
NEW DIRECTIONS IN ROBUST TIME-SERIES MACHINE LEARNING:

THEORY, ALGORITHMS, AND APPLICATIONS

By

TAHA BELKHOUJA

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2024

© Copyright by TAHA BELKHOUJA, 2024
All Rights Reserved

© Copyright by TAHA BELKHOUJA, 2024
All Rights Reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of TAHA BELKHOUJA

find it satisfactory and recommend that it be accepted.

Janardhan Rao Doppa, Ph.D., Chair

Yan Yan, Ph.D.

Diane J. Cook, Ph.D.

Ganapati Bhat, Ph.D.

ii

ACKNOWLEDGMENT

This work wouldn’t have been accomplished if not for a lot of guidance, assistance, and

inspiration from many people to whom I am eternally grateful, and I would like to express

my gratitude:

First and foremost, I would like to express my deepest gratitude to Prof. Jana Doppa,

who has played a vital role in making this journey possible since Day one. From the beginning

of my journey as a PhD student, Prof. Doppa helped me grow so much as a scientist and

the critical thinker I am now, and always pushed me to aim higher. Without his guidance,

continuous support and dedicated involvement, this work would not have been printed on

this manuscript you are reading. His uncompromising support has been a guiding light,

especially during times when I had my doubts about myself and my work. During the many

moments of uncertainty, he always allowed me the time to take a deep breath and address

any issues, all this while ensuring I kept a positive outlook.

Secondly, I want to express my gratitude to the excellent collaborators I was fortunate

to work with. Prof. Ganapti Bhat was an exemplary collaborator. I am especially grateful

for the generous time and expertise he shared with me while I was working on investigating

the real-world impact of my work. I have enjoyed working with him and with Dina Hussein

on the different challenges of the Human Activity Recognition area. To Prof. Yan Yan,

thank you for contributing to my professional growth and continuous support to develop the

theoretical side of my research. To Prof. Diane Cook, thank you for the insightful critiques

that have shaped my research growth. Your insightful questions and constructive feedback

have been instrumental in strengthening my dissertation.

My gratitude extends to my cherished friends and labmates, some of whom have shaped

my time at Washington State University. Aryan Deshwal, thank you for your critical support

and thoughtful insights and for being the humble, brilliant man you are. Alaleh Ahmadian

and Iman Mirzadeh, your friendship and support throughout my time at WSU have made it

iii

the amazing experience I have now in my memory. Syrine, my partner, my family, and my

labmate, words cannot express my gratitude and appreciation for your tremendous support.

Finally, to my family, my pillars of strength, I owe an immeasurable debt of gratitude.

iv

NEW DIRECTIONS IN ROBUST TIME-SERIES MACHINE LEARNING:

THEORY, ALGORITHMS, AND APPLICATIONS

Abstract

by Taha Belkhouja, Ph.D.
Washington State University

May 2024

Chair: Janardhan Rao Doppa

Despite the rapid progress in research on the robustness of deep neural networks (DNNs)

for images and text, there is little principled work for the time-series domain. Since time-

series data arises in diverse applications, including mobile health, finance, and smart grid,

it is important to verify and improve the robustness of DNNs for the time-series domain.

Safe deployment of time-series DNNs for real-world applications relies on their ability to

be resilient against natural/adversarial perturbations and anomalous inputs that may affect

their predictive performance. This dissertation studies the design of robust machine learning

(ML) algorithms that aim to minimize both the risk and uncertainty of wrongful decisions

made by time-series-based ML systems from both theoretical and algorithmic perspectives.

First, we investigate the robustness against adversarial time-series inputs. Adversarial exam-

ples were shown to be successful in exposing fundamental blind spots in ML models. While

adversarial examples expose how to break the models, the process of creating adversarial

examples can itself improve the robustness of ML models by adding them to the training

set. The time-series modality poses unique challenges for studying adversarial robustness

that are not seen in images and text. The key challenge is how to assess the similarity in the

time-series input space to efficiently create valid time-series adversarial examples. Second,

we investigate the challenge of Out-of-Distribution (OOD) detection, where the ML system

is required to identify time-series inputs that do not follow the distribution of training data.

This is a critical task as deep models often make predictions that are very confident yet

incorrect on such examples. Detecting OOD examples is challenging, and the potential risks

are high for sensitive applications. The key challenge for time-series inputs is how to identify

the features that improve the separability between OOD examples and training examples.

Motivated by these goals, this dissertation proposes and evaluates a suite of novel solu-

tions to push the frontiers of robust time-series ML: 1) The practical threats of adversarial

examples to time-series ML systems; 2) The use of constraints on statistical features of the

time-series data to construct adversarial examples, and providing formal robustness certifi-

cates for time-series data; 3) The use of elastic measures such as Dynamic Time Warping

to quantify the similarity between time-series examples and developing theoretically-sound

algorithms to efficiently construct valid adversarial examples, and to train robust ML models

by explicitly solving a min-max optimization problem; 4) Adapting and applying the devel-

oped algorithms to real-world applications including wearable sensors enabled ML systems

for healthcare to handle both natural perturbations and missing sensor data; and 5) A novel

OOD detection algorithm based on deep generative models for the time-series domain and

explain why prior OOD methods from the other domains perform poorly.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . iii

ABSTRACT . v

LIST OF TABLES . xiii

LIST OF FIGURES . xv

CHAPTERS

CHAPTER ONE: INTRODUCTION . 1

1.1 Summary of Dissertation Research . 5

1.2 Summary of Technical Contributions . 6

1.3 Outline of the Thesis . 8

CHAPTER TWO: PROBLEM SETUP AND RELATED WORK 11

2.1 Background and Related Work . 12

2.2 Evaluation Protocol . 20

CHAPTER THREE: ANALYZING DEEP LEARNING FOR TIME-SERIES DATA
THROUGH ADVERSARIAL LENS IN MOBILE AND IOT APPLICATIONS . . . 22

3.1 Problem Setup . 23

3.2 MTS-AdLens: Multivariate Time-Series Adversarial Lens Framework . . . 26

3.2.1 Unconstrained Black-box Attacks 27

3.2.2 Real-world Constraints in IoT and Mobile Systems 28

3.2.3 Practical Attacks via Critical Channels Analysis 30

3.2.4 Adversarial Defense via Dynamic Ensembles 32

3.3 Experimental Results . 34

vii

Page

3.3.1 Experimental Setup . 34

3.3.2 Results for Unconstrained Black-Box Attacks 36

3.3.3 Results for Practical Attacks within Constraints 37

3.3.4 Results for Defense Mechanisms 40

3.3.5 Summary of Experimental Findings 44

3.4 Summary . 45

CHAPTER FOUR: ADVERSARIAL FRAMEWORK WITH CERTIFIED ROBUST-
NESS FOR TIME-SERIES DOMAIN VIA STATISTICAL FEATURES 46

4.1 Challenges for time-series domain. 48

4.2 The TSA-STAT Framework . 48

4.2.1 Key Elements . 49

4.2.2 Instantiations of TSA-STAT . 52

4.3 Certified Bounds for Adversarial Robustness of TSA-STAT 54

4.4 Experiments and Results . 60

4.4.1 Experimental Setup . 60

4.4.2 Selection of Statistical Features and Polynomial Transformation . 63

4.4.3 Results and Discussion . 65

4.4.4 Summary of Key Experimental Findings 74

4.5 Summary . 76

CHAPTER FIVE: DYNAMIC TIME WARPING BASED ADVERSARIAL FRAME-
WORK FOR TIME-SERIES DOMAIN . 77

5.1 Background and problem setup . 79

5.2 Dynamic Time Warping based Adversarial Robustness framework 81

viii

5.2.1 Effectiveness of DTW measure measure 82

5.2.2 Naive optimization based formulation and challenges to create ad-
versarial examples . 85

5.2.3 Theoretical justification for stochastic alignment 88

5.3 Experiments and Results . 94

5.3.1 Experimental setup . 94

5.3.2 Results and Discussion . 97

5.3.3 Summary of Experimental Results 110

5.4 Summary . 111

CHAPTER SIX: MIN-MAX OPTIMIZATION FOR TRAINING ROBUST DEEP
MODELS FOR TIME-SERIES DOMAIN 112

6.1 Background and Problem Setup . 113

6.2 RO-TS Algorithmic Framework . 116

6.2.1 Distance Measure for Time-Series 116

6.2.2 SCAGDA Optimization Algorithm 118

6.3 Theoretical Analysis . 122

6.3.1 Main Results . 124

6.4 Experiments and Results . 126

6.4.1 Experimental Setup . 126

6.4.2 Results and Discussion . 127

6.5 Summary . 132

CHAPTER SEVEN: OUT-OF-DISTRIBUTION DETECTION IN TIME-SERIES DO-
MAIN: A SEASONAL RATIO SCORING APPROACH 133

7.1 Background and Problem Setup . 134

7.2 Seasonal Ratio Scoring Approach for OOD Detection 137

ix

7.2.1 Intuition for Seasonal Ratio Score 138

7.2.2 OOD Detection Approach . 142

7.2.3 Alignment method for improving the accuracy of SRS algorithm . 145

7.3 Experiments and Results . 147

7.3.1 Experimental Setup . 148

7.3.2 Results and Discussion . 154

7.4 Summary . 161

CHAPTER EIGHT: ALGORITHMS AND THEORETICAL GUARANTEES FOR
RELIABLE MACHINE LEARNING FOR WEARABLE ACTIVITY MONITORING 162

8.1 Background and Problem Setup . 165

8.1.1 Human Activity Recognition Preliminaries 165

8.1.2 Sensor Disturbances in HAR . 166

8.1.3 Problem Setup . 167

8.2 HAR Related Work . 168

8.3 Statistical Optimization Approach . 170

8.3.1 Statistical Optimization Algorithm 171

8.3.2 Theoretical Analysis . 174

8.4 Experiments and Results . 176

8.4.1 Experimental Setup . 176

8.4.2 Baseline Methods for Comparison 178

8.4.3 Baseline Data Augmentation Method 179

8.4.4 Evaluation of StatOpt-based Training Data 179

8.4.5 Accuracy Analysis of the Reliable Classifier 182

8.4.6 Generalization beyond Deep Classifiers 185

x

8.4.7 Implementation Overhead . 185

8.5 Summary . 186

CHAPTER NINE: SEARCH-BASED APPROACH FOR ENERGY-EFFICIENT MISS-
ING DATA RECOVERY IN WEARABLE DEVICES 188

9.1 Background and Problem Setup . 190

9.1.1 Wearable Devices Preliminaries . 190

9.1.2 Missing Sensor Data and Imputation Challenges 191

9.1.3 Problem Setup . 192

9.2 HAR Related Work . 193

9.3 Search based Accuracy-Preserving Imputation 194

9.3.1 Search Algorithm for Accuracy-Preserving Imputation 195

9.3.2 Training Robust Classifiers for Improved Effectiveness 197

9.4 Experiments and Results . 198

9.4.1 Experimental Setup . 198

9.4.2 Baseline Methods for Comparison 200

9.4.3 Application Accuracy with Imputed Data 200

9.4.4 Accuracy Improvement with Robust Classifiers 202

9.4.5 Implementation Overhead . 202

9.5 Summary . 203

CHAPTER TEN: CONCLUSION. 205

10.1 Summary of Dissertation Contributions 205

10.2 Lessons Learned . 206

10.3 Future Research Directions . 207

xi

REFERENCES . 220

APPENDIX . 221

APPENDIX A: THEORETICAL ANALYSIS FOR TSA-STAT FRAMEWORK. . . 222

A.1 Proof of Theorem 1 . 222

A.2 Proof of Theorem 2 . 223

A.3 Proof of Lemma 2 . 226

APPENDIX B: THEORETICAL ANALYSIS FOR DTW-AR FRAMEWORK . . . 228

B.1 Proof of Observation 1 . 228

B.2 Proof of Theorem 3 . 229

B.3 Proof of Observation 2 . 230

B.4 Proof of Theorem 4 . 231

B.5 Proof of Corollary 1 . 232

APPENDIX C: THEORETICAL ANALYSIS OF RO-TS FRAMEWORK 234

C.1 Main Results . 236

C.2 Proof of Theorem 5 And Corollary 2 . 237

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS ON DTW-AR FRAME-
WORK . 242

xii

LIST OF TABLES

TABLE Page

3.1 Transferability of ηAS from proxy model to the target model. 37

3.2 Results of DEED defense method in terms of error detection accuracy and
accuracy of voting classifier . 43

3.3 Comparison of the Accuracy Results of DEED defense method vs Adversarial
Training Defense . 44

4.1 Description of different benchmark time-series datasets. 61

4.2 Details of DNN architectures . 62

5.1 Details of DNN architectures . 95

5.2 Average percentage of dissimilar adversarial examples created by DTW-AR
using stochastic alignment paths for a given time-series 99

6.1 Description of different datasets. 126

7.1 List of domain labels used in the experimental section and the corresponding
UCR domain name . 150

7.2 Reference table for the In-Domain dataset labels used in the experimental
section and the corresponding UCR dataset name. The second column shows
the average CVAE normalized reconstruction Mean Absolute Error (MAE)
with a negligible variance ≤ 0.001 on the in-distribution data 151

7.3 Average reconstruction error of CVAE is small on both ID and OOD data.
The variance is ≤ 0.001 . 154

7.4 Average AUROC results for ODIN and GMM. 155

7.5 Average performance of LR on OOD examples sampled from Gaussian/Uniform
distribution . 156

7.6 Results for the validity of Assumption 2. Average distance (MAE and DTW
measures) between the semantic pattern from STL Sy and time-series example
x with label y from the testing data (with a negligible variance≤ 0.001) . . 156

7.7 AUROC results for the baselines, SR, and SR with time-series alignment (SRa)
on different datasets for both in-domain and cross-domain OOD setting . . 157

xiii

7.8 F1 metric results of LR, SRa on the different datasets for both In-Domain
and Cross-Domain setting. The last two rows show the percentage of datasets
where SRa is out-performing the LR score 159

7.9 Number of parameters of each DNN used by the different OOD methods. . . 160

7.10 OOD Inference runtime comparison. 160

8.1 Comparison of the minimum l2 distance between examples from different classes.176

8.2 MMD distance (in 10−3) between original, disturbed, and StatOpt generated
data distributions describing their pair-wise similarity 182

8.3 Accuracy of non-parametric models against 180◦ rotation disturbance. 184

8.4 Energy and execution time measurements for StatOpt and baseline. 186

9.1 Classification accuracy of the imputed data of k missing sensors generated by
AIM using different standard and robust training protocols 203

9.2 Summary of memory overhead of AIM and GAIN approaches 204

D.1 Accuracy (%) of kNN-DTW classifier vs. 1D-CNN classifier task on the clean
multivariate time-series data . 243

D.2 Accuracy (%) of method in Dau, Silva, et al., 2018 and DTW-AR based
adversarial training on testing examples from different datasets 245

D.3 Results for the effectiveness αEff of adversarial examples from DTW-AR using
LSTM-based deep neural network in a black-box (BB) setting 250

D.4 Results for the effectiveness αEff of adversarial examples from DTW-AR using
Transformer-based deep neural network in a black-box (BB) setting 251

xiv

LIST OF FIGURES

FIGURE Page

3.1 MTS-AdLens framework and the generic data processing pipeline for IoT and
mobile applications. 27

3.2 Histogram of the average minimal value of ϵ used to create a successful adver-
sarial example using FGSM/PGD as a function of the fraction of vulnerable
channels . 36

3.3 Results of black-box attacks using FGSM with unconstrained and constrained
settings when compared to a naive attack baseline that does not use a proxy
model . 39

3.4 Results of black-box attacks using PGD with constrained settings. 39

3.5 OAR Data . 40

3.6 PAMAP2 Data . 40

3.7 SH Data . 40

3.8 DLA Data . 40

3.9 Results of universal attacks with constraints on vulnerable channels. 40

3.10 Performance of the classification model using adversarial training on black-box
FGSM/PGD attacks . 41

3.11 Performance of DEED algorithm as a function of MAX parameter (ensemble
size) and the fraction of vulnerable channels (V.C.) allowed to create attacks 41

3.12 Runtime cost of DEED algorithm and standard inference without defense for
the setting with 20% vulnerable channels on different datasets 44

4.1 High-level overview of the TSA-STAT framework to create adversarial exam-
ples using optimized polynomial transformations 49

4.2 Conceptual illustration of the perturbation region of an input X with respect
to noise nP . 55

4.3 High-level illustration of the TSA-STAT certification approach to estimate
the statistical perturbation space of a given time-series input X where the
classifier Fθ is robust . 56

4.4 Convergence of different statistical constraints for i ≤ 1 63

4.5 Convergence of different statistical constraints for i ≤ 4 63

xv

4.6 Performance of TSA-STAT based universal adversarial attacks using polyno-
mial transformations with different degrees on multiple DNN models 64

4.7 t-Distributed Stochastic Neighbor Embedding showing the distribution of nat-
ural and adversarial examples from TSA-STAT and PGD 65

4.8 Performance of the fooling rate on a subset of WD dataset with a variable ρ
for the instance-specific attack setting . 66

4.9 Performance of the fooling rate on a subset of WD dataset with a variable ρ
for the universal attack setting . 66

4.10 Results for TSA-STAT instance-specific adversarial examples on different deep
models trained with clean data and adversarial training baselines 68

4.11 Results for TSA-STAT universal adversarial examples on different deep models
trained with clean data and adversarial training baselines 68

4.12 Results for TSA-STAT instance-specific adversarial examples on different deep
models trained with clean data and adversarial training baselines 69

4.13 Results for adversarial training using adversarial examples from different meth-
ods on clean testing data for different deep models 70

4.14 Certification lower bound accuracy on the testing data with varying (µP , σ)
for Algorithm 4 . 72

4.15 Robustness results with adversarial training. Comparison of the accuracy of
Original model and adversarial training based on TSA-STAT and Gaussian
augmentation . 73

4.16 Results for effectiveness of TSA-STAT on deep models via adversarial training
using the augmented data generated from (Karim, Majumdar, and Darabi, 2020) 75

4.17 Results for the effectiveness of TSA-STAT and (Karim, Majumdar, and Darabi,
2020) method under the white-box setting WB 75

4.18 Results of TSA-STAT based adversarial training performance on predicting
the true labels of adversarial attacks generated by (Karim, Majumdar, and
Darabi, 2020) . 75

5.1 Illustration of DTW alignment between two uni-variate signals 80

5.2 Overview of the DTW-AR framework for targeted adversarial examples . . . 81

5.3 Illustration of the suitability of DTW over Euclidean distance using the true
data distribution from two classes . 82

5.4 Multi-dimensional scaling results showing the labeled data distribution in Eu-
clidean space and DTW space . 83

xvi

5.5 Illustration of the close-similarity space around a given time-series signal in
the Euclidean and DTW space . 86

5.6 Visualization of PathSim values along different example alignment paths in
Rn×10 (First row) and Rn×100 (Second row) spaces 91

5.7 (a) Example of the convergence of the optimal alignment path between the
adversarial example and the original example at the start of the algorithm
(dotted red path) and at the end (red path) to the given random alignment
path (blue path). (b) PathSim score of the optimal alignment path between
the adversarial example and the original example and the given random path
for the ECG200 dataset averaged over multiple random alignment paths. . . 93

5.8 Results for the fooling rate on ECG200 dataset w.r.t different ρ values for a
black-box attack setting . 96

5.9 Effect of alignment path on adversarial example. 98

5.10 Results for the effectiveness of adversarial examples from DTW-AR on differ-
ent DNNs and on different datasets . 100

5.11 The progress of loss function values over the first 100 iterations of DTW-AR
on different examples . 101

5.12 Results for the effectiveness of adversarial examples from DTW-AR on differ-
ent DNNs under two attack settings:α2 ̸= 0 and α2 = 0 102

5.13 Results of adversarial training using baseline attacks and DTW-AR, and com-
parison with standard training without adversarial examples to classify clean
data . 103

5.14 Results of DTW-AR based adversarial training to predict the true labels of
adversarial examples generated by DTW-AR and the baseline attack methods 104

5.15 Results of DTW-AR based adversarial training to predict the true labels of
adversarial examples generated by DTW-AR and the baseline attack methods 105

5.16 Results for the effectiveness of adversarial examples from DTW-AR against
adversarial training using examples created by CW-SDTW 106

5.17 Results for the effectiveness of adversarial training using DTW-AR based
examples against adversarial attacks from CW-SDTW 106

5.18 Results of the success rate of deep model from DTW-AR based adversarial
training to predict the true label of adversarial attacks generated using method
in (Karim, Majumdar, and Darabi, 2020) . 107

5.19 Average runtime per iteration for standard DTW, FastDTW, cDTW, and
DTW-AR (on NVIDIA Titan Xp GPU) . 109

xvii

5.20 Results for the effectiveness of adversarial examples from DTW-AR using
DTWAdaptive(Shokoohi-Yekta et al., 2017) (DTWD top row, DTWI bottom
row) on different DNNs under different settings 110

6.1 Comparison of RO-TS algorithm vs. adversarial training algorithm using
baseline FGS and PGD attacks . 128

6.2 Comparison of RO-TS algorithm using GAK distance (kGAK) vs. RO-TS using
Euclidean distance (l2) . 129

6.3 Comparison of RO-TS vs. stability training (STN). 130

6.4 Empirical convergence of RO-TS algorithm. 131

6.5 The accuracy gap in the gradients over weights ∆GW and over perturbations
∆Ga using 5% of alignments and GAK using all alignments for RO-TS training132

7.1 Illustration of STL method for two different classes from the ERing dataset . 137

7.2 Overview of the seasonal ratio (SR) scoring algorithm 138

7.3 Histogram showing the ID and OOD scores along the seasonal ratio score axis 144

7.4 Illustration of the challenges in time-series data for STL decomposition: se-
mantic component and remainder . 146

7.5 Illustration of the use of appropriate transformation to adjust the alignment
between two time-series signals . 147

7.6 Illustration of two transformation choices for a time-series x aligned with a
pattern S . 148

7.7 Histogram showing the non-separability of ID and OOD LR scores and the
separability using the seasonal ratio method on real-world time-series data . 155

8.1 Overview of the proposed StatOpt approach 166

8.2 Illustration of sensor orientation and position changes. 168

8.3 Conceptual illustration of the sensor disturbance regions for different time-
series inputs within three classes shown in blue, orange, and yellow colors . . 171

8.4 Distribution of the difference between the statistical features of the disturbed
and the original data . 181

8.5 Theoretical certification over the mean and body acceleration features for the
w-HAR and WISDM datasets . 183

xviii

8.6 Accuracy comparison between the standard classifier, baseline, and StatOpt-
enabled reliable classifier for the w-HAR and WISDM datasets 184

9.1 Overview of the proposed accuracy-preserving imputation approach. 191

9.2 Accuracy (Mean and standard deviation) of the robust-trained ML classifier
via different imputation methods on all combinations of missing sensors . . . 198

9.3 Confusion matrix normalized over the true labels of the deployed classifier on
ERing and PAMAP2 datasets using AIM (red) imputation methods in the
event of a single missing sensor . 201

9.4 a) Comparison of energy consumption for GAIN and AIM approach. The
y-axis is shown in log scale to represent the large range of values. b) Energy
savings achieved by AIM when compared to GAIN 204

D.1 DTW-AR adversarial examples from Epilepsy dataset using pre-defined warp-
ing path from user . 244

D.2 Results for the effectiveness of adversarial examples from DTW-AR on all the
UCR multivariate datasets . 246

D.3 Results of adversarial training using baseline attacks and DTW-AR on all the
UCR multivariate datasets, and comparison with standard training without
adversarial examples (No Attack) to classify clean data 246

D.4 Results of DTW-AR based adversarial training to predict the true labels of
adversarial examples generated by DTW-AR and the baseline attack methods
on all the UCR multivariate datasets . 246

D.5 Results for the effectiveness of adversarial examples from CW on different
deep models using adversarial training baselines (PGD, FGS, CW) 247

D.6 Results for the effectiveness of adversarial examples from PGD and FGS on
different deep models using adversarial training baselines (PGD, FGS, CW) . 247

D.7 Multi-dimensional scaling results showing the labeled data distribution in
spaces using l1 and l∞ as a similarity measure 248

D.8 Results for the effectiveness of adversarial examples from DTW-AR on differ-
ent deep models using adversarial training baselines with l1-norm 248

D.9 Results for the effectiveness of adversarial examples from DTW-AR on differ-
ent deep models using adversarial training baselines with l∞-norm 249

D.10 Results of the success rate of DTW-AR adversarial trained model to predict
the true label of adversarial attack generated from Karim, Majumdar, and
Darabi, 2020 . 249

xix

D.11 Average runtime for CW and DTW-AR to create one targeted adversarial
example (run on NVIDIA Titan Xp GPU) 252

xx

Dedication

To my parents, my guiding shining lights, whose faith in me always sustains,

To my brothers and sister, your solidarity along my journey forever remains,

To my wife, my inspiration, my anchor in life, whose support never abstains.

xxi

CHAPTER ONE

INTRODUCTION

In recent years, rapid progress in the fields of machine learning (ML) and artificial intelli-

gence (AI) has yielded significant breakthroughs across a wide range of challenging applica-

tion domains, including, but not limited to, computer vision, natural language processing,

autonomous decision-making, and strategic planning. Such progress has brought excitement

about the great potential for AI to upgrade and confidently automate areas such as health-

care (Rajpurkar et al., 2022), science (H. Wang et al., 2023), and finance (L. Cao, 2022).

However, this rapid evolution and quick integration of AI and ML systems into societal

and personalized applications have materialized a wide range of critical concerns. Privacy

issues arising from the extensive data requirements of ML models raise questions about the

ethical collection, handling, and protection of personal information. Similarly, the security

vulnerabilities inherent in AI systems (Hu et al., 2021) stress the need for robust deploy-

ment of these systems against potential infringements or misuse. Additional concerns also

arise around the fairness and bias of algorithmic decisions, economic implications, and fully

autonomous systems. The diverse progress in AI technologies promises to be extensively

beneficial for humanity. Still, it is also noteworthy to seriously consider potential challenges

and risks at an early stage.

There is a growing literature in the machine learning field highlighting issues related

to the safety of AI, including robustness, risk sensitivity, and safe exploration. However, as

machine learning systems are deployed in increasingly large-scale, autonomous, open-domain

situations, it is worth reflecting on the scalability of such approaches and understanding what

challenges remain to reduce accidental risk in modern machine learning systems. Overall,

a careful dissection is needed to investigate concrete technical problems relating to safety

assurance in machine learning systems for high-stake applications.

To efficiently address a few concrete safety and robustness problems of machine learning

1

that impact substantial real-world applications, we first define safety in machine learning as

the minimization of both risk and uncertainty of wrongful decisions made by the system. As

such, we aim to achieve an ML system that is resilient to real-world deployment vulnerabili-

ties. A significant vulnerability such systems face is the uncertainty around the inputs which

would be provided to them. Variations in data quality, such as acquisition quality, noise, or

missing values, can significantly degrade the performance of ML models that were trained

on curated datasets. Additionally, these systems may face scenarios of concept drift once

deployed in the highly dynamic and complex real-world scenarios, where the statistical prop-

erties of the target variable change over time, leading to decreased accuracy and reliability.

Moreover, the presence of the data that significantly deviates from the training distribu-

tion, known as outliers or anomalies, can further complicate the task of making accurate

predictions, necessitating robust and adaptive models capable of handling such variability

continuously. This dissertation focuses on the robustness of machine learning systems in the

complex time-series input space during their deployment (aka research directions in robust

time-series ML). From financial market forecasting (Ozbayoglu, Gudelek, and Sezer, 2020)

to health monitoring (Ignatov, 2018) and predictive analytics in industrial settings (Z. Zheng

et al., 2017), time-series analysis enables the extraction of meaningful patterns and trends

over time, facilitating proactive decision-making and insights.

Deep neural networks (DNNs) have shown great success in learning accurate predictive

models from time-series data (Zhiguang Wang, W. Yan, and Oates, 2017). In spite of their

success, very little is known about their robustness. Most of the prior work on robustness

for DNNs is focused on image domain (Z. Kolter and Madry, 2018) and natural language

domain (W. Y. Wang, Singh, and J. Li, 2019). Time-series domain poses unique challenges

(e.g., sparse peaks, fast oscillations) that are not encountered in both image and natural

language processing domains. There is limited prior work on filtering methods in the signal

processing literature to automatically identify invalid time-series inputs.

Vulnerability against adversarial (and natural) noise. Adversarial attacks (I. J. Good-

2

fellow, Shlens, and Szegedy, 2014) is a widely-known threat for DNNs that relies on subtle

manipulations of the input data to craft inputs that will cause a highly-performing AI sys-

tem to make erroneous predictions. Most of the prior work on adversarial robustness for

DNNs is focused on the semantics of image domain (Z. Kolter and Madry, 2018) and natural

language domain (W. Y. Wang, Singh, and J. Li, 2019). Adversarial methods rely on small

perturbations to create worst possible scenarios from a learning agent’s perspective. These

perturbations are constructed by bounding lp-norm (with p=2 or ∞, and sometimes p=1)

and depend heavily on the input data space: they can be a small noise to individual pixels

of an image or word substitutions in a sentence. Adversarial examples expose the brittleness

of DNNs and motivate methods to improve their robustness. The time-series modality poses

unique challenges for studying adversarial robustness that are not seen in images nor in text.

The standard approach of imposing an lp-norm bound to create worst possible scenarios from

a learning agent’s perspective does not capture the true similarity between time-series in-

stances. Consequently, lp-norm constrained perturbations can potentially create adversarial

examples that correspond to a completely different class label. Hence, adversarial examples

from prior methods based on lp-norm will confuse the learner when they are used to improve

the robustness of DNNs. In other words, the accuracy of DNNs will degrade on real-world

data after adversarial training (Belkhouja and Doppa, 2020a).

Prior work on improving the robustness of DNNs has largely focused on training these

models to withstand adversarial attacks or input perturbations within a defined lp-norm

constraint. Strategies for improving DNN robustness can be categorized into two principal

approaches: the first involves adversarial training using data augmentation techniques, such

as the incorporation of adversarial examples or noisy inputs into the training set. The second

strategy entails the optimization of a specific loss function tailored to a robustness criterion,

for instance, ensuring that similar input images yield comparable predictions from the DNN.

However, it is noteworthy that the majority of these methods are optimized for image data

and rely on the lp norm to measure the imperceptibility of the attack. Given the distinct

3

attributes of time-series data, such measures can rarely capture the true similarity between

time-series pairs and prior methods are likely to fail on time-series data. Consequently, a piv-

otal question needs to be addressed: How can we develop effective methodologies for training

DNNs to be robust in the time-series domain, taking into account its specific challenges?

Vulnerability against unknown distributions. To ensure reliable and safe prediction

from an ML model, minimizing the generalization error is not enough. One of the failure sce-

narios in the AI safety domain is confident predictions on Out-Of-Distribution (OOD) exam-

ples. Such examples, not observed during the training phase or outside the intended context

of deployment, pose a significant risk of leading to unsafe decision-making outcomes. Safe

and reliable deployment of machine learning systems require the ability to detect time-series

data that do not follow the distribution of training data, also known as the in-distribution

(ID). For example, a circumstantial event for an epilepsy patient or a sudden surge in one

branch of a smart grid will result in sensor readings that deviate from the training data

distribution. Another important application of OOD detection for the time-series domain is

synthetic data generation. Many time-series applications suffer from limited or imbalanced

data, which motivates methods to generate synthetic data (K. E. Smith and A. O. Smith,

2020). A key challenge is to automatically assess the validity of synthetic data, which can

be alleviated using accurate OOD detectors.

There is a growing body of work on OOD detection for the image domain (Dan Hendrycks,

2017; W. Liu et al., 2020; S. Liang, Y. Li, and Srikant, 2018; Z. Xiao, Q. Yan, and Amit,

2020; Y.-Y. Yang et al., 2020; T. Cao et al., 2020) and other types of data such as genomic

sequences (Ren et al., 2019). These methods can be categorized into

• Supervised methods that fine-tune the ML system or perform specific training to dis-

tinguish examples from ID and OOD.

• Unsupervised methods that employ Deep Generative Models (DGMs) on unlabeled

data to perform OOD detection.

4

However, time-series data with its unique characteristics pose unique challenges that are

not encountered in the image domain:

• Spatial relations between pixels are not similar to the temporal relations across different

time-steps of time-series signals.

• Pixel variables follow a categorical distribution of values {0, 1, · · · , 255} where as time-

series variables follow a continuous distribution.

• The semantics of images (e.g., background, edges) do not apply to time-series data.

• Humans can identify OOD images for fine-tuning purposes, but this task is challenging

for time-series data. Hence, prior OOD methods are not suitable for the time-series

domain.

1.1 Summary of Dissertation Research

This dissertation develops a suite of novel algorithms and associated theory to significantly

push the frontiers of robust machine learning for the time-series domain. First, we propose

different frameworks that address the challenges of creating adversarial examples that are

suited for the time-series input space. The key idea is to create adversarial algorithms that

look beyond lp norms to assess the similarity between time-series examples using statistical

features of time-series signals and elastic measures such as dynamic time warping. Second,

we address the challenges of training robust ML models beyond the conventional adversarial

training (Rawat, Wistuba, and Nicolae, 2017) by explicitly solving a min-max optimiza-

tion problem. The goal is that during the training process, we automatically make deep

models learn robust feature embedding without requiring a well-curated data augmentation

procedure (Stephan Zheng et al., 2016). Third, we address the out-of-distribution detection

challenge for time-series data. This is the first work on solving OOD detection for time-series

data. Finally, in collaboration with Dina Hussein and Prof. Ganapti Bhat, we demonstrate

5

the real-world impact of the developed robust time-series ML algorithms by applying them

to wearable sensors-enabled mobile applications by addressing natural perturbations and

missing sensor data.

1.2 Summary of Technical Contributions

The main contribution of this dissertation is the development of suits of novel algorithms and

theory to significantly improve the robustness of machine learning systems for time-series

data. Specific contributions include:

• The design of a novel framework referred as Multivariate Time-Series Adversarial

Lens (MTS-AdLens) (Belkhouja and Doppa, 2020a) to analyze deep models for pre-

dictive analytics of time-series data in real-world IoT and mobile applications in the

adversarial setting. To the best of our knowledge, this was the first principled study of

adversarial robustness of DL methods for analytics on multivariate time-series data in

IoT and mobile applications by considering the real-world constraints. The framework

also includes a novel defense method that can be deployed at the inference stage in

IoT and mobile applications.

• The development of two novel frameworks to create adversarial examples suitable for

time-series data by addressing the similarity challenges.

– The first is referred to as Time-Series Attacks via STATistical Features (TSA-

STAT) (Belkhouja and Doppa, 2022; Belkhouja and Doppa, 2023). TSA-STAT

creates adversarial examples by imposing constraints on statistical features of the

clean time-series signal. Additionally, TSA-STAT formulation allows the deriva-

tion of a theoretical certified bound for the robustness of ML models due to

adversarial attacks.

– The second referred as Dynamic Time Warping for Adversarial Robustness (DTW-

6

AR) (Belkhouja, Yan Yan, and Doppa, 2023a). DTW-AR employs the dynamic

time warping measure (Sakoe, 1971; Müller, 2007) to measure a realistic similarity

between two time-series signals (Berndt and Clifford, 1994; Müller, 2007).

Both frameworks and the TSA-STAT certification guarantees are designed to be ap-

plicable to any DNN for time-series domain with different neural network structures.

• The design of a principled framework referred to as RObust Training for Time-Series

(RO-TS) (Belkhouja, Yan Yan, and Doppa, 2022) to train robust DNNs for time-

series data. We formulate a novel min-max optimization problem to reason about the

robustness criteria in terms of disturbances to time-series using the global alignment

kernel (GAK) measure (M. Cuturi et al., 2007); and provide a theoretically-sound

optimization algorithm to solve it.

• The development of a novel OOD detection algorithm for the time-series domain re-

ferred to as Seasonal Ratio Scoring (SRS) (Belkhouja, Yan Yan, and Doppa, 2023b).

SRS employs the Seasonal and Trend decomposition using Loess (STL) (Cleveland

et al., 1990) and deep generative models to enhance the separability between in-

distribution and OOD examples.

• Two concrete instantiations1 of robust time-series ML algorithms to wearable sensors-

enabled mobile applications by addressing natural perturbations and missing data.

– StatOpt (Hussein, Belkhouja, et al., 2022) framework, a concrete instantiation of

the statistical optimization approach TSA-STAT (Belkhouja and Doppa, 2022),

to enable reliable ML classifiers on low-power wearable devices.

– Accuracy-Preserving Imputation (AIM) (Hussein, Belkhouja, et al., 2023), a novel

and energy-efficient search-based approach to produce accuracy-preserving impu-

tations for missing sensor data at runtime.
1These works were developed in close collaboration with Dina Hussein and Ganapti Bhat

7

1.3 Outline of the Thesis

The remaining part of the dissertation is organized as follows.

In Chapter Two, we first provide an overview of the problem setup for the different

threats on robust Time-Series deep learning settings studied in this dissertation. Next, we

discuss the necessary background material on these threats. Finally, we define the evaluation

metrics to measure the efficacy of any proposed algorithms for time-series data that aim to

enhance the robustness of Time-Series deep learning models.

In Chapter Three, we describe a primary setting for analyzing deep models for predictive

analytics of time-series data in real-world IoT and mobile applications through adversarial

lens, namely Multivariate Time-Series Adversarial Lens (MTS-AdLens). We provide in

this chapter a principled study of the adversarial robustness of DL methods for analytics on

multivariate time-series data in IoT and mobile applications by considering the real-world

constraints and novel defensive methods against adversarial threats motivated by deployment

constraints. We first describe the key challenges in both hardware, data, and algorithms to

study the adversarial robustness of deep models for multivariate time-series data. Then, we

develop effective attacks that expose significant vulnerabilities of deep models for multivariate

time-series sensor data in realistic settings. Finally, we propose a novel defense method at

the inference stage to improve the adversarial robustness of deep models.

In Chapter Four, we describe the proposed framework referred to as Time-Series Attacks

via STATistical Features (TSA-STAT) to create adversarial examples for time-series data.

We describe TSA-STAT as a principled approach to create targeted adversarial examples for

the time-series domain using statistical constraints and polynomial transformations. Then,

we provide theoretical analysis to prove that polynomial transformations expand the space of

valid adversarial examples over additive perturbations. Additionally, we derive theoretically

certified bounds (Cohen, Rosenfeld, and J Zico Kolter, 2019) for adversarial robustness of

TSA-STAT that is applicable to any deep model for time-series domain.

8

In Chapter Five, we describe a different adversarial framework for time-series domain

referred as Dynamic Time Warping for Adversarial Robustness (DTW-AR). We describe

the theoretical and empirical analysis to demonstrate the effectiveness of DTW over the

standard l2 distance metric for adversarial robustness studies. We also describe the prin-

cipled algorithm using the Dynamic Time Warping measure that efficiently creates diverse

adversarial examples justified by theoretical analysis.

In Chapter Six, we address the challenge of training robust DNNs for time-series do-

main by proposing RObust Training for Time-Series (RO-TS) framework. RO-TS employs

additive noise variables to formulate a min-max optimization problem to reason about the

robustness criteria in terms of disturbances to time-series inputs by minimizing the worst-

case risk. We develop a principled theoretical framework stochastic compositional alternating

gradient descent ascent (SCAGDA) algorithm to solve compositional min-max optimization

problems, to which RO-TS belongs.

