
1

Integrating Learning and Search for
Structured Prediction

Alan Fern

 Oregon State University

Liang Huang

Oregon State University

Jana Doppa

Washington State University

Tutorial at International Joint Conference on Artificial Intelligence (IJCAI), 2016

2

Part 1: Introduction

3

Introduction

Structured Prediction problems are very common
 Natural language processing
 Computer vision
 Computational biology
 Planning
 Social networks
 ….

4

Natural Language Processing
Examples

5

NLP Examples: POS Tagging and Parsing

POS Tagging

Parsing

𝑥𝑥 = “The cat ran” 𝑦𝑦 = <article> <noun> <verb>

“Red figures on the screen
indicated falling stocks”

𝑥𝑥 𝑦𝑦

6

NLP Examples: Coreference and Translation

Co-reference Resolution

Machine Translation

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a
former First Lady.”

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a
former First Lady.”

𝑥𝑥 𝑦𝑦

𝑥𝑥 = “The man bit the dog” 𝑦𝑦 = 该男子咬狗

7

Examples of Bad Prediction

8

Computer Vision Examples

9

Scene Labeling

Image Labeling

10

Biological Image Analysis

Nematocyst Image Body parts of the nematocyst

11

The OSU Digital Scout Project
Objective: compute semantic interpretations of football video

Raw video
High-level interpretation of play

 Help automate tedious video annotation done by pro/college/HS teams
Working with hudl (hudl.com)

 Requires advancing state-of-the-art in computer vision, including:
 registration, multi-object tracking, event/activity recognition

12

Multi-Object Tracking in Videos

Video

Player Trajectories

13

Automated Planning

14

Planning

Initial State Goal State

A planning problem gives:
 an initial state
 a goal condition
 a list of actions and their semantics (e.g. STRIPS)

Objective: find action sequence from initial state to goal

?

Available actions:

 Pickup(x)
 PutDown(x,y)

15

Common Theme

POS tagging, Parsing, Co-reference resolution,
detecting parts of biological objects
 Inputs and outputs are highly structured

Studied under a sub-field of machine learning called
“Structured Prediction”
Generalization of standard classification
Exponential no. of classes (e.g., all POS tag sequences)

16

Classification to Structured Prediction

Input

X

Y

Output

Learning a Classifier

?

X

male

Learning a Classifier

?

Example problem:

 X - image of a face

Y ∈ {male, female}

X

Y

Learning a Classifier

?

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

 X - image of a face

Y ∈ {male, female}

Learning
Algorithm

(, male)

X

Y

Learning a Classifier

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

 X - image of a face

Y ∈ {male, female}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃

X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

 X - image of a face

Y ∈ {male, female}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃
feature vector

class label

X

Y

Learning for Simple Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Example problem:

 X - image of a face

Y ∈ {male, female}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃
feature vector

class label Logistic Regression
Support Vector Machines
K Nearest Neighbor
Decision Trees
Neural Networks

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃

Part-of-Speech Tagging

“The cat ran”

<article> <noun> <verb>

English Sentence:

Part-of-Speech Sequence:

𝒀𝒀 = set of all possible POS tag sequences

Exponential !!

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃

Co-reference Resolution

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a
former First Lady.”

Text with input mentions:

Co-reference Output:

𝒀𝒀 = set of all possible clusterings

Exponential !!

“Barack Obama nominated Hillary
Clinton as his secretary of state on
Monday. He chose her because she
had foreign affair experience as a
former First Lady.”

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃

Handwriting Recognition

𝒀𝒀 = set of all possible letter sequences

Exponential !!

Letter Sequence:
S t r u c t u r e d

Handwritten Word:

X

Y

Learning for Structured Outputs

Training Data
{(x1,y1),(x2,y2),…,(xn,yn)}

Learning
Algorithm F(X, 𝜃𝜃)

𝜃𝜃

𝒀𝒀 = set of all possible labelings

Exponential !!

Image Labeling

27

Part 2: Cost Function Learning Framework
and Argmin Inference Challenge

28

Cost Function Learning Approaches:
Inspiration

Generalization of traditional ML approaches to structured
outputs

 SVMs ⇒ Structured SVM [Tsochantaridis et al., 2004]

 Logistic Regression ⇒ Conditional Random Fields [Lafferty et al., 2001]

 Perceptron ⇒ Structured Perceptron [Collins 2002]

29

Cost Function Learning: Approaches

Most algorithms learn parameters of linear models
𝜙𝜙 𝑥𝑥,𝑦𝑦 is n-dim feature vector over input-output pairs
w is n-dim parameter vector

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

30

Cost Function Learning: Approaches

Most algorithms learn parameters of linear models
𝜙𝜙 𝑥𝑥,𝑦𝑦 is n-dim feature vector over input-output pairs
w is n-dim parameter vector

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

Example: Part-of-Speech Tagging

x = “The cat ran” y = <article> <noun> <verb>

𝜙𝜙(𝑥𝑥,𝑦𝑦) may have unary and pairwise features

 unary feature: e.g. # of times ‘the’ is paired with <article>

 pairwise feature: e.g. # of times <article> followed by <verb>

31

Key challenge: “Argmin” Inference

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

Exponential
size of output

space !!

32

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

33

Key challenge: “Argmin” Inference

Time complexity of inference depends on the
dependency structure of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)
 NP-Hard in general
 Efficient inference algorithms exist only for simple features

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒎𝒎𝒎𝒎
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

34

Cost Function Learning: Key Elements

 Joint Feature Function
 How to encode a structured input (x) and structured output

(y) as a fixed set of features 𝜙𝜙(𝑥𝑥,𝑦𝑦)?

 (Loss Augmented) Argmin Inference Solver

 Viterbi algorithm for sequence labeling
 CKY algorithm for parsing
 (Loopy) Belief propagation for Markov Random Fields
 Sorting for ranking

Optimization algorithm for learning weights
 (sub) gradient descent, cutting plane algorithm …

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝒎𝒎𝒊𝒊𝒊𝒊
 𝒚𝒚∈𝒀𝒀

 𝒘𝒘 ⋅ 𝝓𝝓(𝒙𝒙,𝒚𝒚)

35

Cost Function Learning: Generic Template

repeat
For every training example (𝑥𝑥,𝑦𝑦)
Inference: 𝑦𝑦� = arg𝑚𝑚𝑖𝑖𝑖𝑖𝑦𝑦∈𝑌𝑌 𝑤𝑤 ∙ 𝜑𝜑 𝑥𝑥, 𝑦𝑦
If mistake 𝑦𝑦 ≠ 𝑦𝑦�,
 Learning: online or batch weight update

until convergence or max. iterations

Training goal:
Find weights 𝑤𝑤 s.t
For each input 𝑥𝑥, the cost of the correct structured output
𝑦𝑦 is lower than all wrong structured outputs

Exponential
size of output

space !!

36

Expensive Training Process

Main Reason
 repeated calls to “Argmin inference solver” (computationally

expensive) on all the training examples

Recent Solutions
Amortized Inference: Kai-Wei Chang, Shyam Upadhyay, Gourab

Kundu, Dan Roth: Structural Learning with Amortized Inference. AAAI 2015

Decomposed Learning: Rajhans Samdani, Dan Roth: Efficient
Decomposed Learning for Structured Prediction. ICML 2012

37

Cost Function Learning:
“Exact” vs. “Approximate” Inference Solver
Most theory works for “Exact” Inference

Theory breaks with “Approximate” Inference
 Alex Kulesza, Fernando Pereira: Structured Learning with Approximate

Inference. NIPS 2007
 Thomas Finley, Thorsten Joachims: Training structural SVMs when exact

inference is intractable. ICML 2008: 304-311

Active Research Topic: Interplay between (approximate)
inference and learning
 Veselin Stoyanov, Alexander Ropson, Jason Eisner: Empirical Risk

Minimization of Graphical Model Parameters Given Approximate Inference,
Decoding, and Model Structure. AISTATS 2011

 Justin Domke: Structured Learning via Logistic Regression. NIPS 2013
 …

38

Focus of Tutorial

 Integrating “Learning” and “Search” two fundamental
branches of AI to solve structured prediction problems

Key Idea:
 Accept that “exact” Argmin inference is intractable
 Select a computationally bounded search architecture for

making predictions
 Optimize the parameters of that procedure to produce

accurate outputs using training data
 Learning “with Inference” vs. Learning “for Inference”

39

Part 3: A Brief Overview of Search Concepts

40

Combinatorial Search: Key Concepts

Search Space
Where to start the search?
How to navigate the space?

