promising starting states for local search using the

training data from local search trajectories.

8.1.2 L2S-DISCO and Key Elements

L2S-DISCO integrates machine learning techniques and combinatorial search in

a principled manner for accurately solving AFO problems to select combinatorial

structures for evaluation. This framework allows us to employ surrogate statistical

models of arbitrary complexity and can work with any acquisition function. The

key insight behind L2S-DISCO is to directly tune the search via learning during the

optimization process to select the next structure for evaluation. The search-based

perspective has several advantages: 1) High flexibility in defining search spaces over

structures; 2) Easily handles domain constraints that determine which structures are

“valid”. For example, when designing an optimized network on the chip to facilitate

data transfer between multiple cores, we need to make sure that there is a viable
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Figure 8.2: High-level overview of L2S-DISCO instantiation for local search. It
repeatedly performs three steps. First, run local search from a random
state guided by current heuristic H to select a good starting state.
Second, run local search from this selected starting state guided by
acquisition function (AF). Third, use new training data in the form
of local search trajectory T and acquisition function value of the local
optima V (T ) to update the heuristic H via rank learning.

path between any pair of cores; 3) Allows to incorporate prior knowledge in the form

of heuristic rules to explore promising regions of the search space; and 4) Provides

additional points for learning within the search framework to improve the effectiveness

of search in uncovering better structures.

Overview of L2S-DISCO. We build a surrogate modelM using a small number of

experiments and their outcomes to guide our search process to select the sequence of

combinatorial structures to perform experiments. L2S-DISCO is parameterized by a
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search space S over structures, a learned function AF(M, x ∈ X ) to score the utility

of structures for evaluation, a search strategy A (e.g., local search), and a learned

search control knowledge H to guide the search towards high-scoring structures. In

each BO iteration, we perform the following two steps repeatedly until the maximum

time-bound is exceeded or a termination criteria is met. Step 1: Execute search

strategy A guided by the current search control knowledge to uncover promising

structures. Step 2: Update the parameters of search control knowledge H using the

online training data generated from the recent search experience. Fig 8.2 illustrates

the instantiation of L2S-DISCO for local search. Each structure x ∈ X uncovered

during the entire search is scored according to AF(M, x) and we select the highest

scoring structure xnext for function evaluation. We perform experiment using the

selected structure xnext and observe the outcome f(xnext). The statistical modelM

is updated using the new training example (xnext, f(xnext)). We repeat the next

iteration of BO via L2S-DISCO initialized with the current search control knowledge.

Key Elements. There are two key elements in L2S-DISCO that need to be specified

to instantiate it for a given search procedure. 1) The form of training data to learn

search control knowledge H; and 2) The learning formulation and associate learn-

ing algorithm to update the parameters of search control knowledge H using online

training data. These elements vary for different search procedures and forms of search

control knowledge. We provide a high-level example to illustrate these elements for
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branch-and-bound search.

Branch-and-bound search is a widely used search procedure to solve combinato-

rial optimization problems. It employs a search space over partial structures, where

each state corresponds to partial assignment of variables. The states with complete

assignment for all variables are referred as terminals. Variable selection strategy for

successive assignment is one of the main components of branch-and-bound search.

Therefore, H corresponds to the policy that selects the variable on which to branch

on for the next assignment. In this case, the training data is generated by the tra-

jectories obtained by a strong branching (SB) strategy [129] which exhaustively tests

each variable for assignment. A learning-to-rank formulation is natural for inducing

the variable selection policy, since the reference strategy (SB) effectively ranks vari-

ables at a node by a score, and picks the highest-scoring variable, i.e., the score itself

is not important.

Below we provide a concrete instantiation of L2S-DISCO for local search based

acquistion function optimization that will be employed for our empirical evaluation.

8.1.3 Instantiation of L2S-DISCO for Local Search

Recall that local search based AFO solver performs multiple runs of local search

guided by the acquisition function AF(M, x) from different random starting states.

The search space is defined over complete structures, where each state corresponds

to a complete structure x ∈ X . The successors of a state with structure x referred
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as N (x), is the set of all structures x′ ∈ X such that the hamming distance between

x and x′ is one. The effectiveness of local search depends critically on the quality

of starting states. Therefore, we instantiate L2S-DISCO for local search and learn a

search heuristic H(θ, x) to select good starting states that will allow local search to

uncover high-scoring structures from X according to AF(M, x).