In Chapter Seven, we transition to the out-of-distribution threat and describe the pro-

posed novel OOD detection algorithm for the time-series domain referred to as Seasonal Ratio

Scoring (SRS). We describe the principled algorithm based on STL decomposition and deep

generative models to compute the Seasonal Ratio (SR) score to detect OOD time-series ex-

amples. Additionally, we provide a novel time-series alignment algorithm based on dynamic

time warping to improve the effectiveness of the SR score-based OOD detection. Finally,

we provide a formulation of the experimental setting for time-series OOD detection and the

evaluation of SRS algorithm on real-world datasets and comparison with state-of-the-art

baselines.

In Chapters Eight and Nine, we describe the two concrete instantiations2 of robust deep

learning algorithms for the Human Activity Recognition (HAR) field.

• In Chapter Eight, we describe StatOpt, the concrete instantiation of the TSA-STAT

approach in Chapter 4, to enable reliable ML classifiers for HAR on low-power wear-
2These works were developed in close collaboration with Dina Hussein and Ganapti Bhat

9

able devices. We characterize and evaluate the real-world mismatch between sensor

data distributions from training and real-world deployment for ML-based HAR ap-

plications. Then, we describe the StatOpt framework to create additional training

examples capturing the statistical properties of sensor disturbances for training reli-

able HAR classifiers.

• In Chapter Nine, we describe the novel and energy-efficient search-based Accuracy-

Preserving Imputation (AIM) approach to producing accuracy-preserving imputations

for missing sensor data at runtime. We describe how AIM identifies the most likely data

patterns for imputing missing sensor data through a novel formulation for this search

problem. Additionally, we provide experimental validation on four diverse wearable

datasets to demonstrate that AIM enables reliable imputation of missing sensor data

with minimal overhead.

Finally, in Chapter Ten, we provide a summary of the dissertation.

10

CHAPTER TWO

PROBLEM SETUP AND RELATED WORK

Time-series predictive analytical tasks correspond to finding a mapping from synchronous

temporal observations data to semantic labels representing the state of the system. Let X ∈

Rn×T be a multi-variate time-series signal, where n is the number of channels (representing

synchronous sensors) and T is the window-size of the signal. Given a set of training examples

in the form of input time-series example X and output label y pairs, our goal is to learn

a function approximator Fθ whose output predictions have high accuracy on unseen input

time-series examples. We consider Fθ as a DNN classifier that maps Rn×T → Y , where θ

stands for parameters of the model to be estimated using training data and Y is the set of

classification labels y. For example, in a health monitoring application using physiological

sensors for patients diagnosed with cardiac arrhythmia, we use the measurements X from

wearable devices to predict the likelihood of a cardiac failure for a set of potential diagnosis

Y .

Adversarial threat. Adversarial examples expose the brittleness of DNNs and motivate

methods to improve the robustness of classifiers. The goal of am adversarial attack strategy

is to tamper with the input data from sensors to create an adversarial input Xadv such that:

• The tampered input is highly similar to the original input: ∥Xadv −X∥p ≤ ϵ, where ϵ

is minimal given an lp norm ∥.∥p

• The adversarial example is misclassified by the DNN: Fθ(Xadv) ̸= Fθ(X)

We define the space of potential attack threat on an input X as:{
Xadv

/
∥Xadv −X∥p ≤ ϵ and Fθ(X) ̸= Fθ(Xadv)

}
where ϵ defines the neighborhood of highly-similar examples for input X depending on the

deployment application.

11

This threat affect the reliability of deployed classifier as the model will output wrong

predictions with high confidence on adversarial examples. To mitigate this threat, we aim

to design and train a robust classifier F ∗
θ such that:

Given a user-defined ϵ, ∀Xadv such that ∥Xadv −X∥p ≤ ϵ⇒ F ∗
θ (X) = F ∗

θ (Xadv) (2.1)

Out-of-distribution threat. Let Din be an in-distribution (ID) time-series set with d

examples {(X, y)} sampled from the distribution P ∗ defined on the joint space of input-

output pairs (X ,Y). Each X ∈ Rn×T from X is a multi-variate time-series input. We

consider the time-series classifier Fθ to be trained using Din. Out-of-distribution (OOD)

samples (X, y) are typically generated from a distribution other than P ∗. Specifically, we

consider a sample (X, y) to be OOD if the class label y is different from the set of in-

distribution class labels, i.e., y /∈ Y . By default of the design, the classifier Fθ learned using

Din will assign one of the class labels in Y when encountering an OOD sample (X, y). This

threat affect the reliability of deployed classifier as the model will output wrong predictions

with high confidence on OOD samples.To mitigate this threat, we aim to design a detector

D that flags OOD examples and discard them from the machine learning system pipeline:

D(X, y) =


1 if X is OOD

0 if X is ID
(2.2)

2.1 Background and Related Work

Adversarial threat. Prior work for creating adversarial examples mostly focus on image

and natural language processing (NLP) domains (Z. Kolter and Madry, 2018; W. Y. Wang,

Singh, and J. Li, 2019). For the image domain, such methods include general attacks such

as Carlini & Wagner (CW) attack (Carlini and D. Wagner, 2017) and universal attacks

(Moosavi-Dezfooli, A. Fawzi, O. Fawzi, et al., 2017). CW is an instance-specific attack that

relies on solving an optimization problem to create adversarial examples by controlling the

12

adversarial confidence score to fool the target deep model. Universal attacks are a class of

adversarial methods that are not input-dependent. The goal of universal attacks is to create

a universal perturbation that can be added to any input to create a corresponding adversarial

example. The Frank-Wolfe attack (J. Chen, D. Zhou, et al., 2020) improves the optimiza-

tion strategy for adversarial examples to overcome the limitations of projection methods.

Recent work regularizes adversarial example generation methods to obey intrinsic properties

of images. The work of (Laidlaw and Feizi, 2019b) enforces a smoothness regularizer on the

adversarial output such that similar-color pixels are perturbed following the same direction.

Other works have employed spatial transformation within a perceptual threshold (C. Xiao

et al., 2018) or a semantic-preserving transformation (Hosseini et al., 2017) to regularize the

output. These methods exploit the intrinsic characteristics of images to control and regular-

ize the algorithm to create adversarial examples. Expectation Over Transformation (EOT)

(Athalye, Engstrom, et al., 2018) approach creates robust adversarial examples that are ef-

fective over an entire distribution of transformations by maximizing an expectation of the

log-likelihood given transformed inputs. These transformations include perceptual distortion

of a given image such as rotation or texture modification. RayS method (J. Chen and Gu,

2020) was also proposed to improve the search over adversarial examples using a sanity check

that is specific for the image domain. (Baluja and Fischer, 2018) proposed to use Adversarial

Transformation Network (ATN) to automatically create adversarial examples for any given

input. (Karim, Majumdar, and Darabi, 2020) investigated the use of ATNs for time-series

data. The main findings include ATN fails to find adversarial examples for many inputs and

not all targeted attacks are successful to fool DNNs. While adversarial attacks perturb pixel

values in the image domain, they perturb characters and words in the NLP domain. For

example, adversarial attacks may change some characters to obtain an adversarial text which

seems similar to the reader, or change the sentence structure to obtain an adversarial text

which is semantically similar to the original input sentence (e.g., paraphrasing). One method

to fool text classifiers is to employ the saliency map of input words to generate adversarial

13

examples while preserving meaning under the white-box setting (Samanta and Mehta, 2017).

A second method named DeepWordBug (J. Gao et al., 2018) employs a black-box strategy

to fool classifiers with simple character-level transformations.

The most successful empirical defense known so far is adversarial training (Tramer et al.,

2020) that employs adversarial algorithms to augment training data. This method is intu-

itive as it relies on feeding DNNs with adversarial examples in order to be robust against

adversarial attacks. Other defense methods have been designed to overcome the injection

of adversarial examples and the failure of deep models. (Athalye, Carlini, and D. Wagner,

2018) proposed different attack techniques to show that a defense method such as obfus-

cated gradients is unable to create a robust deep model. Distillation technique (Papernot,

McDaniel, X. Wu, et al., 2016) has also been proposed as a defense against adversarial per-

turbations, where a smaller neural network is used as an auxiliary network to improve the

robustness of the overall learned model. It was shown empirically that such techniques can

reduce the success rate of adversarial example generation. However, (Papernot, McDaniel,

I. Goodfellow, et al., 2017) proved experimentally that this defense method is useful only

when the attack is performed directly on the distilled model (i.e., white-box settings). For

black-box settings, it was found that the adversarial attacks evade the distillation scheme

used by the target. (Tramèr et al., 2018) analyzed adversarial training and its transferabil-

ity property to explain how robust deep models should be attained. To improve adversarial

training through a min-max optimization formulation, (Xiong and Hsieh, 2020) tries to learn

a recurrent neural network to guide the optimizer to solve the inner maximization problem

of the min-max training objective.

To further improve empirical defenses, the concept of certifiable robustness was intro-

duced. A deep model is certifiably robust for a given input X, if the prediction of X is

guaranteed to be constant within a small neighborhood of X, e.g., lp ball. Raghunathan,

Steinhardt, and P. Liang, 2018 provides certificates for one-hidden-layer neural networks us-

ing semi-definite relaxation. In Hein and Andriushchenko, 2017, certification is an instance-

14

specific lower bound on the tampering required to change the classifier’s decision with a small

loss in accuracy. In a recent work (Cohen, Rosenfeld, and J Zico Kolter, 2019; Bai Li et al.,

2019), the robustness of deep models against adversarial perturbation is connected to random

noise. These methods certify adversarial perturbations for deep models under the l2 norm.

Cohen, Rosenfeld, and J Zico Kolter, 2019 defined two families for certification methods:

1) Exact methods report the existence or the absence of a possible adversarial perturbation

within a given bound. This goal has been achieved using feed-forward multi-layer neural net-

works based on Satisfiability Modulo Theory (X. Huang et al., 2017) or modeling the neural

network as a 0-1 Mixed Integer Linear Program (Fischetti and Jo, 2018). However, these

methods suffer from scalability challenges. 2) Conservative methods either confirm that a

given network is robust for a given bound or report that robustness is inconclusive (Bai Li

et al., 2019). Our proposed robustness certificate for TSA-STAT falls in the conservative

category and extends the recent method based on random noise (Bai Li et al., 2019).

There is little to no principled prior work on adversarial methods for time-series domain.

(H Ismail Fawaz et al., 2019) employed the standard Fast Gradient Sign method with l2-norm

bound (Kurakin, I. Goodfellow, and Bengio, 2016) to create adversarial noise with the goal

of reducing the confidence of deep convolutional models for classifying uni-variate signals.

Network distillation is also employed to train a student model for creating adversarial attacks

(Karim, Majumdar, and Darabi, 2020). In an orthogonal work, the study from (Siddiqui

et al., 2019) concluded that time-series signals are highly complex, and their interpretability

is ambiguous. Adversarial examples can also be studied for regression tasks over time-series

data. However, there is very limited work in this direction as explained by (Siddiqui et al.,

2019). These methods consider Euclidean distance and employ standard methods from the

image domain such as FGSM (Mode and Hoque, 2020). In an orthogonal/complementary

direction, generative adversarial networks are used to impute missing values in time-series

data (Luo, Zhang, et al., 2019; Luo, Cai, et al., 2018).

Since characteristics of time-series (e.g., fast-pace oscillations, sharp peaks) are different

15

from images and text, most existing adversarial algorithms are not efficient or not applicable

to time-series data. To overcome the limitations of the existing work, we propose:

1. MTS-AdLens framework that analyzes the adversarial threat when the input space is

a multi-variate time-series data.

2. TSA-STAT, DTW-AR and RO-TS frameworks that overlook the standard lp-norm

distance as a similarity measure between inputs and investigate more efficient time-

series-based similarity measures: Statistical features and elastic measures. The pro-

posed frameworks overcome the challenges of the high complexity of time-series-based

similarity measures by providing efficient algorithmic solutions to create a practical

framework.

3. The development of theoretical guarantees for adversarial robustness through the TSA-

STAT framework, where we propose a new derivation of a certified bound for adversarial

robustness that is applicable to any deep model for time-series domain.

Out-of-distribution threat. The work on OOD detection can be mainly classified into

the following categories:

1. OOD detection via pre-trained models. Employing pre-trained deep neural net-

works (DNNs) to detect OOD examples was justified by the observation that DNNs

with ReLU activation can produce arbitrarily high softmax confidence for OOD exam-

ples (Dan Hendrycks, 2017). Maximum probability over class labels has been used (Dan

Hendrycks, 2017) to improve the OOD detection accuracy. Building on the success of

this method, temperature scaling and controlled perturbations were used (S. Liang,

Y. Li, and Srikant, 2018) to further increase the performance. The Mahalanobis-based

scoring method (Kimin Lee, Kibok Lee, et al., 2018) is used to identify OOD examples

with class-conditional Gaussian distributions. Gram matrices (Sastry and Oore, 2020)

16

were used to detect OOD examples based on the features learned from the training

data.

2. OOD detection via synthetic data. During the training phase, it is impossible

to anticipate the OOD examples that would be encountered during the deployment of

DNNs (Hendrycks et al., 2019). Hence, unsupervised methods (Yu and Aizawa, 2019)

are employed or synthetic-data-based on generative models is created (Kimin Lee, H.

Lee, et al., 2018; Z. Lin et al., 2020) to explicitly regularize the DNN weights over

potential OOD examples.

3. OOD detection via deep generative models. The overall idea of using deep gener-

ative models (DGMs) for OOD detection is as follows: 1) DGMs are trained to directly

estimate the in-distribution P ∗; and 2) The learned DGM identifies OOD samples when

they are found lying in a low-density region. Prior work has used auto-regressive gen-

erative models (Ren et al., 2019) or GANs (Ziyu Wang et al., 2020) and proposed

scoring metrics such as likelihood estimates to obtain good OOD detectors. DGMs

are shown to be effective in evaluating the likelihood of input data and estimating the

data distribution, which makes them a good candidate to identify OOD examples with

high accuracy. However, as shown by (Nalisnick et al., 2018), DGMs can assign a high

likelihood to OOD examples. Likelihood ratio (Ren et al., 2019) and likelihood regret

(Z. Xiao, Q. Yan, and Amit, 2020) are proposed to improve OOD detection.

4. OOD detection via time-series anomaly detection. Generic Anomaly Detec-

tion (AD) algorithms (Pang, Shen, L. Cao, et al., 2021; Ruff et al., 2021) can be

employed to solve OOD problems for time-series data. Anomaly detection is the task

of identifying observed points or examples that deviate significantly from the rest of

data. Anomaly detection relies on different approaches such as distance-based metrics

or density-based approaches to quantify the dissimilarities between any example and

the rest of the data. Current methods using DNNs (e.g., Generative Adversarial Net-

17

works, auto-encoders) showed higher performance in anomaly detection as they can

capture more complex features in high dimensional spaces (Pang, Shen, L. Cao, et al.,

2021; Pang, Shen, and Hengel, 2019). We note that there exist some AD methods

that can cover the same setting as the OOD problem for time-series domain. However,

both settings are still considered as two different frameworks with two different goals

(Jingkang Yang et al., 2021). By definition, AD aims to detect and flag anomalous

samples that deviate from a pre-defined normality (Laptev, Amizadeh, and Flint, 2015;

Canizo et al., 2019) estimated during training. Under the AD assumption of normal-

ity, such samples only originate from a covariate shift in the data distribution (Ruff

et al., 2021). Semantically, such samples do not classify as OOD samples (Jingkang

Yang et al., 2021). For example, consider an intelligent system trained to identify the

movement of a person (e.g, run, stand, walk, swim), where stumbling may occur during

running. Such an event would be classified as an anomaly as the activity running is

still taking place, but in an irregular manner. However, if the runner slips and falls,

such activity should be flagged as OOD due to the fact that it does not belong to any

of the pre-defined activity classes. In other words, OOD samples must originate from a

different class distribution (yOOD /∈ Y) than in-distribution examples, while anomalies

typically originate from the same underlying distribution but with anomalous behavior.

Open-set recognition methods can be applicable for this setting (D.-W. Zhou, Ye, and

Zhan, 2021; D.-W. Zhou, Y. Yang, and Zhan, 2021) as it has been shown that they

are effective in detecting unknown categories without prior knowledge. However, OOD

Detection encompasses a broader spectrum of solution space and does not require the

complexity of identifying the semantic class of the anomalies. Additionally, anoma-

lies can manifest as a single time-step, non-static window-length, but not generally a

complete time-series example in itself. Such differences can be critical for users and

practitioners, which necessitates the study of separate algorithms for AD and OOD.

Unlike anomaly detection, OOD detection focuses on identifying test samples with non-

18

overlapping labels with in-distribution data and can generalize to multi-class setting

(Jingkang Yang et al., 2021).

In summary, the limitations of the existing work for the time-series OOD detection setting

are:

• The effectiveness of pre-trained models as OOD detectors depends critically on the

availability of a highly-accurate DNN for the classification task. However, this require-

ment is challenging for the time-series domain as real-world datasets are typically small

and exhibit high class imbalance, resulting in inaccurate DNNs (Wen et al., 2020; Chen

Huang et al., 2016).

• Synthetic data for the time-series domain is a highly challenging task and remains an

open research problem due to the limited data and their ambiguity to be validated by

human experts.

• Most generative models for OOD detection rely on assumptions specific to the input

domain space (e.g., the data contains background pixels). There is no prior work on

OOD detection via deep generative models for time-series data.

• OOD samples cannot be used as labeled anomalous examples during training due

to the general definition of the OOD space. For various AD methods such as nearest

neighbors and distance-based, the fine-tuning of the cut-off threshold between "normal"

and "anomalous" examples requires anomaly labels during training. Mainly, window-

based techniques(Chandola, Banerjee, and Kumar, 2010) require both normal and

anomalous sequences during training, and if there are none, anomalous examples are

randomly generated. Such a requirement is not practical for OOD problem settings as

the distribution is ambiguous to define and sample from.

• AD assumes that normal samples are homogeneous in their observations. This as-

sumption helps the AD algorithm to detect anomalies. Such an assumption cannot

19

hold for different classes of the in-distribution space for multi-class settings. There-

fore, time-series AD algorithms are prone to fail at detecting OOD samples. Indeed,

our experiments demonstrate the failure of state-of-the-art time-series AD methods.

Therefore, we propose the Seasonal Ratio Scoring (SRS) framework, the first work on OOD

detection over time-series data (To the best of our knowledge). SRS overcomes the afore-

mentioned challenges by dissecting the inputs using time-series decomposition tools and

employing time-series-based DGMs to estimate the score used to separate ID from OOD

examples.

2.2 Evaluation Protocol

Adversarial threat. The evaluation of adversarial attacks using the efficiency metric

αEff ∈ [0, 1] over the created adversarial examples. αEff (higher means better attacks)

measures the capability of adversarial examples to fool a given DNN Fθ to output the target

class-label. αEff is calculated as the fraction of adversarial examples that are predicted

correctly by the classifier:

αEff =
Adv. examples s.t.F (X) == ytarget

Adv. examples
(2.3)

The evaluation of the robustness of models designed to withstand different adversarial

attack strategies employs the prediction accuracy of each model (via ground-truth labels of

time-series) as the metric. A DNN classifier is robust if it is successful in predicting the true

label of any given adversarial example. To ensure robustness, DNN models should be least

sensitive to different types of perturbations over original time-series signals.

Out-of-distribution threat. The evaluation of OOD detectors employs in general the

following two standard metrics.

1. AUROC score: The area under the receiver operating characteristic curve is a threshold-

independent metric that measures the separability between ID and OOC classes using

20

a given OOD detector. This metric (higher is better) is equal to 1.0 for a perfect

detector and 0.5 for a random detector.

2. F1 score: It is the harmonic mean of precision and recall. Precision measures the

ratio of the OOD examples that were correctly identified out of all the OOD examples

that were identified by the detector. On the other hand, Recall measures the ratio of

the OOD examples that were correctly identified out of all the actual OOD examples

in the test set. Due to the threshold dependence of F1 score, the highest F1 score

obtained with a variable threshold can be used to evaluate the method. This score has

a maximum of 1.0 in the case of a perfect precision and recall scores.

21

CHAPTER THREE

ANALYZING DEEP LEARNING FOR TIME-SERIES DATA THROUGH

ADVERSARIAL LENS IN MOBILE AND IOT APPLICATIONS

T. Belkhouja, J. Doppa. "Analyzing Deep Learning for Time-Series Data through Adversar-

ial Lens in Mobile and IoT Applications." IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), 39(11): 3190-3201, 2020.

Originally published in the IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting, inves-

tigating the state of the art, formulating the theoretical contribution and the algorithmic

solution, implementing the algorithm and running the required empirical analysis to high-

light the performance improvement of the proposed solution compared to the state of the

art.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

22

ANALYZING DEEP LEARNING FOR TIME-SERIES DATA THROUGH

ADVERSARIAL LENS IN MOBILE AND IOT APPLICATIONS

In this chapter, we describe the Multivariate Time-Series Adversarial Lens (MTS-

AdLens) framework that analyzes deep models for predictive analytics of time-series data in

real-world IoT and mobile applications through adversarial lens. This chapter is a principled

study of adversarial robustness of Deep Learning methods for analytics on multivariate time-

series data in IoT and mobile applications that considers the real-world constraints. MTS-

AdLens investigates the real-world hardware constraints and creates adversarial examples

using a small number of channels. Motivated by this threat, we propose a novel defense

method that can be deployed at the inference stage by leveraging the critical channel analysis.

The key idea is to exploit the fact that the deep model relies on a small number of critical

channels to make its prediction. MTS-AdLens comprehensive analysis:

1. Identifies the key challenges in hardware, data, and algorithms to study adversarial

robustness of deep models for multivariate time-series data.

2. Develops highly effective attacks that expose significant vulnerabilities of deep mod-

els for multivariate time-series sensor data in realistic settings using critical channel

analysis.

3. Uses a novel defense method at the inference stage to improve the adversarial robust-

ness of deep models.

3.1 Problem Setup

Predictive analytical tasks in IoT and mobile applications correspond to finding a mapping

from synchronous sensor data to semantic labels representing the state of the system. Sup-

pose X = [X1, X2, · · · , Xn] is the input multivariate time-series example that is generated

by a set of n heterogeneous synchronous sensors. Each sensor generates a one-dimensional

23

time-series Xi related to the event it is sensing. Given a set of training examples in the

form of input time-series example and output label pairs, our goal is to learn a function ap-

proximator Fθ(X) whose output predictions have high accuracy on unseen input time-series

examples, where θ stands for parameters of the model to be estimated using training data.

Convolutional neural networks (CNNs) via 1D convolutions have been shown to perform

very well for classifying multivariate time-series data including human activity recognition

(Ignatov, 2018) and smart home monitoring (G. Chen et al., 2018). CNNs are inherently

well-suited to recognize various patterns from synchronous sensor readings. For example,

in human activity recognition tasks, lower layers capture the local emphatics of the signals

that characterize the general nature of the human movement, while higher layers capture

the patterns describing the combination of different movements (Jianbo Yang et al., 2015).

Therefore, in this work, we focus on analyzing state-of-the-art CNN models for time-series

classification in adversarial settings. Towards this goal, we consider two related problems.

Problem 1: Adversarial attack strategies. The goal of attack strategy is to tamper with

the transmitted data from sensors to create an adversarial input Xadv such that ∥Xadv−X∥ ≤

ϵ and F (X, θ) ̸= F (Xadv, θ), where ϵ is the difference between original and adversarial inputs,

and should be minimal to be perceptible that the input has been changed. There are two

main attack strategies:

1. Input-specific adversarial attacks. This type of attack constructs an adversarial

input based on a single input example and output label pair: it creates an adversarial

example that is very similar, but classified into a different class label using the deep

neural network:

Xadv = X + ϵ · sign(∇XJ(θ,X, y)) (3.1)

where ∇XJ is the gradient of the deep model’s loss function with respect to image X,

y is the true label of image X, and θ stands for model parameters.

2. Universal adversarial attacks. This type of attack will analyze a collection of input

24

example and output label pairs to construct a universal adversarial pattern. This

pattern when applied to any input example will most likely result in deep network

mis-classifying the given input (Moosavi-Dezfooli, A. Fawzi, O. Fawzi, et al., 2017).

The goal is to find the minimal perturbation δ such that for any given input X,

F (X, θ) ̸= F (X + δ, θ) for ∥δ∥p ≤ ϵ, where ϵ is the maximum threshold for human

perception. To generate the universal adversarial pattern (Moosavi-Dezfooli, A. Fawzi,

and Frossard, 2016; Moosavi-Dezfooli, A. Fawzi, O. Fawzi, et al., 2017) for multivariate

time-series data, the following equation is solved:

PX∼D (F (X + v, θ) ̸= F (X, θ)) ≥ 1− η s.t. ∥v∥p ≤ ϵ (3.2)

where X ∼ D represents that an input X follows the given data distribution D, ϵ is

the maximum magnitude of perturbation, and η is the minimal fooling rate desired to

be induced for the target deep model.

Since our focus is on realistic vulnerability assessment of IoT and mobile systems, only

black-box attacks (no knowledge is assumed about the target model) are feasible. To create

black-box attacks (Rawat, Wistuba, and Nicolae, 2017), the attacker has the ability to

query the target model to get predicted labels for any candidate input X: yX=Fθ(X). This

training data from querying the target model is used to create a proxy model F ′
θ′(X) to devise

strong attacks. The effectiveness of an attack strategy AS is measured by the degradation

in accuracy of the target model Fθ(X) on adversarial inputs created by AS. In this work,

we focus on practical adversarial attacks that meet the real-world constraints of IoT and

mobile applications. A concrete example of such an adversarial attack is the tampering with

infrastructure signals for smart grids. If the sensors’ readings that are collected centrally in

smart-grid management are altered maliciously, the attack can lead the system to equipment

failures or black-outs.

Problem 2: Defense methods for adversarial robustness. The goal of defense meth-

ods is to improve the robustness of deep model Fθ(X) against adversarial attacks. The

25

effectiveness of a defense strategy DS is measured by the improvement in accuracy of the

model Fθ(X) with respect to the adversarial inputs created by a specific attack strategy

AS. In this work, we primarily focus on defense mechanisms at the inference stage due to

their utility in critical applications such as smart health, where re-training of deep model to

improve robustness is not practical due to privacy concerns. For example, adversarial robust-

ness via defense methods can help epileptic patients to trust the Electroencephalographic

sensors’ readings in predicting seizures effectively.

3.2 MTS-AdLens: Multivariate Time-Series Adversarial Lens Framework

In this section, we described the details of our proposed MTS-AdLens framework for multi-

variate time-series data in IoT and mobile applications illustrated by Figure 3.1. To explain

the figure better, we provide the following example for smart-health monitoring using wear-

able physiological sensors. For patients with heart conditions, they are equipped with sensors

to monitor their heart signals. These sensors will represent the physical domain. The sen-

sors will generate electrocardiographic signals in the form of time-series data, which is the

digital representation of the heart condition. These signals are fed to a pre-trained deep

model to infer if the condition of the heart is healthy or requires attention. The result of

this inference mechanism represents the predictive analytics of the system. If attackers tar-

get this system, they will aim to tamper with the inferred condition. An example of such

tampering is to prevent the detection of an irregular heart condition that could lead to a

fatality. First, we explain how to create black-box attacks on sensor-based mobile systems

ignoring the real-world constraints. Second, we discuss the real-world constraints imposed

by these systems that limit the space of black-box attacks. Third, we propose some novel

practical attack strategies based on identifying critical channels of time-series data to meet

the physical constraints. Lastly, inspired by our vulnerability analysis of deep models for

multivariate time-series data in these systems, we describe a novel defense technique at the

26

Figure 3.1 MTS-AdLens framework and the generic data processing pipeline for
IoT and mobile applications. The system data processing pipeline (bottom row)
is illustrated in parallel to the attacker’s pipeline (top row) to attack the system.
Data acquisition is the first step in the physical domain through IoT and mobile
sensors. The sensors will record the activities sensed in the smart-home and generate
time-series data to represent them digitally. In this step, the attacker can intervene
through hardware and wireless attacks to tamper with the recorded data by injecting
the adversarial attack created by MTS-AdLens framework. Digital representation
of the recorded data is the second step. This is achieved by generating multivariate
time-series data. In this step, the attacker employs MTS-AdLens framework to
create the adversarial attack. The next step is to feed the adversarial example to a
pre-trained deep neural network for time-series data, which represents the black-box
model for MTS-AdLens framework. The proposed framework does not depend on
the deployment location of the DL (local, edge or cloud).Finally, predictive analytics
task is executed using the deep model to produce predicted output labels. However,
due to adversarial input, deep learning model may make wrong predictions as desired
by the attacker.

inference stage to improve the adversarial robustness of these models.

3.2.1 Unconstrained Black-box Attacks

Recall that black-box attacks do not assume any knowledge about the target deep model.

However, the attacker has the ability of querying the target model to get the predicted label

27

for any candidate input time-series example. The data collected from querying the target

model is used to create a proxy deep model to mimic the behavior of the target model. To

create black-box adversarial attacks for IoT and mobile systems, we can employ FGSM/PGD

and DeepFool methods to construct adversarial examples.

To create the proxy deep model, the attacker needs to use the data generated by the target

system. This can be done in one or more of the following ways:

• Eavesdropping the target system for a given time to record all the data traces. There-

fore, the attacker will be using the data that is seen by the target deep model. This

helps the proxy deep model to better mimic the behavior of the target deep model.

• Employ synthetic data to augment the acquired data. We have used two different

techniques for this purpose: 1) The dynamic time warping barycentric averaging tech-

nique (Hassan Ismail Fawaz et al., 2018) creates new time-series signals by averaging

a set of random signals in a dynamic time warping space. This technique allows us

to synthesize additional time-series signals that are very similar to the original ones.

2) Create additional data by running the FGSM/PGD algorithm to create adversarial

examples using minimal perturbation that are assumed to belong to the same semantic

label space as the original time-series signal.

• The attacker can potentially acquire similar sensors and create the training data for

the proxy model.

3.2.2 Real-world Constraints in IoT and Mobile Systems

Real-world constraints. Since the target deep model for IoT and mobile systems rely

on synchronous sensors, it is critically important to account for the limitations imposed

by the hardware on plausible attack strategies. We list three important constraints for a

sensor-enabled mobile system.

28

• Constrained computational resources: Sensors are basic hardware designed to meet

specific goals and lack computational resources to execute sophisticated algorithms.

• Hard traceability: Sensors and wearable systems rely on sparse devices that are not

centrally controlled. These devices are expected to operate dynamically and function

autonomously. Their main objective is to acquire signals and send them to a central

data acquisition system (Lara and Labrador, 2012). As a result, we cannot map the

collected time-series data to the sensors that generated it.

• Real-time execution: The overall system needs to execute in real-time to meet the

functional requirements of its applications. Therefore, practical security attacks should

satisfy these real-time needs to delay induction and possible ensuing investigations.

Practical hardware threats. Let us consider a mobile system enabled by multiple syn-

chronous sensors. The goal of the attacker is to target all those sensors to be able to tamper

them. Due to limited hardware resources and open connectivity of sensors, the attacker can

employ several hardware attack approaches to tamper with the time-series signals. Side-

channel attacks (Nawir et al., 2016) can be potentially used to monitor sensors and to learn

how to infiltrate and tamper with their acquisition. Fault injection attacks (Zabib et al.,

2017) may allow the attacker to result in failure of sensors and gain access to them. Since

sensors are mostly wireless, another potential threat is the ability of shadow attack, or jam

one or more sensors, and masquerade his own emitters as a legitimate acquisition device for

the target system (Nawir et al., 2016).

One of the main constraints the attacker will face is that of real-time signal acquisition.

To create an adversarial instance, the attacker needs to acquire the original input in order

to tamper with it. Therefore, methods to create adversarial instances (e.g., FGSM) can

solely target systems with data storage. In this case, the attacker can try to maliciously get

access to it and copy the acquired time-series data to construct corresponding adversarial

29

instances to be sent to the system. If this constraint exists, the attacker won’t be able to

maneuver around it for creating those adversarial instances. To overcome this challenge,

universal adversarial attack approach can be employed. This technique will permit the

attacker to create the pattern that needs to be embedded in the sensors. Once the pattern is

applied to the recorded signal, the resulting time-series data is most likely to be incorrectly

classified. Additionally, this technique allows the attacker to overcome the second obstacle:

sparsity of sensors. Since the target systems rely on multiple sensors, it will be tedious or

near-impossible for the attacker to maliciously gain access to all of them discretely. This

constraint will limit the number of channels that can be perturbed. Therefore, from all the

channels that produce one single multivariate time-series input example, the attacker will

have access to only a small number of channels. A single input example is composed of

synchronous channels acquired from multiple heterogeneous sensors.

3.2.3 Practical Attacks via Critical Channels Analysis

In our work, we show that even with the above-mentioned real-world constraints, it is possible

to create an adversarial pattern that will result in most inputs to be mis-classified. In such

cases, the attacker would not have a reason to infiltrate all sensors at the same time. The

key insight to creating such adversarial patterns relies on identifying critical channels of

the time-series data. Our fine-grained analysis of the inference behavior of the deep model

showed that it relies on some channels more than others to predict the output labels. To

compute the sorted order of different channels of the input [X1, X2, · · · , Xn], we propose an

iterative forward-search algorithm.

Algorithm 1 shows the pseudo-code of creating adversarial attacks using critical channel

analysis. First, data from the target model is collected as illustrated in 3.2.1, where the

attacker will eavesdrop on the mobile system to record data seen by the target model and

employ synthetic data to augment it (Line 1 and 2). Subsequently, the attacker labels the

overall data acquired by querying the target model (Line 3) and splits the data into a training

30

Algorithm 1 MTS-AdLens Attack: Practical Attacks via Critical Channel Analysis
Input: F (θ,X), target deep model; Attack Strategy AS.

1: Collect a subset of target data: Dsub ←EavesDrop(D)

2: Create proxy data: Dproxy ← Dsub⊕Augment(Dsub)

3: Create proxy labels: Lproxy ← F (Dproxy, θ)

4: Divide proxy data and labels into training data D and validation data V

5: Train proxy model: F (θproxy, X)←Train(D)

6: n← number of channels in the time-series data

7: Initialize the list of sorted critical channels C = []

8: Initialize list of channels L = [1, 2, · · · , n]

9: Afull ← Compute accuracy of proxy model on data V

10: repeat

11: Compute the score of each channel i in list L as follows:

a) Set all channels in C and channel i to ZERO for all time-series examples in V

b) Apartial ← Compute accuracy of proxy model on modified data V

c) Score of channel i ← Afull − Apartial

12: Add the channel in L with highest score to C and remove it from L

13: until channel list L is empty

14: Create adversarial attacks using strategy AS, proxy model F (θproxy, X), and sorted

critical channels C to meet practical constraints

set and validation set (Line 4). The proxy model is created using the training data (Line

5). To create practical adversarial attacks, the sorted order of critical channels is computed

as follows. We start with an empty list of sorted critical channels C. In each iteration, we

identify the most critical channel from the channels not in C and add it to C. To compute

the critical score of each channel not in C, we do the following. We set the candidate channel

along with all the channels in C to ZERO and perform inference with the target model Fθ(X)

31

on a set of validation examples (Line 11a and 11b). The drop in accuracy is considered the

critical score and we select the channel with highest score to add to C (Line 12). The sorted

order of critical channels of the proxy model are used to create practical adversarial attacks

using a specific attack algorithm (e.g., FGSM/PGD or DeepFool) to meet the real-world

constraints.

In our experiments, we have also found that depending on the architecture of the deep

(CNN) model, two different models can have different sorted order for critical channels.

However, the attacker can target critical channels to create practical attacks. Indeed, our

experiments show that targeting critical channels improves the effectiveness of attack in

degrading the accuracy of target model. An attack that perturbs a small number of most

critical channels is more effective than an attack that perturbs a larger number of channels

chosen at a random.

3.2.4 Adversarial Defense via Dynamic Ensembles

In this section, we propose a novel defense algorithm referred as Dynamic Ensembles for

Error Detection (DEED) to improve the adversarial robustness of the target deep model.

DEED method is deployed at the inference stage and NOT the training stage of the model.

Therefore, the security of these mobile systems is independent of the deep model provider

and DEED can be directly deployed at the level of the system. As mentioned above, most

defense mechanisms (studied for vision tasks) rely on re-training the model to improve ro-

bustness. However, there are at least two practical challenges to employ re-training based

methods for defense: 1) Due to the inherent complexity and ambiguity of time-series signals

for human perception, prior methods can deteriorate the accuracy of trained deep models.

Indeed, we demonstrate this phenomenon in our experiments; and 2) In many IoT and mo-

bile applications (e.g., smart health), it may not be possible to re-train deep models due to

privacy concerns. This is the key motivation for us to study a defense method that can be

directly deployed at the inference stage.

32

Algorithm 2 MTS-AdLens Defense: Dynamic Ensembles for Error Detection (DEED)

Algorithm
Input: Fθ(X), target deep model; C, set of n critical channels in sorted order; X, input

multivariate time-series example; K, number of channels for defense; MAX, the size of

ensemble.

Output: classification error or not

1: Predict the output from target model: ŷ = F (X, θ)

2: Specify an exponential dropout probability distribution for channels based on C:

P=(p1, p2, · · · , pn)

3: for i=1 to MAX do

4: Select K channels via sampling from distribution P

5: X’ ← Set the unselected channels from X to ZERO

6: Predict the output from target model: ŷi = F (X ′, θ)

7: end for

8: ŷvote ← Majority vote of all MAX predictions

9: If ŷvote ̸= ŷ return classification error

The DEED algorithm is inspired by real-world constraints for mobile systems mentioned

in the above section and our vulnerability analysis of the deep models to identify the critical

channels. Since the complexity of attack to simultaneously tamper all sensors increases with

the number of sensors used, our DEED approach for defense exploits this key limitation to

detect erroneous classification from the target deep model. As explained in the previous

section, for error detection, DEED relies on the fact that each deep (CNN) model depends

on a small number of critical channels to predict output labels. The error-detection scheme

employs the same learning model with dropout probabilities on each channel. The channels

are given exponential dropout probabilities such that the most reliable channels have less

probability of being dropped out when compared to other channels. As the exponential prob-

33

ability is a heavy-tailed distribution, the channels that are the least reliable will be dropped

more often than the channels that are the most reliable. The probability distribution is con-

structed in such a way that the most critical channels have higher chance to remain, while

the least critical channels have higher chance to be dropped. If n channels are ordered based

on their criticality as c1 (least critical), c2,· · · , cn (most critical), then dropout probability

for ci will be generated using the exponential probability density function 1
n
e−

1
n
x, x being

a random variable. For example, with five channels, the probability vector of the channels

to be dropped from the input by DEED is [0.797, 0.155, 0.035, 0.006, 0.007]. This process

will improve the robustness of the deep model to make correct classification decisions while

there is a positive probability of disregarding tampered or perturbed channels. To increase

the accuracy of DEED scheme, we employ a voting algorithm to infer the label of the input

multivariate time-series example. If this inferred label via voting is different than the pre-

dicted activity label from the target deep model, then an error in classification is detected.

Algorithm 2 shows the pseudo-code of DEED method.