Search Procedure / Strategy
 How to conduct search?

Search Control Knowledge
 How to guide the search? (Intelligence)

41

Search Space Definition

 Initial State Function: 𝑰𝑰
Where to start the search?

Successor State Function: 𝑺𝑺
What are the successor (next) states for a given state?
Generally, specified as a set of actions that modify the given

state to compute the successor states

Terminal State Function: 𝑻𝑻
 When to stop the search?

42

(Ordered) Search Space: Example

43

Search Procedure

Search Tree (or Graph): Instantiation of the search
space. How to navigate?

Uninformed (Blind) Search Procedure
 Breadth-First Search (BFS)
 Depth-First Search (DFS)

 Informed (Intelligent) Search Procedure
 Greedy Search
 Beam Search
 Best-First Search
 …

44

Informed Search Procedures

Maintain an internal memory of a set of open nodes (𝑀𝑀)

 Intelligent search guided by the control knowledge

Algorithmic Framework for Best-First Search style search
strategies:
 Selection: score each open node in the memory 𝑀𝑀 and select

a subset of node(s) to expand
 Expansion: expand each selected state using the successor

function to generate the candidate set
 Pruning: Retains a subset of all open nodes (update 𝑀𝑀) and

prune away all the remaining nodes

45

Best-First Search Style Algorithms

Best-first Search (𝑀𝑀 = ∞)
 selects the best open node
 no pruning

Greedy Search (𝑀𝑀 = 1)
 selection is trivial
 prunes everything except for the best open node in the

candidate set

46

Best-First Search Style Algorithms

Best-first Beam Search (𝑀𝑀 = 𝐵𝐵)
 selects the best open node
 prunes everything except for the best 𝐵𝐵 open nodes in the

candidate set

Breadth-First Beam Search (𝑀𝑀 = 𝐵𝐵)
 selection is trivial – all B nodes
 prunes everything except for the best 𝐵𝐵 open nodes in the

candidate set

47

Search Control Knowledge

Greedy Policies
 Classifier that selects the best action at each state

Heuristic Functions
 computes the score for each search node
 heuristic scores are used to perform selection and pruning

Pruning Rules
 additional control knowledge to prune bad actions / states

Cost Function
Scoring function to evaluate the terminal states

48

Part 4: Control Knowledge Learning
Framework: Greedy Methods

49

Greedy Control Knowledge Learning

Given
 Search space definition (ordered or unordered)
 Training examples (input-output pairs)

Learning Goal
 Learn a policy or classifier to make good predictions

Key Idea:
 Training examples can be seen as expert demonstrations
 Equivalent to “Imitation Learning” or “Learning from

Demonstration”
 Reduction to classifier or rank learning

50

Ordered vs. Unordered Search Space

Ordered Search Space
 Fixed ordering of decisions (e.g., left-to-right in sequences)
 Classifier based structured prediction

Unordered Search Space
 Learner dynamically orders the decisions
 Easy-First approach

51

Classifier-based Structured Prediction

52

Classifier-based Structured Prediction

Reduction to classifier learning
26 classes

 IL Algorithms
 Exact-Imitation
 SEARN
 DAgger
 AggreVaTe
 LOLS

53

Aside: Reductions in Machine Learning

Reduce complex problem to simpler problem(s)

A better algorithm for simpler problem means a better
algorithm for complex problem

Composability, modularity, ease-of-implementation

Hard Machine
Learning Problem

Easy Machine
Learning Problem Reduction

Performance 𝜖𝜖 Performance f(𝜖𝜖)

54

Imitation Learning Approach

Expert demonstrations
each training example (input-output pair) can be seen as a

“expert” demonstration for sequential decision-making

Collect classification examples
Generate a multi-class classification example for each of the

decisions
 Input: f(n), features of the state n
Output: yn, the correct decision at state n

Classifier Learning
Learn a classifier from all the classification examples

55

Exact Imitation: Classification examples

, - - - - - - 𝑓𝑓 𝑠𝑠

𝑓𝑓 𝑡𝑡

𝑓𝑓 𝑟𝑟

𝑓𝑓 𝑢𝑢

𝑓𝑓 𝑐𝑐

𝑓𝑓 𝑡𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output
For each training example

56

Exact Imitation: Classifier Learning

, - - - - - - 𝑓𝑓 𝑠𝑠

𝑓𝑓 𝑡𝑡

𝑓𝑓 𝑟𝑟

𝑓𝑓 𝑢𝑢

𝑓𝑓 𝑐𝑐

𝑓𝑓 𝑡𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output

…

𝒉𝒉

Recurrent classifier

or

Learned policy

Classification
Learner

57

Learned Recurrent Classifier: Illustration

Error propagation:
errors in early decisions propagate to down-stream decisions

58

Recurrent Error

Can lead to poor global performance

Early mistakes propagate to downstream decisions:
f 𝜖𝜖 = 𝑂𝑂 𝜖𝜖𝑇𝑇2 , where 𝜖𝜖 is the probability of error at
each decision and T is the number of decision steps
[Kaariainen 2006] [Ross & Bagnell 2010]

Mismatch between training (IID) and testing (non-IID)
distribution

 Is there a way to address error propagation?

59

Addressing Error Propagation

• Rough Idea: Iteratively observe current policy and augment
training data to better represent important states

• Several variations on this idea [Fern et al., 2006], [Daume et al., 2009],
 [Xu & Fern 2010], [Ross & Bagnell 2010], [Ross et al. 2011, 2014], [Chang et al., 2015]

• Generate trajectories using
current policy (or some variant)

• Collect additional classification
examples using optimal policy
(via ground-truth output)

60

DAgger Algorithm [Ross et al., 2011]

Collect initial training set 𝐷𝐷 of 𝑁𝑁 trajectories from
reference policy 𝜋𝜋∗

Repeat until done
𝜋𝜋 ← LearnClassifier(𝐷𝐷)
Collect set of states S that occur along 𝑁𝑁 trajectories of 𝜋𝜋
For each state 𝑠𝑠 ∈ 𝑆𝑆

 𝐷𝐷 ← 𝐷𝐷 ∪ { 𝑠𝑠,𝜋𝜋∗ 𝑠𝑠 } // add state labeled by expert or reference policy

Return 𝜋𝜋

Each iteration increases the amount of training data (data aggregation)

61

DAgger for Handwriting Recognition

Source: [Ross et al., 2011]

62

Ordered vs. Unordered Search Space

Ordered Search Space
 Fixed ordering of decisions (e.g., left-to-right in sequences)
 Classifier based structured prediction

Unordered Search Space
 Learner dynamically orders the decisions
 Easy-First approach

63

Easy-First Approach for Structured
Prediction

64

Easy-First Approach: Motivation

Drawbacks of classifier-based structured prediction
Need to define an ordering over the output variables (e.g., left-

to-right in sequence labeling)
Which order is good? How do you find one?
Some decisions are hard to make if you pre-define a fixed order

over the output variables

Easy-First Approach: Key Idea
 Make easy decisions first to constrain the harder decisions
 Learns to dynamically order the decisions
 Analogous to constraint satisfaction algorithms

65

Example: Cross-Document Coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.

Police said Lo Presti has hanged himself.

had hanged

has hanged

Easy

One of the key suspected mafia bosses

Lo Presti

Hard

Doc 1

Doc 2

66

Example: Cross-Document Coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.

Police said Lo Presti has hanged himself.

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

• Once we decide that the two verbs are coreferent, the two noun
mentions serve the same semantic role to the verb cluster

• Strong evidence for coreference

Doc 1

Doc 2

67

Easy-First Approach: Overview

Consider a set of inter-dependent decisions in a
sequential manner

At each step, make the easiest decision first

This allows us to accumulate more information
to help resolve more challenging decisions later

68

Applications of Easy-First

Cross-document joint entity and event co-
reference
Lee et. al. EMNLP-CoNLL ’12

Within-document co-reference Resolution
Stoyanov and Eisner, COLING’12

Dependency parsing
Goldberg and Elhadad, HLT-NAACL’ 10

69

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

Initial state: all mentions and verbs are in separate clusters

The Police

70

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution
– In each state, we consider a set of fixed possible actions

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

Four possible merge actions

The Police
? ? ?