To instantiate L2S-DISCO for local search, we need to specify the two key ele-

ments: 1) The training data for learning the heuristic H(θ, x)?; and 2) The learning

formulation to induce H(θ, x) from online training data.

Algorithm 8 L2S-DISCO for local search

Input: X= space of combinatorial structures, AF(M, x)= acquisition function,
H(θ, x)= search heuristic from previous BO iteration, RankLearn= rank learner
Output: x̂next, the selected structure for function evaluation

1: Initialization: T ← ∅ (training data of local search trajectories) and Sstart ← ∅
(set of starting states)

2: repeat
3: Perform local search from a random state x ∈ X guided by heuristic H(θ, x) to

reach a local optima xrestart

4: if xrestart ∈ Sstart then
5: xstart ← random structure from X
6: else
7: xstart ← xrestart

8: end if
9: Perform local search from xstart guided by AF(M, x)
10: Add the new search trajectory and AF(M, xend) to T
11: Update heuristic H(θ, x) via rank learner using T
12: Sstart ← Sstart ∪ xstart

13: until convergence or maximum iterations
14: x̂next ← best scoring structure as per AF(M, x) found during the entire search

process
15: return the selected structure for evaluation x̂next
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1) Training data. The set of search trajectories T obtained by performing local

search from different starting states and acquisition function scores for local optima

correspond to the training data. Each search trajectory T ∈ T consists of the se-

quence of states from the starting state xstart to the local optima xend. Suppose

V (T )=AF(M, xend) represents the acquisition function score of the local optima for

local search trajectory T .

2) Rank learning formulation. The role of the heuristic H(θ, x) is to rank can-

didate starting states according to their utility in uncovering high-scoring structures

from X via local search. Recall that if we perform local search guided by AF(M, x)

from any state x on a search trajectory T ∈ T , we will reach the same local optima

with acquisition function score V (T ). In other words, every state on the trajectory

T ∈ T has the same utility. Therefore, we formulate the problem of learning the

search heuristic as an instance of bipartite ranking [1]. Specifically, for every pair of

search trajectories T1, T2 ∈ T , if V (T1) > V (T2), then we want to rank every state on

the trajectory T1 better than every state on the trajectory T2. We will generate one

ranking example for every pair of states (x1, x2), where x1 is a state on the trajectory

T1 and x2 is a state on the trajectory T2. The aggregate set of ranking examples are

given to an off-the-shelf rank learner to induce H(θ, x), where θ are the parameters

of the ranking function. In our experiments, we employed RankNet [36] as the base
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rank learner. We leveraged existing code1 for our purpose.

L2S-DISCO for local search based optimization. Figure 8.2 illustrates L2S-

DISCO instantiation for local search based acquisition function optimization. At a

high-level, each iteration of L2S-DISCO consists of two alternating local search runs.

First, local search guided by heuristic H to select the starting state. Second, local

search guided by AF from the selected starting state. After each local search run,

we get a new local search trajectory, and the heuristic function H is updated to be

consistent with this new search trajectory.

Algorithm 8 shows the pseduo-code for learning based local search to solve AFO

problems arising in BO iterations. It reuses the learned search heuristic from the

previous BO iteration and updates it in an online manner using the new training

data generated during AF optimization. In each iteration, we perform the following

sequence of steps. First, we perform local search from a random state guided by

the search heuristic H(θ, x) until reaching the local optima xrestart to select the next

starting state. Second, if xrestart was not explored as a starting state in previous local

search iterations, we select xrestart as the starting state to perform local search guided

by AF(M, x) and add the local search trajectory to our training data. Third, we

update the search heuristic H(θ, x) using the newly added training example via rank

learner. We repeat the above three steps until convergence or maximum iterations.

1https://github.com/shiba24/learning2rank
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Figure 8.3: Results for contamination and ising domain (minimization).

This instantiation of L2S-DISCO is similar in spirit to the STAGE algorithm [52]. At

the end, we return the best scoring structure uncovered during the search x̂next for

function evaluation.

8.2 Experiments and Results

In this section, we first describe our experimental setup and then discuss the

results of L2S-DISCO and baseline methods.

8.2.1 Experimental Setup

Benchmark Domains. We employ five diverse benchmark domains for our empirical

evaluation.