3.3 Experimental Results

In this section, we first describe the experimental setup and then discuss the results of our

proposed MTS-AdLens framework along different dimensions.

3.3.1 Experimental Setup

Datasets. To evaluate the effectiveness of our black-box attacks and DEED defense method,

we employed five diverse real-world multivariate time-series datasets.

1. WISDM dataset was collected from 36 human subjects performing six different ac-

tivities (Kwapisz, Weiss, and Moore, 2011). This dataset was collected using the

accelerometers of Android smartphones and contains three channels.

34

2. Opportunity Activity Recognition (OAR) dataset was collected using sensors configured

on human subjects who performed 18 different classes of daily activities and contains

107 channels (Roggen et al., 2010).

3. PAMAP2 Physical Activity Monitoring dataset was collected from 9 human subjects.

These subjects performed 18 different classes of physical activities and contains using

36 channels (Reiss and Stricker, 2012a).

4. DLA digital life-assistant dataset where 24 ultrasound sensors are used to track a robot

in a room (Dua and Graff, 2017).

5. SH smart-home monitoring dataset where multiple environment sensors have been used

to monitor the different conditions in a given home setting (Dua and Graff, 2017).

We use WISDM for evaluating unconstrained black-box attacks; and employ the other

datasets for evaluating constrained black-box attacks and DEED defense method due to

the presence of a large number of channels.

CNN models for multivariate time-series classification. We employ the CNN model

from (Ignatov, 2018) to experiment on WISDM dataset. The input of the CNN model is a

time-series signal with a window-size of 200. The architecture includes one convolutional/max-

pooling layer using 196 convolutional filters and one fully-connected layer using 1024 neurons.

For the remaining datasets, we employed the CNN architecture proposed in (Jianbo Yang

et al., 2015) for our model. This architecture employs three convolutional layers of which

two are followed by a max-pooling layer. Finally, the feature maps output is fully-connected

to the output layer of the CNN. The input of this CNN model is a signal with window-size of

30. We employ cross-entropy loss with l2 regularization to learn weights via Adam optimizer.

Evaluation metrics. The effectiveness of an attack strategy AS (ηAS) is the error rate of

the model on the adversarial data (higher the better). We only consider the data that has

been originally classified by the target model correctly. The effectiveness of defense strategy

35

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
S

u
cc

es
sf

u
l

A
d
v
er

sa
ri

al
 E

x
am

p
le

s
(%

)

Fraction of Vulnerable Channels (%)

ε=0-1 ε=1-10 ε>10

Figure 3.2 Histogram of the average minimal value of ϵ used to create a successful
adversarial example using FGSM/PGD as a function of the fraction of vulnerable
channels.

DS (ηDS) is the recovered error-rate on the adversarial data (higher the better).

3.3.2 Results for Unconstrained Black-Box Attacks

For these experiments, we split the training data into two parts: one employed for training

the target model and one employed for training the proxy model to enable attacks. We

trained multiple CNNs that differ in architecture and parameters on the data created from

querying the target model, and selected the model that performs best. used.

Results for FGSM/PGD attacks. Since ϵ (amount of perturbation) is a free variable,

we can always create an adversarial example via FGSM/PGD for any input instance to

fool the target model. Since sensors’ signals are not human-perceptible, the attacker can

create adversarial examples using the proxy model. Subsequently, it can be validated if

the adversarial example fools the target model or not by querying it directly. If not, the

attacker can modify ϵ until a successful adversarial example is created. Figure 3.2 shows the

histogram of the average minimal ϵ value needed to create a successful adversarial example.

It can be seen that ϵ value needed to succeed is inversely proportional to the fraction of

vulnerable channels: a small number of vulnerable channels require large ϵ and vice versa.

36

Table 3.1 Transferability of ηAS from proxy model to the target model.

Proxy model Target model

0.9 0.75

0.85 0.62

0.8 0.55

0.75 0.45

0.7 0.45

Results for universal attacks. Since the attacker has the ability to query the target model,

we ran the DeepFool algorithm for several iterations to generate the universal adversarial

pattern for a desired fooling rate. We compute ηAS to measure the efficiency of attack using

this universal pattern. Table 3.1 shows the transferability rate of ηAS from the proxy model

to the target model. This table shows that universal adversarial attacks are successful in

black-box setting. Although ηAS is lower on the target model when compared to the proxy

model, the attack still had a significant impact on the target model.

3.3.3 Results for Practical Attacks within Constraints

Recall that in practical monitoring systems, the attacker can only perturb a small number of

channels. Therefore, we present the results of attacks with a varying fraction of vulnerable

channels.

Results for FGSM attacks. Figure 3.3 shows the effectiveness of black-box attack via

FGSM method for both constrained and unconstrained settings. We can see that attacks are

capable of increasing the error rate of the target model up to 20 percent when the attacks

are limited to 30 percent of the channels. Since OAR dataset consists of over 100 channels

in contrast to 30 channels of PAMAP2, we see a gradual improvement in the effectiveness of

attack with increasing vulnerable channels. We observe for sharp changes in the curves of

SH and DLA due to their relatively small number of channels.

37

Results for PGD attacks. We can observe a high similarity of the attack performance

between both input-specific attacks regarding the channel-access limitation. For the case of

OAR and PAMAP2 data, we observe similar performance by both FGSM and PGD attacks

in the accuracy drop. While for SH data, we can observe that PGD outperformed FGSM

with a drop in accuracy of 80% for less than 40% channel access. This shows that input-

specific attacks on time-series data are affected similarly by the limitation of channels access.

While the limited access renders the attacks less effective, the attacker can still succeed in

overcoming it using MTS-AdLens.

Figure 3.3 shows the importance of the proxy model in creating effective attacks. The figure

shows the baseline of the same attack in a naive setting. This latter setting (Hassan Ismail

Fawaz et al., 2018) transfers the attack directly to a black-box model with no prior tuning.

When the attacker is unaware of such real-world constraints, the attacks are less effective.

However, the attacker can still succeed in overcoming this limitation using our proposed

MTS-AdLens framework. Through the comparison with the curve of the naive baseline, we

observe that the framework through the proxy model can enhance the adversarial attack on

black-box model in constrained settings. We conclude that the proposed framework using

the proxy model can improve the effectiveness of adversarial attacks on black-box models in

a constrained setting (i.e., access to limited channels).

Results for universal attacks. Figure 3.9 show the results for universal attacks for varying

fraction of vulnerable channels, where vulnerable channels are picked based on the sorted

order of critical channels. We also compare with a random selection of vulnerable channels to

show the usefulness of critical channels analysis. The comparison to random selection aims

to show that critical channels play a role in enhancing adversarial attacks. The proposed

framework utilizes the identified critical channels to alter and create more effective adversarial

examples in contrast to altering random channels. The figure illustrates that the proposed

framework: 1) Create adversarial black-box attacks via selecting vulnerable channels are

effective even in this constrained setting; and 2) Enhance the effectiveness of constrained

38

attacks via the selection of sorted critical channels in contrast of random selection. We

conclude the high utility of critical channels analysis to create effective attacks by MTS-

AdLens. These experimental results provide strong evidence that deep learning models for

multivariate time-series data indeed rely on some channels more than others for the inference

phase. This observation is important to thoroughly study the adversarial robustness of deep

models for time-series data by identifying their vulnerabilities.

Figure 3.3 Results of black-box attacks using FGSM with unconstrained and con-
strained settings when compared to a naive attack baseline that does not use a proxy
model.

Figure 3.4 Results of black-box attacks using PGD with constrained settings.

39

Figure 3.5 OAR Data

Figure 3.6 PAMAP2 Data Figure 3.7 SH Data

Figure 3.8 DLA Data

Figure 3.9 Results of universal attacks with constraints on vulnerable channels.

3.3.4 Results for Defense Mechanisms

Results for adversarial training. First, we test our hypothesis that the most popular

defense method in image domain, namely, adversarial training will degrade the accuracy of

deep model. Recall that one of the key challenges with adversarial time-series data is that

40

Figure 3.10 Performance of the classification model using adversarial training on
black-box FGSM/PGD attacks.

0 5 10 15 20 25 30
Max Value

20

40

60

80

100

R
ec

ov
er

ed
A

cc
ur

ac
y

(%
)

V.C.=10%

V.C.=20%

V.C.=30%

V.C.=35%

Figure 3.11 Performance of DEED algorithm as a function of MAX parameter
(ensemble size) and the fraction of vulnerable channels (V.C.) allowed to create
attacks.

human-eye-imperceptibility is not applicable. The defense technique relies on additional

training data generated by FGSM and PGD attack (Hassan Ismail Fawaz et al., 2018). We

have re-trained the target deep model using a fixed range for the parameter ϵ on WISDM

dataset. Figure 3.10 shows the performance of the adversarially trained model for classifying

FGSM/PGD generated adversarial inputs. The first observation is that the accuracy of

the target deep model drops from 93% to 78% due to adversarial training. We explain

this observation by the fact that time-series data have complex behavior: two signals that

41

are close in distance may belong to different true labels. Hence, some of the augmented

adversarial examples are noisy/inconsistent and can potentially mislead deep models during

the training phase. Additionally, the model is unstable in its performance when we observe

the behavior on both datasets, and the drop in accuracy is relatively high to be considered

as a functional defense. The instability of adversarial training to defend against adversarial

attack is explained by the fact that the deep model is not trained for the possible scenarios,

where limited channel attacks are effective. This result strongly corroborates our hypothesis.

Results for DEED defense method. Recall that DEED tries to detect whether the

error in prediction by the target model is due to adversarial attacks in a constrained setting.

The algorithm relies on the fact that under a black-box setting, the critical channels can be

different from a proxy model that has been created to mimic its parameters and behavior.

We tested with multiple values of MAX (ensemble size). Our results showed that error de-

tection accuracy improves with increasing values of MAX and saturates at 30. This choice

was concluded after running the DEED algorithm using different values of MAX. Figure

3.11 shows that the recovered accuracy is constant when reaching the value of MAX= 30.

Hence, we used MAX=30 in all our DEED experiments. We set K (number of channels for

defense) to be slightly more than the number of channels employed for attacks. For tuning

the K parameter, this step is performed empirically by testing the full-range of different

limited-channel attacks to choose the value at which the desired trade-off between security

and efficiency is achieved for each dataset/application-setting. We performed experiments

on both kinds of black-box attacks. Table 3.2 shows the error detection accuracy (fraction

of detected errors that are correct) and Table 3.3 shows a comparison between the voting

accuracy (accuracy of the predicted output ŷvote from ensemble classifier in Algorithm 2 w.r.t

the true label) of our proposed defensive algorithm and the accuracy of the learning model

trained with adversarial data generated using FGSM/PGD . We make the following obser-

vations: 1) Error detection accuracy of DEED is very high when the fraction of vulnerable

channels is small, but it drops gradually as the fraction of vulnerable channels employed for

42

Table 3.2 Results of DEED defense method in terms of error detection accuracy
and accuracy of voting classifier.

Error detection accuracy(%)
Fraction of vulnerable

channels (%) PAMAP2 OAR SH DLA

0 100 100 100 100

10 96.8 94 95 97.2

20 82 88 85 90

30 78.6 82.5 85 89

35 61 62.5 84 80

attacks increases; and 2) Accuracy of the voting classifier is very high even for attacks with

a relatively large fraction of vulnerable channels and exhibits robust behavior. The success

of the proposed algorithm shows the importance of critical channels in deep learning models.

While they create a vulnerability in accurate inference, the proposed framework employs

them to improve the accuracy of the model, without the expense of re-training the model.

Finally, we run the DEED algorithm on an Android phone to quantify the cost of addi-

tional real-time overhead when compared to standard inference procedure. We employed a

Samsung Galaxy S10 (Android 10, SoC Snapdragon 855) platform. The fraction of vulner-

able channels are set to 20% for this experiment. In this setting, the deep learning model

has already been shown to be vulnerable for limited channels attack. For example, for OAR

data, the drop in accuracy ηAS is around 0.5. The runtime results for different datasets in

real-time are shown in Figure 3.12. We use an ensemble size of 20. We make the following

observations. 1) The overhead of DEED is proportional to the number of channels. They

range between 15X and 17X with respect to the standard inference method. However, this

overhead can be further reduced by exploiting the sparsity in the computation via zero chan-

nels; and 2) The recovered accuracy using DEED is shown to exceed 97% and justifies the

additional overhead to improve robustness/security of deep models.

43

Table 3.3 Comparison of the Accuracy Results of DEED defense method vs Ad-
versarial Training Defense.

Adversarial
Training

accuracy(%) DEED accuracy(%)
Fraction of vulnerable

channels (%) PAMAP2 OAR PAMAP2 OAR

0 70 78 100 100

10 70 80 100 100

20 70 81 97.04 98.02

30 71 75 92.3 92.5

35 72 72 87.4 87.8

SH DLA SH DLA

0 65 72 100 100

10 60 72 100 100

20 60 70 100 100

30 70 63 97.2 97.5

35 65 69 91.1 90.8

Figure 3.12 Runtime cost of DEED algorithm and standard inference without
defense for the setting with 20% vulnerable channels on different datasets.

3.3.5 Summary of Experimental Findings

Key findings of our experimental evaluation include:

44

1. Black-box adversarial attacks (input-specific and universal attacks) are successful in

fooling the deep model over multivariate time-series data for IoT and mobile applica-

tions without any real-world constraints.

2. With real-world constraints in the form of restricted access to channels for IoT and mo-

bile systems, we showed that using critical channels analysis, we can develop successful

attacks using the most critical channels meeting the constraints.

3. Using the critical channels and dynamic ensembles, our inference stage defense algo-

rithm DEED achieved good results in detecting the constrained adversarial attacks.

Additionally, the algorithm accurately predicted the original labels of adversarial sig-

nals.

3.4 Summary

In this chapter, we developed and evaluated a principled framework to analyze deep models

for multivariate time-series classification in adversarial settings. Our comprehensive study

shows that these deep learning methods are significantly vulnerable to adversarial attacks.

We have exposed that these vulnerabilities remain existing even with limited access adversar-

ial capacity, where the attacker cannot change all the channels of a multivariate time-series

input at once. We have explained how the hardware architecture of sensors constrains the

space of practically feasible adversarial attacks and how we can exploit the synchronous sen-

sors architecture of monitoring systems to create effective and robust defense mechanisms.

45

CHAPTER FOUR

ADVERSARIAL FRAMEWORK WITH CERTIFIED ROBUSTNESS FOR

TIME-SERIES DOMAIN VIA STATISTICAL FEATURES

T. Belkhouja and J. Doppa. "Adversarial Framework with Certified Robustness for Time-

Series Data via Statistical Features". Journal of Artificial Intelligence Research (JAIR), 73:

1435-1471, 2022.

Originally published in the Journal of Artificial Intelligence Research.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting, inves-

tigating the state of the art, formulating the theoretical contribution and the algorithmic

solution, implementing the algorithm and running the required empirical analysis to high-

light the performance improvement of the proposed solution compared to the state of the

art.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

46

ADVERSARIAL FRAMEWORK WITH CERTIFIED ROBUSTNESS FOR

TIME-SERIES DOMAIN VIA STATISTICAL FEATURES

In this chapter, we propose a novel framework referred to as Time-Series Attacks via

STATistical Features (TSA-STAT) and provide certified bounds on robustness. TSA-STAT

relies on three key ideas. First, we create adversarial examples by imposing constraints on

statistical features of the clean time-series signal. This is inspired by the observation that

time-series data are comprehensible using multiple statistical tools rather than the raw data

(Ignatov, 2018; Christ, Kempa-Liehr, and Feindt, 2016; L. Ge and L.-J. Ge, 2016). The

statistical constraints allow us to create valid adversarial examples that are much more sim-

ilar to the original time-series signal when compared to lp-norm constrained perturbations.

Second, we employ polynomial transformations to create adversarial examples. For a given

polynomial transformation with fixed parameters and an input time-series signal, we get

an adversarial time-series as the output. We theoretically prove that polynomial transfor-

mations expand the space of valid adversarial examples over traditional additive perturba-

tions, i.e., identify blind spots of additive perturbations. Our experiments demonstrate that

polynomial transformation based attacks are more effective (in terms of successfully fooling

time-series DNNs) than those based on additive perturbations. Third, to create attacks

of different types, we solve an appropriate optimization problem to identify the parameters

of the polynomial transformation via gradient descent. Certifiable robustness studies DNN

classifiers whose prediction for any input X is verifiably constant within some neighborhood

around X, e.g., lp ball. We derive a certified bound for robustness of adversarial attacks

using TSA-STAT. Our TSA-STAT framework and certification guarantees are applicable to

DNNs for time-series domain with different network structures.

47

4.1 Challenges for time-series domain.

The standard lp-norm based distance doesn’t capture the unique characteristics (e.g., fast-

pace oscillations, sharp peaks) and the appropriate notion of invariance for time-series signals.

As a consequence, perturbations based on lp-norm can lead to a time-series signal that

semantically belongs to a different class-label. Indeed, our experiments demonstrate that

small perturbations result in adversarial examples whose distance (l2 and l∞-norm) from

the original time-series signal is greater than the distance between time-series signals from

two different class labels. Therefore, there is a great need for studying adversarial methods

focused on deep models for the time-series domain by exploiting the structure and unique

characteristics of time-series signals.

4.2 The TSA-STAT Framework

In this section, we first provide a high-level overview of the TSA-STAT framework. Subse-

quently, we describe the key elements, and instantiate the framework to create white-box

and black-box attacks.

Overview of TSA-STAT. Our framework creates targeted adversarial examples using

polynomial transformations. For a given input time-series signal X, a target label ytarget, a set

of statistical features S and a DNN classifier Fθ, TSA-STAT generates adversarial examples

using two key ideas: 1) Constraints on the statistical features to regularize the similarity of

adversarial example Xadv to the original time-series X; and 2) A polynomial transformation

that allows us to explore a larger space of adversarial examples over the traditional additive

perturbations. Figure 4.1 provides a high-level overview of the TSA-STAT framework. The

effectiveness of adversarial examples critically depends on the coefficients of the polynomial

transformation. TSA-STAT solves an optimization problem over two different losses via

gradient descent to find the parameters of the polynomial transformation. First, a statistical

loss is employed to ensure that original time-series signal X and the generated adversarial

48

Figure 4.1 High-level overview of the TSA-STAT framework to create adversarial
examples using optimized polynomial transformations. Given an input time-series
signal X, a target label ytarget, a DNN classifier Fθ, and a set of statistical features
S, TSA-STAT solves an optimization problem over two different losses to find the
parameters of the polynomial transformation: 1) A statistical loss to ensure that
original time-series signal X and the generated adversarial example Xadv are highly
similar by imposing constraints on their statistical features; and 2) A classification
loss to make sure that the DNN classifier Fθ classifies the generated adversarial
example Xadv with the target class label ytarget. The optimized polynomial transfor-
mation will take the time-series signal X as input and produce adversarial example
Xadv as output.

example Xadv are highly similar by imposing constraints on their statistical features. Second,

a classification loss to make sure that the DNN classifier Fθ classifies the generated adversarial

example Xadv with the target class label ytarget. The polynomial transformation with the

optimized parameters will take the time-series signal X as input and produce adversarial

example Xadv as output.

4.2.1 Key Elements

1) Statistical constraints. Time-series data is often analyzed using diverse statistical tools

(Montgomery, Jennings, and Kulahci, 2015). Machine learning models have achieved good

classification performance using statistical features of time-series data (Fulcher and Jones,

2014). These prior studies motivate us to use statistical features of time-series data to develop

adversarial algorithms. We propose a new definition to create adversarial examples for time-

series signals. Let Sm(X) = {S1(X), S2(X), · · · , Sm(X)} be the set of statistical features of

49

a given input X (e.g., mean, standard deviation, kurtosis). We define an adversarial example

Xadv derived from X as follows:
∀ 1 ≤ i ≤ m, ∥Si(Xadv)− Si(X)∥∞ ≤ ϵi

and Fθ(X) ̸= Fθ(Xadv)

(4.1)

where ϵi is the bound for the ith statistical feature. Using this definition, we call to

change the conventional lp distance-based neighborhood-similarity to one based on statistical

features for creating valid adversarial examples. We conjecture that this definition is better

suited for adversarial examples in time-series domain. Indeed, our experiments strongly

support this claim.

2) Polynomial transformation-based attacks. To explore larger and powerful space of

valid adversarial examples when compared to traditional additive perturbations, we propose

polynomial transformation based attacks. The aim of this approach is to find a transfor-

mation over the input space that creates effective adversarial attacks. This transformation

considers the entire time-series input to decide the output for each channel and time-step

of the adversarial example. Hence, we propose an adversarial transformation on the input

time-series space. We define polynomial transformation PT : Rn×T → Rn×T as follows:

Xadv = PT (X) = PT (Xi,j) ∀(i, j) ∈ [n]× [T] (4.2)

where X ∈ Rn×T is the input time-series signal and Xadv is the corresponding adversarial

example. The key idea is to create a threat model that does not require calling back the deep

model for every new adversarial attack. Our goal is to preserve dependencies between features

of the input space by having a transformation PT (·) that depends on the input time-series X,

unlike the standard additive perturbations. Inspired by power series (Drensky and Holtkamp,

2006), we approximate this transformation PT (·) using a polynomial representation with a

chosen degree d: PT (X) =
∑d

k=0 ak X
k+O(Xd+1), where ak ∈ Rn×T denote the polynomial

coefficients and O stands for Big O notation.

50

Theorem 1. For a given input space Rn×T and d ≥ 1, polynomial transformations allow

more candidate adversarial examples than additive perturbations in a constrained space. If

X ∈ Rn×T and PT : X →
∑d

k=0 ak Xk, then ∀Xadv s.t. ∥Si(Xadv)− Si(X)∥∞ ≤ ϵi:{
Xadv = PT (X), ∀ak

}
⊋
{
Xadv = X + δ, ∀δ

}
, Si ∈ Sm(X)

⋃
Identity.

The above theorem states that polynomial transformations expand the space of valid

adversarial examples and identify blind spots of additive perturbations. In other words,

the theorem explains that some of the adversarial examples created using polynomial trans-

formations are not possible using standard additive perturbations. We show through the

proof provided in Appendix A that an example created using a standard additive pertur-

bation can be created by a polynomial transformation, however, the inverse is not always

true. This theorem motivates the use polynomial transformations within the TSA-STAT

framework instead of additive perturbations in order to uncover more adversarial examples.

3) Optimization based adversarial attacks. To create powerful adversarial examples

to fool the deep model Fθ(X), we need to find optimized coefficients ak, ∀ k=0 to d, of the

polynomial transformation PT (X). Our approach is based on minimizing a loss function L

using gradient descent that a) Enforces an input signal X to be mis-classified to a target

class ytarget (different from true class label y∗ ∈ Y); and b) Preserves close proximity to

statistical features in the given set Sm.

Classification loss. To achieve the mis-classification goal, we employ the formulation

of (Carlini and D. Wagner, 2017) to define a loss function:

Llabel({ak}, X) = max

[
max

y ̸=ytarget

(
Zy

(
d∑

k=0

ak Xk

))
−Zytarget

(
d∑

k=0

ak Xk

)
, ρ

]
(4.3)

where ρ < 0. This loss function will ensure that the adversarial example will be moving

towards the space where it will be classified by the DNN as class ytarget with a confidence |ρ|

using the output of the pre-softmax layer {Zy}y∈Y .

51

Statistical loss. To satisfy the constraints on statistical features of the set Sm, we

propose another loss function. This loss function overcomes the impractical use of projection

functions on the statistical feature space.

Lstat({ak}, X,Sm) ≜
∑

Si∈Sm

∥Si(
d∑

k=0

ak Xk)− Si(X)∥∞ (4.4)

Combined loss. The final loss function L that we want to minimize to obtain coefficients

ak of the polynomial transformation PT (·) is as follows:

L({ak}, X,Sm) = βlabel × Llabel({ak}, X) + βstat × Lstat({ak}, X,Sm) (⋆)

where βlabel and βstat are hyper-parameters that can be used to change the trade-off between

the adversarial classification loss Llabel and the statistical loss Lstat. We note that our

experiments showed good results with the simple configuration of βlabel=1 and βstat=1.

4.2.2 Instantiations of TSA-STAT

White-box setting. Our goal is to create targeted adversarial attacks on a classifier Fθ.

Adversarial transformation Xadv for a single-instance X: Xadv = PT ytarget(X) =
∑d

k=0 ak X
k

s.t.: 
∥Si(Xadv)− Si(X)∥∞ ≤ ϵi ∀Si ∈ Sm

Fθ(Xadv) = ytarget

where ytarget is the target class-label of the attack.

We employ gradient descent based optimizer to minimize the loss function in Equation ⋆

over {ak}0≤k≤d, where d is the polynomial degree for PT (·). The parameter ρ introduced in

Equation 4.3 plays an important role here. ρ will push gradient descent to minimize mainly

the second term when the first one plateaus at ρ first. Otherwise, the gradient can minimize

the general loss function by pushing Llabel({ak}, X) to −∞, which is counter-productive for

our goal.

52

We can also extend this procedure to create adversarial examples under universal perturba-

tions. A universal perturbation generates a single transformation that is applicable for any

input X ∈ Rn×T . We introduce a targeted universal attack in this setting as:

Xadv = PT ytarget(X) =
d∑

k=0

ak Xk s.t. PT (F (Xadv) = ytarget) > (1− et) (4.5)

where et represents the error probability of creating an adversarial example that Fθ

would classify it with label y ̸= ytarget. Our proposed algorithm analyzes a given set of

inputs to find coefficients {ak}0≤k≤d that would push image of multiple inputs T F(X) =∑d
k=0 ak Xk to the decision boundary of a target class-label ytarget defined by the classifier

Fθ. As the algorithms for both universal attack and instance-specific attack are similar and

follow the same general steps, we present the universal attack algorithm of TSA-STAT in

Algorithm 3. The instance-specific attack is a special-case of the universal attack: Since the

universal algorithm generates a single polynomial transformation that is applicable for any

time-series X, the instance-specific transformation is just applicable for a single time-series

X. Algorithm 3 can degenerate to the case of instance-specific attack by changing the value

of l (the number of time-series inputs) in Line 2 to the value of 1 and optimize over only one

time-series X.

Black-box setting. Black-box attacks are adversarial examples that are created with no

knowledge about the target deep model parameters θ. In the best scenario, the attacker has

the ability to query the target model to get the predicted label for any input time-series

X. This allows the creation of a proxy deep model to mimic the behavior of the target

model. This technique can be more effective when a target scenario is well-defined (Tramer

et al., 2020; Papernot, McDaniel, I. Goodfellow, et al., 2017). For the instantiation of TSA-

STAT, we consider the general case where we do not query the black-box target DL. We

create adversarial examples using optimized transformations as in white-box setting and

prove through experimental results that the same transformations generalize to fool other

black-box deep learning models.

53

Algorithm 3 Optimized universal adversarial transformation
Input: A set of l inputs {Xi}li=1; d, maximum degree; ytarget, target class; Fθ, target model;

Sm, statistical feature set; η, learning rate

Output: {ayk}0≤k≤d, y∈Y

1: Random initialization of {ayk}.

2: for i=1 to l do

3: if Fθ(Xi) ̸= ytarget then

4: ŷ ← Fθ(Xi)

5: δ ← ∇{aŷk}
L({aŷk}, Xi,Sm) ∀k

6: ∀k : {aŷk} ← {a
ŷ
k} − η × δ

7: end if

8: end for

9: return {ayk}0≤k≤d, y∈Y

4.3 Certified Bounds for Adversarial Robustness of TSA-STAT

In this section, we propose a novel certification approach for adversarial robustness of the

TSA-STAT framework. Given a time-series input X ∈ Rn×T and a classifier Fθ, our overall

goal is to provide a certification bound δ on the ∥ · ∥∞ over the statistical features Sm(X) of

the time-series signal X. Traditionally, the certification bound is a constant δ that constrains

the distance between an input X and a perturbed version Xadv=X+nP (nP is a multi-variate

noise) as shown in Figure 4.2(a). Using TSA-STAT, our goal is to derive a certification bound

δ that constraints the difference between the statistical features of a given time-series input

X and a perturbed version X + nP as shown in Figure 4.2(b). This bound will guarantee

the robustness of classifier Fθ in predicting Fθ(Xadv) = Fθ(X) for any adversarial time-series

Xadv such that
∑

Si∈Sm ∥Si(Xadv) − Si(X)∥∞ ≤ δ, where Si is a statistical feature (e.g., a

vector of mean values, one for each time-series channel) and ∞ norm takes the maximum of

54

the difference between statistical feature values for each channel separately (e.g., maximum

of the difference between mean for each channel separately).

(a) (b)

Figure 4.2 Conceptual illustration of the perturbation region of an input X with
respect to noise nP as considered by (a) Standard l2 norm where δ is a constant
representing the Euclidean distance between X and X + nP ; and (b) Statistical
constraints as considered by TSA-STAT, where δ is a constant representing the cu-
mulative sum of the maximum difference between statistical features computed over
X and X + nP for each time-series channel separately. Si represents one statistical
feature (e.g., mean), and Si(X) and Si(X + nP) represent the vector of values for
a given statistical feature, one for each time-series channel (e.g., a vector of mean
values for each channel).

As explained in Section 3, there are two families for certification methods, namely, exact

and conservative. It has been shown that exact certification approaches do not scale well with

the network in question (Cohen, Rosenfeld, and J Zico Kolter, 2019). Hence, we propose

a certification algorithm that belongs to the conservative family. Our aim is to provide

a bound that asserts that the prediction of Fθ(X) remains unchanged for any adversarial

instance Xadv such that ∥Si(Xadv)−Si(X)∥∞ is bounded by δ. State-of-the-art methods such

as Gaussian smoothing (Cohen, Rosenfeld, and J Zico Kolter, 2019) rely on the Euclidean

distance to measure the similarity between the original input and its adversarial example.

Since TSA-STAT investigates statistical features of time-series for similarity purposes, the

l2 bounds derived by prior work are not sufficient to cover time-series adversarial examples.

The certification provided in prior work cannot be extended to assess the robustness of DNNs

for time-series domain as TSA-STAT relies on complex statistical features. To overcome this

challenge, we propose a new robustness certification approach for TSA-STAT that is well-

55

suited for time-series domain by bounding the statistical features. Intuitively, we aim to

Figure 4.3 High-level illustration of the TSA-STAT certification approach to es-
timate the statistical perturbation space of a given time-series input X where the
classifier Fθ is robust. This illustration is for mean only. For a given number of
iterations, we repeatedly generate perturbations nP and n0 and add them to the
time-series X to assess the robustness of classifier Fθ using the mean statistical fea-
ture. nP ∼ N (µP , ·) is generated to mimic the perturbation that can affect the
input time-series signal by producing EP (probability distribution over candidate
class labels) that is used to characterize the robustness of classifier Fθ for predicting
the same label for time-series X. n0 ∼ N (0, ·) is generated as an arbitrary noise
that does not affect the mean vector (statistical feature for each channel) of X and
produces E0 (probability distribution over candidate class labels) needed for the
computation of the certification bound δ. Once δ is estimated, TSA-STAT guar-
antees the robustness of classifier Fθ for predicting Fθ(Xadv)=Fθ(X) for any Xadv

such that ∥µ(Xadv) − µ(X)∥∞ ≤ δ, where µ(.) is the vector of mean values, one
for each time-series channel separately and ∞ norm takes the maximum value of a
given vector.

provide a certification for an input X that considers the statistical feature space of the time-

series signal X. TSA-STAT’s certification relies on adding random multi-variate perturbation

nP to quantify the robustness of the classifier on the surrounding region using statistical

constraints as shown in Figure 4.3.

1. If the classifier Fθ predicts a class-label on the perturbation Xadv which differs from the

prediction on the original time-series signal X, then the classifier is prone to adversarial

attacks on the input.

56

2. If the classifier Fθ yields the correct classification in spite of all the perturbations, then

it is easy to say that the classifier is robust against any perturbation (represented by

nP) on the time-series input X.

3. If the classifier Fθ yields the correct classification on most perturbation cases, then we

develop an algorithmic approach to compute the conditions that nP must satisfy in

order to not affect the classifier’s prediction. Therefore, the certification bound can be

deduced.

Our certification study relies on Rényi Divergence (Van Erven and Harremos, 2014).

Rényi divergence is a generalization of the well-known Kullback-Leibler (KL) divergence (Van

Erven and Harremos, 2014). For a positive order α ̸= 1 and two probability distributions

EP=(p1, · · · , pk) and E0=(p01, · · · , p0k), which are estimated in our case, the Rényi divergence

is defined as:

Dα(EP∥E0) =
1

α− 1
ln

(
k∑

i=1

pαi · (p0i)1−α

)
(4.6)

For the purpose of this work, we define the estimated probability distribution EP as

the empirical probabilities pi that the class i is predicted by Fθ on X + nP (nP being a

random perturbation). Our TSA-STAT framework is general to handle multivariate time-

series data. Hence, we define a multi-variate Gaussian distribution N (µ,
∑

) characterized

by a mean vector µ and a covariance matrix
∑

to generate nP . To compute the divergence

between multi-variate Gaussian distributions, the expression is provided by the following

Lemma (Gil, Alajaji, and Linder, 2013).

Lemma 1. For two multivariate Gaussian distributions N (µ1,
∑

1) and N (µ2,
∑

2):

Dα(N (µ1,
∑
1

)∥N (µ2,
∑
2

)) =
α

2
(µ1 − µ2)

T
∑
α

(µ1 − µ2)−
1

2(α− 1)
ln

|
∑

α |
|
∑

1 |1−α|
∑

2 |α

, where
∑

α = α
∑

1+(1− α)
∑

2.

57

Algorithm 4 TSA-STAT Certification Algorithm
Input: A multivariate time-series signal X, Fθ, DNN classifier; Y , the set of class labels

Parameters: µP , multivariate mean;
∑

, covariance matrix; n, the number of iterations

Output: ŷ, predicted class label; δ, certification bound

1: for i=1 to MAX do

2: Generate nP ∼ N (µP ,
∑

) and n0 ∼ N (0,
∑

)

3: Compute ŷp(i)=Fθ(X + nP) and ŷ0(i)=Fθ(X + n0)

4: end for

5: Estimate EP={pj =
∑MAX

i=1 I[[ŷp(i)==j]]

MAX
}j∈Y

6: Estimate E0={p0j =
∑MAX

i=1 I[[ŷ0(i)==j]]

MAX
}j∈Y

7: if argmax
j∈Y

pj ̸= argmax
j∈Y

p0j then

8: return Certification declined

9: else if max
j∈Y

pj equals 1 then

10: return predicted label ŷ = argmax
j∈Y

pj and certification bound δ = ∥µP∥∞

11: else

12: Compute the upper bound:

δ2 = max
α ̸=1

2

α ·
∑(S)

·

(
− ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α
))

13: return predicted label ŷ=argmax
j∈Y

pj and certification bound δ

14: end if

Lemma 1 provides the expression of the divergence using the parameters of the multivariate

Gaussian distributions. Consequently, we use it to produce the following theorem to provide

certification bound over the mean of the time-series input space for adversarial robustness of

TSA-STAT. For this purpose, we require a second multivariate Gaussian distribution N (·, ·)

to estimate E0 and to compute the divergence provided in Lemma 1. Therefore, we use an

58

arbitrary distribution N (0,
∑

) with a zero-vector mean. This way, the mean feature of the

input time-series signal will not be disturbed. For a computationally-efficient derivation of

the certification bound, we use the same covariance matirx
∑

as the multi-variate Gaussian

distribution that generated nP .

Theorem 2. Let X ∈ Rn×T be an input time-series signal. Let nP ∼ N (µP ∈ Rn,
∑

) and

n0 ∼ N (0,
∑

). Given a classifier Fθ : Rn×T → Y that produces a probability distribution

(p1, · · · , pk) over k labels for Fθ(X+nP) and another probability distribution (p01, · · · , p0k) for

Fθ(X + n0). To guarantee that argmax
pi

pi = argmax
p0i

p0i , the following condition must be

satisfied:

∥µP∥2∞ ≤ max
α ̸=1

2

α ·
∑(S)

·

(
−ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

))

where ∥µP∥∞ is the maximum perturbation over the mean of each time-series channel

and
∑(S) is the sum of all elements of

∑
.

This new certification formulation is suitable for the time-series domain, as it takes into

account the different channels of the time-series signal input and adversarial attacks using

TSA-STAT explore a larger space of valid adversarial examples using statistical constraints

and polynomial transformations.

To derive the certification bound for a given time-series signal X ∈ Rn×T and a classifier

Fθ, we employ two different noise distributions to generate two different noise samples that

we denote nP ∈ Rn×T and n0 ∈ Rn×T , where n is the number of channels and T is the

window size of the time-series signal. nP ∼ N (µP , ·) is generated to mimic the perturbation

that can affect the input time-series signal by producing EP (probability distribution over

candidate class labels) that is used to characterize the robustness of classifier Fθ for predicting

the same label for time-series X. n0 ∼ N (0, ·) is generated as an arbitrary noise that

does not affect the mean vector (statistical feature for each channel) of X and produces

59

E0 (probability distribution over candidate class labels) needed for the computation of the

certification bound. If both perturbations result to the same classifier prediction, we compute

the tolerable perturbation’s upper bound δ = max ∥µP∥∞. As ∥µP∥∞ is upper-bounded by

the RHS term of Theorem 2, the maximum value for ∥µP∥∞ is the RHS term.

The upper bound δ guarantees that for any noise nP with a mean feature for each channel

constrained by δ, the classifier’s prediction is robust on the perturbed input X+nP . In other

words, following the formulation used in Equation 4.4, if for an adversarial time-series signal

Xadv such that ∥Si(Xadv)−Si(X)∥∞ ≤ δ where Si is the statistical feature mean (a vector of

mean values, one for each channel) and∞ norm takes the maximum of the difference between

mean values for each channel separately, then Fθ(Xadv) = Fθ(X). We provide Algorithm 4

to automatically assess the robustness of a classifier Fθ on a given multivariate time-series

signal X as input. To generalize this result for other statistical features, we provide Lemma

2. Both proofs are present in Appendix A.

Lemma 2. If a certified bound δ has been generated for the mean of input time-series signal

X ∈ Rn×T and classifier Fθ, then certified bounds for other statistical/temporal features can

be derived consequently.

4.4 Experiments and Results

In this section, we discuss the experimental evaluation of TSA-STAT along different dimen-

sions and compare it with prior methods.

4.4.1 Experimental Setup

Datasets. To evaluate the proposed TSA-STAT framework, we employed diverse uni-variate

and multi-variate time series benchmark datasets (Bagnall et al., 2020; Dua and Graff, 2017;

Kwapisz, Weiss, and Moore, 2011). Complete details are provided in Table 4.1. We employ

the standard training/validation/testing splits from these benchmarks. Table 4.1 describes

60

each dataset employed in our evaluation: acronym to represent the dataset, the number of

classes, and the dimensions of each input time-series signal.

Table 4.1 Description of different benchmark time-series datasets.