?

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution
– In each state, we consider a set of fixed possible actions
– Each action is described by a feature vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

Four possible merge actions

The Police

𝑥𝑥1 𝑥𝑥2
𝑥𝑥3

𝑥𝑥4

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution
– In each state, we consider a set of fixed possible actions
– Each action is described by a feature vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑
– An action is defined to be good if it leads to an improved

state

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti The Police

𝑥𝑥1 𝑥𝑥2
𝑥𝑥3

𝑥𝑥4

𝑥𝑥2, 𝑥𝑥4 ∈ 𝐺𝐺 (good actions); 𝑥𝑥1, 𝑥𝑥3 ∈ 𝐵𝐵(bad actions)

Easy-First Approach: Key Elements

• Search space
• Scoring function 𝑓𝑓:𝑅𝑅𝑑𝑑 → 𝑅𝑅

– e.g., 𝑓𝑓 𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥
– In each state, evaluate all possible actions

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti The Police

𝑥𝑥1 𝑥𝑥2
𝑥𝑥3

𝑥𝑥4

𝑓𝑓 𝑥𝑥1 = 0.05 𝑓𝑓 𝑥𝑥2 = 0.08 𝑓𝑓 𝑥𝑥3 = 0.057 𝑓𝑓 𝑥𝑥4 = 0.75

73

Easy-First Approach: Key Elements

• Search space
• Scoring function 𝑓𝑓:𝑅𝑅𝑑𝑑 → 𝑅𝑅

– e.g., 𝑓𝑓 𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥
– In each state, evaluate all possible actions
– Take the highest scoring action (easiest)

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti The Police

𝑥𝑥1 𝑥𝑥2
𝑥𝑥3

𝑥𝑥4

𝑓𝑓 𝑥𝑥1 = 0.05 𝑓𝑓 𝑥𝑥2 = 0.08 𝑓𝑓 𝑥𝑥3 = 0.057 𝑓𝑓 𝑥𝑥4 = 0.75

74

75

Scoring Function Learning

Possible goal: learn a scoring function such that:
in every state all good actions are ranked higher than
all bad actions

 A better goal: learn a scoring function such that
in every state a good action is ranked higher
than all bad actions

76

Alternate Methods

• In a training step, if the highest scoring action
is bad, perform weight update

• Different update approaches
– Best (highest scoring) good vs. best (highest

scoring) bad
– Average good vs. average bad

Issue: they do not directly optimize toward our goal!

77

Optimization Objective for Update

+
∈ ∈
∑ ⋅+⋅−

Bb
bgGgw

xwxw
B

)max1(1argmin

max
𝑔𝑔∈𝐺𝐺

𝑤𝑤 ⋅ 𝑥𝑥𝑔𝑔 > 𝑤𝑤 ⋅ 𝑥𝑥𝑏𝑏 + 1
for all 𝑏𝑏 ∈ 𝐵𝐵

77

• Goal: find a linear function such that it ranks
one good action higher than all bad actions
– This can be achieved by a set of constraints

• Optimization Objective:
• Use hinge loss to capture the constraints
• Regularization to avoid overly aggressive update

2
cww−+ λ

78

Optimization: Majorization-Minimization
[Xie et al., 2015]

 : It is non-convex

 Can be solved using a Majorization-Minimization (MM)
algorithm to get local optima solution

 In each MM iteration:
Let 𝑥𝑥𝑔𝑔∗ be the current highest scoring good action
Solve following convex objective (via subgradient descent):

+

∈ ∈
∑ ⋅+⋅−

Bb
bgGgw

xwxw
B

)max1(1argmin 2
cww−+ λ

*
gxw ⋅

+
∈ ∈
∑ ⋅+⋅−

Bb
bgGgw

xwxw
B

)max1(1argmin 2
cww−+ λ

79

Contrast with Alternate Methods
Good Bad

Average-Good Average-Bad

• Average-good vs. average-bad (AGAB)

• Best-good vs. best-bad (BGBB)

• Current method: Best-good vs. violated-bad (BGVB)

Best-good Violated-bad

Best-good Best-bad

[Daume et al., 2005], [Xu et al., 2009]

[Goldberg et al., 2010], [Stoyanov et al., 2012]

[Xie et al., 2015]

80

Experiment I: Cross-document entity
and event Coreference

0
10
20
30
40
50
60
70
80

MUC B-CUBE CEAF_e CoNLL

Results on EECB corpus (Lee et al., 2012)
BGBB R-BGBB BGVB R-BGVB Lee et al.

[Xie et al., 2015]

81

Experiment I: Within document
Coreference

0

10

20

30

40

50

60

70

80

MUC B-CUBE CEAF_e CoNLL

Results on OntoNotes
BGBB R-BGBB BGVB R-BGVB

[Xie et al., 2015]

82

Easy-First Learning as Imitation Learning

 Imitation learning with a non-deterministic oracle policy
multiple good decisions (actions) at a state

Ties are broken with the learned policy (scoring function)

NLP researchers employ imitation learning ideas and call
them “training with exploration”
 Miguel Ballesteros, Yoav Goldberg, Chris Dyer, Noah A. Smith: Training with

Exploration Improves a Greedy Stack-LSTM Parser. CoRR abs/1603.03793
(2016)

 Imitation learning ideas are also employed in training
recurrent neural networks (RNNs) under the name
“scheduled sampling”
 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer: Scheduled Sampling

for Sequence Prediction with Recurrent Neural Networks. NIPS 2015

83

Part 5: Control Knowledge Learning:
Beam Search Methods

84

Beam Search Framework

Given
 Search space definition (ordered or unordered)
 Training examples (input-output pairs)
 Beam width B (>1)

Learning Goal
 Learn a heuristic function to quickly guide the search to the

correct “complete’’ output

Key Idea:
Structured prediction as a search problem in the space of

partial outputs
 Training examples define target paths from initial state to

the goal state (correct structured output)

85

Beam Search Framework: Key Elements
1) Search space; 2) Search procedure; 3) Heuristic function

Represent heuristic function as a linear function
 𝐻𝐻 𝑛𝑛 = 𝑤𝑤 ∙ 𝜓𝜓(𝑛𝑛) , where 𝜓𝜓(𝑛𝑛) stands for features of node 𝑛𝑛

Target node

Non-Target node

86

Beam Search: Illustration

87

Beam Search: Illustration

88

Beam Search: Illustration

89

Beam Search: Illustration

…

90

Beam Search: Illustration

…

91

Beam Search Framework: Inference

Input: learned weights 𝑤𝑤; beam width B;
structured input 𝑥𝑥

repeat
 Perform search with heuristic 𝐻𝐻 𝑛𝑛 = 𝑤𝑤 ∙ 𝜓𝜓(𝑛𝑛)

until reaching a terminal state

Output: the complete output y corresponding
to the terminal state

92

Beam Search Framework:
Generic Learning Template

Three design choices

 How to define the notion of “search error”?

 How to “update the weights” of heuristic function

when a search error is encountered?

 How to “update the beam” after weight update?