1. Contamination. The problem considers a food supply with d stages, where

a binary {0,1} decision must be made at each stage to prevent the food from being

147



contaminated with pathogenic micro-organisms [104, 16]. Each prevention effort at

stage i can be made to decrease the contamination by a given random rate Γi and

incurring a cost ci. The contamination spreads with a random rate Λi if no prevention

effort is taken. The overall goal is to ensure that the fraction of contaminated food

at each stage i does not exceed an upper limit Ui with probability at least 1− ϵ while

minimizing the total cost of all prevention efforts. Following [16], the lagrangian

relaxation based problem formulation is:

argmin
x

d∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{Zk>Ui}

]
+ λ∥x∥1

where λ is a regularization coefficient, Zi is the fraction of contaminated food at stage

i, violation penalty coefficient ρ=1, and T=100.

2. Sparsification of zero-field Ising models. The distribution of a zero field

Ising model p(z) for z ∈ {−1, 1}n is characterized by a symmetric interaction matrix

Jp whose support is represented by a graph Gp = ([n], Ep) that satisfies (i, j) ∈ Ep

if and only if Jp
ij ̸= 0 holds [16]. The overall goal is to find a close approximate

distribution q(z) while minimizing the number of edges in Eq. Therefore, the objective

function in this case is a regularized KL-divergence between p and q as given below:

DKL(p||qx) =
∑

(i,j)∈Ep

(Jp
ij − Jq

ij)Ep[zizj] + log(Zq/Zp)
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where Zq and Zp are partition functions corresponding to p and q respectively, and

x ∈ {0, 1}Eq
is the decision variable representing whether each edge is present in Eq

or not.

3. Low auto-correlation binary sequences (LABS). The problem is to find

a binary {+1,-1} sequence S = (s1, s2, · · · , sn) of given length n that maximizes merit

factor defined over a binary sequence as given below:

Merit Factor(S) =
n2

E(S)

where E(S) =
n−1∑
k=1

(
n−k∑
i=1

sisi+k

)2

The LABS problem has multiple applications in diverse scientific disciplines [171].

4. Network optimization in multicore chips. With Moore’s law aging

quickly, multicore architectures are considered very promising for parallel comput-

ing [41, 116, 59, 134, 74, 159, 117, 140, 141, 194, 108, 62, 162, 133, 224, 45, 118, 143,

10, 119, 51, 6, 11, 111, 109, 110, 112, 225, 7, 8, 9, 166, 167, 132, 148, 149, 161]. A

key challenge in multicore research is to reduce the performance bottleneck due to

data movement. One promising solution is to optimize the placement of communi-

cation links between cores to facilitate efficient data transfer. This optimization is

typically guided by expensive simulators that mimics the real hardware. The network

optimization problem is part of the rodinia benchmark [42] and uses the gem5-GPU
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simulator [178]. There are 12 cores whose placements are fixed and the goal is to

place 17 links between them to optimize performance: 66 binary variables. There is

one constraint to determine valid structures: existence of a viable path between any

pair of cores. We report the performance improvement with respect to the provided

baseline network.

5. Core placement optimization in multicore chips. This is another multi-

core architecture optimization problem from rodinia benchmark [42]. In this problem,

we are given 64 cores of three types (8 CPUs, 40 GPUs, and 16 memory units) and

they are connected by a mesh network (every core is connected to its four neighbor-

ing cores) to facilitate data transfer. The goal is to place the three types of cores

to optimize performance: 64 categorical variables with each taking three candidate

values. We need to make sure that the cardinality constraints in terms of the number

of cores of each type are satisfied. We report the performance improvement w.r.t the

provided baseline placement.

Baseline Methods. We compare the local search instantiation of L2S-DISCO with

two state-of-the-art methods: SMAC [106] and BOCS [16]. We employed open-source

python implementations of both BOCS 2 and SMAC 3. Since SMAC implementa-

tion does not support handling domain constraints to search over valid structures4,

we could not run SMAC for network optimization and core placement optimization

2https://github.com/baptistar/BOCS
3https://github.com/automl/SMAC3
4https://github.com/automl/SMAC3/issues/403
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benchmarks. Similarly, SDP based solver for BOCS cannot handle constraints, so we

employed simulated annealing based solver available in the BOCS code for those two

benchmarks. We initialize the surrogate of all the methods by evaluating 20 random

structures. For L2S-DISCO. we employed random forest model with 20 trees (tried

two standard settings of scikit-learn library, namely, 10 and 20 trees, and got similar

results) and two different acquisition functions (EI and UCB). For UCB, we use the

adaptive rate recommended by [198] to set the exploration and exploitation trade-

off parameter βi value depending on the iteration number i. We ran L2S-DISCO

(Algorithm 8) for a maximum of 60 iterations.