NAME ACRONYM CLASSES INPUT SIZE (n× T)

Chlorine Concentration CC 3 1×166

Synthetic Control SC 6 1× 30

Cylinder-Bell-Funnel CBF 3 1×128

CricketX CX 12 1×300

CricketY CY 12 1×300

CricketZ CZ 12 1×300

Human Activities

and Postural Transitions HAPT 12 6×200

WISDM WD 6 3×200

Character Trajectories ChT 20 3×182

Algorithmic setup. We employ three different 1D-CNN architectures –A0, A1, and A2– to

create three deep models as target DNN classifiers: WB for white-box setting, and BB1 and

BB2 for the black-box setting respectively. WB is a model using A0 to evaluate the ad-

versarial attack under a white-box setting, and trained using clean training examples. BB1

and BB2 use the architectures A1 and A2 respectively to evaluate the black-box setting. The

architecture information of the deep learning models are presented in Table 4.2. To further

evaluate the effectiveness of attacks, we create models that are trained using augmented data

from baselines attacks that are not specific to the image domain: Fast Gradient Sign method

(FGS) (Kurakin, I. Goodfellow, and Bengio, 2016) that was used by (H Ismail Fawaz et al.,

2019), Carlini & Wagner (CW) (Carlini and D. Wagner, 2017), and Projected Gradient

Descent (PGD) (Aleksander Madry et al., 2017). Finally, we evaluate the performance of

61

Table 4.2 Details of DNN architectures. C: Convolutional layers, K: kernel size, P:
max-pooling kernel size, and R: rectified linear layer.

C K C K P R R

A0 x x 66 12 12 1024 x

A1 x x 20 12 2 512 x

A2 100 5 50 5 4 200 100

adversarial examples from TSA-STAT on two RNN models. To effectively test the transfer-

ability of adversarial transformations, we only use the knowledge of WB model. We assume

that the framework is unaware of all other deep models. For FGS and PGD algorithms,

we employed a minimal perturbation factor (ϵ < 0.4) for two main reasons. First, larger

perturbations significantly degrade the overall performance of adversarial training. We also

want to avoid the risk of leaking label information (Aleksander Madry et al., 2017). Sec-

ond, while analyzing the datasets, we found that there are time-series signals from different

classes that are separated by a distance less than what an lp-norm bounded perturbation

engenders. Therefore, lp-norm bounded attacks will create adversarial examples that are

inconsistent (i.e., examples for a semantically different class label) for adversarial training.

For example, in the case of CC dataset, there are time-series signals from different classes

with l2-distances ≤ 0.3, while FGS’s average perturbation is around 0.3 for ϵ = 0.3. If we

employ l∞-distance, CW causes several signal perturbations with l∞-norm ≥ 1.5 on HAPT

dataset, whereas many time-series signals with different class labels have l∞-distances < 1.5.

We observed similar findings in most of the other datasets.

For TSA-STAT, we use βlabel=1 and βstat=1 for the loss function in Equation ⋆ in all

our experiments. TSA-STAT’s attack algorithm and adversarial training have both shown

good performance with this simple configuration. Therefore, we chose not to fine-tune the

hyper-parameters βlabel and βstat to avoid additional complexity. We use constraints over

statistical features including mean, standard deviation, kurtosis, skewness, and root mean

62

square (Brockwell and Davis, 2016) of an input time-series signal. We explain the method-

ology that was used to select these statistical features below.

4.4.2 Selection of Statistical Features and Polynomial Transformation

Figure 4.4 Convergence of dif-
ferent
statistical constraints for i ≤ 1

Figure 4.5 Convergence of dif-
ferent
statistical constraints for i ≤ 4

We initially started with the following statistical features of time-series signals: Sm={Mean

(µ), Standard deviation (σ), Median, Mode, Interquartile range (iq), Skewness, Kurtosis,

Root mean square (rms), Auto-correlation (ac)}. To decide on the most appropriate subset to

use for all our TSA-STAT experiments, we ran a convergence test on
∑

i ∥Si(X
′)−Si(Xref)∥∞

using a subset of the data from WD. We note that the TSA-STAT framework can be used

with both l2 norm and l∞ norm on the statistical features. For X ∈ Rn×T , we have one

statistical feature for each channel, i.e., Si(X) ∈ Rn. Our goal from constraining Si(X) is

to guarantee that for all the n channels, the value of the statistical feature is less than the

given bound. Hence, the use of l∞ norm is straightforward. However, any other norm can

be used. To demonstrate the generality of TSA-STATE, we provide a comparison between

l2 norm and l∞ norm on the statistical features in Figure 4.12. As Figure 4.4 illustrates,

we ran the convergence test at first on each Si ∈ Sm individually (i ≤ 1). We eliminate

the statistical feature Si which does not converge properly in contrast to other statistical

63

constraints, and repeat the experiment each time by increasing i. Figure 4.5 illustrates the

step at i ≤ 4. We conclude from both Figures 4.4 and 4.5 that our approach empirically sat-

isfies the ϵi bound presented in Equation 4.1. Hence, for all our TSA-STAT experiments, we

choose Sm={Mean µ, Standard deviation σ, Skewness, Root mean square} or Sm={Mean

µ, Standard deviation σ, Kurtosis, Root mean square}. We did not increase i further to

avoid increasing the time-complexity of the proposed algorithm for negligible benefits. We

have observed similar patterns for all other datasets. We note that it is not possible to use

the basic PGD method to satisfy the constraint over
∑

i ∥Si(X
′) − Si(Xref)∥∞: a projec-

tion function on the statistical feature space is not a straightforward projection as in the

Euclidean space.

Figure 4.6 Performance of TSA-STAT based universal adversarial attacks using
polynomial transformations with different degrees on multiple DNN models.

Regarding the degree of polynomial transformation for TSA-STAT, we employ d=1 and

d=2 in all our experiments. Figure 4.6 shows the impact of different degrees used for the

polynomial adversarial transformation when tested on the WD dataset noting that we ob-

served similar patterns for all other datasets. Degree 0 corresponds to the standard constant

δ additive perturbation. While the adversarial attack is still functional, degrees ≥ 1 showed

improved effectiveness of adversarial attacks. Starting from degree 3, the attack’s effec-

tiveness did not increase significantly. To prevent increasing the time-complexity of the

optimization method to find the coefficients of polynomial transformation, we chose degrees

64

d=1 and d=2 to evaluate our TSA-STAT framework.

4.4.3 Results and Discussion

Spatial distribution of TSA-STAT outputs. One of the claims of this work is that

adversarial examples relying on lp-norm bounds are not applicable for time-series domain.

To evaluate this claim, we employ a t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton, 2008) technique to visualize the adversarial examples generated by

TSA-STAT and PGD, an lp-norm based attack. t-SNE provides a dimensionality reduction

method that constructs a probability distribution for the high-dimensional samples to create

a reduced feature space where similar instances are modeled by nearby points and dissimilar

instances are modeled by distant points.

Figure 4.7 t-Distributed Stochastic Neighbor Embedding showing the distribution
of natural and adversarial examples from TSA-STAT and PGD. Adversarial exam-
ples from TSA-STAT are more or equally similar to the original time-series input
than PGD-based adversarial examples.

65

Figure 4.7 illustrates a representative example of the spatial distribution between same-

class data of HAPT and WD, and their respective adversarial examples using TSA-STAT

and PGD. We can clearly see that TSA-STAT succeeds in preserving the similarity between

the original and adversarial example pairs, and in most cases, better than PGD.

Effectiveness of adversarial examples from TSA-STAT. All following experiments

were repeated 10 times and we report the averaged results (variance was negligible). We

have used the standard benchmark training, validation, and test split on the datasets. We

implemented the TSA-STAT framework using TensorFlow (Abadi et al., 2016) and the base-

lines using the CleverHans library (Papernot, Faghri, et al., 2018). We employ ρ=-20 for

Llabel in Equation 4.3. The choice was due to the observations made from Figures 4.8 and

4.9. A low value of ρ has worse performance on generalization to unseen data or black-box

models. However, higher values of ρ slow down the convergence on each data point. Hence,

we picked a confidence value of ρ at which the fooling rate performance did not increase

significantly.

Figure 4.8 Performance of the
fooling rate on a subset of WD
dataset with a variable ρ for the
instance-specific attack setting.

Figure 4.9 Performance of the
fooling rate on a subset of WD
dataset with a variable ρ for the
universal attack setting.

Adversarial examples are generated for L < 0.1 with a maximum of 5× 103 iterations of

gradient descent using the learning rate η=0.01. We construct a group of transformations

66

{PT (X, y)}y∈Y , one for each class y in Y . The transformation to be used depends on the

initial output class-label predicted by the deep model for the given input X. Therefore,

the universal transformation PT (X, y) =
∑d

k=0 a
y
k Xk will transform the inputs of the same

class-label into adversarial outputs belonging to the target class-label. A targeted attack is

a more sophisticated attack, which exposes the vulnerability of a DNN model better than

an untargeted attack. From an attacker’s perspective, having an attack model that allows

choosing the target classification label of the adversarial example is better. Hence, we use

targeted attacks for our experimental setup to show that TSA-STAT has the best opportunity

for exploring time-series adversarial examples. We run the algorithm repeatedly on all the

different class labels as targets. If the maximum iteration number is reached, we select the

coefficients {ayk} with the lowest corresponding loss.

We show the effectiveness of created adversarial examples for different settings (white-

box, black-box etc.) to fool deep models for time-series domain. We evaluate TSA-STAT

using the attack efficiency metric αEff ∈ [0, 1] over the created adversarial examples. αEff

(higher means better attacks) measures the capability of targeted adversarial examples to

fool a given DNN classifier Fθ to output the class-label ytarget (i.e., targeted attacks). Figure

4.10 shows the results for instance-specific targeted attacks under white-box and black-box

settings on different deep models. Figure 4.11 shows the results for universal attacks using

TSA-STAT. Unlike instance-specific attacks, universal attacks are created by directly using

the resulting polynomial transformation PT (·). Recall that for black-box attacks, we do

not query the target deep model at any phase. While comparing TSA-STAT based attack

with the existing attacks using success rate provides an assessment about the performance

of different attacks, it does not show which attack is stronger. To investigate the real

performance of TSA-STAT, we show the effectiveness of the TSA-STAT based attack to fool

deep models for time-series domain using both standard and adversarial training. If any

baseline algorithm were better attacks than TSA-STAT, the adversarial training using that

baseline will be robust towards TSA-STAT’s attacks.

67

Figure 4.10 Results for TSA-STAT instance-specific adversarial examples on dif-
ferent deep models trained with clean data and adversarial training baselines.

Figure 4.11 Results for TSA-STAT universal adversarial examples on different deep
models trained with clean data and adversarial training baselines.

We can observe from both Figures 4.10 and 4.11 that on the multivariate WD and

HAPT dataset, the fooling rate is good across all settings. Adversarial examples created

68

by optimized PT (·) are highly effective as αEff ≥ 0.7 for most cases. For CC and SC

datasets, we see a lower performance for TSA-STAT, essentially at the level of FGS on CC.

We believe that this is due to the effect of lp-bounded adversarial examples that mislead the

deep models during adversarial training. Additionally, we show in Figure 4.12 that using l2

norm or l∞ norm on the statistical features has no difference in the general performance of

TSA-STAT based attacks. Finally, Figure 4.13 shows the results of different deep models

Figure 4.12 Results for TSA-STAT instance-specific adversarial examples on dif-
ferent deep models trained with clean data and adversarial training baselines using
l∞ (shown in Blue) and l2 (shown in Green) norm on the statistical features.

after adversarial training using adversarial examples from different methods including TSA-

STAT. This performance is relative to the clean testing set of the data. We can easily

observe from the results of using FGS, CW, and PGD for adversarial training (degrades

overall performance), the validity of our claim: lp distance-based perturbation lacks true-

label guarantees and can degrade the overall performance of deep models on real-world

data. On the other hand, by using the adversarial examples from TSA-STAT, the overall

performance did not decrease and has improved for some datasets: for SC, the accuracy

increased from 90% to 97% for WB, and accuracy on CC improved from 83% to 96% for

BB2. We observe that FGS was the worst method in terms of preserving the performance

of deep models.

69

We conclude from the experiments to test the effectiveness of adversarial examples from

TSA-STAT that indeed using statistical features is well-justified for adversarial time-series

data. If the standard Lp-norm-based methods from the image domain were to be very

effective for the time-series domain:

• TSA-STAT based attacks will not be able to fool the models using baselines as a defense

method as shown in Figures 4.10 and 4.11.

• Adversarial training on clean data using baseline methods would have outperformed

TSA-STAT unlike the observations from Figure 4.13.

Figure 4.13 Results for adversarial training using adversarial examples from differ-
ent methods including TSA-STAT, FGS, CW, PGD, and standard training (Clean)
on clean testing data for different deep models.

Certified bounds. Using Algorithm 4, we can infer the robustness of an input X by

calculating the upper bound δ that limits the tolerable adversarial perturbation over the

∥ · ∥∞. Hence, for any generated perturbation on X which employs δ̂ ≤ δ, the classification

result is guaranteed to remain the same. In other words, for a given time-series X and

70

its robustness bound δ, the perturbation δ̂ can take any value ≤ δ. As a consequence,

the classification of a time-series input X with the perturbation δ̂ is stable/certified. For

the following experiments, we employ MAX = 5 × 103. For the generation of Σ, we use

a random algorithm to generate a semi-definite positive matrix that has parameter σ as

diagonal elements.

Figure 4.14 shows the classification accuracy on testing set under the attack of different

possible δ̂ with various choices of σ = ∥
∑

i,i ∥∞ for the multivariate Gaussian np and nq of

the Algorithm 4 (noting that we observed similar findings on other datasets). σ refers to

the diagonal element of the covariance matrix
∑

. As an example, for WD dataset where

(µP = 0.1, σ = 0.1): At δ̂ = 0, we have a testing accuracy of 0.83, which translates to the

fact that 83% of the testing set is robust to the given perturbation and 19% of the testing

test is vulnerable to adversarial attacks. We also observe that the larger the value of σ is,

the faster the curve declines. This shows that inputs are unstable with respect to robustness

to noises with higher σ.

Figure 4.15 shows the robustness in accuracy of the deep model against perturbation

δ̂ (In blue). It illustrates the classification accuracy on the testing set under attacks with

different possible δ̂ values using (µP=0.01, σ=0.1,MAX=103) as parameters of the multi-

variate Gaussian for Algorithm 4. Consider the analysis for WD dataset as an example. At

δ̂ = 0, we have a test accuracy of 0.83, which translates to the fact that 83% of the test set

inputs are robust to the given perturbation and 17% of the test is vulnerable to adversarial

attacks. At δ̂=1, the plot shows that around 28% of the dataset has a certified bound δ ≥ 1.

The same figure shows the influence of adversarial training on the certification bound of

the deep model via Algorithm 4. We also provide a comparison using Gaussian augmentation

(Dodge and Karam, 2017) to show the substantial role of TSA-STAT in using statistical

features vs. using a standard Gaussian noise. We can observe the effect of adversarial training

with TSA-STAT on increasing the robustness of most inputs on the different datasets. For

example, on HAPT dataset, the initial region of δ̂ ≤ 1.5, the robustness of several inputs

71

Figure 4.14 Certification lower bound accuracy on the testing data with varying
(µP , σ) for Algorithm 4.

have increased (20% increase at δ̂=0 and 10% increase at δ̂=1.0).

Comparison with the work of (Karim, Majumdar, and Darabi, 2020). We men-

tioned in the related Work section that there is a recent work that proposed an approach

for studying adversarial attacks for the time-series domain (Karim, Majumdar, and Darabi,

2020). This method employs network distillation to train a student model for creating ad-

versarial attacks. We provide a comparison between TSA-STAT and the network distillation

approach to show the effectiveness of our proposed framework. First, the method in (Karim,

Majumdar, and Darabi, 2020) is severely limited: only a small number of target classes yield

to a generation of adversarial examples and the method does not guarantee a generation of

adversarial example for every input. (Karim, Majumdar, and Darabi, 2020) showed that

72

Figure 4.15 Robustness results with adversarial training. Comparison of the ac-
curacy of Original model (standard training without adversarial examples) and ad-
versarial training based on TSA-STAT and Gaussian augmentation. This figure
illustrates that TSA-STAT is a better method to improve the robustness of deep
model as it has the highest accuracy for a given δ̂ for most datasets.

for many datasets, this method creates a limited number of adversarial examples in the

white-box setting. To test the effectiveness of this attack against TSA-STAT, we employ

adversarial training using adversarial examples generated by the model proposed in (Karim,

Majumdar, and Darabi, 2020) under the black-box setting. We use the code 1 provided by
1https://github.com/titu1994/Adversarial-Attacks-Time-Series.git

73

the authors to generate the adversarial examples using this baseline method.

Figure 4.16 shows the fooling rate of TSA-STAT generated attacks on different datasets.

We can conclude that adversarial training using (Karim, Majumdar, and Darabi, 2020)

does not improve the robustness of the models against our proposed attack. Additionally,

we show a direct comparison between TSA-STAT and (Karim, Majumdar, and Darabi,

2020) using the attack performance in Figure 4.17. This figure shows the results comparing

both attack performances under the white-box setting WB. We observe that the attack

success rate (αref) of TSA-STAT outperforms the adversarial attacks created by (Karim,

Majumdar, and Darabi, 2020) method. Figure 4.18 shows the effectiveness of adversarial

examples generated from (Karim, Majumdar, and Darabi, 2020) on the deep models created

via adversarial training using augmented data from TSA-STAT. We can see that using TSA-

STAT for adversarial training results in a robust model against any attack generated by the

method in (Karim, Majumdar, and Darabi, 2020).

4.4.4 Summary of Key Experimental Findings

Our comprehensive experimental evaluation demonstrated that TSA-STAT is an effective

adversarial framework for time-series domain. We briefly summarize the main experimental

findings below.

• The similarity measure based on statistical features of time-series used by TSA-STAT

is more effective in capturing the unique characteristics of time-series data when com-

pared to the standard algorithms which rely on lp-norm distance (Figure 4.7).

• Figures 4.10 and 4.11 demonstrate that the instance-specific and universal adversarial

attacks created by TSA-STAT are very effective in fooling DNNs for time-series classi-

fication tasks and evading adversarial training based on adversarial examples created

by prior methods.

• Adversarial examples created by TSA-STAT provide better true-label guarantees (ex-

74

Figure 4.16 Results for effectiveness of TSA-STAT on deep models via adversarial
training using the augmented data generated from (Karim, Majumdar, and Darabi,
2020).

Figure 4.17 Results for the effectiveness of TSA-STAT and (Karim, Majumdar,
and Darabi, 2020) method under the white-box setting WB.

Figure 4.18 Results of TSA-STAT based adversarial training performance on pre-
dicting the true labels of adversarial attacks generated by (Karim, Majumdar, and
Darabi, 2020).

amples belonging to the semantic space of true label) than those based on prior methods

relying on lp-norm distance. As a result, adversarial training based on TSA-STAT im-

proves the robustness of deep models more than adversarial training with prior methods

(Figure 4.13).

• Figure 4.15 demonstrates that adversarial training based on TSA-STAT provides better

robustness certification for time-series classifiers than prior methods.time tun

75

4.5 Summary

We introduced in this chapter the TSA-STAT framework that studies adversarial robustness

of deep models for time-series domain. TSA-STAT relies on two key ideas to create more

effective adversarial examples for the time-series domain: 1) Constraints over statistical fea-

tures of time-series signals to preserve similarities between original input and adversarial

examples; and 2) Polynomial transformations to expand the space of valid adversarial exam-

ples compared to prior methods. TSA-STAT synergistically combines these two key ideas to

overcome the drawbacks of prior methods from the image domain which rely on lp-distance

and are not suitable for the time-series domain. We provided theoretical and empirical anal-

ysis to explain the importance of these two key ideas in making TSA-STAT more suitable

to create adversarial attacks for the time-series domain. We also provided certification guar-

antees for adversarial robustness of the TSA-STAT framework. We theoretically derived

the computation of certification bound for TSA-STAT and provided a concrete algorithm

that can be used with any deep model for the time-series domain. Finally, we empirically

demonstrated the effectiveness of TSA-STAT on diverse real-world datasets and different

deep models in terms of fooling rate and improved robustness with adversarial training. Our

work concludes that time-series domain requires separate investigation for robustness analy-

sis due to its unique characteristics and shows the effectiveness of the TSA-STAT framework

towards this goal.

76

CHAPTER FIVE

DYNAMIC TIME WARPING BASED ADVERSARIAL FRAMEWORK FOR

TIME-SERIES DOMAIN

T. Belkhouja, Y. Yan, and J. Doppa. "Dynamic Time Warping based Adversarial Framework

for Time-Series Domain". IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 45(6): 7353-7366, 2022.

Originally published in the IEEE Transactions on Pattern Analysis and Machine Intel-

ligence.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting, inves-

tigating the state of the art, formulating the theoretical contribution and the algorithmic

solution, implementing the algorithm and running the required empirical analysis to high-

light the performance improvement of the proposed solution compared to the state of the

art.

Y. Yan has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the formulation of the theory of the proposed

solution, and in writing the scientific manuscript.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

77

DYNAMIC TIME WARPING BASED ADVERSARIAL FRAMEWORK FOR

TIME-SERIES DOMAIN

In this chapter, we propose a novel adversarial framework for time-series domain referred

as Dynamic Time Warping for Adversarial Robustness (DTW-AR). DTW-AR employs the

dynamic time warping measure (Sakoe, 1971; Müller, 2007) as it can be used to measure

a realistic distance between two time-series signals (e.g., invariance to shift and scaling

operations) (Berndt and Clifford, 1994; Müller, 2007). For example, a signal that has its

frequency changed due to Doppler effect would output a small DTW measure to the original

signal. However, if Euclidean distance is used, both signals would look very dissimilar, unlike

the reality. We theoretically analyze the suitability of DTW measure over the Euclidean

distance. Specifically, the space of candidate adversarial examples in the DTW space is a

superset of those in Euclidean space for the same distance bound. Therefore, DTW measure

provides a more appropriate bias than the Euclidean space for the time series domain and

our experiments demonstrate practical benefits of DTW-based adversarial examples.

To create targeted adversarial examples, we formulate an optimization problem with the

DTW measure bound constraint and propose to solve it using an iterative gradient-based

approach. However, this simple method has two drawbacks. First, this method allows us to

only find one valid adversarial example out of multiple solution candidates from the search

space because it operates on a single optimal alignment. Second, we need to compute DTW

measure in each iteration as the optimal DTW alignment path changes over iterations. Since

the number of iterations are typically large and DTW computation is expensive, the overall

algorithm becomes prohibitively slow. To successfully overcome these two drawbacks, the key

insight is to employ stochastic alignments to create adversarial examples. We theoretically

and experimentally show that a simpler distance measure based on random alignment path

upper-bounds the DTW measure measure and that this bound is tight. This algorithm allows

us to efficiently create many diverse adversarial examples using different alignment paths to

78

improve the robustness of DNN models via adversarial training. Our experiments on real-

world time-series datasets show that the DTW-AR creates more effective adversarial attacks

to fool DNNs when compared to prior methods and enables improved robustness.

5.1 Background and problem setup

Let X ∈ Rn×T be a multi-variate time-series signal, where n is the number of channels and

T is the window-size of the signal. We consider a DNN classifier Fθ : Rn×T → Y , where θ

stands for parameters and Y is the set of classification labels.

Xadv is called an adversarial example of X if:{
Xadv

∣∣ DIST (Xadv, X) ≤ δ and Fθ(X) ̸= Fθ(Xadv)
}

where δ defines the neighborhood of highly-similar examples for input X using a distance

metric DIST to create worst-possible outcomes from the learning agent’s perspective. Note

that adversarial examples depend on the target concept because it defines the notion of

invariance we care about.

DTW measure. The DTW measure between two uni-variate signals X and Z ∈ RT

is computed via a cost matrix C ∈ RT×T using a dynamic programming (DP) algorithm

with time-complexity O(T 2). The cost matrix is computed recursively using the following

equation:

Ci,j = d(Xi, Zj) + min
{
Ci−1,j, Ci,j−1, Ci−1,j−1

}
(5.1)

where d(·, ·) is any given distance metric (e.g., ∥ · ∥p norm). The DTW measure between

signals X and Z is DTW (X,Z) = CT,T . The sequence of cells P = {ci,j = (i, j)} contributing

to CT,T is the optimal alignment path between X and Z. Figure 5.1 provides illustration for

an optimal alignment path. We note that the diagonal path corresponds to the Euclidean

distance metric.

For the multi-variate case, where X and Z ∈ Rn×T , to measure the DTW measure

using Equation 5.1, we have d(Xi, Zj) with Xi, Zj ∈ Rn (Shokoohi-Yekta et al., 2017). We

79

Figure 5.1 Illustration of DTW alignment between two uni-variate signals X
and Z of length 4. The optimal alignment path (shown in green color) is P =
{(1, 1), (2, 1), (3, 2), (4, 2), (4, 3), (4, 4)}.

define the distance function distP (X,Z) between time-series inputs X and Z according to

an alignment path P using the following equations:

distP (X,Z) =
∑

(i,j)∈P

d(Xi, Zj) (5.2)

Hence, the DTW measure between X and Z is given by:

DTW (X,Z) = min
P

distP (X,Z) (5.3)

Time-series pre-processing methods. A possible solution to overcome the Euclidean

distance concerns is to introduce pre-processing steps that are likely to improve the existing

frameworks. Simple pre-processing steps such as MinMax-normalization or z-normalization

only solves problems such as scaling problem. However, they do not address any concern

about signal-warping or time-shifts. Other approaches rely on learning feature-preserving

representations. A well-known example is the GRAIL(Paparrizos and Franklin, 2019) frame-

work. This framework aims to learn compact time-series representations that preserve the

properties of a pre-defined comparison function such as DTW. The main concern about

feature-preserving pre-processing steps is that the representation learnt is not reversible. In

80

Figure 5.2 Overview of the DTW-AR framework to create targeted adversarial
examples. Given an input X, a target class-label ytarget and a distance bound δ,
DTW-AR aims to identify an adversarial example Xadv using a random alignment
path Prand. DTW-AR solves an optimization problem involving a DTW-similarity
loss and a classification loss using a random alignment path Prand and a DNN clas-
sifier Fθ. Using different random alignment paths, DTW-AR will be able to create
diverse adversarial examples which meet the DTW measure bound δ.

other words, a real-world time-series signal cannot be generated from the estimated repre-

sentation. The goal of adversarial attacks is to create real-world time-series that can be used

to fool any DNN. Such challenges would limit the usability and the generality of methods

based on pre-processing steps to study the robustness of DNNs for time-series data. All

proof of the proposed theorems are provided in Appendix B.

5.2 Dynamic Time Warping based Adversarial Robustness framework

The DTW-AR framework creates targeted adversarial examples for time-series domain us-

ing the DTW measure as illustrated in Figure 5.2. For any given time-series input X,

DNN classifier Fθ, and distance bound δ, we solve an optimization problem to identify an

adversarial example Xadv which is within DTW measure δ to the original time-series sig-

nal X. In what follows, we first provide empirical and theoretical results to demonstrate

the suitability of DTW measure over Euclidean distance for adversarial robustness studies

in the time-series domain (Section 3.1). Next, we introduce the optimization formulation

based on the DTW measure to create adversarial examples and describe its main drawbacks

81

(Section 3.2). Finally, we explain our key insight of using stochastic alignment paths to

successfully overcome those drawbacks to efficiently create diverse adversarial examples and

provide theoretical justification (Section 3.3).

5.2.1 Effectiveness of DTW measure measure

Empirical justification. As we argued before, the standard l2 distance is impractical

for adversarial learning in time-series domain. Perturbations based on Euclidean distance

can result in adversarial time-series signals which semantically belong to a different class-

label. Based on the real-world data representation provided in Figure 5.4, we create and

show in Figure 5.3 an intuitive illustration of suitability of DTW over l2 distance to explain

the advantages of DTW as a similarity measure. It shows the difference in the true data

Euclidean Space DTW Space

Figure 5.3 Illustration of the suitability of DTW over Euclidean distance using the
true data distribution from two classes shown in red and green colors. The concentric
circles represent the close-similarity area of each input instance (i.e., center) using
the corresponding distance measure.

distribution in Euclidean space (i.e., l2 is used as the similarity measure) and in DTW space

(i.e., DTW is used as the similarity measure) for two classes shown in red and green colors.

The concentric circles represent the close-similarity area around each input instance (i.e.,

center) where adversarial examples are considered. We can observe that in the Euclidean

space, adversarial example of an input instance can belong to another class label, which is

not the case in the DTW space. This simple illustration shows how DTW-AR can generate

effective adversarial examples due to the appropriate bias of DTW for time-series domain.

82

This abstraction is tightly based on the observations made on real-world data. We em-

ploy multi-dimensional scaling (MDS), a visual representation of dissimilarities between sets

of data points (Buja et al., 2008), to compare DTW and Euclidean spaces. MDS is a dimen-

sionality reduction method that preserves the distances between data points in the original

space. Figure 5.4 shows MDS results of SC dataset. We can clearly see how the data from

different class labels are better clustered in the DTW space compared to the Euclidean space,

as provided in Figure 5.4. An adversarial example for an SC data point in the green-labeled

class is more likely to semantically belong to the red-labeled distribution in the Euclidean

space. However, in the DTW space, the adversarial example is more likely to remain in the

green-labeled space, while only being misclassified by the DNN classifier due the adversarial

problem.

Euclidean Space DTW Space

Figure 5.4 Multi-dimensional scaling results showing the labeled data distribution
in Euclidean space (left column) and DTW space (right column) for the SC dataset.
DTW space exhibits better clustering for same-class data than Euclidean space.

Theoretical justification. We prove that the DTW measure allows DTW-AR to explore

a larger space of candidate adversarial examples when compared to perturbations based on

the Euclidean distance, i.e., identifies blind spots of prior methods. This result is based on

the fact that the point-to-point alignment (i.e., Euclidean distance) between two time-series

signals is not always the optimal alignment. Hence, the existence of adversarial examples

which are similar based on DTW and may not be similar based on the Euclidean distance.

83

To formalize this intuition, we provide Observation 1. We characterize the effectiveness of

DTW-AR based attack as better for their ability to extend the space of attacks based on the

Euclidean distance and their potential to fool DNN classifiers that rely on Euclidean distance

for adversarial training. Our experimental results demonstrate that DTW-AR generates

effective adversarial examples to fool the target DNN classifiers by leveraging the appropriate

bias of DTW for time-series data.

Observation 1. Let l2 be the equivalent of Euclidean distance using the cost matrix in the

DTW space. ∀X ∈ Rn×T (n > 1, T > 1), there exists ϵ ∈ Rn×T and an alignment path P

such that distP (X,X + ϵ) ≤ δ and l2(X,X + ϵ) > δ.

Theorem 3. For a given input space Rn×T , a constrained DTW space for adversarial ex-

amples is a strict superset of a constrained euclidean space for adversarial examples. If

X ∈ Rn×T : {
Xadv

∣∣DTW (X,Xadv) ≤ δ

}
⊃
{
Xadv

∣∣∥X −Xadv∥22 ≤ δ

}
(5.4)

As an extension of Observation 1, the above theorem states that in the space where

adversarial examples are constrained using a DTW measure bound, there exists more adver-

sarial examples that are not part of the space of adversarial examples based on the Euclidean

distance for the same bound (i.e., blind spots). This result implies that DTW measure has

an appropriate bias for the time-series domain. Hence, our DTW-AR framework is poten-

tially capable of creating more effective adversarial examples than prior methods based on l2

distance for the same distance bound constraint. These adversarial examples are potentially

more effective as they are able to break deep models by leveraging the appropriate bias of

DTW measure. We present the proofs of both Observation 1 and Theorem 3 in the Appendix

B.

However, to convert this potential to reality, we need an algorithm that can efficiently

search this larger space of attacks to identify most or all adversarial examples which meet the

84

DTW measure bound. Indeed, developing such an algorithm is one of the key contributions

of this work.

5.2.2 Naive optimization based formulation and challenges to create adversarial

examples

To create adversarial examples to fool the given DNN Fθ, we need to find an optimized

perturbation of the input time-series X to get Xadv. Our approach is based on minimizing

a loss function L using gradient descent that achieves two goals. 1) Misclassification goal:

Adversarial example Xadv to be mis-classified by Fθ as a target class-label ytarget; and 2)

DTW similarity goal: close DTW-based similarity between time-series X and adversarial

example Xadv.

To achieve the mis-classification goal, we employ the formulation of (Carlini and D.

Wagner, 2017) to define a loss function:

Llabel(Xadv) = max
[

max
y ̸=ytarget

(Sy (Xadv))

− Sytarget (Xadv) , ρ
] (5.5)

where ρ < 0. It ensures that the adversarial example will be classified by the DNN as

class-label ytarget with a confidence |ρ| using the output of the pre-softmax layer {Sy}y∈Y .

To achieve the DTW similarity goal, we need to create Xadv for a given time-series input

X such that DTW (X,Xadv) ≤ δ. We start by a naive optimization over the DTW measure

using the Soft-DTW measure SDTW(X,Xadv) (Marco Cuturi and Blondel, 2017). Hence,

the DTW similarity loss function is:

LDTW (Xadv) = SDTW(X,Xadv) (5.6)

The final loss function L we want to minimize to create optimized adversarial example Xadv

is:

L(Xadv) = Llabel(Xadv) + LDTW (Xadv) (⋆)

85

We operate under white-box setting and can employ gradient descent to minimize the

loss function in Equation ⋆ over Xadv. This approach works for black-box setting also. In

this work, we consider the general case where we do not query the black-box target DNN

classifier. We show through experiments that the created adversarial examples can generalize

to fool other black-box DNNs.

Challenges of Naive approach. Recall that our overall goal is to identify most or all

targeted adversarial time-series examples that meet the DTW measure bound. This will

allow us to improve the robustness of DNN model using adversarial training. This naive

approach has two main drawbacks.

(a) (b)

Figure 5.5 Illustration of the close-similarity space around a given time-series signal
(black center) in the Euclidean and DTW space. Using l2 norm is sufficient to explore
the entire Euclidean space around the input. However, in the DTW space, each
colored section corresponds to one adversarial example that meets the DTW measure
bound constraint. Each of them can be found using only a subset of candidate
alignment paths.

• Single adversarial example. The method allows us to only find one valid adversarial

example out of multiple solution candidates from the search space because it operates on a

single optimal alignment path. Using a single alignment path (whether the diagonal path

86

for Euclidean distance or the optimal alignment path generated by DTW), the algorithm

will be limited to the adversarial examples which use that single alignment. In Figure 5.5,

we provide a conceptual illustration of SADV (X), the set of all adversarial examples Xadv

which meet the distance bound constraint DTW (X,Xadv) ≤ δ. In the Euclidean space,

using l2 norm is sufficient to explore the entire search space around the original input to

create adversarial examples. However, in the DTW space, each colored section in SADV (X)

can only be found using a subset of candidate alignment paths.

• High computational cost. DTW is non-differentiable and approximation methods

are often used in practice. These methods require O(n.T 2) to fill the cost matrix and

O(T) to backtrack the optimal alignment path. These steps are computationally-expensive.

Gradient-based optimization iteratively updates the adversarial example Xadv to achieve

the DTW similarity goal, i.e., DTW (X,Xadv) ≤ δ, and the mis-classification goal, i.e.,

Fθ(Xadv)=ytarget. Standard algorithms such as projected gradient descent (PGD) (Alek-

sander Madry et al., 2017) and Carloni & Wagner (CW) (Carlini and D. Wagner, 2017)

require a large number of iterations to generate valid adversarial examples. This is also

true for the recent computer vision specific adversarial algorithms (Laidlaw and Feizi, 2019a;

Shafahi et al., 2020). For time-series signals arising in many real-world applications, the

required number of iterations to create successful attacks can grow even larger. We need

to compute DTW measure in each iteration as the optimal DTW alignment path changes

over iterations. Therefore, it is impractical to use the exact DTW computation algorithm

to create adversarial examples. We also show that the existing optimized approaches to es-

timate the DTW measure remain computationally expensive for an adversarial framework.

We provide results to quantify the runtime cost in our experimental evaluation.

87

Algorithm 5 DTW-AR based Adversarial Algorithm
Input: time-series X; DNN classifier Fθ; target class-label ytarget; learning rate η; maximum

iterations Max

Output: adversarial example Xadv

1: Prand ← random alignment path

2: Initialization: Xadv ← X

3: for i=1 to Max do

4: L(Xadv)← Llabel(Xadv) + LDTW (Xadv, Prand)

5: Compute gradient ∇Xadv
L(Xadv)

6: Perform gradient descent step:

Xadv ← Xadv − η ×∇Xadv
L(Xadv)

7: end for

8: return optimized adversarial example Xadv

5.2.3 Theoretical justification for stochastic alignment

In this section, we describe the key insight of DTW-AR to overcome the above-mentioned

two challenges and provide theoretical justification.

To overcome the above-mentioned two challenges of the naive approach, we propose

the use of a random alignment path to create adversarial attacks on DNNs for time-series

domain. The key idea is to select a random alignment path P and to execute our adversarial

algorithm while constraining over distP (X,Xadv) instead of DTW (X,Xadv). This choice is

justified from a theoretical point-of-view due to the special structure in the problem to create

DTW based adversarial examples. Using the distance function distP (X,Xadv), we redefine

Equation 5.6 as follows:

LDTW (Xadv, P) = α1 × distP (X,Xadv)

− α2 × distPdiag
(X,Xadv)

(5.7)

where α1 > 0, α2 ≥ 0, Pdiag is the diagonal alignment path equivalent to the Euclidean

88

distance, and P is a given alignment path (P ̸= Pdiag). The first term of Equation 5.7 is

defined to bound the DTW similarity of adversarial example Xadv to a threshold δ as stated

in Observation 2. The second term represents a penalty term to account for adversarial

example with close Euclidean distance to the original input X and pushes the algorithm

to look beyond adversarial examples in the Euclidean space. The coefficients α1 and α2

contribute in defining the position of the adversarial output in the DTW and/or Euclidean

space. If α2 → 0, the adversarial example Xadv will be highly similarity to the original input

X in the DTW space with no consideration to the Euclidean space. Hence, the adversarial

example may be potentially adversarial in the Euclidean space also. However, if α2 > 0, the

adversarial output will be highly similar to the original input in the DTW space but out

of the scope of adversarial attacks in the Euclidean space (i.e., a blind spot). Recall from

Theorem 1 that DTW space allows more candidate adversarial examples than Euclidean

space. Hence, this setting allows us to find blind spots of Euclidean space based attacks.

The DTW-AR approach to create adversarial examples is shown in Algorithm 5. We

note that the naive approach that uses Soft-DTW with the Carlini & Wagner loss function

is a sub-case of DTW-AR as shown below:

SDTW(X,Xadv) = LDTW (Xadv, PDTW) =

1× distPDTW
(X,Xadv)− 0× distPdiag

(X,Xadv)

(5.8)

where PDTW is the optimal DTW alignment path.

Observation 2. Given any alignment path P and two multivariate time-series signals

X,Z ∈ Rn×T . If we have distP (X,Z) ≤ δ, then DTW (X,Z) ≤ δ.

Observation 2 states that distP (X,Z) defined with respect to a path P is always an

upper bound for DTW (X,Z), since DTW uses the optimal alignment path. Hence, when

the alignment path is fixed, the time-complexity is reduced to a simpler similarity measure

that requires only O(n.T), which results in significant computational savings due to repeated

calls within the adversarial algorithm.