93

Beam Search Framework:
Learning Instantiations

 Early update

 Max-violation update

Learning as Search Optimization (LaSO)

[Collins and Roark, 2004]

[Huang et al., 2012]

[Daume et al., 2005], [Xu et al., 2009]

94

Beam Search Framework:
Learning Instantiations

 Early update

 Max-violation update

Learning as Search Optimization (LaSO)

95

Beam Search Framework: Early Update

Search error: NO target node in the beam
We cannot reach the goal node (correct structured output)

Weight update: standard structured perceptron
Score of correct output > score of bad output

Beam update: reset beam with initial state OR
discontinue search

96

Beam Search Framework: Early Update

repeat
For every training example (𝑥𝑥,𝑦𝑦)

Perform search with current heuristic (weights)
 If search error , update weights
Reset beam with initial state
 (Dis)continue search

until convergence or max. iterations

97

Beam Search Framework:
Learning Instantiations

 Early update

 Max-violation update

Learning as Search Optimization (LaSO)

98

Beam Search Framework:
Max-Violation Update

Improves on the drawback of Early update
Slow learning: learns from only earliest mistake

Max-Violation fix
Consider worst-mistake (maximum violation) instead

of earliest-mistake for the weight update
More useful training data
Converges faster than early update

99

POS Tagging: Max-violation vs. Early
vs. Standard

Early and Max-violation >> Standard at small beams
Advantage shrinks as beam size increases
Max-violation converges faster than Early (and slightly

better)
 Beam =2 Best accuracy vs. beam size

Source: Huang et al., 2012

100

Beam Search Framework: LaSO

Search error: NO target node in the beam
We cannot reach the goal node (correct structured output)

Weight update: perceptron update
𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛼𝛼 ∙ (𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))
𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Average features of all target nodes in the

candidate set
𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Average features of all non-target nodes

in the candidate set
 Intuition: increase the score of target nodes and decrease the

score of the non-target nodes

Beam update: reset beam with target nodes in
the candidate set

101

LaSO Training: Illustration














−

∩
×+= ∑∑

∈∩∈

B
vF

CP

vF
ww

ji

CP ji Bv

,

v
*

)()(
,

*

α














−

∩
×+= ∑∑

∈∩∈

B
vF

CP

vF
ww

ji

CP ji Bv

,

v
*

)()(
,

*

α

…

…

An error occurs

An error occurs

Basic Idea: repeatedly conduct search on training examples
update weights when error occurs

solution node
non-solution node

102

Beam Search Framework: LaSO

repeat
For every training example (𝑥𝑥,𝑦𝑦)

Perform search with current heuristic (weights)
 If search error , update weights
Reset beam with target nodes in the candidate set
Continue search

until convergence or max. iterations

103

LaSO Convergence Results

Under certain assumptions, LaSO-BR converges to a
weight vector that solves all training examples in a finite
number of iterations

 Interesting convergence result
Mistake bound depends on the beam width
Formalizes the intuition that learning becomes easier as we

increase the beam width (increase the amount of search)
First formal result of this kind

104

LaSO: Example Planning Results
 Blocksworld
 30 testing problems
 Trained with beam width 10
 Features: RPL heuristic and features induced in prior work

0

5

10

15

20

25

30

1 10 50 100 500

Problems solved Median plan length

0

500

1000

1500

2000

2500

3000

3500

1 10 50 100 500

LaSO-BR10
LEN
LR
U

Beam width Beam width

Source: Xu et al., 2009

105

Part 6: HC-Search: A Unifying
Framework for Cost Function and

Control Knowledge Learning

106

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

107

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

108

HC-Search: A Unifying View

Cost Function Learning Approaches
 Don’t learn search control knowledge

Control Knowledge Learning Approaches
Don’t learn cost functions

HC-Search Learning Framework
 Unifies the above two frameworks and has many advantages
 Without H, degenerates to cost function learning
 Without C, degenerates to control knowledge learning
 Supports learning to improve both speed and accuracy of

structured prediction

109

HC-Search framework: Inspiration

HC-Search Framework

Traditional AI Search for combinatorial optimization
+

Learning

110

HC-Search Framework: Overview

Key Idea:
Generate high-quality candidate outputs by conducting a

time-bounded search guided by a learned heuristic H
Score the candidate outputs using a learned cost function C

to select the least cost output as prediction

Heuristic Learning
 can be done in primitive space (e.g., IJCAI’16 paper on

incremental parsing)
 OR complete output space

IJCAI’16 paper on computing M-Best Modes via Heuristic Search

111

HC-Search framework: Overview

 Key Ingredients:
Define a search space over structured outputs

Learn a cost function 𝑪𝑪 to score potential outputs

Use a search algorithm to find low cost outputs

Learn a heuristic function 𝑯𝑯 to make search efficient

Our approach:

o Structured Prediction as a search process in the
combinatorial space of outputs

112

HC-Search Illustration: Search Space

, praual

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node Nodes = input-output pairs

113

HC-Search Illustration: Cost Function

, praual

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node

0.92

0.88 0.81 0.89 0.85

0.95 0.84 0.91

0.95 0.68 0.83

0.60 0.77

Cost

How bad is a node?

114

HC-Search Illustration: Making Predictions

Assume we have a
good cost function.

How to make predictions?

115

HC-Search Illustration: Greedy Search

, praual root node

116

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

117

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

0.88 0.81 0.89 0.85

Heuristic value

118

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

0.88 0.81 0.89 0.85

119

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

120

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…
0.95 0.84

121

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…
0.95 0.84

122

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

123

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.95 0.68

124

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.95 0.68

125

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

126

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

Set of all outputs generated within time limit

127

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.65 0.56

0.81 0.67 0.76 0.71

0.95

Cost

128

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.65 0.56

0.81 0.67 0.76 0.71

0.95

Best cost output

129

HC-Search Illustration: Greedy Search

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.69 0.71

0.65 0.56

0.81 0.67 0.76 0.71

0.95

𝑦𝑦� = sraucl

Best cost output

130

HC-Search: Properties

Anytime predictions
Stop the search at any point and return the best cost output

Minimal restrictions on the complexity of heuristic and
cost functions
Only needs to be evaluated on complete input-output pairs
Can use higher-order features with negligible overhead

Can optimize non-decomposable loss functions
 e.g., F1 score

Error Analysis: Heuristic error + Cost function error
 engineering methodology guided by the error decomposition

131

HC-Search: Key Learning Challenges

Search Space Design:
How can we automatically define high-quality search

spaces ?

Heuristic Learning:
How can we learn a heuristic function to guide the

search to generate high-quality outputs ?

Cost Function Learning:
How can we learn a cost function to score the

outputs generated by the heuristic function ?

132

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

133

HC-Search: Loss Decomposition

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

134

HC-Search: Loss Decomposition

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

Loss = 0.22

135

HC-Search: Loss Decomposition

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
Best cost output

Loss = 0.22

Minimum loss output
Loss = 0.09

136

HC-Search: Loss Decomposition

Overall loss 𝝐𝝐 = 0.22

Generation loss 𝝐𝝐𝑯𝑯 = 0.09

(Heuristic function)

Selection loss 𝝐𝝐𝑪𝑪 = 0.22 – 0.09

(Cost function)

137

HC-Search: Loss Decomposition

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall
expected loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

𝑪𝑪 𝒙𝒙,𝒚𝒚 = 𝒘𝒘𝒄𝒄 ⋅ 𝝓𝝓𝑯𝑯 𝒙𝒙,𝒚𝒚
𝑯𝑯 𝒙𝒙,𝒚𝒚 = 𝒘𝒘𝑯𝑯 ⋅ 𝝓𝝓𝑪𝑪 𝒙𝒙,𝒚𝒚

138

HC-Search: Learning

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition

Doppa, J.R., Fern, A., Tadepalli, P. HC-Search: A Learning Framework for Search-based Structured Prediction.
Journal of Artificial Intelligence Research (JAIR) 2014.