Evaluation Metric. We use the best function value achieved after a given number

of iterations as a metric to evaluate all methods: SMAC, BOCS, and L2S-DISCO.

The method that uncovers high-performing structures with less number of function

evaluations is considered better. LABS is a maximization problem, but the remaining

four benchmarks require the objective to be minimized. We use the total number of

iterations similar to BOCS [16].

8.2.2 Results and Discussion

We discuss the results of L2S-DISCO and baseline methods on the five benchmarks

below. All the reported results are averaged over 10 random runs (except for BOCS

in cores placement optimization due to its poor scalability).

151



Contamination and Ising.

Figure 8.3 shows the comparison of L2S-DISCO with SMAC and BOCS base-

lines. We make the following observations. 1) Both L2S-DISCO variants that use EI

and UCB acquisition functions perform better than SMAC. 2) L2S-DISCO with UCB

performs better than the variant with EI. We observed a similar trend for the remain-

ing three benchmarks also. Therefore, to avoid clutter, we only show the results of

L2S-DISCO with UCB for the remaining benchmarks. 3) Results of L2S-DISCO are

comparable to BOCS on the contamination problem. However, BOCS has a better

anytime profile for ising domain. L2S-DISCO eventually matches the performance

of BOCS after 90 iterations. The main reason BOCS performs slightly better in

these two domains is that they exactly match the modeling assumptions of BOCS,

which allows the use of SDP based solver to select structures for evaluation. Below

we will show how the performance of BOCS degrades when the assumptions are not

met, whereas L2S-DISCO peforms robustly across optimization problems of varying

complexity.

LABS.

Figure 8.4 shows the comparison of L2S-DISCO with SMAC and BOCS baselines.

We can see that L2S-DISCO clearly outperforms both BOCS and SMAC on this

domain. BOCS has the advantage of SDP based solver, but its statistical model
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Figure 8.4: Results for LABS domain (maximization) with input sequence length
n=30 over 250 iterations.

that accounts for only pair-wise interactions is limiting to account for the complexity

in this problem. SMAC and L2S-DISCO both employ random forest model, but

L2S-DISCO does better in terms of acquisition function optimization by integrating

learning with search.
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Figure 8.5: Results for network optimization in multicore chips (minimization)
over 300 iterations.
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Network optimization in multicore chips.

As mentioned earlier, we could not run SMAC for this problem as SMAC library

does not allow to incorporate complex domain constraints. The SDP solver of BOCS is

also not applicable due to complex constraints. Hence, we employ simulated annealing

based solver for acquisition function optimization. Figure 8.5 shows the comparison of

L2S-DISCO with BOCS baseline. We can see that L2S-DISCO performs significantly

better than BOCS in this domain. BOCS seems to get stuck for long periods, whereas

L2S-DISCO shows consistent improvement in uncovering high-performing structures.

This behavior of BOCS can be partly attributed to the limitations of both surrogate

model and acquisition function optimizer.
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Figure 8.6: Results for core placement optimization in multicore chips (minimiza-
tion) over 300 iterations.
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Core placement optimization in multicore chips.

Figure 8.5 shows the comparison of L2S-DISCO with BOCS. L2S-DISCO signifi-

cantly outperforms BOCS on this benchmark also. Additionally, BOCS scales poorly

on this domain, where the discrete variables are non-binary. Recall that BOCS model

was developed for binary variables and authors suggested the use of one-hot encoding

to handle categorical variables. However, this transformation excessively increases

the no. of dimensions. For example, we have 64 dimensions for L2S-DISCO, but it

grows to 192 for BOCS due to one-hot encoding and makes its execution extremely

slow. BOCS took one hour per single BO iteration on a machine with Intel Xeon(R)

2.5Ghz CPU and 96 GB memory. This is the main reason we could only perform one

run of BOCS.