89

Our stochastic alignment method also improves the search strategy for finding multiple

desired adversarial examples. Suppose SADV (X) is the set of all adversarial examples Xadv

which meet the distance bound constraint DTW (X,Xadv) ≤ δ. Each adversarial example

in SADV (X) can be found using only a subset of candidate alignment paths. By using a

stochastic alignment path, we can leverage the large pool of different alignment paths to

uncover more than one adversarial example from SADV (X). On the other hand, if the exact

DTW computation based algorithm was feasible, we would only find a single Xadv, as DTW

based algorithm operates on a single optimal alignment path.

Theoretical tightness of bound. While Observation 2 provides an upper bound for

the DTW measure, it does not provide any information about the tightness of the bound.

To analyze this gap, we need to first define a similarity measure between two alignment

paths to quantify their closeness. We define PathSim as a similarity measure between two

alignment paths P1 and P2 in the DTW cost matrix of time-series signals X,Z ∈ Rn×T . Let

P1 = {c11, ..., c1k} and P2 = {c21, ..., c2l } represent the sequence of cells for paths P1 and P2

respectively.

PathSim (P1, P2) =

1

2T

∑
c1i

min
c2j

∥c1i − c2j∥1 +
∑
c2i

min
c1j

∥c2i − c1j∥1

 (5.9)

As PathSim(P1, P2) approaches 0, P1 and P2 are very similar, and they will be the exact

same path if PathSim(P1, P2) = 0. For X,Z ∈ Rn×T , two very similar alignment paths

corresponds to a similar feature alignment between X and Z. Theorem 4 shows the tightness

of the bound given in Observation 2 using the path similarity measure defined above.

Theorem 4. For a given input X ∈ Rn×T and a random alignment path Prand, the result-

ing adversarial example Xadv from the minimization over distPrand
(X,Xadv) is equivalent to

90

minimizing over DTW (X,Xadv). For any Xadv generated by DTW-AR using Prand, we have:
PathSim(Prand, PDTW) = 0

&

distPrand
(X,Xadv) = DTW (X,Xadv)

(5.10)

where PDTW is the optimal alignment path found using DTW computation between X and

Xadv.

Similarity measure PathSim definition. For DTW-AR, we rely on a stochastic align-

PathSim = 0 PathSim = 0.25 PathSim = 0.5 PathSim = 1.25 PathSim = 2.5

PathSim = 0.5 PathSim = 2.5 PathSim = 5 PathSim = 15 PathSim = 25

Figure 5.6 Visualization of PathSim values along different example alignment paths
in Rn×10 (First row) and Rn×100 (Second row) spaces.

ment path to compute distP defined in Equation 5.2. To improve our understanding of

the behavior of DTW-AR framework based on stochastic alignment paths, we propose to

define a similarity measure that we call PathSim. This measure quantifies the similarities

between two alignment paths P1 and P2 in the DTW cost matrix for two time-series sig-

nals X,Z ∈ Rn×T . If we denote the alignment path sequence P1 = {c11, · · · , c1k} and P2 =

{c21, · · · , c2l }, then we can measure their similarity as defined in Equation 5.9.

This definition is a valid similarity measure as it satisfies all the distance axioms (Culli-

nane, 2011):

91

Non-negativity: By definition, PathSim(P1, P2) is a sum of l1 distances, which are all

positives. Hence, PathSim(P1, P2) ≥ 0.

Unicity: PathSim(P1, P2) = 0

⇐⇒ 1

2T
(
∑
c1i

min
c2j

∥c1i − c2j∥1

+
∑
c2i

min
c1j

∥c2i − c1j∥1) = 0

⇐⇒
∑
c1i

min
c2j

∥c1i − c2j∥1 +
∑
c2i

min
c1j

∥c2i − c1j∥1 = 0

As we have a sum equal to 0 of all positive terms, we can conclude that each term (min ∥·∥1)

is equal to 0: PathSim(P1, P2) = 0

⇐⇒ ∀i : ∥c1i − c2i ∥1 = 0

⇐⇒ ∀i : c1i = c2i

As both paths have the same sequence of cells, we can safely conclude that PathSim(P1, P2) =

0 ⇐⇒ P1 = P2:

Symmetric Property:

PathSim(P1, P2) =

1

2T

∑
c1i

min
c2j

∥c1i − c2j∥1 +
∑
c2i

min
c1j

∥c2i − c1j∥1


=

1

2T

∑
c2i

min
c1j

∥c2i − c1j∥1 +
∑
c1i

min
c2j

∥c1i − c2j∥1


= PathSim(P2, P1)

Note that the triangle inequality is not applicable as the alignment path spaces does not

support additive operations.

This similarity measure quantifies the similarity between two alignment paths as it mea-

sures the l1 distance between the different cells of each path. The multiplication factor 1/2T

92

is introduced to prevent scaling of the measure for large T values for a given time-series

input space Rn×T .

In Figure 5.6, we visually show the relation between PathSim measure and the alignment

path for a given cost matrix. We observe that when PathSim(P1, P2)→ 0, P1 and P2 are very

similar, and they will be the exact same path if PathSim(P1, P2) = 0. For PathSim(P1, P2)≫

0, the alignment path will go through different cells which are far-placed from each other in

the cost matrix.

Empirical tightness of bound. Figure 5.7 shows that over the iterations of the DTW-AR

algorithm, the updated adversarial example yields to an optimal alignment path that is more

similar to the input random path. This result strongly demonstrate that Theorem 2 holds

empirically.

(a) (b)

Figure 5.7 (a) Example of the convergence of the optimal alignment path between
the adversarial example and the original example at the start of the algorithm (dot-
ted red path) and at the end (red path) to the given random alignment path (blue
path). (b) PathSim score of the optimal alignment path between the adversarial ex-
ample and the original example and the given random path for the ECG200 dataset
averaged over multiple random alignment paths.

Corollary 1. Let P1 and P2 be two alignment paths such that PathSim(P1, P2) > 0. If X1
adv

93

and X2
adv are the adversarial examples generated using DTW-AR from any given time-series

X using paths P1 and P2 respectively such that DTW (X,X1
adv) = δ and DTW (X,X2

adv) = δ,

then X1
adv and X2

adv are not necessarily the same.

Theorem 4 shows that the adversarial example generation using DTW-AR is equivalent

to the ideal setting where it is possible to optimize DTW (X,Xadv). The above corollary

extends Theorem 4 to show that if we employ different alignment paths within Algorithm 1,

we will be able to find more adversarial examples which meet the distance bound in contrast

to the naive approach.

5.3 Experiments and Results

In this section, we empirically evaluate the key elements of DTW-AR framework and discuss

the results along different dimensions. Furthermore, we provide additional experiments and

discussion on DTW-AR framework in Appendix D.

5.3.1 Experimental setup

Datasets. We employ the UCR datasets benchmark (Bagnall et al., 2020). We present the

results on five representative datasets (AtrialFibrillation, Epilepsy, ERing, Heartbeat,

RacketSports) from diverse domains noting that our findings are general as shown by the

results on remaining UCR datasets in the Appendix D. We employ the standard train-

ing/validation/testing splits from these benchmarks.

Configuration of algorithms. We employ a 1D-CNN architecture for the target DNNs.

We operate under a white-box (WB) setting for creating adversarial examples to fool WB

model. To assess the effectiveness of attacks, we evaluate the attacks under the black-

box (BB) setting and to fool BB model. The adversarial algorithm has no prior knowl-

edge/querying ability of target DNN classifiers. Target DNNs include: 1) DNN model with

a different architecture trained on clean data (BB); 2) DNNs trained using augmented data

94

from baselines attacks that are not specific to image domain: Fast Gradient Sign method

(FGS) (Kurakin, I. Goodfellow, and Bengio, 2016), Carlini & Wagner (CW) attack (Carlini

and D. Wagner, 2017), and Projected Gradient Descent (PGD) (Aleksander Madry et al.,

2017); and 3) DNN models trained using stability training (Stephan Zheng et al., 2016)

(STN) for learning robust classifiers.

DNN architectures. To evaluate the DTW-AR framework, we employ two different 1D-

CNN architectures — A0 and A1 — to create two DNNs: WB uses A0 to evaluate the

adversarial attack under a white-box setting, and is trained using clean training examples.

BB uses the architecture A1 to evaluate the black-box setting for a model trained using clean

examples. The architecture details of the deep learning models are presented in Table 5.1.

Table 5.1 Details of DNN architectures. C: Convolutional layers, K: kernel size, P:
max-pooling kernel size, and R: rectified linear layer.

C K C K P R R

A0 x x 66 12 12 1024 x

A1 100 5 50 5 4 200 100

DTW-AR implementation. We implemented the DTW-AR framework using TensorFlow

2 (Martín Abadi and al., 2015). The parameter ρ that was introduced in Equation 5.5 plays

an important role in the algorithm.

Llabel(Xadv) = max[max
y ̸=ytarget

(Sy (Xadv))− Sytarget (Xadv) , ρ] (5.5)

ρ will push gradient descent to minimize mainly the second term (LDTW) when the first term

plateaus at ρ. Otherwise, the gradient can minimize the general loss function by pushing

Llabel to −∞, which is counter-productive for our goal. In all our experiments, we employ

ρ = −5 for Llabel in Equation 5.5 for a good confidence in the classification score. A good

confidence score is important for the attack’s effectiveness in a black-box setting. Black-box

setting assumes that information about the target deep model including its parameters θ are

95

not accessible. In general, the attacker will create a proxy deep model to mimic the behavior

of the target model using regular queries. This technique can be more effective when a target

scenario is well-defined (Tramer et al., 2020; Papernot, McDaniel, I. Goodfellow, et al., 2017).

However, in this work, we consider the general case where we do not query the black-box

target DNN classifier for a better assessment of the proposed framework. Figure 5.8 shows

the role of ρ value in enhancing DTW-AR attacks in a black-box setting on ECG200 dataset

noting that we see similar patterns for other datasets as well. Adversarial examples are

Figure 5.8 Results for the fooling rate on ECG200 dataset w.r.t different ρ values
for a black-box attack setting.

generated using a maximum of 5× 103 iterations of gradient descent with the fixed learning

rate η=0.01. After all the iterations, the final adversarial output is chosen from the iteration

with the lowest DTW loss provided from Equation 5.7.

LDTW (Xadv, P) =α1 × distP (X,Xadv)

− α2 × distPdiag
(X,Xadv)

(5.7)

Experimentally, we notice that for d(·, ·) in Equation 1 of the main paper, there is no

influence on the performance between choosing p = 1, 2 or ∞ for d(·, ·) = ∥ · ∥p. However,

for datasets in Rn×T with n ≥ 2, we do not use p =∞ as the dimensions are not normalized

and data points will be compared only along the dimension with the greater magnitude.

96

Implementation of baselines. The baseline methods for CW, PGD ,and FGS were im-

plemented using the CleverHans library (Papernot, Faghri, et al., 2018) with updates to

TensorFlow 2. For FGS and PGD algorithms, we employed a minimal perturbation factors

(ϵ < 1) for two main reasons. First, larger perturbations significantly degrade the overall

performance of the adversarial training and potentially creates adversarial signals that are

semantically different than the original time-series input. Second, we want to avoid the risk

of leaking label information (Aleksander Madry et al., 2017). STN was implemented using

the code provided with the paper (Stephan Zheng et al., 2016).

Evaluation metrics. We evaluate attacks using the efficiency metric αEff ∈ [0, 1] over the

created adversarial examples. αEff (higher means better attacks) measures the capability

of adversarial examples to fool a given DNN Fθ to output the target class-label. αEff is cal-

culated as the fraction of adversarial examples that are predicted correctly by the classifier:

αEff = # Adv. examples s.t.F (X)==ytarget
Adv. examples . We evaluate adversarial training by measuring the ac-

curacy of the model to predict ground-truth labels of adversarial examples. A DNN classifier

is robust if it is successful in predicting the true label of any given adversarial example.

5.3.2 Results and Discussion

Spatial data distribution with DTW. We have shown in Figure 5.4 how the data from

different class labels are better clustered in the DTW space compared to the Euclidean

space. These results demonstrate that DTW suits better the time-series domain as generated

adversarial examples lack true-label guarantees. Moreover, Euclidean distance based attacks

can potentially create adversarial examples that are inconsistent for adversarial training.

Our analysis showed that for datasets such as WISDM, there are time-series signals from

different classes with l2-distances ≤ 2, while PGD or FGS require ϵ ≥ 2 to create successful

adversarial examples for more than 70% time-series instances. We provide in the Appendix

D an additional visualization of the adversarial examples using DTW.

97

Admissible alignment paths. The main property of DTW alignment is the one-to-many

match between time-steps to identify similar warped pattern. Intuitively, if an alignment

path matches few time-steps from the first signal with too many steps in the second signal,

both signals are not considered similar. Consequently, the optimal path would be close to

the corners of the cost matrix. Figure 5.9 provides a comparison between two adversarial

signals generated using a green colored path closer to the diagonal vs. a red colored path

that is close to the corners. We can see that the red path produces an adversarial example

that is not similar to the original input. Hence, we limit the range of the random path Prand

used to a safe range omitting the cells at the top and bottom halves of the top-left and

bottom-right corners.

Figure 5.9 Effect of alignment path on adversarial example.

Multiple diverse adversarial examples using DTW-AR. In section 3.2, we argued

that using stochastic alignment paths, we can create multiple diverse adversarial time-series

examples within the same DTW measure bound. DTW-AR method leverages the large pool

of candidate alignment paths to uncover more than one adversarial example as illustrated

in Figure 5.5. To further test this hypothesis, we perform the following experiment. We

sample a subset of different (using PathSim) alignment paths {Prand}i and execute DTW-

AR algorithm to create adversarial examples for the same time-series X. Let Xadv,i be the

adversarial example generated from X using Prand,i. We measure the similarities between

the generated {Xadv}i using DTW and l2 distance. If the distance between two adversarial

98

Table 5.2 Average percentage of dissimilar adversarial examples created by DTW-
AR using stochastic alignment paths for a given time-series. The threshold ϵsim
determines whether two adversarial examples are dissimilar or not based on l2 and
DTW measures.

ϵsim l2 norm ϵsim DTW

0.01 0.05 0.1 0.01 0.05 0.1

Atrial Fibrillation 98% 90% 87% 100% 100% 98%

Epilepsy 99% 96% 93% 100% 100% 97%

ERing 99% 95% 93% 100% 100% 98%

Heartbeat 99% 94% 92% 100% 99% 98%

RacketSports 99% 94% 92% 100% 100% 96%

examples is less than a threshold ϵsim, then they are considered the same adversarial example.

Table 5.2 shows the percentage of adversarial examples generated using different alignment

paths from a given time-series signal that are not similar to any other adversarial example.

We conclude that DTW-AR algorithm indeed creates multiple different adversarial examples

from a single time-series signal for the same DTW measure bound.

Empirical justification for Theorem 2. We provided a proof for the gap between creating

an adversarial example using the proposed DTW-AR algorithm and an ideal DTW algorithm.

In Figure 5.7(a), we provide an illustration of the optimal alignment path update using DTW-

AR. This experiment was performed on the ECG200 dataset as an example (noting that we

observed similar patterns for other datasets as well): the blue path represents the selected

random path to be used by DTW-AR and the red path represents the optimal alignment

path computed by DTW. At the beginning, the optimal alignment path (dotted path) and

the random path are dissimilar. However, as the execution of DTW-AR progresses, the

updated adversarial example yields to an optimal alignment path similar to the random

path. In Figure 5.7(b), we show the progress of the PathSim score as a function of the

iteration numbers of Algorithm 1. This figure shows the convergence of the PathSim score to

99

Figure 5.10 Results for the effectiveness of adversarial examples from DTW-AR
on different DNNs under white-box (WB) and black-box (BB) settings, and using
adversarial training baselines (PGD, FGS, CW and STN) on different datasets.

0. These strong results confirm the main claim of Theorem 2 that the resulting adversarial

example Xadv from the minimization over distPrand
(X,Xadv) is equivalent to minimizing over

DTW (X,Xadv)!

Loss function scaling.As the final loss function is using two different terms to create

adversarial attacks, the absence of a scaling parameter can affect the optimization process.

In Figure 5.11, we demonstrate that empirically, the first term of the Equation ⋆ plateaus

at ρ before minimizing LDTW . The figure shows the progress of both Llabel and LDTW =

α1 × distP (X,Xadv) over the first 100 iterations of DTW-AR algorithm. We conclude that

there is no need to scale the loss function noting that our findings were similar for other time-

series datasets. In the general case, if a given application requires attention to scaling both

terms (LDTW and Llabel), the learning rate can be adjusted to two different values: Instead

of having η ∗∇L = η ∗∇Llabel + η ∗∇LDTW , we can use a learning rate pair η = (η1, η2) and

gradient descent step becomes η ∗ ∇L = η1 ∗ ∇Llabel + η2 ∗ ∇LDTW .

Effectiveness of adversarial attacks. Results of the fooling rate of DTW-AR generated

attacks for different models are shown in Figure 5.10. We observe that under the white-box

setting (WB model), we have αEff=1. This shows that for any ytarget, DTW-AR successfully

100

Figure 5.11 The progress of loss function values over the first 100 iterations of
DTW-AR on different examples from AtrialFibrillation datasets. We observe
that empirically, the Equation ⋆ plateaus at ρ before minimizing LDTW .

generates an adversarial example for every input in the dataset. For black-box setting (BB

model) and other models using baseline attacks for adversarial training, we see that DTW-

AR attack is highly effective for most cases. We conclude that these results support the

theoretical claim made in Theorem 1 by showing that standard l2-norm based attacks have

blind spots and the DTW bias is appropriate for time-series. The importance of α2 in

Equation 5.7 is shown to improve the fooling rate of adversarial examples. To implement

DTW-AR adversarial attacks, we have fixed α1 = 0.5 and α2 = 0.5 for Equation 5.7. The

importance of α2 is to push the algorithm to create adversarial examples out of the scope of

the Euclidean space as shown in Figure 5.12. The adversarial examples with α2 ̸= 0 evade

DNNs with adversarial training baselines better than the examples with α2 = 0.

DTW-AR based adversarial training. Our hypothesis is that l2-based perturbations lack

true-label guarantees and can degrade the overall performance of DNNs. Figure 5.13 shows

the accuracy of different DNNs after adversarial training on clean data. This performance is

relative to the clean testing set of each dataset. We observe that all l2-based methods degrade

the performance using adversarial training for at least one dataset. However, for many

datasets, the performance is visibly improved using DTW-AR based adversarial training.

101

DTW-AR Setting: α2 ̸= 0

DTW-AR Setting: α2 = 0

Figure 5.12 Results for the effectiveness of adversarial examples from DTW-AR
on different DNNs under white-box (WB) and black-box (BB) settings, and using
adversarial training baselines (PGD, FGS, CW and STN) on different datasets under
two attack settings:α2 ̸= 0 and α2 = 0.

Compared to standard training (i.e., no augmented adversarial examples), the performance

on AtrialFibrillation improved using DTW-AR while it declined with other methods;

and on HeartBeat, DTW-AR based training improves from 70% to 75%. To evaluate the

102

Figure 5.13 Results of adversarial training using baseline attacks and DTW-AR,
and comparison with standard training without adversarial examples (No Attack)
to classify clean data.

accuracy of DTW-AR in predicting the ground-truth label of adversarial examples, we create

adversarial examples using a given attack algorithm and label each example with the true

class-label of the corresponding clean time-series input. Figure 5.14 shows the results of

DTW-AR based adversarial training using WB architecture. In this experiment, we consider

the adversarial examples that have successfully fooled the original DNN (i.e., no adversarial

training). We observe that DNNs using DTW-AR for adversarial training are able to predict

the original label of adversarial examples with high accuracy. We can see how FGS and PGD

attacks cannot evade the DTW-AR based trained deep model for almost any dataset. These

results show that DTW-AR significantly improves the robustness of deep models for time-

series data to evade attacks generated by DTW-AR and other baseline attacks. For the

adversarial training, we employ several values to create adversarial examples to be used in

the training phase. We have set α1 ∈ [0.1, 1] and α2 ∈ [0, 1]. In Figure 5.15, we show the

103

Figure 5.14 Results of DTW-AR based adversarial training to predict the true
labels of adversarial examples generated by DTW-AR and the baseline attack meth-
ods. The adversarial examples considered are those which successfully fooled DNNs
that do not use adversarial training.

role of the term α2 of Equation 5.7 in the robustness of the DNN. α2 ∈ [0, 1] ensures diverse

DTW-AR examples to increase the robustness of a given DNN. When set to 0, we see that

there is no significant difference in the performance against baseline attacks. However, the

DNN cannot defend against all DTW-AR attacks. We can also observe that the setting where

α2 is strictly different than 0 is the worst, as the DNN does not learn from the adversarial

examples that are found in the Euclidean space by DTW-AR or the given baselines.

104

DTW-AR Setting: α2 ∈ [0, 1]

DTW-AR Setting: α2 = 0

DTW-AR Setting: α2 ̸= 0

Figure 5.15 Results of DTW-AR based adversarial training to predict the true
labels of adversarial examples generated by DTW-AR and the baseline attack meth-
ods. The adversarial examples considered are those that successfully fooled DNNs
that do not use adversarial training.

105

Naive approach: Carlini & Wagner with Soft-DTW. Recall that naive approach

uses DTW measure within the Carlini & Wagner loss function. SoftDTW (Marco Cuturi

and Blondel, 2017) allows us to create a differentiable version of DTW measure. Hence,

we provide results for this naive approach to verify if the the use of Soft-DTW with exist-

ing Euclidean distance based methods can solve the challenges for the time-series domain

mentioned in this work. We compare the DTW-AR algorithm with the CW-SDTW that

plugs Soft-DTW within the Carlini & Wagner algorithm instead of the standard l2 distance.

CW-SDTW has the following limitations when comapred against DTW-AR:

• The time-complexity of Soft-DTW is quadratic in the dimensionality of time-series

input space, whereas the distance computation in DTW-AR is linear.

• The CW-SDTW attack method is a sub-case of the DTW-AR algorithm. If DTW-AR

algorithm uses the optimal alignment path instead of a random path, the result will

be equivalent to a CW-SDTW attack.

• For a given time-series signal, CW-SDTW will output one single adversarial exam-

ple and cannot uncover multiple adversarial examples which meet the DTW measure

bound. However, DTW-AR algorithm gives the user control over the alignment path

and can create multiple diverse adversarial examples.

Figure 5.16 Results for the effec-
tiveness of adversarial examples from
DTW-AR against adversarial train-
ing using examples created by CW-
SDTW on different datasets.

Figure 5.17 Results for the effec-
tiveness of adversarial training using
DTW-AR based examples against ad-
versarial attacks from CW-SDTW on
different datasets.

106

In conclusion, both challenges that were explained in the Challenges of Naive approach

in Section 3.1 cannot be solved using CW-SDTW. As a consequence, the robustness goal

aimed by this work cannot be achieved using solely CW-SDTW. Indeed, our experiments

support this hypothesis. Figure 5.16 shows that DTW-AR is successful to fool a DNN that

uses adversarial examples from CW-SDTW for adversarial training. This shows that our

proposed framework is better than this naive baseline. Figure 5.17 shows that DTW-AR

significantly improves the robustness of deep models for time-series as it is able to evade

attacks generated by CW-SDTW. Both these experiments demonstrate that CW-SDTW is

neither able to create stronger attacks nor a more robust deep model when compared to

DTW-AR.

Comparison with Karim et al., (Karim, Majumdar, and Darabi, 2020). The ap-

proach from Karim et al., (Karim, Majumdar, and Darabi, 2020) employs network distillation

to train a student model for creating adversarial attacks. However, this method is severely

limited: only a small number of target classes yield adversarial examples and the method

does not guarantee the generation of an adversarial example for every input. Karim et al.,

have shown that for many datasets, this method creates a limited number of adversarial

examples in the white-box setting. To test the effectiveness of this attack against DTW-AR,

Figure 5.18 shows the success rate of deep model from DTW-AR based adversarial training

to predict the true labels of the attacks generated by the method from Karim et al., on

different datasets.

Figure 5.18 Results of the success rate of deep model from DTW-AR based ad-
versarial training to predict the true label of adversarial attacks generated using
method in (Karim, Majumdar, and Darabi, 2020).

107

DTW-AR outperforms (Karim, Majumdar, and Darabi, 2020) due to following reasons:

• DTW-AR generates at least one adversarial example for every input X ∈ Rn×T as

shown in our experiments.

• Adversarial examples created by DTW-AR are highly effective against deep models

relying on (Karim, Majumdar, and Darabi, 2020) for adversarial training as this base-

line fails to create adversarial examples for many inputs and target classes (shown in

(Karim, Majumdar, and Darabi, 2020)).

• Adversarial examples created by the method from (Karim, Majumdar, and Darabi,

2020) does not evade deep models from DTW-AR based adversarial training.

Computational runtime of DTW-AR vs. DTW. As explained in the technical section,

optimization based attack algorithm requires a large number of iterations to create a highly-

similar adversarial example. For example, 103 iterations is the required default choice for

CW to create successful attacks, especially, for large time-series in our experiments. The

exact DTW method is non-differentiable, thus, it is not possible to perform experiments to

compare DTW-AR method to the exact DTW method. Hence, we assume that each iteration

will compute the optimal DTW path and use it instead of the random path. To assess the

runtime of computing the DTW measure, we employ three different approaches: 1) The

standard DTW algorithm, 2) The FastDTW (Salvador and Chan, 2007) that was introduced

to overcome DTW computational challenges, and 3) cDTW (Dau, Silva, et al., 2018) that

measures DTW in a constrained manner using warping windows. We note that FastDTW

was proven to be inaccurate, and cDTW is faster and more accurate for computing DTW

measure (R. Wu and Keogh, 2020). We show both baselines for the sake of completeness. We

provide the runtime of performing each iteration using the different algorithms in Figure 5.19.

We can clearly observe that DTW-AR is orders of magnitude faster than the standard DTW

and the accelerated DTW algorithms. The overall computational cost will be significantly

108

reduced using DTW-AR compared to exact DTW or soft-DTW (Marco Cuturi and Blondel,

2017) for large-size time-series signals.

Figure 5.19 Average runtime per iteration for standard DTW, FastDTW, cDTW,
and DTW-AR (on NVIDIA Titan Xp GPU).

DTW-AR extension to other multivariate DTW measures.The DTW-AR framework

relies on the distance function distP (X,Z) =
∑

(i,j)∈P d(Xi, Zj) between two time-series

signals X and Z according to an alignment path P to measure their similarity. Extending

the DTW notion from univariate to multivariate is a known problem, where depending on

the application, researchers’ suggest to change the definition of distP (X,Z) to better fit the

characteristics of the application at hand. In all cases, DTW-AR relies on using the final

cost matrix DTW (X,Z) = min
P

distP (X,Z) using dynamic programming Ci,j = d(Xi, Zj) +

min
{
Ci−1,j, Ci,j−1, Ci−1,j−1

}
. Therefore, the use of different variants of distP (X,Z) (e.g.,

DTWI or DTWD (Shokoohi-Yekta et al., 2017)) will only affect the cost matrix values,

but will not change the assumptions and applicability of DTW-AR. Therefore, DTW-AR is

109

general and can work with any variant of DTW. In Figure 5.20, we demonstrate that using a

different family of DTW (DTWI) does not have a major impact on DTW-AR’s performance

and effectiveness. The performance of DTW-AR framework using both alternative measures

of multi-variate DTW does not affect the overall performance. Therefore, for a given specific

application, the practitioner can configure DTW-AR appropriately.

Figure 5.20 Results for the effectiveness of adversarial examples from DTW-AR
using DTWAdaptive(Shokoohi-Yekta et al., 2017) (DTWD top row, DTWI bottom
row) on different DNNs under different settings.

5.3.3 Summary of Experimental Results

Our experimental results supported all the claims made in Section 3. The summary list

includes:

• Figure 5.4 showed that DTW space is more suitable for adversarial studies in the

time-series domain than Euclidean distance to support Theorem 3.

• Using stochastic alignment paths, DTW-AR creates multiple diverse adversarial exam-

ples to support Corollary 1 (Table 5.2), which is impossible using the optimal alignment

path.

110

• Figure 5.7 provides empirical justification for Theorem 4 showing that minimizing over

a given alignment path is equivalent to minimizing using exact DTW method (bound

is tight).

• Figure 5.10 shows that adversarial examples created by DTW-AR have higher potential

to break time-series DNN classifiers.

• Figures 5.13 and 5.14 show that DTW-AR based adversarial training is able to improve

the robustness of DNNs against baseline adversarial attacks.

• Figure 5.16 and 5.17 shows that DTW-AR outperforms the naive approach CW-SDTW

that uses SoftDTW with the Carlini & Wagner loss function. We also demonstrated

several limitations of CW-SDTW to achieve the robustness goal aimed by this work.

• Figure 5.19 clearly demonstrates that DTW-AR significantly reduces the computa-

tional cost compared to existing approaches of computing the DTW measure for cre-

ating adversarial examples.

• Figure 5.20 demonstrates that DTW-AR can generalize to any multivariate DTW

measure (such as DTWAdaptive (Shokoohi-Yekta et al., 2017)) without impacting on

its performance and effectiveness.

5.4 Summary

We introduced in this chapter the DTW-AR framework that studies adversarial robustness

of deep models for the time-series domain using dynamic time warping measure. This frame-

work creates effective adversarial examples by overcoming the limitations of prior methods

based on Euclidean distance. We theoretically and empirically demonstrate the effectiveness

of DTW-AR to fool deep models for time-series data and to improve their robustness. We

conclude that the time-series domain needs focused investigation for studying robustness of

deep models by shedding light on the unique challenges.

111

CHAPTER SIX

MIN-MAX OPTIMIZATION FOR TRAINING ROBUST DEEP MODELS

FOR TIME-SERIES DOMAIN

T. Belkhouja, Y. Yan, and J. Doppa. "Training Robust Deep Models for Time-Series Do-

main: Novel Algorithms and Theoretical Analysis". Proceedings of 36th AAAI Conference

on Artificial Intelligence, 2022.

Originally published in the Proceedings of 36th AAAI Conference on Artificial Intelli-

gence.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting, inves-

tigating the state of the art, formulating the theoretical contribution and the algorithmic

solution, implementing the algorithm and running the required empirical analysis to high-

light the performance improvement of the proposed solution compared to the state of the

art.

Y. Yan has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the formulation of the theory of the proposed

solution, and in writing the scientific manuscript.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

112

MIN-MAX OPTIMIZATION FOR TRAINING ROBUST DEEP MODELS FOR

TIME-SERIES DOMAIN

In this chapter, we propose a novel and principled framework referred as RObust Training

for Time-Series (RO-TS) to create robust DNNs for time-series data. We employ additive

noise variables to simulate perturbations within a small neighborhood around each training

example. We incorporate these additive noise variables to formulate a min-max optimization

problem to reason about the robustness criteria in terms of disturbances to time-series in-

puts by minimizing the worst-case risk. To capture the special characteristics of time-series

signals, we employ the global alighnment kernel (GAK) based distance (M. Cuturi et al.,

2007) to define neighborhood regions for training examples. We show the generality and

advantage of our formulation using the summation structure over time-series alignments by

relating both GAK and dynamic time warping (DTW) (Berndt and Clifford, 1994). To

efficiently solve this family of optimization problems, we develop a principled stochastic

compositional alternating gradient descent ascent (SCAGDA) algorithm by carefully lever-

aging the underlying structure of this problem. Another key computational challenge is

that time-series distance measures including the GAK based distance involve going through

all possible alignments between pairs of time-series inputs, which is expensive, e.g., O(T 2)

for GAK where T is the length of time-series signal. As a consequence, the computational

cost grows significantly for iterative optimization algorithms where we need to repeatedly

compute the distance between time-series signals.

6.1 Background and Problem Setup

Prior work on robustness of DNNs is mostly focused on image/text domains; and can be

classified into two categories.

Adversarial training employs augmented data such as adversarial examples (Z. Kolter

and Madry, 2018; W. Y. Wang, Singh, and J. Li, 2019) and input perturbations. Methods

113

to create adversarial examples include general attacks such as Carlini & Wagner attack

(Carlini and D. Wagner, 2017), boundary attack (Brendel, Rauber, and Bethge, 2018),

and universal attacks (Moosavi-Dezfooli, A. Fawzi, O. Fawzi, et al., 2017). Recent work

regularizes adversarial example generation methods to obey intrinsic properties of images

(Laidlaw and Feizi, 2019b; C. Xiao et al., 2018; Hosseini et al., 2017). There are also specific

adversarial methods for NLP domain (Samanta and Mehta, 2017; J. Gao et al., 2018).

Training via explicit loss function employ an explicit loss function to capture the ro-

bustness criteria and optimize it. Stability training (S. Zheng et al., 2016; B. Li et al.,

2019) for images is based on the criteria that similar inputs should produce similar DNN

outputs. Adversarial training can be interpreted as min-max optimization, where a hand-

designed optimizer such as projected gradient descent is employed to (approximately) solve

inner maximization. (Xiong and Hsieh, 2020) train a neural network to guide the optimizer.

Since characteristics of time-series (e.g., fast-pace oscillations, sharp peaks) are different from

images/text, Lp distance based methods are not suitable for time-series domain.

In summary, there is no prior work to train robust DNNs for time-series domain in a

principled manner. This work precisely fills this important gap in our scientific knowledge.

We consider the problem of learning robust DNN classifiers over time-series data. We are

given a training set of n input-output pairs {(xi, yi)}ni=1. Each input xi ∈ X is a time-series

signal, where X ⊆ RC×T with C denoting the number of channels and T being the window-

size of the signal; and yi ∈ Y is the associated ground-truth label, where Y ∈ {1, · · · , C} is a

set of C discrete class labels. Traditional empirical risk minimization learns a DNN classifier

f : X ×Θ→ Y with weights w ∈ Θ that maps time-series inputs to classification labels for

a hypothesis space Θ and a loss function ℓ:

min
w∈Θ

1

n

n∑
i=1

ℓ(f(xi, w), yi).

Training for robustness. We would like the learned classifier f(x,w) to be robust to

disturbances in time-series inputs due to noisy observations or adversarial attacks. For ex-

114

ample, a failure in the prediction task for the above health monitoring application due to

such disturbances can cause injury to the patient without the system notifying the needed as-

sistance. Therefore, we want the trained DNN classifier to be invariant to such disturbances.

Mathematically, for an appropriate distance function d(x, x′) over time-series inputs x and

x′, we want the classifier f to predict the same classification label as x for all inputs x′ such

that d(x, x′) < ε, where ε stands for the bound on allowed disturbance to input x. This goal

can be achieved by reasoning about the worst-case empirical risk over possible perturbations

ai ∈ RC×T of xi such that d(xi, xi + ai) ≤ ε. The resulting min-max optimization problem is

given below.

min
w∈Θ

1

n

n∑
i=1

max
ai

ℓ(f(xi + ai, w), yi)

s.t. d(xi, xi + ai) ≤ ε (6.1)

In practice, instead of solving the above hard constrained problem, one can solve an

equivalent soft constrained problem using regularization as follows

min
w∈Θ

max
ai

1

n

n∑
i=1

ℓ(f(xi + ai, w), yi)− λd(xi, xi + ai) (6.2)

There is a natural interpretation of this optimization problem. The inner maximization

problem serves the role of an attacker whose goal is to find adversarial examples that achieves

the largest loss. The outer minimization problem serves the role of a defender whose goal

is to find the parameters of the deep model w by minimizing the adversarial loss from the

inner attack problem. This formulation is applicable to all types of data by selecting an

appropriate distance function d. For example, Lp-norm distance is usually used in the image

domain (Z. Kolter and Madry, 2018).

Typical stochastic approaches to solving the above adversarial training problem include

alternating stochastic optimization (Junchi Y., 2020) and stochastic gradient descent ascent

(GDA) (T. Lin, Jin, and Jordan, 2020; Y. Yan et al., 2020). The alternating method first

fixes w and solves the inner maximization approximately to get each ai (e.g., using stochastic

115

gradient descent). Next, ai is fixed and the outer minimization is solved over w. These two

steps are performed alternatively until convergence. The GDA method computes the gradient

of w and ai simultaneously at each iteration, and then use these gradients to update w and

ai. Both methods require the ability to compute the unbiased estimation of the gradients

w.r.t. w and ai. When d is decomposable, e.g., Lp-norm, then its stochastic gradient can be

easily computed. However, in time series domain, commonly used distance measures may

not be decomposable, so its stochastic gradients are not accessible. Consequently, one has to

calculate the exact gradient of d(xi, xi + ai) w.r.t, ai. We will investigate this key challenge

in Section 6.2.2.

6.2 RO-TS Algorithmic Framework

In this section, we describe the technical details of our proposed RO-TS framework to train

robust DNN classifiers for time-series domain. First, we instantiate the min-max formulation

with GAK based distance as it appropriately captures the similarity between time-series

signals. Second, we provide an efficient algorithm to solve the GAK-based formulation to

learn parameters of DNN classifers. We provide the proofs and the theoretical analysis of

all proposed theorems in the Appendix C

6.2.1 Distance Measure for Time-Series

Unlike images and text, time-series data exhibits unique characteristics such as sparse peaks,

fast oscillations, and frequency/time shifting which are important for pattern matching and

data classification. Hence, measures such as Euclidean distance that do not account for

these characteristics usually fail in recognizing the similarities between time-series signals.

To address this challenge, elastic measures have been introduced for pattern-matching tasks

for time-series domain (M. Cuturi et al., 2007), where one time-step of a signal can be

associated with many time-steps of another signal to compute the similarity measure.

116

Time-series alignment. Given two time series x=(x1, · · · , xT1) and x′=(x′
1, · · · , x′

T2
) for

T1, T2 ∈ N+, the alignment π = (π1, π2) is defined as a pair of increasing integral vectors of

length r ≤ T1 + T2 − 1 such that 1 = π1(1) ≤ · · · ≤ π1(r) = T1 and 1 = π2(1) ≤ · · · ≤ π2(r)

= T2 with unitary increments and without simultaneous repetitions, which presents the

coordinates of x and x′. This alignment defines the one-to-many alignment between x and x′

to measure their similarity. Using a candidate alignment π, we can compute their similarity

as follows:

dπ(x, x
′) =

|π|∑
i=1

dist(xπ1(i), x
′
π2(i)

) (6.3)

where |π|=r denotes the length of alignment and dist(·, ·) in the above equation is the

Minkowski distance:

dist(xπ1(i), x
′
π2(i)

) = ∥xπ1(i) − x′
π2(i)
∥p, p ∈ {1, · · · ,∞}

Global alignment kernel (GAK) based distance. The concept of alignment allows us

to take into consideration the intrinsic properties of time-series signals, such as frequency

shifts, to compute their similarity. There are some well-known approaches to define distance

metrics using time-series alignment. For example, dynamic time warping (DTW) (Berndt

and Clifford, 1994) selects the alignment with the minimum distance:

DDTW(x, x′) = min
π∈A

dπ(x, x
′),

where A denotes the set of all possible alignments.

While DTW only takes into account one candidate alignment, global alignment kernel

(GAK) (M. Cuturi et al., 2007) takes all possible alignments into consideration:

kGAK(x, x
′) =

∑
π∈A

exp
(
− dπ(x, x

′)

ν

)
(6.4)

where ν is a hyper-parameter and dπ(·, ·) is defined in Equation (6.3). In practice, to handle

the diagonally dominance issue (M. Cuturi et al., 2007; L. Wu et al., 2018; M. Cuturi, 2011),

117

DGAK := −ν log(kGAK) is typically used as a distance measure for a pair of time-series signals.