139

HC-Search: Learning

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: 𝐻𝐻� = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻∈𝑯𝑯 𝜖𝜖𝐻𝐻 (heuristic training)

140

HC-Search: Learning

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: 𝐻𝐻� = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻∈𝑯𝑯 𝜖𝜖𝐻𝐻 (heuristic training)
Step 2: 𝐶̂𝐶 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶∈𝑪𝑪 𝜖𝜖𝐶𝐶|𝐻𝐻� (cost function training)

141

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

142

 HC-Search: Heuristic learning

Learning Objective:
Guide the search quickly towards high-quality (low loss)

outputs

143

HC-Search: Heuristic Learning

Key idea: Imitation of true loss function
Conduct searches on training example using the true loss

function as a heuristic
 (generally is a good way to produce good outputs)

Learn a heuristic function that tries to imitate the observed

search behavior

• Given a search procedure (e.g., greedy search)

144

Greedy Search: Imitation with true loss
, praual

, araual , strual , ptrual , practi

… … …

, struct , struat

…

root node

5

5 2 3 6

1 0

True loss

, strual , struct = 2 Hamming Loss

145

Greedy Search: Imitation with true loss
, praual

, araual , strual , ptrual , practi

… … …

, struct , struat

…

root node

5

5 2 3 6

1 0

True loss

 Generation loss 𝜖𝜖𝐻𝐻∗= 0

146

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

… … …

, strual , araual <

, strual < , ptrual

, strual < , practi

…

5

5 2 3 6

2

2

2

5

3

6

147

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

… … …

, struct , struat

… … …

5

5 2 3 6

1 0

148

Greedy Search: Ranking examples

, praual

, araual , strual , ptrual , practi

… … …

, struct , struat

… … …

, struct , struat <
…

5

5 2 3 6

1 0

0 1

149

HC-Search: Heuristic Function Learning

Rank Learner

Heuristic function 𝑯𝑯�

Ranking examples

Can prove generalization bounds on learned heuristic
 [Doppa et al., 2012]

150

HC-Search: Learning

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

Key idea: Greedy stage-wise minimization guided by
the loss decomposition
Step 1: 𝐻𝐻� = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻∈𝑯𝑯 𝜖𝜖𝐻𝐻 (heuristic training)
Step 2: 𝐶̂𝐶 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶∈𝑪𝑪 𝜖𝜖𝐶𝐶|𝐻𝐻� (cost function training)

151

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

152

HC-Search: Cost Function Learning

Learning Objective:
Correctly score the outputs generated by the heuristic as per

their losses

153

HC-Search: Cost function Learning

Set of all outputs generated by the heuristic 𝑯𝑯�

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…

154

HC-Search: Cost function Learning

Key Idea: Learn to rank the outputs generated by the
learned heuristic function 𝐻𝐻� as per their losses

, praual root node

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

…

, stauaz , staucl

…
0.22 0.29

0.39 0.22

0.81 0.37 0.76 0.71

Loss

0.5

Best loss output

155

HC-Search: Cost function Learning

Create a ranking example between every pair of
outputs (𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑦𝑦) such that: 𝐶𝐶 𝑥𝑥, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 < 𝐶𝐶(𝑥𝑥, 𝑦𝑦)

Learning to Rank:

 <
…

…

…

…

Best loss outputs

Non-best loss outputs

156

HC-Search: Cost function Learning

Rank Learner

Cost function 𝑪𝑪�

Ranking examples

<

<
…

…

<

<

Can borrow generalization bounds from rank-learning literature
[Agarwal and Roth, 2005 & Agarwal and Niyogi, 2009]

157

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

158

 HC-Search: Search Space Design
Objective:
High-quality outputs can be located at small depth

Target depth = 5

159

 HC-Search: Search Space Design

Objective:
High-quality outputs can be located at small depth

Solution #1:
Flipbit Search Space [JMLR, 2014]

Solution #2:
Limited Discrepancy Search (LDS) Space [JMLR, 2014]

Defined in terms of a greedy predictor or policy

Solution #3:
Segmentation Search Space for computer vision tasks [CVPR, 2015]

160

Flip-bit Search Space

, praual

… … …

, araual , sraual , prauat , prauaz

, sraucl , staual

, strucl , stauce

… …

…

, stauaz , staucl

…

… …

…

, pragat

…

, praglt

…

…

…

root node Output of recurrent
classifier

161

Limited Discrepancy Search: Idea
Limited Discrepancy Search [Harvey and Ginsberg, 1995]

 Key idea: correct the response of recurrent classifier at a small no.
of critical errors to produce high-quality outputs

• See IJCAI’16 paper on LDS for AND/OR
search w/ applications to optimization tasks
in graphical models

162

Limited Discrepancy Search: Illustration
Limited Discrepancy Search [Harvey and Ginsberg, 1995]

 Key idea: correct the response of recurrent classifier at a small no.
of critical errors to produce high-quality outputs

163

Limited Discrepancy Search: Illustration
Limited Discrepancy Search [Harvey and Ginsberg, 1995]

 Key idea: correct the response of recurrent classifier at a small no.
of critical errors to produce high-quality outputs

164

LDS Space: Illustration

{ }
, praual

{(1,a)}
, araual

{(1,s)}
, strual

{(2,t)}
, ptrual

{(4,c)}
, practi

… … …

{(1,s),(5,c)}
, struct

{(1,s),(6,t)}
, struat

{(2,t),(1,s)}
, strual

… … … …

{(1,s),(6,t),(5,c)}
, struct

… …

{(2,t),(1,s),(3,i)}
, sticky

root node

165

Quality of LDS Space

Expected target depth

𝑦𝑦∗

𝜖𝜖 𝑇𝑇

I.I.D error

166

Quality of LDS Space

Expected target depth

𝑦𝑦∗

𝜖𝜖 𝑇𝑇

I.I.D error

o We can learn a classifier to optimize the I.I.D error 𝜖𝜖

Doppa, J.R., Fern, A., Tadepalli, P. Structured Prediction via Output Space Search.
Journal of Machine Learning Research (JMLR), vol 15, 2014.

167

Quality of LDS Space

Expected target depth

𝑦𝑦∗

𝜖𝜖 𝑇𝑇

I.I.D error

o We can learn a classifier to optimize the I.I.D error 𝜖𝜖

o Important contribution that helped HC-Search achieve
state-of-the-art results

168

Quality of Search Space: LDS vs. Flip-bit

Expected target depth of a search space

𝑦𝑦∗

𝜖𝜖 𝑇𝑇

𝑦𝑦∗

𝜖𝜖𝑟𝑟𝑇𝑇

LDS space

Flip-bit space
I.I.D error

recurrent error

169

Sparse LDS Space (k)

Complete LDS space is expensive
 each successor state generation requires running greedy

policy with the given discrepancy set
 # successors = 𝐿𝐿.𝑇𝑇, where 𝑇𝑇 is the size of the structured

output and 𝐿𝐿 is the number of labels

Sparse Search Space: Key Idea
Sort discrepancies using recurrent classifier scores and pick

top-𝑘𝑘 choices
 # successors = 𝑘𝑘.𝑇𝑇
Parameter 𝑘𝑘 = # discrepancies for each variable controls the

trade-off between speed and accuracy
 In practice, very small 𝑘𝑘 suffice
How can we deal with dependence on 𝑇𝑇?

170

Aside: Very simple HC-Search Instantiation

Heuristic function
Greedy recurrent classifier (or policy)

Search procedure
Depth-first or Breadth-first Limited Discrepancy Search w/

bounded depth

Cost function
Score the outputs generated by search procedure

171

Computer Vision Tasks:
Randomized Segmentation Space [Lam et al., 2015]

Key Idea: probabilistically sample likely object
configurations in the image from a hierarchical
segmentation tree

Segmentation selection

Candidate generation

172

Pre-requisite: Hierarchical Segmentation Tree
Berkeley segmentation tree
Regions are very robust
Regions are closed
UCM level 0 corresponds to all super-pixels

UCM
0.0

UCM
1.0

UCM
0.5

(not to scale)

173

Randomized Segmentation Space:
Segmentation Selection

UCM 0.0

UCM 1.0

UCM 0.5

(not to scale)

Randomly pick threshold

𝜃𝜃~𝑈𝑈(0,1)
to select a segmentation

from Berkeley
Segmentation Algorithm

174

Randomized Segmentation Space:
Candidate Generation

For each segment, give it a label (based on
segment’s current labels and neighboring
segment labels) and add it to the candidate set

175

Randomized Segmentation Space:
Candidate Generation

For each segment, give it a label (based on
segment’s current labels and neighboring
segment labels) and add it to the candidate set

176

Randomized Segmentation Space:
Candidate Generation

For each segment, give it a label (based on
segment’s current labels and neighboring
segment labels) and add it to the candidate set

…etc…

177

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

178

Benchmark Domains

Handwriting recognition [Taskar et al., 2003]
 HW-Small and HW-Large

NET-Talk [Sejnowski and Rosenberg, 1987]
 Stress and Phoneme prediction

Scene labeling [Vogel et al., 2007]