8.3 Summary

We introduced the L2S-DISCO framework that integrates machine learning with

search-based optimization for optimizing expensive black-box functions over discrete

spaces. We showed that instantiation of L2S-DISCO for local search based optimiza-

tion yields significantly better performance than state-of-the-art methods on complex

optimization problems.
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CHAPTER NINE

CONCLUSION AND FUTURE DIRECTIONS

This chapter summarizes the main research contributions of this dissertation,

lessons learned, and outlines some promising future research directions.

9.1 Summary

This thesis introduces a novel suite of methods designed to address the challenges

associated with adaptive experimental design over large combinatorial spaces, a prob-

lem prevalent in numerous real-world scientific and engineering applications. Prior

to this dissertation, Bayesian optimization (BO) for combinatorial spaces was an

under-explored area with little to no principled prior work. This thesis significantly

advanced the state-of-the-art in several key aspects, including surrogate modeling over

different types of combinatorial structures (e.g., high-dimensional binary/categorical

spaces, hybrid spaces consisting of a mxture of discrete and continuous variables,

varying-sized graphs, and permutations); defining modern acquisition functions (e.g.,

Thompson sampling and input/output space entropy search) from the BO for continu-

ous spaces literature for combinatorial spaces by developing tools to sample functions

from Gaussian process surrogate models over binary/categorical spaces; tractable and

effective approaches for acquisition function optimization; and associated theoretical

analysis. The proposed methodologies enable principled and efficient exploration of
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vast combinatorial design spaces, paving the way for new discoveries and optimiza-

tions in a broad range of engineering and science domains.

9.2 Lessons Learned

We list the main lessons learned from this dissertation below.

• There is no universal solution for Bayesian optimization over all combinatorial

structures. Instead, effective methods require careful consideration of the spe-

cific types of structures (e.g., fixed-size sequences versus varying-sized graphs).

A general principle emerging from this work is the incorporation of appropriate

inductive biases into the data-driven surrogate models. This is exemplified in

the LADDER framework, where domain-guided structured kernels complement

deep representation learning for improved performance. In dictionary-based sur-

rogate model, this appears in the form of parsimony priors from compressed-

sensing-inspired dictionary-based embeddings. Hybrid diffusion kernel based

surrogate model leverages regularization ideas derived from diffusion over dif-

ferent types of metric spaces.

• There is a trade-off between expressiveness of surrogate model and the tractabil-

ity of acquisition function optimization. For instance, MerCBO demonstrates

scalable acquisition function optimization for a restricted class of models pa-

rameterized by second-order Mercer features. Additionally, machine learning
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techniques, as shown in L2S-DISCO, can automatically improve the effective-

ness of search process based on past experience.

• This thesis also highlights the two-way relationship between AI/ML methods

and Science/Engineering applications. While it is rather common to hear about

AI/ML methods enabling high-impact real-world applications, this work demon-

strates that the unique challenges posed by such applications can also drive the

development of novel algorithms.

9.3 Future Work

Several promising avenues for future work stem from the methods developed in this

thesis, some of them natural extensions while other require handling open challenges.

• First, the application of these techniques to a broader range of scientific and

engineering problems holds significant potential as it has been demonstrated in

multiple works recently. It will be interesting to develop and apply variants of

the methods developed in this thesis to enable new unexplored scientific and

engineering applications.

• Second, extending the dictionary-based embeddings approach described in Chap-

ter 3, currently limited to fixed-size sequences, to handle varying-sized combi-

natorial inputs such as graphs presents an interesting avenue to explore.

158



• Third, the probabilistic surrogate models developed in this thesis could be lever-

aged in other machine learning settings, such as active learning or reinforcement

learning in combinatorial domains. This could lead to new algorithms that can

efficiently explore and exploit combinatorial decision spaces in these settings.

• Fourth, it maybe fruitful to consider incorporating the principles behind adap-

tive experimental design to improve the performance of offline model-based

optimization algorithms [102, 50, 44].

• Finally, while this thesis addresses high-dimensional BO for fixed-size sequences

(BODi), an important open challenge is the development of principled methods

for handling high-dimensional permutation spaces. Given the prevalence of

permutation spaces in various real-world applications, such as scheduling and

ranking problems, this is a direction ripe for further investigation.
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