GAK enjoys several advantages over DTW (M. Cuturi, 2011): (i) differentiable, (ii) positive

definite, (iii) coherent measure over all possible alignments. Therefore, kGAK (or DGAK) is a

better fit to train robust DNNs for the time-series domain.

On the other hand, GAK can also be a more general measure than DTW due to its

summation structure, as limν→0DGAK(x, x
′) = DDTW(x, x′), i.e., arbitrarily close to DTW

by changing ν. The following proposition shows the tight approximation of the soft minimum

of GAK to the hard minimum of DTW.

Proposition 1. For a time-series pair (x, x′), we have:

0 ≤ DDTW (x, x′)−DGAK(x, x
′) ≤ ν log(|A|).

As shown, DGAK converges to DDTW in ν log(|A|) as ν decreases. Due to the above advan-

tages and the approximation ability of DGAK to DDTW, we consider the more general kGAK

and DGAK in our RO-TS method.

6.2.2 SCAGDA Optimization Algorithm

By plugging kGAK from Equation (6.4) to replace d into the min-max formulation in Equation

(6.2), we reach the following objective function of our RO-TS framework:

min
w∈Θ

max
ai

1

n

n∑
i=1

ℓ(f(xi + ai, w), yi)

+ λ

=d(xi,xi+ai)︷ ︸︸ ︷
log
(
kGAK(xi, xi + ai)

)
(6.5)

where ν outside log in DGAK can be merged into λ. The above problem is decomposable

over individual training examples (i.e., index i), so we can compute stochastic gradients by

randomly sampling a batch of data and employ stochastic gradient descent ascent (SGDA)

(T. Lin, Jin, and Jordan, 2020; Y. Yan et al., 2020), a family of stochastic algorithms for

solving min-max problems.

118

Key challenge. The second term log(kGAK(xi, xi + ai)) has a compositional structure due

to the outer log function. By chain rule, its gradient w.r.t. the dual variable ai is

∇ai log(kGAK(xi, xi + ai)) =
∇aikGAK(xi, xi + ai)

kGAK(xi, xi + ai)

where one has to go through all possible alignments to compute kGAK and ∇aikGAK (see

Equation (6.4)) and there is no unbiased estimation (i.e., stochastic gradients) for it.

Consequently, at each iteration, SGDA has to compute the exact value of kGAK(xi, xi+ai)

and ∇aikGAK(xi, xi + ai) according to the chain rule, which leads to an additional time-

complexity of O(CT 2) per SGDA iteration, where C and T denote the number of channels

and window-size respectively. This computational bottleneck will lead to extremely slow

training algorithm when C and/or T is large, which is the case in many real-world applica-

tions. One candidate approach to alleviate the computational challenge due to log(kGAK) part

of the objective is to make use of the inner summation structure of kGAK. Since kGAK involves

a summation over all alignments, as shown in (6.4), we can use only a subset of alignments

for estimating the full summation. This procedure will give an unbiased estimation of kGAK,

but the outer logarithmic function makes it a biased estimation for ∇ai log(kGAK(xi, xi+ai)).

However, such biased estimation violates the assumption in SGDA studies, so their theoret-

ical analysis cannot hold.

There is another line of research investigating stochastic compositional gradient methods

for minimization problems with compositional structure (M. Wang, Fang, and H. Liu, 2017;

T. Chen, Sun, and Yin, 2020). However, min-max optimization with compositional structure,

including our case shown in Equation (6.5), is not studied yet. It is unclear whether these

techniques and analysis hold for min-max problems.

SCAGDA algorithm. We propose a novel stochastic compositional alternating gradient

descent ascent (SCAGDA) algorithm to solve a family of nonconvex-nonconcave min-max

compositional problems, which include RO-TS (Equation (6.5)) as a special case. We sum-

marize SCAGDA in Algorithm 6. Specifically, we consider solving the following family of

119

Algorithm 6 SCAGDA (Stochastic Compositional Alternating Gradient Descent Ascent)

1: Initialize w0, a
0
i for i = 1, · · · , n and ω0

i = 0 for i = 1, · · · , n, step sizes {ηk}Kk=1 and

{γk}Kk=1.

2: for k = 0, · · · , K − 1 do

3: Randomly sample an index i1 to compute stochastic gradient ∇wfi1(wk, a
k
i1
)

4: Set: wk+1 = wk − ηk∇wfi(wk, a
k
i1
)

5: Randomly sample an index i2 to compute stochastic gradient ∇afi2(wk+1, a
k
i2
)

6: Randomly sample two independent indices j1, j2 of hi2 to compute hi2,j1(a
k
i2
) and

∇hi2,j2(a
k
i2
)

7: Set:

ωk+1
i =

 ωk
i for i ̸= i2

(1− β)ωk
i2
+ βhi2,j1(a

k
i2
) for i = i2

(6.6)

8: Set: ak+1
i2

= aki2 + γk(∇afi2(wk+1, a
k
i2
)−∇hj2(a

k
i2
)⊤∇g(ωk+1

i2
))

9: end for

10: return final solution wK

problems:

min
w

max
ai

1

n

n∑
i=1

ϕi(w, ai) (6.7)

where ϕi(w, ai) := fi(w, ai)− g(1
m

∑m
j=1 hi,j(ai)).

Mapping Problem (6.7) to RO-TS (6.5). As mentioned above, RO-TS for time-

series in Equation (6.5) is a special case of Problem (6.7) as shown below. The variables

ϕi(w, ai), fi, g, hi,j in Problem (6.7) can be instantiated by the following mappings:

• fi in ϕi of (6.7) ⇒ the loss ℓ on the i-th data in (6.5)

• −g(·) in ϕi of (6.7) ⇒ λ log(·) in (6.5)

• 1
m

∑m
j=1 hi,j(ai) in ϕi of (6.7) ⇒ kGAK(xi, xi + ai) =

∑
π∈A exp(−dπ(xi, xi + ai)/ν) in

(6.5), where m and j corresponds to the total number of alignment paths |A| and the

120

index of alignment path, respectively. Note that the summation form of kGAK can be

easily converted to an average form due to log(x) = log(x/m) + log(m).

Algorithmic analysis of SCAGDA. To introduce and analyze Algorithm 6 for solving

Problem (6.7), we first introduce some notations. Denote P (w) := maxai
1
n

∑n
i=1 ϕi(w, ai) as

the primal function of the above min-max optimization problem, where we are interested in

analyzing the convergence of the primal gap after the K-th iteration:

P (wK)−min
w

P (w).

Let a := (a1, a2, ..., an) ∈ RC×T×n be the concatenation of ai for i = 1, · · · , n. We also use

the following notations to improve the technical exposition and ease of readability.

ϕ(w, a) :=
1

n

n∑
i=1

ϕi(w, ai),

hi(ai) :=
1

m

m∑
j=1

hi,j(ai),

h(a) :=
1

n
(h1(a1), · · · , hn(an)),

where the last term h(a) is the concatenation of all hi for i = 1, · · · , n.

As mentioned above while discussing the key challenge of the compositional structure

in RO-TS (6.5), conventional SGDA methods for Problem (6.7) require us to compute the

full gradient of the compositional part g(hi(ai)), i.e., ∇hi(ai)
⊤∇g(hi(ai)), which involves all

alignments in the case of RO-TS.

In contrast, SCAGDA only samples a constant number of hi,j(ai) over j (i.e., over a

subset of alignments for RO-TS) and ∇hi,j(ai) (Line 6). Subsequently, SCAGDA employs a

simple iterative moving average (MA) approach to accumulate hi,j(ai) into ωk+1
i at iteration

k for estimating hi(ai) (Line 7). The key idea behind moving average method is to control

the variance of the estimation for hi(a
k+1
i) using a weighted average from the previous esti-

mate hi(a
k
i). Even though ∇g(ωk+1

i) is a biased estimation of ∇g(hi(a
k
i)), we can still use

smoothness condition (introduced in Section 6.3 later) and bound the approximation error

121

E[∥ωk
i − hi(a

k−1
i)∥2] where ωk := (ωk

1 , ..., ω
k
n) is the concatenation of all {ωk

i }ni=1 at iteration

k, as shown in Theorem 6.

Therefore, instantiation of SCAGDA for RO-TS does not require us to perform computa-

tion over all alignments contained in hi(ai) for each time-series training sample, which leads

to a more efficient algorithm with high scalability on large datasets. As shown in Line 3 and

5, SCAGDA updates the primal variable w and dual variable a in an alternating scheme,

which means that wk+1 is updated based on ak, while ak+1 is updated based on wk+1. This

is different from SGDA, which updates ak based on wk instead. We instantiate SCAGDA

for the proposed RO-TS framework as shown in Algorithm 7. The primal variable update is

provided in Line 6, and the dual variable update is provided in Line 11. In particular, Line

8 and 8 correspond to the moving average step for estimating kGAK using randomly sampled

alignment subset Âk
i for the i-th time-series training example.

In the next section, we show that our algorithm can converge to primal gap P (wK) −

minw P (w) ≤ ϵ with iteration complexity O(1/ϵ2), where ϵ is a pre-defined threshold. To the

best of our knowledge, this is the first optimization algorithm and convergence analysis for

the famaily of compositional min-max optimization problems shown in (6.7).

6.3 Theoretical Analysis

In this section, we present novel theoretical convergence analysis for SCAGDA algorithm.

As mentioned in the previous section, for the problem (6.7), existing theoretical analysis of

SGDA (T. Lin, Jin, and Jordan, 2020; Y. Yan et al., 2020), stochastic alternating gradient

descent ascent (SAGDA) (Junchi Y., 2020) require us to compute exact gradient of g(hi(ai))

at each iteration. On the other hand, it is unclear if stochastic compositional alternating

gradient algorithms for minimization problems (M. Wang, Fang, and H. Liu, 2017; T. Chen,

Sun, and Yin, 2020) can handle the complex min-max case.

Summary of results. We answer the following question: can we establish convergence

122

Algorithm 7 RO-TS Instantiation of SCAGDA
Input: A training set {(x, y) ∈ X×Y}ntrain ; mini-batch size s, deep neural network f(w, x, y);

learning rates ηk and γk, loss function l(·), distance function D(·, ·).

Output: Classifier weights w ∈ Θ

1: Randomly initialize weights of the DNN classifier: w0 ∈ Θ

// vector of worst-case perturbations, one for each time-series

2: Initialize a0 = 0 and ω0 = 0

// Multiple iterations of SCAGDA

3: for k = 0, · · · , K − 1 do

4: Randomly sample a mini-batch of data samples indexed by Ik s.t. |Ik| = s

5: Compute the stochastic gradient w.r.t. wk

Gw,k =
1
s

∑
i∈Ik ∇wl(f(wk, xi + aki , yi)

6: Perform stochastic gradient descent on wk

wk+1 = wk − ηkGw,k

7: Randomly sample a mini-batch of alignments indexed by Âk
i for each data index i ∈ Ik

8: Moving average for i ∈ Ik

ωk+1
i = (1− β)ωk

i + β
∑

π∈Âk
i
exp(−dπ(xi, xi + aki)/ν)

9: ωk+1
i = ωk

i for i /∈ Ik.

10: Compute Ga,k,i = ∇aℓ(f(wk+1, xi+aki , yi)−
∑

π∈Âk
i
exp(−dπ(xi, xi+aki)/ν)·∇adπ(xi, xi+

aki) · λ

ωk+1
i ν

for i ∈ Ik

11: Perform stochastic gradient ascent over perturbations

ak+1
i = aki + γkGa,k,i

12: end for

13: return weights of the learned DNN classifier, wK

guarantee of our SCAGDA algorithm for nonconvex-nonconcave compositional min-max op-

timization problems?

123

Theorem 5 proves that SCAGDA shown in Algorithm 6 converges to an ϵ-primal gap

in O(1
ϵ2
) iterations. Theorem 6 demonstrates the efficacy of the moving average strategy

to approximate GAK based distance: the approximation error ∥ωK
i − hi(a

K−1
i))∥2 is also

bounded by ϵ in expectation when the ϵ-primal gap is achieved.

6.3.1 Main Results

The following commonly used assumptions are used in our analysis.

Assumption 1. Suppose µ, L,Cg, Ch, Lg, Lh ≥ 0.

(i) ϕ(w, a) satisfies two side µ-PL (Polyak-Lojasiewicz) condition:

∥∇wϕ(w, a)∥2 ≥ 2µ(ϕ(w, a)−min
w′

f(w, a)),

∥∇aϕ(w, a)∥2 ≥ 2µ(max
a′

f(w, a)− ϕ(w, a)).

(ii) ϕ(w, a) is L-smooth in w for fixed a.

(iii) ϕ(w, a) is L-smooth in ai for fixed w.

(iv) g (resp. h) is Cg (resp. Ch)-Lipschitz continuous.

(v) g (resp. h) is Lg (resp. Lh)-smooth.

(vi) ∃ σ > 0 s.t. E[∥∇wϕi(w, ai)−∇wϕ(w, a)∥2] ≤ σ2,

E[∥∇afi(w, ai)−∇afi(w, ai)∥2] ≤ σ2, E[∥hi,j(ai)−h(a)∥2] ≤ σ2, and E[∥∇hi,j(ai)−∇h(a)∥2] ≤

σ2

We present our main results for SCAGDA below.

Theorem 5. Suppose Assumption 1 holds. In Algorithm 6, set ηk = η = O(1/ϵ2), γk = γ =

O(1/L2) and β =
√
18µη. After running Algorithm 6 for K iterations where K = Õ(1/ϵ2)

(Õ hides logarithmic factor), we have

E[P (wK)− P ∗] +
1

8
E[P (wK)− ϕ(wK , aK)]

+
(4C4

hL
4
gηK

µ5

)1/2
E[∥ωK − h(aK−1)∥2] ≤ ϵ

124

Remark 1. The above theorem gives us two critical observations of the behavior of

SCAGDA. (1) After running K iterations of SCAGDA, the primal gap P (wK+1) − P ∗

converges to ϵ in expectation, since all terms in the left hand side of the inequality are

non-negative. This result shows that SCAGDA is able to effectively solve the compositional

min-max optimization problem shown in Equation (6.7). (2) The required iteration com-

plexity of SCAGDA is O(1/ϵ2). To put this result in perspective, we compare it with related

theoretical results. The rate for nonconvex-nonconcave min-max problem without composi-

tional structure is shown to be O(1/ϵ) (Junchi Y., 2020). However, this improvement requires

unbiased estimation (or exact value) of the gradient and computing the exact g(hi(ai)) at

each iteration. Our iteration complexity is in the same order of that for (T. Chen, Sun, and

Yin, 2020), whose convergence result is O(1/ϵ2) for nonconvex compositional minimization

problems instead of min-max ones. The difference is that their convergence metric is the

average squared norm of gradients, while ours is for the primal gap. Importantly, this is the

first result on convergence rate for stochastic compositional min-max problems.

Theorem 6. After K = Õ(1/ϵ2) iterations of Algorithm 6, we have: E[∥ωK
i −hi(a

K−1
i)∥2] ≤

O(ϵ).

Remark 2. The above result shows that as SCAGDA algorithm is executed, the approx-

imation error of ∥ωK
i − hi(a

K−1
i)∥2 converges to ϵ in the expectation as it is achieving the

ϵ-primal gap. For the condition numbers, we always have L ≥ µ. In practice, we usually

set the accuracy level ϵ to a very small value, so the condition ϵ ≤ O(L3/µ2) will generally

hold. This result provides strong theoretical support that if we apply SCAGDA to opti-

mize our RO-TS problem in (6.5), it is able to approximate kGAK on-the-fly, where we only

need a constant number of alignments, rather than all possible alignments for computing

kGAK in each iteration of SCAGDA. When we have ϵ-primal gap, we also achieve ϵ-accurate

estimation of kGAK at the same time.

125

6.4 Experiments and Results

We present experimental evaluation of RO-TS on real-world time-series benchmarks and

compare with prior methods.

6.4.1 Experimental Setup

Datasets. We employed diverse multi-variate time-series benchmark datasets from the UCR

repository (Bagnall et al., 2020). Table 6.1 describes the details of representative datasets for

which we show the results (due to space limits) noting that our overall findings were similar

on other datasets from the UCR repo. We employ the standard training/validation/testing

splits for these datasets.

Name Classes Input Size (C × T)

ECG200 2 1×97

BME 3 1×129

ECG5000 5 1×141

MoteStrain 2 1×85

SyntheticControl 6 1×61

RacketSports 4 6×30

ArticularyWR 25 9×144

ERing 6 4×65

FingerMovements 2 28×50

Table 6.1 Description of different datasets.

Algorithmic setup and baselines. We employ a 1D-CNN architecture (Bai, J Z. Kolter,

and Koltun, 2018) as the deep model for our evaluation. We ran RO-TS algorithm for

a maximum of 500 iterations to train robust models. To estimate GAK distance within

RO-TS, we employed 15 percent of the total alignments noting that larger sample sizes

126

didn’t improve the optimization accuracy and increased the training time. We also employ

adversarial training to create models using baseline attacks that are not specific to image

domain for comparison: Fast Gradient Sign method (FGS) (Kurakin, I. Goodfellow, and

Bengio, 2016) that was used by H Ismail Fawaz et al. (2019) and Projected Gradient Descent

(PGD)(Aleksander Madry et al., 2017). We also compare RO-TS against stability training

(STN) (Stephan Zheng et al., 2016).

Evaluation metrics. We evaluate the robustness of created models using different attack

strategies on the testing data. The prediction accuracy of each model (via ground-truth

labels of time-series) is used as the metric. To ensure robustness, DNN models should

be least sensitive to different types of perturbations over original time-series signals. We

measure the accuracy of each DNN model against: 1) Adversarial noise is introduced by

FGS and PGD baseline attacks; and 2) Gaussian noise ∼ N (0,Σ) that may naturally occur

to perturb time-series. The covariance matrix Σ diagonal elements (i.e., variances) are all

equal to σ. DNNs are considered robust if they are successful in maintaining their accuracy

performance against such noises.

6.4.2 Results and Discussion

RO-TS vs. adversarial training. One of our key hypothesis is that Euclidean distance-

based perturbations do not capture the appropriate notion of invariance for time-series do-

main to improve the robustness of the learned model. We show that using baseline attacks

to create augmented data for adversarial training does not create robust models. From Fig-

ure 6.1, we can observe that models from our RO-TS algorithm achieve significantly higher

accuracy than the baselines. For example, on MoteStrain dataset, RO-TS has a steady per-

formance against both types of noises, unlike the baselines. On the other datasets, we can

clearly observe that in most cases, RO-TS outperforms the baselines. We conclude that ad-

versarial training using prior methods and attack strategies is not as effective as our RO-TS

127

Random Noise

Adversarial Noise

Figure 6.1 Comparison of RO-TS algorithm vs. adversarial training algorithm
using baseline FGS and PGD attacks.

method, where we perform explicit primal-dual optimization to create robust models.

RO-TS vs. RO-TS with L2 distance. We want to demonstrate that choosing the right

distance metric to compute similarity between time-series signals is critical to create robust

models. Therefore, we compare models created by RO-TS by using two different distance

128

Random Noise

Adversarial Noise

Figure 6.2 Comparison of RO-TS algorithm using GAK distance (kGAK) vs. RO-
TS using Euclidean distance (l2).

metrics: 1) The standard Euclidean distance ∥ · ∥2 used in image domains and prior work;

and 2) Using the GAK distance DGAK. From Figure 6.2, we can clearly see that the GAK

distance is able to explore the time-seris input space better to improve robustness. The

Euclidean distance either performs significantly worse than GAK (e.g., on ECG5000, ERing,

129

Random Noise

Adversarial Noise

Figure 6.3 Comparison of RO-TS vs. stability training (STN).

and RacketSports datasets) or performs comparably to GAK (e.g., on SyntheticControl or

ArticularyWR datasets). This experiment concludes that GAK is a suitable distance metric

for time-series domain.

RO-TS vs. stability training. Unlike adversarial training, stability training (STN)

130

employs the below loss function (Stephan Zheng et al., 2016) to introduce stability to the

deep model.

LossSTN = L0(x, θ) + 0.01× Lstability(x, x
′, θ) (6.8)

where x is the original input, x′ is a perturbed version of x using additive Gaussian noise

∼ N (0, 0.042), L0 is the cross-entropy loss, and Lstability relies on KL-divergence. We

experimentally demonstrate that RO-TS formulation is more suitable than STN for creating

robust DNNs for time-serirs domain. Figure 6.3 shows a comparison between DNNs trained

using STN and RO-TS. We observe that for most datasets, RO-TS creates significantly more

robust DNNs when compared to STN for both types of perturbations. RO-TS algorithm is

specifically designed for time-series domain by making appropriate design choices, whereas

STN is designed for image domain. Hence, RO-TS allows us to create more robust DNNs

for time-series domain.

Figure 6.4 Empirical convergence of RO-TS algorithm.

Empirical convergence. We demonstrate the efficiency of RO-TS algorithm by observing

the empirical rate of convergence. Figure 6.4 shows the optimization objective over iterations

on some representative datasets noting that we observe similar patterns on other datasets.

We can observe that RO-TS converges roughly before 150 iterations for most datasets.

Figure 6.5 shows the accuracy gap results and the computational runtime when com-

paring RO-TS with sampled alignments and original GAK (i.e., all alignment paths). The

results clearly match with our theoretical analysis that accuracy gap decreases over training

131

Figure 6.5 The accuracy gap in the gradients over weights ∆GW and over per-
turbations ∆Ga using 5% of alignments and GAK using all alignments for RO-TS
training on ERing (Left) and the comparison of the computational runtime between
both settings of RO-TS (Right).

iterations leading to convergence. We conclude from these results that RO-TS converges

quickly in practice and supports our theoretical analysis.

6.5 Summary

In this chapter, we introduced the RO-TS algorithm to train robust deep neural networks

(DNNs) for time-series domain. The training problem was formulated as a min-max opti-

mization problem to reason about the worst-case risk in a small neighborhood defined by

the global alignment kernel (GAK) based distance. Our proposed stochastic compositional

alternating gradient descent and ascent (SCAGDA) algorithm carefully leverages the struc-

ture of the optimization problem to solve it efficiently. Our theoretical and empirical analysis

showed that RO-TS and SCAGDA are effective in creating more robust DNNs over prior

methods and GAK based distance is better suited for time-series over the Euclidean distance.

132

CHAPTER SEVEN

OUT-OF-DISTRIBUTION DETECTION IN TIME-SERIES DOMAIN: A

SEASONAL RATIO SCORING APPROACH

T. Belkhouja, Y. Yan, and J. Doppa. "Out-of-Distribution Detection in Time-Series Domain:

A Novel Seasonal Ratio Scoring Approach. ACM Transactions on Intelligent Systems and

Technology (TIST), 15(1): 9:1-9:24, 2023.

Originally published in the ACM Transactions on Intelligent Systems and Technology.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting, inves-

tigating the state of the art, formulating the theoretical contribution and the algorithmic

solution, implementing the algorithm and running the required empirical analysis to high-

light the performance improvement of the proposed solution compared to the state of the

art.

Y. Yan has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the formulation of the theory of the proposed

solution, and in writing the scientific manuscript.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

133

OUT-OF-DISTRIBUTION DETECTION IN TIME-SERIES DOMAIN: A SEASONAL

RATIO SCORING APPROACH

In this chapter, we proposes a novel OOD detection algorithm for the time-series domain

referred to as Seasonal Ratio Scoring (SRS). To the best of our knowledge, this is the first

work on OOD detection over time-series data. SRS employs the Seasonal and Trend de-

composition using Loess (STL) (Cleveland et al., 1990) on time-series signals from the ID

data to create a class-wise semantic pattern and a remainder component for each signal. For

example, in a human activity recognition system, SRS would extract a pattern "running"

that describes semantically all the recorded "running" windows. If the person trips and

falls, SRS would detect that this event does not belong to the pre-defined activity classes

and flag it as OOD. For this purpose, we train two separate DGMs to estimate the class-wise

conditional likelihood of a given time-series signal and its STL-based remainder component.

The Seasonal Ratio (SR) score for each time-series signal from ID is computed from these

two estimates. A threshold interval is estimated from the statistics of all these scores over ID

data. Given a new time-series input and a classifier at the testing time, the SRS approach

computes the SR score for the predicted output and flags the time-series signal as OOD

example if the score lies outside the threshold interval. Figure 7.2 illustrates the SRS algo-

rithm. The effectiveness of SRS critically depends on the extraction of accurate class-wise

semantic components. Since time-series data is prone to warping and time-shifts, we also

propose a new alignment approach based on Dynamic Time Warping (DTW) (Müller, 2007)

to improve the output accuracy of STL decomposition.

7.1 Background and Problem Setup

Suppose Din is an in-distribution (ID) time-series dataset with d examples {(xi, yi)} sampled

from the distribution P ∗ defined on the joint space of input-output pairs (X ,Y). Each

xi ∈ Rn×T from X is a multi-variate time-series input, where n is the number of channels

134

and T is the window-size of the signal. yi ∈ Y = {1, · · · , C} represents the class label for

time-series signal xi. We consider a time-series classifier F : Rn×T → {1, · · · , C} learned

using Din. For example, in a health monitoring application using physiological sensors for

patients diagnosed with cardiac arrhythmia, we use the measurements from wearable devices

to predict the likelihood of cardiac failure.

OOD samples (x, y) are typically generated from a distribution other than P ∗. Specifi-

cally, we consider a sample (x, y) to be OOD if the class label y is different from the set of

in-distribution class labels, i.e., y /∈ Y . The classifier Fθ(x) learned using Din will assign one

of the C class labels from Y when encountering an OOD sample (x, y). Our goal is to detect

such OOD examples for safe and reliable real-world deployment of time-series classifiers.

Challenges of time-series data. The unique characteristics of time-series data (e.g.,

temporal relation across time-steps, fast oscillations, continuous distribution of variables)

pose unique challenges not seen in the image domain. Real-world time-series datasets are

typically small (relative to image datasets) and exhibit high class-imbalance (Dau, Bagnall,

et al., 2019). Therefore, estimating a good approximation of in-distribution P ∗ is hard, which

results in the failure of prior OOD methods. Indeed, our experiments demonstrate that prior

OOD methods are not suited for the time-series domain. As a prototypical example, Figure

7.7 shows the limitation of Likelihood Regret score (Z. Xiao, Q. Yan, and Amit, 2020) to

identify OOD examples: ID and OOD scores of real-world time-series examples overlap.

Conditional VAE. Variational Auto-Encoders (VAEs) are a class of likelihood-based gener-

ative models with many real-world applications (Doersch, 2016). They rely on the encoding

of a raw input x as a latent Gaussian variable z to estimate the likelihood of x. The latent

variable z is used to compute the likelihood of the training data: pθ(x) =
∫
pθ(x|z)p(z)dz.

Since the direct computation of this likelihood is impractical, the principle of evidence lower

bound (ELBO) (Z. Xiao, Q. Yan, and Amit, 2020) is employed. In this work, we consider

the ID data Din as d input-output samples of the form (xi, yi). We want to estimate the

ID using both xi and yi. Therefore, we propose to use conditional VAE (CVAE) for this

135

purpose. CVAEs are a class of likelihood-based generative models (Doersch, 2016). They

rely on the encoding of raw input (x, y) as a latent Gaussian variable z to estimate the

conditional likelihood of x over the class label y. CVAE is similar to VAE with the key

difference being the use of conditional probability over both xi and yi. The ELBO objective

of CVAE is:

LELBO
∆
= Eϕ

[
log pθ(x|z, y)

]
−DKL

[
qϕ(z|x, y)||p(z|y)

]
where qϕ(z|x, y) is the variational approximation of the true posterior distribution pθ(x|z, y).

As CVAE only computes the lower bound of the log-likelihood of a given input, the exact

log-likelihood is estimated using Monte-Carlo sampling as shown below:

LM = Ezm∼qϕ(z|x,y)

[
log

1

M

M∑
m=1

pθ(x|zm, y)p(zm)
qϕ(zm|x, y)

]
(7.1)

The intuitive expectation from a DGM learned using training data is to assign a high

likelihood to ID samples and a low likelihood to OOD samples. However, recent research

showed that DGMs tend to assign highly unreliable likelihood to OOD samples regardless

of the different semantics of both ID and OOD data (Z. Xiao, Q. Yan, and Amit, 2020).

Indeed, our experimental results shown in Table 7.3 demonstrate that this observation is

also true for the time-series domain.

STL decomposition. STL (Jiang, Changbiao Huang, and B. Liu, 2011) is a statistical

method for decomposing a given time-series signal x into three different components: 1)

The seasonality xs is a fixed regular pattern that recurs in the data; 2) The trend xt is the

increment or the decrement of the seasonality over time; and 3) The residual xr represents

random additive noise. STL employs Loess (LOcal regrESSion) smoothing in an iterative

process to estimate the seasonality component xs (McKinney, Perktold, and Seabold, 2011).

The remainder is the additive residual from the input x after summing both xs and xt. For

the proposed SRS algorithm, we assume that there is a fixed semantic pattern Sy for every

class label y ∈ Y , and this pattern recurs in all examples (xi, yi) from Din with the same

class label, i.e., yi=y. We will elaborate more on this assumption and a reformulation of the

136

problem that can be used when the assumption is violated in the next section. Hence, every

time-series example has the following two elements: xi = Syi + ri, where Syi is the pattern

for the class label y=yi and ri is the remainder noise w.r.t Syi . For time-series classification

tasks, ID samples are assumed to be stationary. Therefore, we propose to average the trend

xt component observed during training and include it in the semantic pattern Sy. Figure

7.1 illustrates the above-mentioned decomposition for two different classes from the ERing

dataset.

Figure 7.1 Illustration of STL method for two different classes from the ERing
dataset. Dotted signals are natural time-series signals x and the red signal is the
semantic pattern Sy.

7.2 Seasonal Ratio Scoring Approach for OOD Detection

Overview of SRS algorithm. The training stage proceeds as follows. We employ STL

decomposition to get the semantic component Sy for each class label y ∈ Y={1, · · · , C} from

the given in-distribution (ID) data Din. Details on the STL decomposition steps within the

SRS framework are provided in Section 7.2.2. To improve the accuracy of STL decomposi-

tion, we apply a time-series alignment method based on dynamic time warping to address

scaling, warping, and time-shifts as detailed in Section 7.2.3. We train two CVAE models

Mx and Mr to estimate the class-wise conditional likelihood of each time-series signal xi

and its remainder component ri w.r.t the semantic component Syi . The seasonal ratio score

for each ID example (xi, yi) from Din is computed as the ratio of the class-wise conditional

likelihood estimates for xi and its remainder ri: SRi(xi, yi)
∆
= p(xi|y=yi)

p(ri|y=yi)
. We compute the

SR scores for all in-distribution examples from Din to estimate the threshold interval [τl, τu]

137

Figure 7.2 Overview of the seasonal ratio (SR) scoring algorithm. The semantic
component Sŷ for the predicted output ŷ is obtained from the training stage via
Seasonal and Trend decomposition using Loess (STL). The semantic component Sŷ

is subtracted from the time-series x to obtain the remainder r. The trained CVAE
models Mx and Mr are used to compute the SR score. If the SR score is within
the threshold interval [τl, τu] identified during training, then x is classified as ID.
Otherwise, it is flagged as OOD.

for OOD detection. During the inference stage, given a time-series signal x and a trained

classifier F (x), we compute the SR score of x with the predicted output ŷ=F (x) ∈ Y and

identify it as an OOD example if the SR score lies outside the threshold interval [τl, τu].

Figure 7.2 provides a high-level illustration of the SRS algorithm.

Below we first provide an intuitive explanation to motivate the SR score. Next, we

describe the complete details of the SRS algorithm including both training and inference

stages. Finally, we motivate and describe a time-series alignment approach based on dynamic

time warping to improve the effectiveness of SRS.

7.2.1 Intuition for Seasonal Ratio Score

We explain the intuition behind the proposed SRS algorithm using STL decomposition of

time-series signals and CVAE models for likelihood estimation. Current research shows that

DGMs alone can fail to identify OOD samples (Z. Xiao, Q. Yan, and Amit, 2020). They

not only assign high likelihood to OOD samples, but they also exhibit good reconstruction

quality. In fact, we show in Table 7.3 that CVAEs trained on a given ID data generally

138

exhibit a low reconstruction error on most of the OOD samples. Furthermore, we show in

Table 7.7 that using a trained CVAE likelihood output for OOD detection fails to perform

well. These results motivate the new for a new OOD scoring method for the time-series

domain.

Class-wise seasonality via STL decomposition. The proposed SRS algorithm relies on

the following assumption to analyze the time-series space for OOD detection.

Assumption 2. Each time-series example (xi, yi) from the in-distribution data Din consists

of two components. 1) A class-wise semantic pattern Sy for each class label y ∈ Y represent-

ing the meaningful semantics of the class label y. 2) A remainder noise ri representing an

additive perturbation to the semantic portion. Hence, ∀(xi, yi) ∈ Din : xi = Syi + ri

We propose to employ STL decompostion to estimate semantic pattern Sy (as illustrated

in Figure 7.1) and deduce the remainder noise that can be due to several factors including

errors in sensor measurements and noise in communication channels. These two components

are analogous to the foreground and the background of an image, where the foreground is the

interesting segment of the input that describes it, and the background may not be necessarily

related to the foreground. In spite of this analogy, prior methods for the image domain are

not suitable for time-series as explained in the related work. In this decomposition, we

cannot assume that Sy and r are independent for a given time-series example (x, y), as Sy

is class-dependant and r is the remainder of the input x using Sy. Hence, we present their

conditional likelihoods in the following observation.

Observation 3. Let x ∈ Rn×T is a time-series signal and yi ∈ Y={1, · · · , C} be the corre-

sponding class label. As x = Syi + r, we have:

p(x|yi) = p(r|yi)p(Syi |yi) (7.2)

139

Proof of Observation 1 As X = Syi + r, it is intuitive to think that p(X|y = yi) =

p(Syi) × p(r). However, we cannot assume that Syi and r are independent, as Syi is class-

dependant and r is the remainder of the input X given Syi .

Therefore, we make use of the conditional probabilities of the components. The likelihood

p(X) can be decomposed as follows:

p(X|y = yi) = p(Syi , r|y = yi)

=
p(Syi , r, y = yi)

p(y = yi)

=
p(r, y = yi)p(Syi|r, y = yi)

p(y = yi)

For the conditional probability p(Syi |r, y = yi), as only the pattern Syi depends on the class

label, and that we have defined r as a non-meaningful noise to the input, we can assume

that Syi and r are conditionally independent given the class yi. Therefore, we have

the following.

p(X|y = yi) =
p(r, y = yi)p(Syi |r, y = yi)

p(y = yi)

=
p(r, y = yi)p(Syi |y = yi)

p(y = yi)

=
p(r|y = yi)p(y = yi)p(Syi |y = yi)

p(y = yi)

= p(r|y = yi)p(Syi |y = yi)

Discussion on Observation 1. Sy is a fixed class-wise semantic pattern that characterizes

a class y ∈ Y . By definition, Sy is a deterministic pattern extracted using STL decomposition

during training and is not a random variable. At the inference time, we do not estimate Sy

of each test input x, but we use Sy computed during the training stage to estimate the

remainder component r. Hence, P (Sy|y) is defined as a deterministic variable and not as a

density that SRS is aiming to estimate.

OOD detection using CVAEs. Observation 3 shows the relationship between the con-

ditional likelihood of the input x and its remainder r. We propose to employ CVAEs to

140

estimate both likelihoods since they are conditional likelihoods. Recall that OOD examples

come from an unknown distribution which is different from the in-distribution P ∗ and do

not belong to any pre-defined class label from Y . Therefore, we propose to use the following

observation for OOD detection in the time-series domain.

Observation 4. Let x ∈ Rn×T is a time-series signal and y ∈ Y={1, · · · , C} be the cor-

responding class label. As x = Sy + r, x is an OOD example if p(x|y) ̸= p(r|y) and an

in-distribution example if p(x|y) = p(r|y).

Observation 4 shows how we can exploit the relationship between the estimated con-

ditional likelihood of the time-series signal x and its remainder r to predict whether x is

an OOD example or not. This observation relies on the assumption that p(Sy|y) = 1 for

in-distribution data. For ID data, the semantic pattern Sy is a class-dependant signal that

defines the class label y. Since the semantic component is guaranteed to be Sy for any time-

series example with class label y, we have p(Sy|y)=1. On the other hand, OOD examples

do not belong to any class label from Y , i.e., p(Sy|y) ̸= 1 for any y ∈ Y . To estimate

p(x|y ∈ Y) and p(r|y ∈ Y) in observation 4, we train two separate CVAE models using the

in-distribution data Din. While estimating two separate distributions can cause instability,

we note that

1. During hyper-parameter tuning and the definition of the ID score range [τl, τu], any

outlier that may cause estimation instability will be omitted.

2. In case of drastic estimation instability, both CVAEs can be tuned during training time

to overcome the problem.

3. If this instability is seen during inference time, then the SRS algorithm automatically

indicates that the test example is an OOD example.

Discussion on Assumption 1. This work acknowledges that this assumption may fail to

hold in some real-world scenarios. However, surprisingly, our experimental results shown in

141

Table 7.6 strongly corroborate this key assumption: the distance between each time-series

signal xi and its semantic pattern Syi is very small. The strong OOD performance of SRS

algorithm in our diverse experiments demonstrates the effectiveness of a simple approach

based on this assumption.

Suppose the assumption does not hold and some class label y can possess K > 1 different

semantics {Sk
y}k≤K . If we take a human activity recognition example, it is safe to think of a

certain activity (e.g., running or walking) will have K > 1 different patterns (e.g., athletic

runners vs. young runners). Therefore, the decomposition in Assumption 2 for a given

time-series example (xi, yi) will result into a semantic pattern describing the patterns of

the different sub-categories (e.g., a pattern that describes both athletic runners and young

runners). By using Lowess smoothing, the STL season extracted over a multiple-pattern

class is a pattern Sy that is a linear combination of {Sk
y}k≤K (for our example, it describes

the combination of both athletic runs and young runs). While for an in-distribution example,

p(Sy|y)=1 of Observation 2 will not hold, p(Sy|y) is likely to be well-defined from p(Sk
y |y) as

{Sk
y}k≤K are fixed and natural for the class label y. Hence, we can still rely on the CVAEs

to estimate this distribution and to perform successful OOD detection. Alternatively, we

can use a simple reformulation of the problem by clustering time-series signals of a class

label y (for which the assumption is not satisfied) to identify sub-classes and apply the

SRS algorithm on transformed data. Since we found the assumption to be true in all our

experimental scenarios (see Table 7.6), we didn’t find the need to apply this reformulation.

7.2.2 OOD Detection Approach

One key advantage of SRS method is that it can be directly executed at inference stage and

does not require additional training similar to prior VAE-based methods such as Likelihood

Regret scoring.

Training stage. Our overall training procedure for time-series OOD detection is as follows:

142

1. Train a CVAEMx using in-distribution data Din to estimate the conditional likelihood

p(x|y ∈ Y) of time-series signal x.

2. Execute STL decomposition as follows:

(a) From the training data {(xi, yi)}, we create a group Dy = {xi|yi = y}.

(b) We concatenate all the examples xi ∈ Dy in a single stream of data according to

the T dimension. If Dy has k examples, the output is a single stream Xstream ∈

Rn×(k·T)

(c) We apply STL decomposition on the stream Xstream by defining the pattern di-

mensions Sy ∈ Rn×T .