𝑥𝑥 = 𝑦𝑦 =

s t r u c t u r e d 𝑥𝑥 = 𝑦𝑦 =

“photograph” /f-Ot@graf-/ 𝑥𝑥 = 𝑦𝑦 =

179

Experimental Setup

 Search space: LDS space

 Search procedure: Greedy search

 Time bound: 15 steps for sequences and 150 for scene labeling

 Loss function: Hamming loss

 Baselines
 Recurrent
 CRFs
 SVM-Struct
 SEARN
 CASCADES
 C-Search

180

Results: comparison to state-of-the-art

Error-rates of different structured prediction algorithms

HW-Small HW-Large Phoneme Scene labeling

HC-Search 12.81 03.23 16.05 19.71

C-Search 17.41 07.41 20.91 27.05
CRF 19.97 13.11 21.09 -

SVM-Struct 19.64 12.49 21.70 -
Recurrent 34.33 25.13 26.42 43.36

SEARN 17.88 09.42 22.74 37.69
CASCADES 13.02 03.22 17.41 -

181

Results: comparison to state-of-the-art

Error-rates of different structured prediction algorithms

HW-Small HW-Large Phoneme Scene labeling

HC-Search 12.81 03.23 16.05 19.71

C-Search 17.41 07.41 20.91 27.05
CRF 19.97 13.11 21.09 -

SVM-Struct 19.64 12.49 21.70 -
Recurrent 34.33 25.13 26.42 43.36

SEARN 17.88 09.42 22.74 37.69
CASCADES 13.02 03.22 17.41 -

182

Results: comparison to state-of-the-art

Error-rates of different structured prediction algorithms

HW-Small HW-Large Phoneme Scene labeling

HC-Search 12.81 03.23 16.05 19.71

C-Search 17.41 07.41 20.91 27.05
CRF 19.97 13.11 21.09 -

SVM-Struct 19.64 12.49 21.70 -
Recurrent 34.33 25.13 26.42 43.36

SEARN 17.88 09.42 22.74 37.69
CASCADES 13.02 03.22 17.41 -

 HC-Search outperforms all the other algorithms including C-
Search (our prior approach that uses a single function C to serve
the dual roles of heuristic and cost function)

183

Results: Loss Decomposition Analysis

𝝐𝝐 = 𝝐𝝐𝑯𝑯 + 𝝐𝝐𝑪𝑪|𝑯𝑯

 Overall
expected loss

Generation loss
(Heuristic function)

Selection loss
(Cost function)

184

Results: Loss decomposition analysis

Phoneme Scene labeling

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻

HC-Search 16.05 03.98 12.07 19.71 5.82 13.89

185

Results: Loss decomposition analysis

Phoneme Scene labeling

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻

HC-Search 16.05 03.98 12.07 19.71 5.82 13.89

 Selection loss 𝝐𝝐𝑪𝑪|𝑯𝑯 contributes more to the overall loss

186

Results: Loss decomposition analysis

Phoneme Scene labeling

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89

C-Search 20.91 04.38 16.53 27.05 07.83 19.22

187

Results: Loss decomposition analysis

Phoneme Scene labeling

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89

C-Search 20.91 04.38 16.53 27.05 07.83 19.22

 Improvement of HC-Search over C-Search is due to the
improvement in the selection loss

188

Results: Loss decomposition analysis

Phoneme Scene labeling

ERROR 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻 𝜖𝜖 𝜖𝜖𝐻𝐻 𝜖𝜖𝐶𝐶|𝐻𝐻

HC-Search 16.05 03.98 12.07 19.71 05.82 13.89

C-Search 20.91 04.38 16.53 27.05 07.83 19.22

 Improvement of HC-Search over C-Search is due to the
improvement in the selection loss

 Clearly shows the advantage of separating the roles of
heuristic and cost function

189

Multi-Label Prediction: Problem

Input Output

1

1

1

0
0

0

…

…

sky

water

sand

computer
chair

mountains

190

Multi-Label Prediction: Problem

Commonly arises in various domains

 Biology – predict functional classes of a protein/gene

 Text – predict email tags or document classes

 …

191

Multi-Label Prediction: Challenges

Input Output

1

1

1

0
0

0

…

…

sky

water

sand

computer
chair

mountains

o Joint prediction of labels to exploit the relationships between labels

o Automatically optimize the evaluation measure of the real-world task

192

Multi-Label Prediction

Benchmark data

Dataset Domain #TR #TS #F #L 𝑬𝑬[𝒅𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15

193

Multi-Label Prediction

Benchmark data

Dataset Domain #TR #TS #F #L 𝑬𝑬[𝒅𝒅]

Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86

Medical text 333 645 1449 45 1.24

Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23

Enron text 1123 579 1001 53 3.37

LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 2.15

Label vectors are highly sparse

194

Multi-Label Prediction via HC-Search

HC-Search
 Exploit the sparsity property (Null vector + flip bits)

𝑥𝑥 , y = 000000 root node

𝑥𝑥 , y = 100000 𝑥𝑥 , y = 001000 𝑥𝑥 , y = 000001

… …

𝑥𝑥 , y = 101000 𝑥𝑥 , y = 001001

…

𝑥𝑥 , y = 111000 𝑥𝑥 , y = 101100 𝑥𝑥 , y = 001011

… …

195

Multi-Label Prediction: Results
 F1 Accuracy Results

Algorithm Scene Emotions Medical Genbase Yeast Enron LLog Slashdot

BR 52.60 60.20 63.90 98.70 63.20 53.90 36.00 46.20

CC 59.10 57.50 64.00 99.40 63.20 53.30 26.50 44.90

ECC 68.00 62.60 65.30 99.40 64.60 59.10 32.20 50.20

M2CC 68.20 63.20 65.40 99.40 64.90 59.10 32.30 50.30

CLR 62.20 66.30 66.20 70.70 63.80 56.50 22.70 46.60

CDN 63.20 61.40 68.90 97.80 64.00 58.50 36.60 53.10

CCA 66.43 63.27 49.60 98.60 61.64 53.83 25.80 48.00

PIR 74.45 60.92 80.17 99.41 65.47 61.14 38.95 57.55

SML 68.50 64.32 68.34 99.62 64.32 57.46 34.95 55.73

RML 74.17 64.83 80.73 98.80 63.18 57.79 35.97 51.30

DecL 73.76 65.29 78.02 97.89 63.46 61.19 37.52 54.67

HC-Search 75.89 66.17 78.19 98.12 63.78 62.34 39.76 57.98

Doppa, J.R., Yu, J., Ma C., Fern, A., Tadepalli, P. HC-Search for Multi-Label Prediction: An
Empirical Study. American Association of Artificial Intelligence (AAAI) Conference 2014.

196

Detecting Basal Tubules of Nematocysts

o Imaged against significant background clutter (unavoidable)

o Biological objects have highly-deformable parts

Challenges:

197

Detecting Basal Tubules of Nematocysts

Experimental Setup
80 images (training); 20 images (validation); 30 images (testing)

864

1024

32

32

o Patch labels

Patch

“0” Background

“1” Basal tubule

198

Detecting Basal Tubules of Nematocysts

Baselines
 IID Classifier
 Pairwise CRFs (w/ ICM, LBP, Graph-cuts)

HC-Search
 Flipbit space (IID classifier + flip patch labels)
 Randomized Segmentation space

199

Basal Tubule Detection Results

Algorithm Precision Recall F1

SVM 0.675 0.147 0.241
Logistic Regression 0.605 0.129 0.213

200

Basal Tubule Detection Results

Algorithm Precision Recall F1

SVM 0.675 0.147 0.241
Logistic Regression 0.605 0.129 0.213

Pairwise CRF (w/ ICM) 0.432 0.360 0.393
Pairwise CRF (w/ LBP) 0.545 0.091 0.156
Pairwise CRF (w/ GC) 0.537 0.070 0.124

201

Basal Tubule Detection Results

Algorithm Precision Recall F1

SVM 0.675 0.147 0.241
Logistic Regression 0.605 0.129 0.213

Pairwise CRF (w/ ICM) 0.432 0.360 0.393
Pairwise CRF (w/ LBP) 0.545 0.091 0.156
Pairwise CRF (w/ GC) 0.537 0.070 0.124

HC-Search (w/ Flipbit) 0.472 0.545 0.506

Lam, M., Doppa, J.R., Xu, S.H., Todorovic, S., Dietterich, T.G., Reft, A., Daly, M. Learning to Detect Basal Tubules
of Nematocysts in SEM Images. IEEE Workshop on Computer Vision for Accelerated Biosciences (CVAB) 2013.