(d) We store the semantic component Sy to be used later in estimating the remainder

component for any given training example (x, y): r = x− Sy.

3. Create the remainder for each training example (xi, yi) ∈ Din using the patterns Sy

for each class label y : ri = xi − Syi . We train another CVAE Mr using all these

remainders to estimate the conditional likelihood p(r|y ∈ Y).

4. Compute seasonal ratio score for each (xi, yi) ∈ Din using the trained CVAEsMx and

Mr.

SRi(xi, yi)
∆
=

p(xi|y = yi)

p(ri|y = yi)
(7.3)

5. Compute the mean µSR and variance σSR over SR scores of all in-distribution examples

seen during training. Set the OOD detection threshold interval as [τl, τu] such that τl

= µSR − λ× σSR and τu = µSR + λ× σSR, where λ is a hyper-parameter.

6. Tune the hyper-parameter λ on the validation data to maximize OOD detection accu-

racy.

The choice of [τl, τu] for OOD detection is motivated by the fractional nature of the

seasonal ratio scores. SRS algorithm assumes that in-distribution examples satisfy p(x|y) =

143

p(r|y). Hence, we characterize in-distribution examples with an SR score close to 1, whether

from left (τl) or right (τu) side. To identify in-distribution examples, we rely on SR scores

that are close to the mean score recorded during training, whether from left (τl) or right

(τu) side. This design choice is based on the fact that SR score is a quotient ideally centered

around the value 1. Indeed, we observe in Figure 7.3 that the SR score for OOD examples

can go on either the left or the right side of the SR scores for in-distribution examples.

Ideally, the SR score for in-distribution examples is closest to µSR than SR scores for OOD

examples, as illustrated in Figure 7.2. λ is tuned to define the valid range of SR scores for

in-distribution examples from Din. We note that the score can be changed easily to consider

the quantiles of estimated ratios during training stage and use it to separate the region of

OOD and ID score. Therefore, we can redefine τl = (0.5 − λ) as the τl-quantile for the

lower-limit of ID score and τu = (0.5 + λ) as the τu-quantile for the upper-limit of ID score.

Given this definition, we need to tune the hyper-parameter 0 < λ ≤ 0.5 on the validation

data to maximize OOD detection accuracy. Furthermore, the ID score range is not required

to be symmetric. In the general case, we can define τl = (0.5 − λl) as the τl-quantile and

τu = (0.5+λu) as the τu-quantile, where λl ̸= λu. We have observed in our experiments that

both these settings give similar performance. Therefore, we only consider τu,l = µSR±λ×σSR

for simplicity for our experimental evaluation.

Figure 7.3 Histogram showing the ID and OOD scores along the seasonal ratio
score axis. The seasonal ratio scores for OOD examples can be either greater or less
than the seasonal ratio scores for ID examples.

Inference stage. Given a time-series signal x, our OOD detection approach works as

144

follows.

1. Compute the predicted class label ŷ using the classifier F (x).

2. Create the remainder component of x with the predicted label ŷ: r = x− Sŷ.

3. Compute conditional likelihoods p(x|ŷ) and p(r|ŷ) from trained CVAE modelsMx and

Mr.

4. Compute the seasonal ratio score using conditional likelihoods.

SR(x, ŷ) =
p(x|y = ŷ)

p(r|y = ŷ)

5. If the seasonal ratio score SR(x, ŷ) does not lie within the threshold interval [τl, τu],

then classify x as OOD example. Otherwise, classify x as in-distribution example.

7.2.3 Alignment method for improving the accuracy of SRS algorithm

In this section, we first motivate the need for pre-processing raw time-series signals to improve

the accuracy of SRS algorithm. Subsequently, we describe a novel time-series alignment

method based on dynamic time warping to achieve this goal.

Motivation. The effectiveness of the SRS algorithm depends critically on the accuracy of

the STL decomposition. STL method employs fixed-length window over the serialized data

to estimate the recurring pattern. This is a challenge for real-world time-series signals as they

are prone to scaling, warping, and time-shifts. We illustrate in Figure 7.4 the challenge of

scaling, warping, and time-shift occurrences in time-series data. The top-left figure depicts a

set of time-series signals with a clear ECG pattern. Due to their misalignment, if we subtract

one fixed ECG pattern from every time-series signal, the remainder will be inaccurate. The

figures in the left and right column show the difference in the remainder components between

the natural data (Left) and the aligned version of the time-series data (Right). We can clearly

observe that the remainder components from the aligned data are more accurate. If input

145

time-series data is not aligned, it can significantly affect the estimation of p(ri|y = yi) and the

effectiveness of SRS for OOD detection. Hence, we propose a novel alignment method using

the class-wise semantic for the in-distribution data Din during both training and inference

stages.

Before alignment After alignment

Figure 7.4 Illustration of the challenges in time-series data for STL decomposi-
tion: semantic component and remainder. (Left column) Set of natural time-series
signals with an ECG wave as semantic component Sy and the corresponding re-
mainders w.r.t Sy. (Right column) Time-series signals and remainders from STL
decomposition after applying the alignment procedure.

Time-series alignment algorithm. The overall goal of our approach is to produce a class-

wise aligned time-series signals using the ID data Din so that STL algorithm will produce

accurate semantic components Sy for each y ∈ Y . We propose to employ dynamic time

warping (DTW) (Müller, 2007) based optimal alignment to achieve this goal. The optimal

DTW alignment describes the warping between two time-series signals to make them aligned

in time. It overcomes warping and time-shifts issue by developing a one-to-many match over

time steps. There are two key steps in our alignment algorithm. First, we compute the

semantic components Sy for each y ∈ Y from Din using STL decomposition. For each in-

distribution example (xi, yi) ∈ Din, we compute the optimal DTW alignment between Syi

and xi. Second, we use an appropriate time-series transformation for each in-distribution

example (xi, yi) to improve the DTW alignment from the first step. Specifically, we use

the time-steps of the longest one-to-many or many-to-one or sequential one-to-one sequence

match to select the Expand, Reduce, and Translate transformation as illustrated in Figure

146

7.5. We define these three time-series transformations below.

Let X1 = (t11, t
1
2, · · · , t1T) and X2 = (t21, t

2
2, · · · , t2T) be two time-series signals of length T .

• Expand(X1, X2): We employ this transformation for a one-to-many time-step match-

ing (t1i is matched with [t2j , · · · , t2j+k] as shown in Figure 7.5(a)). It duplicates the t1i

time-step for k times.

• Reduce(X1, X2): We employ this transformation in the case of a many-to-one time-

step matching ([t1i , · · · , t1i+k] is matched with t2j as shown in Figure 7.5(b)). It replaces

the time-steps [t1i , · · · , t1i+k] by a single averaged value.

• Translate(X1, X2): We employ this transformation in the case of a sequential one-

to-one time-step matching ([t1i , · · · , t1i+k] is matched one-to-one with [t2j , · · · , t2j+k] as

shown in Figure 7.5(c)). It translates X1 to ensure that t1i = t2j .

(a) One-to-Many (b) Many-to-One (c) One-to-One

Figure 7.5 Illustration of the use of appropriate transformation to adjust the align-
ment between two time-series signals X1 (blue signal) and X2 (green signal).

We illustrate in Figure 7.6 two examples of transformation choices for time-series signal

x when aligned with a pattern S. The alignment on the left exhibits that the longest

consecutive matching sequence is a one-to-many (x4 is matched with [S2, · · · , S7]) while the

alignment on the right exhibits that the longest consecutive matching sequence is a sequential

one-to-one ([x4, · · · , x8] is matched with [S3, · · · , S7]).

7.3 Experiments and Results

In this section, we present experimental results comparing the proposed SRS algorithm and

prior methods on diverse real-world time-series datasets.

147

Figure 7.6 Illustration of two transformation choices for a time-series x aligned
with a pattern S. (Left) One-to-many as the longest match, calling to use Expand
transformation. (Right) sequential one-to-one as the longest match, calling to use
the Translate.

7.3.1 Experimental Setup

Datasets. We employ the multivariate benchmarks from the UCR time-series repository

(Dau, Bagnall, et al., 2019). Due to space constraints, we present the results on repre-

sentative datasets from six different pre-defined domains Motion, ECG, HAR, EEG, Audio

and Other. The list of datasets includes Articulary Word Recognition (AWR), Stand Walk

Jump (SWJ), Cricket (Ckt), Hand Movement Direction (HMD), Heartbeat (Hbt), and ERing

(ERg). We employ the standard training/validation/testing splits from these benchmarks.

OOD experimental setting. Prior work formalized the OOD experimental setting for

different domains such as computer vision (Dan Hendrycks, 2017). However, there is no

OOD setting for the time-series domain. In what follows, we explain the challenges for the

time-series domain and propose a concrete OOD experimental setting for it.

The first challenge with the time-series domain is the dimensionality of signals. Let the

ID space be Rni×Ti and the OOD space be Rno×To . Since we train CVAEs on the ID space,

no × To needs to match ni × Ti. Hence, if no > ni or To > Ti, we window-clip the respective

148

OOD dimension in order to have n′
o = ni or T ′

o = Ti. If no < ni or To < Ti, we zero-pad

the respective OOD dimension in order to have n′
o = ni or T ′

o = Ti. Zero-padding is based

on the assumption that the additional dimension exists but takes null values. The second

challenge is in defining OOD examples. Since the number of datasets in UCR repository is

large, conducting experiments on all combinations of datasets as ID and OOD is impractical

and repetitive (600 distinct configurations for the 25 different datasets considered in this

work).

Hence, we propose two settings using the notion of domains.

• In-domain OOD: Both ID and OOD datasets belong to the same domain. This

setting helps in understanding the behavior of OOD detectors when real-world OOD

examples come from the same application domain. For example, a detector of Epileptic

time-series signals should consider signals resulting from sports activity (Cricket) as

OOD.

• Cross-domain OOD: Both ID and OOD datasets come from two different domains.

This configuration is more intuitive for OOD detectors, where time-series signals from

different application domains should not confuse the ML model (e.g., Motion and HAR

data).

Our intuition is that the in-domain OOD setting is more likely to occur during real-

world deployment. Hence, we propose to do separate experiments by treating every dataset

from the same domain as OOD. For the cross-domain OOD setting, we believe that a single

representative dataset from the domain can be used as OOD. In this work, we focus on

real-world OOD detection for the time-series domain. Since random noise does not inherit

the characteristics of time-series data, methods from the computer vision literature have a

good potential in detecting random noise.

For improved readability and ease of understanding, we provide Table 7.1 and Table 7.2

to explain the domain labels and dataset labels used in the experimental section of this

149

chapter along with the corresponding UCR domain name and dataset name.

• Table 7.1 shows the label used to represent a given domain for Cross-Domain OOD

setting.

Table 7.1 List of domain labels used in the experimental section and the corre-
sponding UCR domain name.

Domain label Domain name

D1 Motion

D2 ECG

D3 HAR

D4 EEG

D5 Audio

D6 Other

• Table 7.2 shows the label used to represent the dataset used as an OOD source against

a given ID dataset for the In-Domain OOD setting. For example, while reading

Table 7.7, when AWR is the ID distribution, according to Table 7.2, DS1 represents

CharacterT. dataset. On the other hand, if HMD is the ID distribution, DS1 represents

FingerM. dataset.

Evaluation metrics. We employ the following two standard metrics in our experimental

evaluation. 1) AUROC score: The area under the receiver operating characteristic curve

is a threshold-independent metric. This metric (higher is better) is equal to 1.0 for a perfect

detector and 0.5 for a random detector. 2) F1 score: It is the harmonic mean of precision

and recall. Due the threshold dependence of F1 score, we propose to use the highest F1

score obtained with a variable threshold. This score has a maximum of 1.0 in the case of a

perfect precision and recall.

150

Table 7.2 Reference table for the In-Domain dataset labels used in the experimen-
tal section and the corresponding UCR dataset name. The second column shows
the average CVAE normalized reconstruction Mean Absolute Error (MAE) with a
negligible variance ≤ 0.001 on the in-distribution data.

In-distriution Dataset name MAE
OOD Dataset label

DS1 DS2 DS3 DS4 DS5 DS6 DS7

ArticW. (Motion) 0.025 CharacterT. EigenW. PenD. ∅ ∅ ∅ ∅

EigenW. (Motion) 0.000 ArticW. CharacterT. PenD. ∅ ∅ ∅ ∅

PenD. (Motion) 0.001 ArticW. CharacterT. EigenW. ∅ ∅ ∅ ∅

AtrialF. (ECG) 0.005 StandW. ∅ ∅ ∅ ∅ ∅ ∅

StandW. (ECG) 0.012 AtrialF. ∅ ∅ ∅ ∅ ∅ ∅

BasicM. (HAR) 0.024 Cricket Epilepsy Handw. Libras NATOPS RacketS. UWaveG.

Cricket (HAR) 0.010 BasicM. Epilepsy Handw. Libras NATOPS RacketS. UWaveG.

Epilepsy (HAR) 0.030 BasicM. Cricket Handw. Libras NATOPS RacketS. UWaveG.

Handw. (HAR) 0.006 BasicM. Cricket Epilepsy Libras NATOPS RacketS. UWaveG.

Libras (HAR) 0.003 BasicM. Cricket Epilepsy Handw. NATOPS RacketS. UWaveG.

NATOPS (HAR) 0.046 BasicM. Cricket Epilepsy Handw. Libras RacketS. UWaveG.

RacketS. (HAR) 0.026 BasicM. Cricket Epilepsy Handw. Libras NATOPS UWaveG.

UWaveG. (HAR) 0.015 BasicM. Cricket Epilepsy Handw. Libras NATOPS RacketS.

EthanolC. (Other) 0.001 ER. LSST PEMS-SF ∅ ∅ ∅ ∅

ER. (Other) 0.044 EthanolC. LSST PEMS-SF ∅ ∅ ∅ ∅

LSST (Other) 0.008 EthanolC. ER. PEMS-SF ∅ ∅ ∅ ∅

PEMS-SF (Other) 0.525 EthanolC. ER. LSST ∅ ∅ ∅ ∅

FingerM. (EEG) 0.048 HandM. MotorI. SelfR1. SelfR2. ∅ ∅ ∅

HandM. (EEG) 0.006 FingerM. MotorI. SelfR1. SelfR2. ∅ ∅ ∅

MotorI. (EEG) 0.543 FingerM. HandM. SelfR1. SelfR2. ∅ ∅ ∅

SelfR1. (EEG) 0.009 FingerM. HandM. MotorI. SelfR2. ∅ ∅ ∅

SelfR2. (EEG) 0.012 FingerM. HandM. MotorI. SelfR1. ∅ ∅ ∅

Heartbeat (Audio) 0.011 JapaneseV. SpokenA. ∅ ∅ ∅ ∅ ∅

Configuration of algorithms. We employ a 1D-CNN architecture for the CVAE models

required for seasonal ratio scoring (SR) method. We consider a naive baseline where the

CVAE is trained on the ID data and the likelihood (LL) is used to detect OOD samples.

151

We consider a variant of SR scoring (SRa) that works on the aligned time-series data using

the method explained in Section 4.3. We evaluate both SR and SRa against state-of-the-art

baselines and employ their publicly available code: Out-of-Distribution Images in Neural

networks (ODIN) (S. Liang, Y. Li, and Srikant, 2018) and Gram Matrices (GM) (Sastry

and Oore, 2020) that have been shown to outperform most of the existing baselines; recently

proposed Likelihood Regret (LR) score (Z. Xiao, Q. Yan, and Amit, 2020); adaptation of a

very recent time-series AD method referred to as Deep generative model with hierarchical

latent (HL) (Challu et al., 2022) that does not require labeled anomalies for training purposes.

We chose HL as the main baseline to represent time-series AD under OOD setting as it is the

state-of-the-art time-series AD algorithm. HL for time-series was shown (Challu et al., 2022)

to outperform nearest-neighbor based methods, LSTM-based methods, and other methods

(Blázquez-García et al., 2021; Braei and S. Wagner, 2020) in various AD settings.

• Choice of architecture: We have experimented with 3 different types of CVAE

architecture to decide on the most suitable one for our OOD experiments. We eval-

uated 1) fully connected, 2) convolutional, and 3) LSTM based architectures using

the reconstruction error as the performance metric. We have observed that fully con-

nected networks generally suffer from poor reconstruction performance especially on

high-dimensional data. We have also observed that LSTM’s runtime during training

and inference is relatively longer than the other architectures. However, CNN-based

CVAEs delivered both a good reconstruction performance and fast runtime.

• 1D-CNN CVAE details: To evaluate the the effectiveness of the proposed seasonal

ratio (SR) score, we employed a CVAE that is based on 1D-CNN layers. The encoder

of the CVAE is composed of 1) A minmax normalization layer, 2) A series of 1D-CNN

layers, and 3) A fully-connected layer. At the end of the encoder, the parameters µCVAE

and σCVAE are computed to estimate the posterior distribution. A random sample is

then generated from this distribution and passed on to the CVAE decoder along with

152

the class label. The decoder of the CVAE is composed of 1) A fully-connected layer,

2) A series of transposed convolutional layer, and 3) A denormalization layer.

• CVAE Training: We use the standard training, validation, and testing split on the

benchmark datasets to train both CVAEs Mx and Mr. Both CVAEs are trained to

maximize the ELBO on the conditional log-likelihood defined in Section 3 using Adam

optimizer with a learning rate of 10−4. We employ a maximum number of training

iterations equal to 500. To ensure the reliability of the performance of the proposed

CVAEs, we report in Table 7.2 the test reconstruction error of the trained CVAE on ID

data using Mean Absolute Error (MAE). We observe clearly that the proposed CVAE is

able to learn well the ID space as the reconstruction error is relatively low. To compute

the semantic patterns and remainders for in-distribution examples for trainingMx and

Mr, we use the STLdecompose1 python package.

• Implementation of the baselines: The baseline methods for ODIN2, GM3, HL4

and LR5 were implemented using their respective publicly available code with the

recommended settings. To employ ODIN and GM, we have trained two different DNN

models: a 1D-CNN and a LSTM for classification tasks with different settings. We

report the average performance of the baseline OOD detectors in our experimental

setting. To repurpose HL method from the AD setting to OOD setting, we have

serialized the training data and use it during the training of the generator. For OOD

detection at inference time, we serialize both the test ID data and OOD data and shuffle

them. By providing the window size equal to the time-steps dimension of the original

in-distribution inputs, we execute HL anomaly detection algorithm and report every

anomaly as an OOD sample. We employed the default parameters of the generator. As
1https://github.com/jrmontag/STLDecompose.git
2https://github.com/facebookresearch/odin.git
3https://github.com/VectorInstitute/gram-ood-detection.git
4https://github.com/cchallu/dghl.git
5https://github.com/XavierXiao/Likelihood-Regret.git

153

recommended by the authors, we use a hierarchical level equal to 4 and 500 iterations for

training and inference. We lower the learning rate to 10−6 to prevent exploding gradient

occurred using the default 10−3 value. For a fair comparison, the VAE for Likelihood

Regret (LR) has the same architecture as the CVAE used to estimate seasonal ratio

(SR) and the naive LL score.

7.3.2 Results and Discussion

Reconstruction error of DGMs. Table 7.3 shows the test reconstruction error of the

trained CVAE on ID data using Mean Absolute Error (MAE). We clearly observe that

CVAE model is able to learn the ID space as the reconstruction error is relatively low.

Table 7.3 shows analogous results for the same CVAE on some OOD data. We observe

that DGMs perform well on OOD samples regardless of the different semantics of both ID

and OOD data. The pre-trained CVAEs performed well on the OOD AWR dataset with a

reconstruction error ≤ 0.1. For the OOD FingerMovement (Fmv) dataset, only two out of

the six CVAEs exhibited an intuitive high reconstruction error.

Table 7.3 Average reconstruction error of CVAE is small on both ID and OOD
data. The variance is ≤ 0.001.

ID Train Dataset AWR SWJ Ckt HMD Hbt ERg

Error on ID Test 0.025 0.012 0.010 0.118 0.011 0.045

Error on OOD
AWR ∅ 0.018 0.035 0.039 0.002 0.137

Fmv 1.658 0.146 0.146 0.039 0.071 6.132

OOD detection via pre-trained classifier and DGMs. Our first hypothesis is that

pre-trained DNN classifiers are not well-suited for OOD detection. To test this hypothesis,

we train two DNN models: a 1D-CNN and an RNN classifier. We use these models for OOD

detection using the ODIN and GM baselines. Table 7.4 shows that AUROC is low on all

datasets. For datasets such as HMD and SWJ, the AUROC score does not exceed 0.6 for

154

any experimental setting. The accuracy of DNNs for time-series classification is not as high

as those for the image domain for the reasons explained earlier. Hence, we believe that this

uncertainty of DNNs causes the baselines ODIN and GM to fail in OOD detection. Our

Table 7.4 Average AUROC results for ODIN and GMM.

Dataset AWR SWJ Ckt HMD Hbt ERg

In-
Domain

ODIN 0.65±0.03 0.54±0.01 0.65±0.03 0.55±0.01 0.71±0.03 0.70±0.03

GM 0.70±0.03 0.58±0.01 0.64±0.03 0.58±0.02 0.80±0.01 0.75±0.03

Cross-
Domain

ODIN 0.55±0.01 0.54±0.01 0.55±0.01 0.50 0.70±0.01 0.70±0.01

GM 0.56±0.01 0.54±0.01 0.65±0.03 0.55±0.01 0.75±0.03 0.78±0.02

second hypothesis is that DGMs assign a high likelihood for OOD samples is also applicable

to time-series. While results in Table 7.3 corroborated this hypothesis, we provide the use

of a pre-trained CVAE for OOD detection (LL) in Table 7.7. We observe that AUROC

score of LL does not outperform any of the other baselines. Hence, a new scoring method is

necessary for CVAE-based OOD detection.

Figure 7.7 Histogram showing the non-separability of ID and OOD LR scores (Top
row) and the separability using the seasonal ratio method on real-world time-series
data (Bottom row).

Random Noise as OOD. An existing experimental setting for OOD detection tasks is

to detect random noise. For this setting, we generate random noise as an input sampled

from a Gaussian distribution or a Uniform distribution. Table 7.5 shows the LR baseline

155

performance on detecting the random noise as OOD examples. We observe in Table 7.5

that LR has an excellent performance on this task. This is explainable as time-series noise

does not necessarily obey time-series characteristics. Hence, the existing baselines can per-

form strongly on the OOD examples. We motivate our seasonal ratio scoring approach for

OOD detection based on real-world examples. We have shown in this chapter that existing

baselines have poor performance in detecting real-world OOD examples, whereas SR has a

significantly better performance.

Table 7.5 Average performance of LR on OOD examples sampled from Gaus-
sian/Uniform distribution.

Dataset AWR SWJ Ckt HMD Hbt ERg

LR 1.00 1.00 1.00 1.00 0.95 1.00

Table 7.6 Results for the validity of Assumption 2. Average distance (MAE and
DTW measures) between the semantic pattern from STL Sy and time-series example
x with label y from the testing data (with a negligible variance≤ 0.001).

Dataset AWR SWJ Ckt HMD Hbt ERg

MAE 0.047 0.031 0.029 0.078 0.002 0.086

DTW 0.039 0.018 0.022 0.068 0.002 0.069

Results for SR score. The effectiveness of SR score depends on the validity of Assumption

2. Table 7.6 shows both MAE and DTW measure between semantic pattern Sy from STL

and different time-series examples of the same class y. We observe that the average difference

measure is low. These results strongly demonstrate that Assumption 2 holds empirically. For

qualitative results, Figure 7.7 shows the performance of SR in contrast to the performance

of Likelihood Regret (LR) shown in Figure 7.7. This illustration shows that SRS provides

significantly better OOD separability.

SR score vs. Baselines. Table 7.7 shows the OOD results for SRS and baseline methods.

For a fair comparison, we use the same architecture for VAEs computing the LL, LR, and

156

Table 7.7 AUROC results for the baselines, SR, and SR with time-series alignment
(SRa) on different datasets for both in-domain and cross-domain OOD setting.

In-domain OOD Cross-domain OOD

DS1 DS2 DS3 DS4 DS5 DS6 DS7 D1 D2 D3 D4 D5 D6

AWR
(Motion)

LL 0.80 0.85 0.54 ∅ ∅ ∅ ∅ ∅ 0.81 0.80 0.57 0.59 0.81

HL 0.50 0.96 0.94 ∅ ∅ ∅ ∅ ∅ 0.50 0.75 0.98 0.50 0.56

LR 0.90 0.95 0.66 ∅ ∅ ∅ ∅ ∅ 0.61 0.84 0.56 0.72 0.61

SR 0.90 0.97 0.95 ∅ ∅ ∅ ∅ ∅ 1.00 0.97 1.00 1.00 1.00

SRa 0.90 0.97 0.95 ∅ ∅ ∅ ∅ ∅ 1.00 1.00 1.00 1.00 1.00

SWJ
(ECG)

LL 0.55 ∅ ∅ ∅ ∅ ∅ ∅ 0.61 ∅ 0.51 1.00 0.77 0.52

HL 0.50 ∅ ∅ ∅ ∅ ∅ ∅ 0.50 ∅ 0.50 0.50 0.50 0.50

LR 0.97 ∅ ∅ ∅ ∅ ∅ ∅ 0.64 ∅ 0.50 1.00 0.67 0.99

SR 0.65 ∅ ∅ ∅ ∅ ∅ ∅ 0.70 ∅ 0.61 1.00 0.96 0.61

SRa 0.67 ∅ ∅ ∅ ∅ ∅ ∅ 0.70 ∅ 0.61 1.00 0.96 0.61

Ckt
(HAR

LL 0.89 0.85 0.84 0.81 0.82 0.91 0.79 0.79 0.82 ∅ 0.95 0.90 0.81

HL 0.97 0.50 0.99 0.50 0.50 0.51 0.50 0.50 0.50 ∅ 0.52 0.94 0.50

LR 0.81 0.75 0.74 0.71 0.74 1.00 0.78 0.77 0.72 ∅ 0.95 0.88 0.71

SR 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.99 ∅ 0.99 0.98 0.98

SRa 0.99 0.99 1.00 1.00 1.00 1.00 0.98 0.98 0.99 ∅ 1.00 1.00 1.00

HMD
(EEG)

LL 0.88 0.88 0.89 0.89 ∅ ∅ ∅ 0.89 0.80 0.87 ∅ 0.90 0.91

HL 0.93 0.57 0.78 0.87 ∅ ∅ ∅ 0.97 0.50 0.98 ∅ 0.58 0.66

LR 0.68 0.68 0.68 0.68 ∅ ∅ ∅ 0.68 0.68 0.68 ∅ 0.80 0.68

SR 0.75 0.75 0.75 0.75 ∅ ∅ ∅ 0.75 0.75 0.75 ∅ 0.83 0.75

SRa 0.90 0.90 0.90 0.90 ∅ ∅ ∅ 0.75 0.84 0.89 ∅ 0.97 0.91

Hbt
(Audio)

LL 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.90 0.95 0.94 0.85 ∅ 0.98

HL 0.50 0.50 ∅ ∅ ∅ ∅ ∅ 0.96 0.50 0.78 0.62 ∅ 0.82

LR 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.93 0.94 0.94 0.75 ∅ 0.98

SR 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.96 0.97 0.94 1.00 ∅ 1.00

SRa 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.96 0.97 0.94 1.00 ∅ 1.00

ERg
(Other)

LL 0.83 0.77 0.75 ∅ ∅ ∅ ∅ 0.88 0.86 0.82 0.77 0.76 ∅

HL 0.50 0.50 0.50 ∅ ∅ ∅ ∅ 0.50 0.50 0.50 0.50 0.50 ∅

LR 0.83 0.72 0.78 ∅ ∅ ∅ ∅ 0.88 0.78 0.81 0.71 0.78 ∅

SR 1.00 0.98 0.99 ∅ ∅ ∅ ∅ 0.89 0.99 0.94 0.99 0.99 ∅

SRa 1.00 1.00 1.00 ∅ ∅ ∅ ∅ 0.95 1.00 0.95 1.00 1.00 ∅

Absolute LL 00.0% HL 05.0% LR 05.0% LL 0.00% HL 06.7% LR 03.30%

Wins (%) Ties 20.0% SRa 70.0% Ties 16.7% SRa 73.3%

SRa Improvement (%) 55.0% 40.0%

SR scores. We make the following observations. 1) The naive LL method fails to outperform

any other approach, which demonstrates that DGMs are not reliable on their own as they

157

produce high likelihood for OOD samples. 2) The time-series anomaly detection method HL

fails drastically for various OOD settings as reflected by the poor AUROC score of 0.5. This

demonstrates that AD methods are not appropriate for OOD detection in the multi-class

setting. 3) SR score outperforms LR score in identifying OOD examples on 80% of the total

experiments. This means that the improvement is due to a better scoring function. 4) For

the in-domain OOD setting, AUROC score of LR is always lower than SRS. 3) For the cross-

domain setting, SRS outperforms LR in all cases except one experiment on a single dataset

SWJ. 4) LR and SRS have the same performance in 20% of the total experiments. Therefore,

we conclude that SRS is better than LR in terms of OOD performance and execution time

(LR requires new training for every single testing input unlike SR).

Alignment improves the accuracy of SR score. Our hypothesis is that extraction of an

accurate semantic component using STL results in improved OOD detection accuracy. To

test this hypothesis, we compare SR and SRa (SR with aligned time-series data). Table 7.7

shows the AUROC scores of SR and SRa. SRa improves the performance of SR for around

50% of the overall experiments. For example, on HMD dataset, we observe that SRa enhances

the performance of SR by an average of 15% under the in-domain OOD setting. These results

strongly corroborate our hypothesis that alignment improves OOD performance.

SR performance using F1-score. In addition to the AUROC score, we employ F1 score

to assess the effectiveness of SR score in detecting OOD. Table 7.8 provides the results com-

paring SR score and LR score. Like AUROC score evaluation, we make similar observations

on F1 score. 1) SR score outperforms LR score in identifying OOD examples on 60% of the

total experiments. This means improvement is due to better scoring function. 2) For the

in-domain OOD setting, F1 score of LR is mostly lower than SR. 3) For the cross-domain

setting, SR outperforms LR in 66% of the cases. Hence, we conclude that SR is better than

LR in terms of OOD performance measured as F1 metric.

158

Table 7.8 F1 metric results of LR, SRa on the different datasets for both In-Domain
and Cross-Domain setting. The last two rows show the percentage of datasets where
SRa is out-performing the LR score.

In-Domain OOD Cross-Domain OOD

DS1 DS2 DS3 DS4 DS5 DS6 DS7 D1 D2 D3 D4 D5 D6

AWR
(Motion)

LR 0.58 0.99 0.80 ∅ ∅ ∅ ∅ ∅ 0.53 0.79 0.61 0.44 0.67

SRa 0.69 0.89 0.97 ∅ ∅ ∅ ∅ ∅ 0.97 0.85 1.00 0.99 1.00

SWJ
(ECG)

LR 0.69 ∅ ∅ ∅ ∅ ∅ ∅ 0.98 ∅ 0.82 1.00 0.97 0.97

SRa 0.69 ∅ ∅ ∅ ∅ ∅ ∅ 0.98 ∅ 0.86 1.00 0.97 0.98

Ckt
(HAR)

LR 0.70 0.90 0.97 0.92 0.93 0.91 0.95 0.96 0.48 ∅ 1.00 0.94 0.93

SRa 0.98 0.96 0.99 0.98 0.99 0.99 0.98 0.98 0.94 ∅ 0.99 0.97 1.00

HMD
(EEG)

LR 0.82 0.81 0.84 0.81 ∅ ∅ ∅ 0.84 0.45 0.68 ∅ 0.80 0.82

SRa 0.80 0.75 0.84 0.81 ∅ ∅ ∅ 0.94 0.65 0.68 ∅ 0.90 0.92

Hbt
(Audio)

LR 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.93 0.88 0.94 0.75 ∅ 0.98

SRa 1.00 1.00 ∅ ∅ ∅ ∅ ∅ 0.93 0.88 0.94 1.00 ∅ 0.98

ERg
(Other)

LR 0.44 0.85 0.76 ∅ ∅ ∅ ∅ 0.88 0.90 0.79 0.83 0.88 ∅

SRa 0.99 0.99 0.95 ∅ ∅ ∅ ∅ 0.87 0.94 0.88 0.98 1.00 ∅

Wins(%)
LR 15.0% 6.7%

Ties 25.0% 26.7%

SRa 60.0% 66.6%

159

Inference runtime comparison of the different OOD detection algorithms. We

provide in Tables 7.9 and 7.10 a comparison of the number of parameters and the runtime

between different OOD detection methods for time-series. Intuitively, both HL and SR

methods are characterized by a larger number of parameters than LL and LR as the latter

two methods only rely on a single VAE model to compute the OOD score. However, we

can observe that LR has the longest score computation runtime: this is due to the new

training iterations LR introduces to compute the OOD score of each example. On the other

hand, SR algorithm only runs a single inference pass for each example, then computes the

ratio between both computed likelihoods. This approach of SR algorithm yields a fast and

accurate OOD detector.

Table 7.9 Number of parameters of each DNN used by the different OOD methods.

Number of parameters

LL 454,628

HL 687,268

LR 454,628

SR 909,256

Table 7.10 OOD Inference runtime comparison.

Runtime (seconds)

AWR SWJ CkT HMD Hbt ERg

(Motion) (ECG) (HAR) (EEG) (Audio) (Other)

LL 0.66 0.32 0.43 0.49 0.49 0.22

HL 1.06 0.65 0.55 0.81 0.90 0.47

LR 3.72 1.48 1.40 1.35 1.38 1.42

SR 1.5 0.66 0.80 1.01 1.02 0.52

160

7.4 Summary

In this chapter, we introduced a novel seasonal ratio (SR) score to detect out-of-distribution

(OOD) examples in the time-series domain. The key idea of SR scoring is the Seasonal

and Trend decomposition using Loess (STL) to extract class-wise semantic patterns and

remainders from time-series signals; and estimating class-wise conditional likelihoods for

both input time-series and remainders using deep generative models. The SR score of a

given time-series signal and the estimated threshold interval from the in-distribution data

enables OOD detection. Our strong experimental results demonstrate the effectiveness of SR

scoring and alignment method in detecting time-series OOD examples over prior methods.

161

CHAPTER EIGHT

ALGORITHMS AND THEORETICAL GUARANTEES FOR RELIABLE

MACHINE LEARNING FOR WEARABLE ACTIVITY MONITORING

T. Belkhouja*, D. Hussein*, G. Bhat, and J. Doppa. "Reliable Machine Learning for Wear-

able Activity Monitoring: Novel Algorithms and Theoretical Guarantees". Proceedings of

International Conference on Computer-Aided Design (ICCAD), 2022. (* denotes equal con-

tribution)

Originally published in the Proceedings of International Conference on Computer-Aided

Design.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting from a

Machine Learning (ML) perspective, investigating the state of the art related to ML algo-

rithms, formulating the theoretical contribution and the algorithmic solution, implementing

the proposed solution as a general algorithm and running the required empirical analysis to

highlight its performance improvement compared to the state of the art.

D. Hussein has contributed to this work by formulating the problem setting from the

application domain (wearable sensors and mobile health) perspective, investigating the state

of the art related to wearable sensors algorithms, formulating the theoretical contribution

and the algorithmic solution, implementing the algorithm on microcontrollers and running

the required empirical analysis to highlight the performance improvement of the proposed

solution compared to the state of the art.

G. Bhat has contributed to this work by investigating the motivation for this work and

162

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

163

ALGORITHMS AND THEORETICAL GUARANTEES FOR RELIABLE MACHINE

LEARNING FOR WEARABLE ACTIVITY MONITORING

In this chapter, we propose a real-world applications1 for robust time-series deep learning

algorithms using wearable sensors. Wearable devices that combine multiple sensors, low-

power processors, and communication capabilities have the potential to transform fitness,

rehabilitation, and health monitoring (Mosenia et al., 2017; Maetzler, Klucken, and Horne,

2016; Limaye and Adegbija, 2018). Human activity recognition (HAR) is an important

component of these applications since it enables a fine-grained understanding of the users’

activity patterns (Maetzler, Klucken, and Horne, 2016; Zappi et al., 2007; Kim et al., 2016).

HAR approaches collect sensor data from a set of training users and employ the data to train

a classifier using ML algorithms (Lara and Labrador, 2012). The classifier is then used to

recognize the activities of the users. During the data collection step, the sensors are placed

at fixed positions on the body. For instance, a number of prior HAR approaches place the

sensors on the hip or waist of the user. For achieving high real-world accuracy, the sensors

must be placed at the same location as the training setup to ensure that the distribution of the

sensor data is the same (Kunze and Lukowicz, 2014). We propose to address in this chapter

the challenge of the distribution change of the sensor data at runtime. Approaches to handle

sensor disturbances can be classified into two main categories depending on whether they

pre-process sensor data at runtime or augment training data. The first class of approaches to

handle sensor disturbances require calibration and pre-processing at runtime (Mizell, 2003;

Kunze, Lukowicz, et al., 2009). The calibration step adds an additional burden to the user

each time the device is used, while the pre-processing steps increase the execution time

and energy overhead for resource-constrained wearables (Yamin, Bhat, and Doppa, 2022;

Hussein, Bhat, and Doppa, 2022). Therefore, we propose a concrete instantiation of the

statistical optimization approach in (Belkhouja and Doppa, 2022) to enable reliable ML
1This work was developed in close collaboration with Dina Hussein and Ganapti Bhat

164

classifiers for HAR on low-power wearable devices. Starting with a set of training data and

known candidate disturbances, the StatOpt approach employs statistical transformations to

generate additional training examples that describe the sensor disturbances. This approach

ensures that the ML classifier automatically learns to provide reliable activity classification

in the presence of sensor disturbances.

8.1 Background and Problem Setup

This section first provides the background on HAR and introduces candidate sensor dis-

turbances in HAR. Then we describe the problem setup for creating reliable ML classifiers

for wearable activity monitoring. Figure 8.1 provides a high-level overview of the complete

problem setup and the proposed StatOpt approach for reliable HAR.

8.1.1 Human Activity Recognition Preliminaries

HAR algorithm development involves three major steps as follows:

Sensor data collection and labeling: The first step in the development of HAR systems

is to collect sensor data when users are performing the activities of interest. In this work, we

consider accelerometer and stretch sensors since they are used in our experimental datasets.

This is typically done in a laboratory environment where an expert places the sensors at

appropriate locations on the body. After placing sensors, the expert collects sensor data

while the user performs a pre-defined set of activities. Finally, the data is labeled to record

the activity for the duration of the experiment.

Segmentation and feature generation: The second step after data collection is to seg-

ment the data into fixed- or variable-length windows for classification (A. Wang et al., 2016).

Next, features are extracted from each activity segment: handcrafted features for conven-

tional ML algorithms such as decision trees or learned directly from the raw sensor data

using deep neural networks (DNNs) (Ismail Fawaz et al., 2019).