202

Basal Tubule Detection Results

Algorithm Precision Recall F1

SVM 0.675 0.147 0.241
Logistic Regression 0.605 0.129 0.213

Pairwise CRF (w/ ICM) 0.432 0.360 0.393
Pairwise CRF (w/ LBP) 0.545 0.091 0.156
Pairwise CRF (w/ GC) 0.537 0.070 0.124

HC-Search (w/ Flipbit) 0.379 0.603 0.465
HC-Search (w/ Randomized) 0.831 0.651 0.729

Lam, M., Doppa, J.R., Todorovic, S., Dietterich, T.G. HC-Search for Structured Prediction in Computer
Vision. IEEE International Conference on Computer Vision (CVPR) 2015.

203

Basal Tubule Detection Results

o HC-Search significantly outperforms all the other algorithms

o Performance critically depends on the quality of the search space

Algorithm Precision Recall F1

SVM 0.675 0.147 0.241
Logistic Regression 0.605 0.129 0.213

Pairwise CRF (w/ ICM) 0.432 0.360 0.393
Pairwise CRF (w/ LBP) 0.545 0.091 0.156
Pairwise CRF (w/ GC) 0.537 0.070 0.124

HC-Search (w/ Flipbit) 0.379 0.603 0.465
HC-Search (w/ Randomized) 0.831 0.651 0.729

204

Basal Tubule Detection Results
 Visual results:

HC-Search Ground-truth output

CRF w/ Graph cuts CRF w/ LBP

205

Results: Stanford Background Dataset

 HC-Search without using features from deep learning

Method Accuracy (%)
Region Energy 76.4
SHL 76.9
RNN 78.1
ConvNet 78.8
ConvNet + NN 80.4
ConvNet + CRF 81.4
Pylon (No Bnd) 81.3
Pylon 81.9
HC-Search (w/ Randomized) 81.4

Benchmark for scene labeling in vision community

206

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

207

Engineering Methodology

Select a time-bounded search architecture
 High-quality search space (e.g., LDS space or its variant)
 Search procedure
 Time bound
 Effectiveness can be measured by performing LL-Search (loss

function as both heuristic and cost function)

Training and Debugging
 Overall error = generation error (heuristic) + selection error

(cost function)
 Take necessary steps to improve the appropriate error guided

by the decomposition

208

 Outline of HC-Search Framework
Introduction
Unifying view and high-level overview

Learning Algorithms
 Heuristic learning
 Cost function learning

Search Space Design

Experiments and Results

Engineering Methodology for applying HC-Search

Relation to Alternate Methods

209

HC-Search vs. CRF/SSVM

 Inference in CRF/SSVM
 Cost function needs to score exponential no. of outputs

 Inference in HC-Search
 Cost function needs to score only the outputs generated

by the search procedure guided by heuristic 𝐻𝐻

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝒊𝒊𝒊𝒊
 𝒚𝒚 ∈ 𝒀𝒀(𝒙𝒙)

 𝑪𝑪(𝒙𝒙,𝒚𝒚)

 F(x) = 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝒊𝒊𝒊𝒊
 𝒚𝒚 ∈ 𝒀𝒀𝑯𝑯(𝒙𝒙)

 𝑪𝑪(𝒙𝒙,𝒚𝒚)

210

HC-Search vs. Re-Ranking Algorithms

Re-Ranking Approaches
 k-best list from a generative model
Michael Collins: Ranking Algorithms for Named Entity Extraction: Boosting and the Voted
Perceptron. ACL 2002: 489-496

 Diverse M-best modes of a probabilistic model
Payman Yadollahpour, Dhruv Batra, Gregory Shakhnarovich: Discriminative Re-ranking of
Diverse Segmentations. CVPR 2013: 1923-1930

No guarantees on the quality of generated candidate set

HC-Search
 Candidate set is generated via generic search in high-quality

search spaces guided by the learned heuristic
 Minimal restrictions on the representation of heuristic
 PAC guarantees on the quality of candidate set

211

HC-Search: A “Divide-and-Conquer” Solution

HC-Search is a “Divide-and-Conquer’’ solution
with procedural knowledge injected into it

 All components have clearly pre-defined roles

 Every component is contributing towards the

overall goal by making the role of other components
easier

212

HC-Search: A “Divide-and-Conquer” Solution

Every component is contributing towards the overall
goal by making the role of other components easier

 LDS space leverages greedy classifiers to reduce the target

depth to make the heuristic learning easier

 Heuristic tries to make the cost function learning easier by
generating high-quality outputs with as little search as possible

213

Part 7: Future Directions

214

Future Directions

Design and optimization of search spaces for complex
structured prediction problems
very under-studied problem

Leveraging deep learning advances to improve the
performance of structured prediction approaches
Loose vs. tight integration

Learning to trade-off speed and accuracy of structured
prediction
Active research topic, but relatively less work

What architectures are more suitable for “Anytime”
predictions? How to learn for anytime prediction?

215

Future Directions

Theoretical analysis: sample complexity and
generalization bounds
Lot of room for this line of work in the context of “learning” +

“search” approaches

Understanding and analyzing structured predictors in the
context of integrated applications
 Pipelines in NLP and Vision among others

216

Important References
 Classifier-based structured Prediction

 Recurrent classifier:
Thomas G. Dietterich, Hermann Hild, Ghulum Bakiri: A Comparison of ID3 and Backpropagation for English Text-
to-Speech Mapping. Machine Learning 18(1): 51-80 (1995)

 PAC Results and Error Propagation:
Roni Khardon: Learning to Take Actions. Machine Learning 35(1): 57-90 (1999)
Alan Fern, Sung Wook Yoon, Robert Givan: Approximate Policy Iteration with a Policy Language Bias: Solving
Relational Markov Decision Processes. J. Artif. Intell. Res. (JAIR) 25: 75-118 (2006)
Umar Syed, Robert E. Schapire: A Reduction from Apprenticeship Learning to Classification. NIPS 2010
Stéphane Ross, Drew Bagnell: Efficient Reductions for Imitation Learning. AISTATS 2010: 661-668

 Advanced Imitation Learning Algorithms:
SEARN: Hal Daumé III, John Langford, Daniel Marcu: Search-based structured prediction. Machine Learning
75(3): 297-325 (2009)
DAgger: Stéphane Ross, Geoffrey J. Gordon, Drew Bagnell: A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning. AISTATS 2011: 627-635
AggreVaTe: Stéphane Ross, J. Andrew Bagnell: Reinforcement and Imitation Learning via Interactive No-Regret
Learning. CoRR abs/1406.5979 (2014)
LOLS: Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, John Langford: Learning to Search
Better than Your Teacher. ICML 2015: 2058-2066
Yuehua Xu, Alan Fern, Sung Wook Yoon: Iterative Learning of Weighted Rule Sets for Greedy Search. ICAPS
2010: 201-208
Alan Fern, Sung Wook Yoon, Robert Givan: Approximate Policy Iteration with a Policy Language Bias: Solving
Relational Markov Decision Processes. J. Artif. Intell. Res. (JAIR) 25: 75-118 (2006)

217

Important References
 Easy-first approach for structured Prediction

Yoav Goldberg, Michael Elhadad: An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing.
HLT-NAACL 2010
Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nate Chambers, Mihai Surdeanu, Dan Jurafsky,
Christopher D. Manning: A Multi-Pass Sieve for Coreference Resolution. EMNLP 2010
Lev-Arie Ratinov, Dan Roth: Learning-based Multi-Sieve Co-reference Resolution with Knowledge. EMNLP-
CoNLL 2012
Veselin Stoyanov, Jason Eisner: Easy-first Coreference Resolution. COLING 2012
Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Z. Fern, Thomas G. Dietterich, Prasad
Tadepalli: Learning Greedy Policies for the Easy-First Framework. AAAI 2015

 Learning Beam search heuristics for structured prediction
Michael Collins, Brian Roark: Incremental Parsing with the Perceptron Algorithm. ACL 2004
Hal Daumé III, Daniel Marcu: Learning as search optimization: approximate large margin methods for structured
prediction. ICML 2005
Yuehua Xu, Alan Fern, Sung Wook Yoon: Learning Linear Ranking Functions for Beam Search with Application to
Planning. Journal of Machine Learning Research 10: 1571-1610 (2009)
Liang Huang, Suphan Fayong, Yang Guo: Structured Perceptron with Inexact Search. HLT-NAACL 2012

218

Important References

 HC-Search Framework for structured Prediction
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli: HC-Search: A Learning Framework for Search-based
Structured Prediction. J. Artif. Intell. Res. (JAIR) 50: 369-407 (2014)
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli: Structured prediction via output space search. Journal of
Machine Learning Research 15(1): 1317-1350 (2014)
Janardhan Rao Doppa, Jun Yu, Chao Ma, Alan Fern, Prasad Tadepalli: HC-Search for Multi-Label Prediction: An
Empirical Study. AAAI 2014
Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, Thomas G. Dietterich: HC-Search for structured
prediction in computer vision. CVPR 2015

	Slide Number 1
	Part 1: Introduction
	Introduction
	Natural Language Processing Examples
	NLP Examples: POS Tagging and Parsing
	NLP Examples: Coreference and Translation
	Examples of Bad Prediction
	Computer Vision Examples
	Scene Labeling
	Biological Image Analysis
	The OSU Digital Scout Project
	Multi-Object Tracking in Videos
	Automated Planning
	Planning
	Common Theme
	Classification to Structured Prediction
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Part 2: Cost Function Learning Framework and Argmin Inference Challenge
	Cost Function Learning Approaches: Inspiration
	Cost Function Learning: Approaches
	Cost Function Learning: Approaches
	Key challenge: “Argmin” Inference
	Key challenge: “Argmin” Inference
	Key challenge: “Argmin” Inference
	Cost Function Learning: Key Elements
	Cost Function Learning: Generic Template
	Expensive Training Process
	Cost Function Learning: �“Exact” vs. “Approximate” Inference Solver
	Focus of Tutorial
	Part 3: A Brief Overview of Search Concepts
	Combinatorial Search: Key Concepts
	Search Space Definition
	(Ordered) Search Space: Example
	Search Procedure
	Informed Search Procedures
	Best-First Search Style Algorithms
	Best-First Search Style Algorithms
	Search Control Knowledge
	Part 4: Control Knowledge Learning Framework: Greedy Methods
	Greedy Control Knowledge Learning
	Ordered vs. Unordered Search Space
	Classifier-based Structured Prediction
	Classifier-based Structured Prediction
	Aside: Reductions in Machine Learning
	Imitation Learning Approach
	Exact Imitation: Classification examples
	Exact Imitation: Classifier Learning
	Learned Recurrent Classifier: Illustration
	Recurrent Error
	Addressing Error Propagation
	DAgger Algorithm [Ross et al., 2011]
	DAgger for Handwriting Recognition
	Ordered vs. Unordered Search Space
	Easy-First Approach for Structured Prediction
	Easy-First Approach: Motivation
	Example: Cross-Document Coreference
	Example: Cross-Document Coreference
	Easy-First Approach: Overview
	Applications of Easy-First
	Easy-First Approach: Key Elements
	Easy-First Approach: Key Elements
	Easy-First Approach: Key Elements
	Easy-First Approach: Key Elements
	Easy-First Approach: Key Elements
	Easy-First Approach: Key Elements
	Scoring Function Learning
	Alternate Methods
	Optimization Objective for Update
	Optimization: Majorization-Minimization [Xie et al., 2015]
	Contrast with Alternate Methods
	Experiment I: Cross-document entity and event Coreference
	Experiment I: Within document Coreference
	Easy-First Learning as Imitation Learning
	Part 5: Control Knowledge Learning: Beam Search Methods
	Beam Search Framework
	Beam Search Framework: Key Elements
	Beam Search: Illustration
	Beam Search: Illustration
	Beam Search: Illustration
	Beam Search: Illustration
	Beam Search: Illustration
	Beam Search Framework: Inference
	Beam Search Framework: Generic Learning Template
	Beam Search Framework: Learning Instantiations
	Beam Search Framework: Learning Instantiations
	Beam Search Framework: Early Update
	Beam Search Framework: Early Update
	Beam Search Framework: Learning Instantiations
	Beam Search Framework: Max-Violation Update
	POS Tagging: Max-violation vs. Early vs. Standard
	Beam Search Framework: LaSO
	LaSO Training: Illustration
	Beam Search Framework: LaSO
	LaSO Convergence Results
	LaSO: Example Planning Results
	Part 6: HC-Search: A Unifying Framework for Cost Function and Control Knowledge Learning
	 Outline of HC-Search Framework
	 Outline of HC-Search Framework
	HC-Search: A Unifying View
	HC-Search framework: Inspiration
	HC-Search Framework: Overview
	HC-Search framework: Overview
	HC-Search Illustration: Search Space
	HC-Search Illustration: Cost Function
	HC-Search Illustration: Making Predictions
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search Illustration: Greedy Search
	HC-Search: Properties
	HC-Search: Key Learning Challenges
	 Outline of HC-Search Framework
	HC-Search: Loss Decomposition
	HC-Search: Loss Decomposition
	HC-Search: Loss Decomposition
	HC-Search: Loss Decomposition
	HC-Search: Loss Decomposition
	HC-Search: Learning
	HC-Search: Learning
	HC-Search: Learning
	 Outline of HC-Search Framework
	 HC-Search: Heuristic learning
	HC-Search: Heuristic Learning
	Greedy Search: Imitation with true loss
	Greedy Search: Imitation with true loss
	Greedy Search: Ranking examples
	Greedy Search: Ranking examples
	Greedy Search: Ranking examples
	HC-Search: Heuristic Function Learning
	HC-Search: Learning
	 Outline of HC-Search Framework
	HC-Search: Cost Function Learning
	HC-Search: Cost function Learning
	HC-Search: Cost function Learning
	HC-Search: Cost function Learning
	HC-Search: Cost function Learning
	 Outline of HC-Search Framework
	 HC-Search: Search Space Design
	 HC-Search: Search Space Design
	Flip-bit Search Space
	Limited Discrepancy Search: Idea
	Limited Discrepancy Search: Illustration
	Limited Discrepancy Search: Illustration
	LDS Space: Illustration
	Quality of LDS Space
	Quality of LDS Space
	Quality of LDS Space
	Quality of Search Space: LDS vs. Flip-bit
	Sparse LDS Space (k)
	Aside: Very simple HC-Search Instantiation
	Computer Vision Tasks: �Randomized Segmentation Space [Lam et al., 2015]
	Pre-requisite: Hierarchical Segmentation Tree
	Randomized Segmentation Space: Segmentation Selection
	Randomized Segmentation Space: Candidate Generation
	Randomized Segmentation Space: Candidate Generation
	Randomized Segmentation Space: Candidate Generation
	 Outline of HC-Search Framework
	Benchmark Domains
	Experimental Setup
	Results: comparison to state-of-the-art
	Results: comparison to state-of-the-art
	Results: comparison to state-of-the-art
	Results: Loss Decomposition Analysis
	Results: Loss decomposition analysis
	Results: Loss decomposition analysis
	Results: Loss decomposition analysis
	Results: Loss decomposition analysis
	Results: Loss decomposition analysis
	Multi-Label Prediction: Problem
	Multi-Label Prediction: Problem
	Multi-Label Prediction: Challenges
	Multi-Label Prediction
	Multi-Label Prediction
	Multi-Label Prediction via HC-Search
	Multi-Label Prediction: Results
	Detecting Basal Tubules of Nematocysts�
	Detecting Basal Tubules of Nematocysts
	Detecting Basal Tubules of Nematocysts
	Basal Tubule Detection Results
	Basal Tubule Detection Results
	Basal Tubule Detection Results
	Basal Tubule Detection Results
	Basal Tubule Detection Results
	Basal Tubule Detection Results
	Results: Stanford Background Dataset
	 Outline of HC-Search Framework
	Engineering Methodology
	 Outline of HC-Search Framework
	HC-Search vs. CRF/SSVM
	HC-Search vs. Re-Ranking Algorithms
	HC-Search: A “Divide-and-Conquer” Solution
	HC-Search: A “Divide-and-Conquer” Solution
	Part 7: Future Directions
	Future Directions
	Future Directions
	Important References
	Important References
	Important References