165

User Data and Labels Train Baseline
Classifier

Sensor
disturbances

Additive
transform

Classify

+LossUpdate transformAugmented
training examples

Full Training Data

Train Reliable
Classifier

Sensor data with
disturbances

Reliable
Activity

Classification

Online

Design time

Stat.
Loss

Classification
Loss

Figure 8.1 Overview of the proposed StatOpt approach. We start with the observed
sensor data and train a baseline classifier. The baseline classifier, sensor data, and
disturbances are provided as inputs to the StatOpt approach. At the end of the
optimization, we obtain training examples that capture the overall structure of the
sensor disturbances. The new training examples are combined with the observed
sensor data to train a reliable HAR classifier. Finally, the reliable classifier is used
to perform HAR in real-world settings.

Classifier training: The final step in the HAR design is to train the supervised learning

classifier that takes the features of the user state s, ϕ(s) ∈ ℜd, as the input to predict the

current activity ŷ. The labels assigned in the data collection step y∗ are used as the ground

truth data for the classifier training.

At runtime, the wearable device collects and segments sensor data. The trained classifier

is then used on the segmented data to identify the activities of the user in their daily life.

8.1.2 Sensor Disturbances in HAR

State-of-the-art HAR approaches are trained on the assumption that the sensor position and

data distribution will be the same during training and real-world deployment. However, in

real-world usage, the data distribution of sensors can shift due to changes in sensor position,

166

sampling frequency, or energy constraints. Next, we summarize the sensor disturbances

considered in this work.

On body orientation changes: Orientation changes occur when the sensor rotates from

its initial position. Without loss of generality, consider that a sensor with three axes of

measurement (e.g., accelerometer) is being used to identify the user activities, as shown in

Figure 8.2(a). If the sensor is mounted on the legs, it captures motion in the forward, lateral,

and vertical directions. The device may experience rotation along the vertical and lateral

axes, as shown in Figures 8.2(b) and (c). We refer to these rotations as heading and pitch

rotation, respectively. The heading rotation changes the sensor values in the forward and

lateral directions, while the pitch rotation changes the values in the forward and vertical

directions.

On body position changes: In addition to the orientation change, the sensor can move

up or down from the desired position. For instance, a sensor mounted on the knee of a user

may slip and move to the ankles. These changes can impact the amplitude of the signal

observed by the sensors. We refer to this as amplitude disturbance.

Sensor hardware disturbances: Wearable devices operate under extremely limited energy

budgets. During periods with insufficient energy, the energy management algorithm on the

wearable devices reduces the sensor sampling frequency. The lower sampling frequency, in

turn, reduces the fidelity of the sensor data. We refer to this disturbance as sampling rate

uncertainty.

Next, we describe our general problem setup to overcome the sensor disturbances.

8.1.3 Problem Setup

Let X ∈ Rn×T be the time-series sensor data in each activity window, where n is the number

of sensor channels and T is the number of samples in each activity window. The activity

label for each activity window is denoted by y∗. We denote the set of training examples D

167

Default Position

Forward

Lateral

Vertical

Heading Rotation

Forward
Lateral

Vertical Forward

Lateral

Vertical

Pitch Rotation Amplitude
Disturbance

(a) (b) (c) (d)

Figure 8.2 Illustration of sensor orientation and position changes.

as several input X and ground truth output y∗ pairs. Standard ML algorithms use the given

data D to train a classifier Fθ which takes time-series X as input to predict the corresponding

activity label ŷ, where θ stands for parameters of the HAR classifier.

Next, let the set S denote the disturbances present in the sensor data. Each of these

disturbances changes the sensor data X ∈ Rn×T collected at runtime, which results in mis-

classifications by Fθ. To address this challenge, our goal is to design a reliable classifier FR
θ

that provides accurate classifications in the presence of one or more sensor disturbances.

We achieve this by creating additional training examples D′ using a statistical optimization

approach StatOpt as follows. For each time-series input X from training data D, StatOpt

creates X ′ using an additive perturbation of X to accurately capture the distribution of

sensor disturbances while maintaining the same activity label. The additional data D′ is

then combined with D to train a reliable HAR classifier FR
θ .

8.2 HAR Related Work

The applicability of HAR in applications ranging from health monitoring to fitness has led to

increased attention from both academia and industry (Lara and Labrador, 2012; Dempsey,

2015). In particular, advances in wearable technology have made it possible to perform HAR

using on-body sensors (Lara and Labrador, 2012).

HAR approaches typically collect sensor data in a controlled laboratory environment

(Kunze and Lukowicz, 2014). The collected sensor data is then used to train a ML classifier

168

(Lara and Labrador, 2012; Bhat et al., 2020; Zappi et al., 2007). The classifiers are trained

with the assumption that the sensor data distribution during real-world deployment is same

as the training data. However, the sensor data distribution can change at runtime due to

a number of reasons such as user movement or error and energy limitations. The sensor

disturbances, in turn, lead to a degradation of the classification accuracy (Stisen et al., 2015;

Kunze and Lukowicz, 2014; Shi et al., 2020; Barshan and Yurtman, 2020). Therefore, there

is a great need to create classifiers that provide reliable HAR under sensor disturbances.

Prior work has investigated methods to detect and correct sensor disturbances at runtime

(Kunze, Lukowicz, et al., 2009; Mizell, 2003; Stisen et al., 2015; Hussein, Jain, and Bhat,

2022). Most of these approaches involve calibration and pre-processing of the sensor data

to mitigate the disturbance. For instance, the approach in (Kunze, Lukowicz, et al., 2009)

requires the user to walk a few steps every time the wearable device is used to identify the

orientation of the user and account for any changes from the design time. Similarly, the tech-

nique in (Stisen et al., 2015) uses clustering and interpolation to account for sampling rate

disturbances in HAR. While these techniques are useful, they add significant runtime over-

head and cause inconvenience to the user, hindering the real-world deployment of wearable

enabled applications.

Recent techniques have also proposed HAR methods that aim to be invariant to sensor

position changes (Shi et al., 2020; Barshan and Yurtman, 2020). For instance, the approach

in (Barshan and Yurtman, 2020) focuses on extracting position independent sequences from

sensors placed on rigid body parts (e.g. arms). However, it does not eliminate the additional

pre-processing of sensor data and is limited to body parts that are rigid in nature.

One of the most promising approaches to handle runtime disturbances is by including

examples with candidate disturbances in the training data (Dietterich, 2017; Carlini and D.

Wagner, 2017). For instance, data augmentation techniques (Carlini and D. Wagner, 2017)

employ adversarial algorithms to create worst-possible input examples from the classifier’s

perspective. However, data augmentation without accounting for the specific characteristics

169

of the sensor data can lead to accuracy degradation. If the augmented training examples are

similar to the observed sensor data of a different activity, it leads to ambiguous/inconsistent

training data for the classifier. To address these unique challenges, StatOpt employs sta-

tistical optimization to ensure that additional training examples capture the disturbances

while preserving the statistical properties of the original time-series data. As a result, classi-

fiers trained with augmented data from StatOpt provide reliable classification under natural

disturbances.

8.3 Statistical Optimization Approach

This section describes the statistical optimization approach StatOpt to significantly improve

the reliability of ML-based HAR classifiers to sensor disturbances. StatOpt is an instantiation

of the general statistical optimization framework (Belkhouja and Doppa, 2022) for ML-based

HAR on wearable systems. The goal of StatOpt is to create new training examples to capture

the overall structure of natural sensor disturbances that may occur in sensor observations and

use them to improve the classifier reliability. Figure 8.3 provides a conceptual illustration of

the key intuition behind the StatOpt algorithm. We aim to create new training examples to

cover the natural disturbance region around time-series sensor input to improve the reliability

of the ML classifier. We achieve this goal by optimizing a loss function that describes the

natural sensor disturbances region where the ML classifier fails to predict the correct class

label.

Intuition: As shown in Figure 8.3, we would like to create new training examples to describe

the natural disturbances of a time-series sensor observation X, which are misclassified by the

HAR classifier. We define the candidate sensor disturbances that can affect the time-series

X ∈ Rn×T as additive perturbations p ∈ Rn×T . Therefore, the new training example is X ′

= X + p. To improve the reliability of HAR classifier, the perturbation p should satisfy

two main characteristics: 1) Misclassification: The new example X ′ = X + p is misclassified

170

by the HAR classifier (i.e., Fθ(X
′) ̸= y∗); and 2) Natural disturbance: p describes natural

sensor disturbances that may affect the observed time-series input. Due to the huge variety

in disturbances, it is impractical to define p explicitly. Hence, we propose to use a statistical

optimization approach for data-driven estimation of p w.r.t a given HAR classifier and a

time-series X.

Time-series sensor input

Natural sensor disturbances

that can affect the

classifier's prediction

Class boundaries learned by

ML classifier from training

data

Figure 8.3 Conceptual illustration of the sensor disturbance regions for different
time-series inputs within three classes shown in blue, orange, and yellow colors. The
dotted circles represent the potential disturbance regions that may affect an input
example. The dotted circles covering multiple class regions show the vulnerability
of the ML classifier against natural disturbances. Our goal is to create training
examples sampled from the dotted circles to improve the reliability of ML classifier
against natural sensor disturbances.

8.3.1 Statistical Optimization Algorithm

We propose a novel approach to create new training examples D′ using the given training

data D and HAR classifier Fθ learned from D. The combined training data D ∪ D′ yields

a HAR classifier that is reliable to natural sensor disturbances. For each training example

(X, y∗) ∈ D, we create additional examples of the form {(X ′ = X + p, y∗)}. We propose to

employ constraints on the statistical features of X ′ to describe the natural sensor disturbances

that can affect X. Our approach assumes that p can disturb the sensor input X freely under

the condition of preserving the original statistical features of X. The goal of this perturbation

is to yield a reliable HAR classifier against a variety of sensor disturbances at once (we do

171

not define an explicit form for p) in a controlled manner (we use statistical constraints to

define p). In the context of wearable activity monitoring, we call to use the Body Acceleration

feature described below. We assume that any candidate sensor disturbance has low effect on

the body acceleration of the input. Furthermore, we propose to maintain similar distribution

of X and X ′ values by employing the skewness and the kurtosis features. Our goal is to

create a perturbation p such that ∥Si(X) − Si(X
′)∥ < ϵ for each statistical feature Si ∈

{Body acceleration, Skewness, Kurtosis }, where ϵ is a small threshold:

• Body acceleration is computed using the 3 axes (X1, X2, and X3 ∈ RT) of the ac-

celerometer
√∑3

i=1X
2
i − 1.

• Skewness measures the symmetry of the distribution of the values of the input and is

computed on every channel: Skewness(Xi)=
(∑T

j=1(Xi,j − µ(Xi))
3/T

)
/ (σ(Xi)

3).

• Kurtosis measures the distribution tail of the input’s values and is computed on every

channel:

Kurtosis(Xi)=−3 +
(∑T

j=1(Xi,j − µ(Xi))
4/T

)
/ (σ(Xi)

4).

where µ and σ represent the mean and standard deviation of the time-series signal respec-

tively. To achieve this goal, we propose a new statistical loss:

Lstat(p,X) ≜
∑
Si

∥Si(X + p)− Si(X)∥ (8.1)

This loss function overcomes the impractical use of projection functions on the statistical

feature space and guarantees that the perturbation p preserves the original statistical features

of X. Indeed, our empirical results in Figure 8.4 show that the real-world sensor disturbances

preserve the three statistical features. This provides a strong justification for the key intuition

behind our statistical optimization approach and the statistical loss shown in Equation 8.1.

Overall StatOpt algorithm: To create a new example X ′ that is misclassified by the HAR

classifier, we propose to estimate the confidence of the classifier to predict a given class label

172

y′ ̸= y∗ by computing the following loss function:

Llabel(p,X, y′) = max

[
max
y ̸=y′

(Zy (X + p))−Zy′ (X + p) , ρ

]
(8.2)

where ρ < 0 and y′ is a random class label different from y∗. This loss function will ensure

that the new example X ′=X + p will be classified by the HAR classifier Fθ as class y′ with

a confidence |ρ| using the output of the logits layer {Zy}y∈Y . Equation 8.2 ensures that the

logit output value corresponding to a class label y′ ̸= y∗ remains less than the output value

of other class labels including y∗. Hence, the classifier is guaranteed to predict y′ for the

input X. The role of this loss function is to actively find naturally disturbed examples of X

that the HAR classifier Fθ does not classify as y∗. These examples uncover scenarios where

the classifier is prone to fail and help in improving the reliability of the classifier FR
θ .

The final loss function L that we want to minimize to obtain the perturbation p is as

follows:

L(p,X) = Llabel(p,X, y′) + Lstat(p,X) (8.3)

This loss function captures both desired misclassification and natural sensor disturbance

characteristics of p. We employ a gradient descent based optimizer to minimize the loss

function in Equation 8.3 over p. The prior knowledge about sensor disturbances S (when

available) can be used to constrain the optimization variables of perturbation p over a subset

of channels Gch, i.e., those outside S will be set to zero (no perturbation for the channels not

in Gch). The parameter ρ introduced in Equation 8.2 plays an important role here. ρ will

push gradient descent to minimize mainly the second term when the first one plateaus at ρ

first. Otherwise, the gradient can minimize the general loss function by pushing Llabel(p,X)

to −∞, which is counter-productive for our goal. The result of this optimization is new

input examples that are used during the training phase in addition to the original examples

to obtain a reliable HAR classifier against real-world sensor disturbances. We present an

overall description of the proposed StatOpt-based reliable classifier training approach in

Algorithm 8.

173

Algorithm 8 StatOpt-based Training for Reliable HAR Classifier
Input: Training set D = {(X, y∗)}; Fθ, pre-trained HAR classifier on D = {(X, y∗)}; {Gch}, group of

different possible channels to disturb; MAX, maximum iterations for gradient descent; ϵ, threshold for

statistical features

Output: A reliable HAR classifier FR
θ

1: Initialize the set of additional training examples D′ ← ∅

2: for each training example (X, y∗) ∈ D do

3: for every Gch ∈ {Gch} do

4: Random initialization of perturbation p ∈ Rn×T

5: Fix the channels of p not in Gch to 0

6: Fix a random class-label y′ ̸= y∗

7: for k=1, · · · , MAX OR Lstat(p,X) < ϵ do

8: Compute loss L(p,X) = Llabel(p,X, y′) + Lstat(p,X)

9: Estimate the gradient ∇pL(p,X)

10: Perform gradient descent and update p

11: end for

12: Add new training example (X ′ = X + p, y∗) to D′

13: end for

14: end for

15: Use the combined training set D ∪D′ to train classifier FR
θ

16: Return reliable HAR classifier FR
θ

8.3.2 Theoretical Analysis

In this section, we derive theoretical upper bounds for sensor data disturbances for which

StatOpt will produce HAR classifiers with reliability certificates (analogous to security certifi-

cates for software). Reliability/robustness certification (Bai Li et al., 2019) is a theoretically-

sound upper bound that describes the maximum perturbation that can affect any input

example without a change in the classifier’s prediction. Therefore, if a classifier has a certifi-

cation equal to Elim for a given input X, then for any perturbation p such that ||p|| ≤ Elim,

the classifier’s prediction for X and X + p will remain the same (i.e., Fθ(X) = Fθ(X + p)).

174

Existing certification methods (Bai Li et al., 2019; Cohen, Rosenfeld, and J Zico Kolter,

2019) rely on the Euclidean distance to constrain the disturbance p. If we enforce l2 certi-

fication in our time-series setting (i.e., for any ||p|| ≤ Elim, Fθ(X) = Fθ(X + p)), then we

risk to greatly confuse the classifier with ambiguous training examples as explained earlier.

Table 8.1 shows results on WISDM dataset to corroborate this hypothesis noting that we see

similar results on other real-world datasets. We show for some reference classes yref and a

disturbance p describing the rotation at 210 degrees that the minimum l2 distance between

any time-series input X with an activity label yref and X + p is significantly greater than

the minimum l2 distance between X and any other time-series input X ′ that has a different

activity label y ̸= yref. Therefore, if Elim > ||p||, then the classifier will predict yref for all

such time-series inputs, resulting in a classifier with poor accuracy. In summary, we conclude

that the certification cannot be based on l2 distance.

Therefore, we propose to derive a new certification guarantee that is suitable for our

problem setting. The certification proposed in (Bai Li et al., 2019) constrains the Euclidean

distance (l2) between the inputs using:

1. The Rényi divergence of Gaussian distribution (N (x ∈ RT ,

σ2 ∈ R)) on univariate input space X1 and X2 is:

D(N (X1, σ
2)||N (X2, σ

2)) = α× l2(X1, X2), where α is a constant.

2. The statement that D(Fθ(N (X+p, σ2))||Fθ(N (X, σ2))) is always greater than a value

E at which the classifier is not reliable, i.e., for p ∼ N (µ(p), σ2) and ϵ > 0, we have

Pr[Fθ(X) ̸= Fθ(X + p)] ≥ 1− ϵ (Cohen, Rosenfeld, and J Zico Kolter, 2019).

Using the above two statements, one can derive the certification (Bai Li et al., 2019) to

constrain the perturbation p such that l2(X,X + p) < E/α. Such a constraint guarantees

the reliability of the classifier when the perturbation is within this bound. However, this

certification is not suitable for our problem setting for two main reasons: 1) We have already

shown that l2-based certification is impractical; and 2) The certification cannot generalize to

175

a multivariate input space such as the setting of this chapter. Therefore, we propose to use

the appropriate Gaussian distribution (N (x ∈ RnxT , C ∈ Rnxn))) to derive the certification

needed for our setting.

Table 8.1 Comparison of the minimum l2 distance between examples from different
classes.

Rotated at 210◦ Observed

Reference Class Same Class Closest Class Farthest class

Walking 9.57 3.91 8.84

Jogging 14.4 7.26 8.84

Upstairs 10.3 4.07 8.23

Theorem 7. Let X ∈ Rn×T be an input time-series signal, µ(X) be the mean value of X

and C a given covariance matrix. Let E be the minimum Rényi divergence D(Fθ(N (X +

p, C))||Fθ(N (X,C))) at which the classifier is still reliable against a perturbation p ∈ Rn×T .

We can estimate the certification upper bound (||µ(p)||max) of the mean feature of a distur-

bance p by E = αµ × ||µ(p)||2max, where αµ is a constant.

8.4 Experiments and Results

In this section, we describe our experiments and discuss results along different dimensions.

8.4.1 Experimental Setup

Wearable device: We use a device based on the TI CC2652R MCU for our experiments

(Texas Instruments Inc., 2018). The MCU integrates an ARM Cortex-M4 processor to

perform sensor data processing and classification. We implement the reliable classifier and

baseline approach on the MCU to measure the execution time and energy consumption.

Datasets: We use two publicly available datasets to evaluate the performance of StatOpt.

176

w-HAR (Bhat et al., 2020): The w-HAR dataset (Bhat et al., 2020) includes accelerome-

ter and stretch sensor data for human activity recognition from 22 users to recognize eight

activities. The eight activities monitored by the w-HAR dataset are: {Jump, lie down, sit,

stand, walk, stairs up, stairs down, and transition}. We apply the orientation disturbance

to the accelerometer and position change to the stretch sensor in the w-HAR dataset. More-

over, sensor hardware disturbance is applied to the accelerometer by varying its sampling

frequency. We choose the accelerometer for hardware disturbance since it has a higher power

consumption than the stretch sensor (Bhat et al., 2020).

WISDM (Kwapisz, Weiss, and Moore, 2011): The WISDM dataset provides data for six

activities: {walking, jogging, ascending stairs, descending stairs, sitting, and standing} from

twenty nine users using the accelerometer sensor on a smartphone. The accelerometer is

placed in the front pant pocket of the user. Since the pockets of pants are larger than a

typical smartphone, the device may experience orientation changes within the pocket, thus

leading to sensor data disturbance. Consequently, we apply the orientation disturbance to

the WISDM dataset.

HAR classifier representation: We use a 1-D convolutional neural network (CNN) as

the HAR classifier. Specifically, we use a 1-D CNN with one conv. and max-pooling layers, a

flatten layer, and two fully connected layers with the ReLU activation. To train the classifier,

we use the Adam optimizer (Kingma and Ba, 2015) for 50 epochs. We also note that the

additional training examples generated by StatOpt can be used to improve the performance

of a wide range of classifiers. To demonstrate this, we also train HAR classifiers using decision

trees and random forest using data generated by StatOpt.

Evaluation metrics: We evaluate activity recognition accuracy and the overhead of the

StatOpt-based reliable classifier with respect to the baseline approach that uses calibration

and pre-processing to account for the sensor disturbances. The goal of our evaluation is to

verify whether the reliable classifier achieves accuracy equal to a classifier without any sensor

177

disturbances with negligible overhead. Furthermore, we analyze the quality of the additional

data generated by StatOpt using t-distributed stochastic neighbor embedding (t-SNE) visu-

alization (Van der Maaten and Hinton, 2008) and the Maximum Mean Discrepancy (MMD)

metric (Tolstikhin, Sriperumbudur, and Schölkopf, 2016). The MMD metric measures the

distance between data distributions by estimating the mean embeddings of features in a high-

dimensional space where matching distributions will be closer and dissimilar distributions

will be farther.

8.4.2 Baseline Methods for Comparison

This section describes the baseline data recovery and augmentation methods that we use to

validate the effectiveness of StatOpt.

Pitch rotation recovery: We use the method proposed in (Mizell, 2003) to recover pitch

rotation. The method relies on the fact that when the user is standing, the only acceleration

experienced by the device is due to gravity. Therefore, we obtain the average acceleration

in each direction when the user is standing to determine the direction of the gravity vector.

Then, the design time gravity vector is used to calculate the degree of pitch rotation and

recover the sensor data.

Heading rotation recovery: The heading rotation changes the direction of motion ob-

served by the sensor. For instance, if one of the accelerometer axes is pointing in the direction

of motion, any heading rotation will result in the projection of the motion acceleration on

two axes. To overcome this, we use the approach in (Kunze, Lukowicz, et al., 2009). The

approach starts by performing offline characterization of the direction of motion using prin-

cipal component analysis (PCA) when the user is walking. At runtime, the device instructs

the user to walk a few steps to calculate the new PCA components of motion. The angle be-

tween the reference and runtime PCA components is used as the degree of heading rotation

to recover the sensor data.

On body position recovery: On body position changes affect the amplitude of the stretch

178

sensor in the w-HAR dataset. To recover the amplitude change, we perform an offline

characterization for each user to obtain the nominal sensor value when the user is standing.

At runtime, the sensor is calibrated when the user is standing to determine the amplitude

degradation due to the position change. The calibration is then applied to new sensor data

from the user.

Sampling rate recovery: To overcome sampling rate uncertainty, the sensor data is re-

sampled to the frequency used during training.

In summary, the baseline approaches require extensive calibration and pre-processing of

the runtime data to compensate for the disturbances. This overhead makes them impractical

for use in real-world settings where the energy budget is limited.

8.4.3 Baseline Data Augmentation Method

Data augmentation is a standard method to augment the training data to improve the

generalization of a given classifier. Therefore, we compare the performance of StatOpt with

the CW method (Carlini and D. Wagner, 2017) to highlight the role of statistical features

in enhancing the reliability of HAR classifiers. Specifically, we use the same pre-trained

baseline classifier employed for StatOpt to generate different CW-based examples for data

augmentation. The additional training data generated by CW method is then used to train

an activity classifier.

8.4.4 Evaluation of StatOpt-based Training Data

This section evaluates the quality of the training data generated by StatOpt along two

dimensions. We first compare the statistical features of the generated time-series examples

with real-world sensor data. We also compare the quality of the data generated by the CW

method. Next, we empirically evaluate the theoretical upper-bound derived in Section 4.2

for the data generated by StatOpt.

Statistical Analysis for Training Data One of the goals of StatOpt is to generate ad-

179

ditional training examples that capture the overall structure of natural sensor disturbances

while maintaining the statistical properties of the original sensor data and ground truth

activity labels. This is an important goal because the augmented data samples that encode

sensor disturbances must have the same activity label as the original sensor data to learn

highly-effective HAR classifiers. In Figure 8.4, we show the distribution of the difference

(∥Si(Original data) − Si(Disturbed data)∥) for the three statistical features, namely, body

acceleration, skewness, and kurtosis, between the disturbed sensor data and the correspond-

ing original time-series sensor data. We observe that the disturbed data indeed preserves

the statistical features of the original data, as the difference is well-centered at the value 0.

Since StatOpt by design preserves the statistical features of the original time-series sensor

data, the additional training examples generated by StatOpt capture the overall distribution

of the real-world sensor disturbances.

We further analyze the data generated by StatOpt to assess its similarity to the real-

world perturbations. First, we employ the t-SNE method to visualize the data generated by

StatOpt, data with sensor disturbances, and the observed sensor data. t-SNE is a dimension-

ality reduction technique that aids in the visualization of high-dimensional data by reducing

the data to two or three dimensions. If two distributions are close to each other, their samples

will be close in the t-SNE map while dissimilar distributions will have larger distances be-

tween the samples. Second, we quantify the MMD distance between the generated StatOpt

distribution to the original input distribution and rotated data distribution.

Figure 8.4(d) shows an illustration of t-SNE applied on the original w-HAR data, pitch

and heading rotation, and the data generated by StatOpt. We see that there is a significant

separation between the original data and the sensor data with orientation changes, indicating

a change in sensor data distribution. In contrast, the examples generated by StatOpt overlap

with the original data, indicating that the distribution of the data is close to the original

training sensor data. This observation is further supported by Table 8.2, which shows the

MMD distance between the original data and the disturbed or StatOpt data. The table

180

shows that the StatOpt distribution is closer to the original data than the rotated data.

Additionally, we note that the MMD distance between StatOpt and the rotated data is the

smallest. Both these empirical observations ensure that the HAR classifier learns the sensor

disturbances correctly to provide reliable predictions at runtime without additional overhead.

Original StatOpt Rotated

(c)

(b)(a)

(d)

N
um

be
r o

f e
xa

m
pl

es

Figure 8.4 Distribution of the difference between the statistical features of the
disturbed and the original data using (a) skewness (b) kurtosis, and (c) body ac-
celeration. The zero-centered distribution shows the preservation of the features
across the disturbances. (d) Illustration of the t-SNE for the observed sensor data,
examples generated by StatOpt, and data with sensor disturbances. The x and y
axes represent the coordinates in the reduced 2-D space. The original and StatOpt
points overlap in the t-SNE representation shown in (d).

Theoretical Guarantees for Training Data We now empirically evaluate the theoretical

bounds of performance for the classifiers trained with StatOpt and compare it with the naive

classifiers and the CW method. To this end, Figure 8.5 shows the classification accuracy as

a function of different certification bounds Elim. Recall that

the certification bound Elim defines the maximum perturbation in the statistical features

that does not lead to a misclassification by the classifier. To sample p and compute Elim, we

181

Table 8.2 MMD distance (in 10−3) between original, disturbed, and StatOpt gen-
erated data distributions describing their pair-wise similarity.

StatOpt Disturbed

Original
wHAR 1.17 2.24

WISDM 0.26 0.46

StatOpt
wHAR - 0.83

WISDM - 0.20

use a random Gaussian noise N (µP , C) where the diagonal elements of the covariance matrix

C are equal to a constant value σ. As the default certification computes Elim
µ = ||µP ||2max

over the mean feature, we can compute Elim for other statistical features as follows:

• Elim over Skewness : |
∑T

j=1(Xj − Elim
µ)3|/Tσ3).

• Elim over Kurtosis: −3 + |
∑T

j=1(Xj − Elim
µ)4|/Tσ4.

• Elim over Body acceleration:
√
3Elim

µ − (1/T).

The higher the certification bound Elim is, the more accurate the classifier is against larger

disturbances. Figure 8.5 shows the value of Elim for representative statistical features Si to

guarantee a given accuracy of the classifier on testing inputs with disturbances p such that

∥Si(X+p)−Si(X)∥ ≤ Elim
Si

. We clearly observe that StatOpt-based reliable classifier provides

a higher certification in the mean and body acceleration for both datasets when compared to

the naive classifier or the CW method. We note that other statistical features show similar

behavior for the certification bounds. In summary, this analysis shows that StatOpt enables

more reliable classifiers that are less prone to large real-world perturbations.

8.4.5 Accuracy Analysis of the Reliable Classifier

To evaluate the accuracy with disturbances, we first train the reliable classifier with the

complete training data for the w-HAR and WISDM datasets consisting of the observed

182

(c)

(b)(a)

Naive classifier Reliable classifier w/ StatOptCarlini & Wagner

(d)

w-HAR

WISDM

w-HAR

WISDM

Figure 8.5 Theoretical certification over the mean and body acceleration features
for the w-HAR and WISDM datasets.

samples and the data generated by StatOpt. To generate the StatOpt data, we run Algorithm

8 on the training data with MAX = 103 and ϵ = 10−2. We define the group of possible

channels to disturb as different combinations of 1, 2, and all the channels of the time-series

sensor data. After training, the sensor data with disturbances is used as input to the HAR

classifier to obtain the accuracy. We compare the accuracy of the reliable classifier for both

datasets with the standard ML classifier, baseline recovery method, and the CW method

in Figure 8.6. We start with the performance of the classifiers under heading and pitch

disturbance for the w-HAR dataset in Figure 8.6(a). As expected, the accuracy of the

standard classifier degrades rapidly due to the change in the sensor data distribution. The

accuracy improves with the baseline methods, however, the CW method is unable to recover

the accuracy. The reliable classifier has accuracy that is equal to or better than the baseline

method. We see similar results for the orientation disturbance for the WISDM dataset in

Figure 8.6(b).

Next, we analyze the accuracy of the reliable classifier for the position changes and hard-

ware disturbances for the w-HAR dataset in Figures 8.6(c) and (d). Specifically, we reduce

the amplitude of the stretch sensor to emulate position change and reduce the frequency of

183

(c)

(b)(a)

Naive classifier Classifier w/ baseline correction

Reliable classifier w/ StatOptCarlini & Wagner

(d)

w-HAR

w-HAR

WISDM

w-HAR

Figure 8.6 Accuracy comparison between the standard classifier, baseline, and
StatOpt-enabled reliable classifier for the w-HAR and WISDM datasets.

Table 8.3 Accuracy of non-parametric models against 180◦ rotation disturbance.

Decision Tree Random Forest

Naive Baseline StatOpt Naive Baseline StatOpt

wHAR 29 72 82 11 83 95

WISDM 33 70 75 36 75 85

the accelerometer to emulate hardware disturbances. The naive classifier is more resilient

to these disturbances since the change in the sensor data distribution is lower compared to

orientation changes. The reliable classifier effectively recovers the accuracy for both distur-

bances by using the optimized training data generated by StatOpt. For instance, the reliable

classifier improves the accuracy from 78% to 89% when the sampling frequency is 125 Hz

instead of 250 Hz. The baseline approach incurs significant overhead to achieve similar ac-

curacy levels. Overall, compared to the standard classifier, the reliable classifier achieves up

to 50% improvement over the accuracy performance with zero overhead at runtime.

184

8.4.6 Generalization beyond Deep Classifiers

One of the important considerations in the training data generated by StatOpt is the ap-

plicability to other classifiers, such as decision trees and random forest (James et al., 2013).

To validate the applicability of StatOpt to generic classification methods, we use the data

generated by StatOpt to train decision tree and random forest classifiers. Table 8.3 shows

the HAR accuracy of the classifiers trained with StatOpt along with the naive and baseline

classifiers. Due to space constraints, we show the accuracy of a specific rotation disturbance

of 180◦, which is one of the most challenging disturbances to handle. We observe that the

classifiers trained with StatOpt obtain significantly higher classification accuracy when com-

pared to the naive classifier and the baseline. This demonstrates that the StatOpt method

provides reliable training examples that can be used by a wide range of classifiers depending

on the needs of application.

8.4.7 Implementation Overhead

We implement the proposed reliable classifier and the baseline approach on the TI CC2652R

MCU (Texas Instruments Inc., 2018) to characterize the execution time and energy consump-

tion. Table 8.4 summarizes the execution time and energy consumption of each component

of the HAR classifiers when using a 1D-CNN. The first two columns show the blocks required

to handle each type of disturbance and their execution frequency. The first row shows the

common measurement for the classifier used for the activity classification in both approaches.

Each activity classification takes about 85.6 ms and 0.94 mJ of energy. Unlike the baseline,

StatOpt only requires this amount of energy to perform the prediction as it is an offline

approach for improving the reliability of HAR classifier. The next four rows represent the

calibration steps needed to identify the degree of disturbances in the baseline approach each

time the device is used. The calibration takes more than 6 s to execute and consumes 69.7 mJ

energy. In addition to the calibration, the baseline takes about 0.55 mJ of energy to recover

185

the sampling rate and correct the sensor data for each activity, which in total amounts to

58% of the activity classifier.

Table 8.4 Energy and execution time measurements for StatOpt and baseline.

Baseline StatOpt

Disturbance Block
Exe. Time

(ms)

Energy

(mJ)

Exe. Time

(ms)

Energy

(mJ)

All (1×/activity) Classifier 85.60 0.94 85.60 0.94

Heading

(1×/session)

Walk 3000.00 34.68 - -

PCA 24.93 0.29 - -

Pitch

(1×/session)

Stand 3000.00 34.71 - -

Gravity detect 1.90 0.02 - -

All (1×/activity)
Resampling 46.08 0.52 - -

Correction 2.31 0.03 - -

Recall that in addition to the calibration and pre-processing, the baseline approach causes

significant inconvenience to the user due to the need to perform a pre-defined set of activities.

User convenience is critical because it is one of the primary reasons for users to stop using

wearable devices (Ozanne et al., 2018). In contrast, the proposed reliable classifier does not

have any overhead. Hence, it will aid in the broader adoption of wearable devices.

8.5 Summary

In this chapter, we proposed StatOpt, a statistical optimization approach that automatically

accounts for the real-world sensor disturbances and enables reliable ML classifiers for wear-

able devices in HAR applications. We have argued how standard classifiers are unable to

handle changes that occur to experimental settings (e.g., sensor position) during real-world

deployment and the capability of StatOpt to produce a classifier with a reliable performance

with low overhead cost. We also presented upper bounds on sensor data disturbances for

StatOpt and provided reliability certificates for the ML models. Experiments on different

186

HAR datasets show that the reliable classifiers generated by StatOpt improve the accuracy

up to 50% compared to standard classifiers while incurring zero overhead.

187

CHAPTER NINE

SEARCH-BASED APPROACH FOR ENERGY-EFFICIENT MISSING DATA

RECOVERY IN WEARABLE DEVICES

T. Belkhouja*, D. Hussein*, G. Bhat, and J. Doppa. "Energy-Efficient Missing Data Re-

covery in Wearable Devices: A Novel Search-based Approach". Proceedings of ACM/IEEE

International Symposium on Low Power Electronics and Design (ISLPED), 2023. (* denotes

equal contribution)

Originally published in the Proceedings of ACM/IEEE International Symposium on Low

Power Electronics and Design.

Attributions:

T. Belkhouja has contributed to this work by formulating the problem setting from a

Machine Learning (ML) perspective, investigating the state of the art related to ML algo-

rithms, formulating the theoretical contribution and the algorithmic solution, implementing

the proposed solution as a general algorithm and running the required empirical analysis to

highlight its performance improvement compared to the state of the art.

D. Hussein has contributed to this work by formulating the problem setting from the

application domain (wearable sensors and mobile health) perspective, investigating the state

of the art related to wearable sensors algorithms, formulating the theoretical contribution

and the algorithmic solution, implementing the algorithm on microcontrollers and running

the required empirical analysis to highlight the performance improvement of the proposed

solution compared to the state of the art.

G. Bhat has contributed to this work by investigating the motivation for this work and

188

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

J. Doppa has contributed to this work by investigating the motivation for this work and

the corresponding state of the art, assisting in the design of the proposed solution and in

writing the scientific manuscript.

189

SEARCH-BASED APPROACH FOR ENERGY-EFFICIENT MISSING DATA

RECOVERY IN WEARABLE DEVICES

In this chapter, we propose a second real-world applications1 for robust time-series deep

learning algorithms using wearable sensors. We address the challenge of missing sensors

during real-world, runtime usage Sensor data may be missing due to energy limitations, user

error, sensor malfunction, or data communication challenges (Shengzhong Liu et al., 2020;

Kunze and Lukowicz, 2014). Missing data leads to significant degradation in the overall qual-

ity of applications since the underlying ML models are trained with the assumption that data

from all sensors is available. Therefore, we propose a novel and energy-efficient search-based

Accuracy-Preserving Imputation (AIM) approach to produce accuracy-preserving imputa-

tions for missing sensor data at runtime.

9.1 Background and Problem Setup

This section first provides the background on wearable devices and introduces the missing

sensor data problem.

9.1.1 Wearable Devices Preliminaries

We consider wearable systems with multiple sensors mounted on the body, as shown in

Figure 9.1. The sensors are used to monitor physical and physiological parameters for ap-

plications including mobile health, which we use as the running example. Since the sensor

data is continuous and streaming in nature, wearable devices perform the following steps to

enable health assessment.

Data Segmentation: The streaming time series sensor data must be divided into equal

sized windows for periodic health assessment and to provide fixed-sized inputs to the ML
1This work was developed in close collaboration with Dina Hussein and Ganapti Bhat

190

models. Given n sensors and T samples in each window, we denote the time-series sensor

data with the variable X ∈ Rn×T .

User Data and Labels Train Baseline
Classifier

Missing data
Scenarios

Classify
with 𝑋

Loss

Table of Imputation
patterns

Data with one or
more sensors
unavailable

ML
Classifier

Runtime (Online)

Design time (offline)

Gradient
Descent

Initialize
Imputation 𝐼

For each training data 𝑋

Classify
with 𝐼

Obtain
logits

Obtain
logits

Update imputation

Impute using
saved table

Labeled
data &

Prediction

Figure 9.1 Overview of the proposed accuracy-preserving imputation approach.

Feature Generation and Classification: The time-series sensor data in each window X ∈

Rn×T are fed into feature generation and classifier blocks to perform the health assessment.

Labeled pairs of sensor data X ∈ Rn×T and the class label y are used to train a classifier

Fθ, where θ are the parameters for the classifier. At runtime, the sensor data and trained

classifier are used to predict class labels of interest.

9.1.2 Missing Sensor Data and Imputation Challenges

Depending on the length of unavailability, we can classify the missing data patterns into two

main categories as follows.

Random Missing Data: In this case, the sensor encounters isolated missing samples that

are not clustered around any particular time instance. Prior work has proposed a number

of approaches to handle random missing data (De Waal, Pannekoek, and Scholtus, 2011;

191

Pires et al., 2020). Random missing data is typically easier to handle since data around

the missing instance is available for imputation. Therefore, we do not consider the random

missing case and focus our attention on the more challenging block missing case described

next.

Block Missing Data: Block missing data occurs when long sequences of sensor data are

unavailable at runtime. The block missing data is challenging to recover since it does not

contain any reference data for the missing sensors. Moreover, in a system with n sensors, we

can have 2n − 2 possible combinations of block missing data.

9.1.3 Problem Setup

Let X ∈ Rn×T be the time-series sensor data, where n is the total number of sensor channels

and T is the number of samples in each input window. We denote every input X ∈ Rn×T

as [X1, · · · , Xi, · · · , Xn] where Xi ∈ RT corresponds to a channel i of X. The class label for

each window is denoted by y. We denote the set of training examples D as several input X

and ground-truth output y pairs. Standard ML algorithms use the given data D to train a

classifier Fθ which takes time-series X as input to predict the corresponding class label ŷ,

where θ stands for parameters of the classifier.

During inference, the data from one or more sensors might be missing. Let {j}0≤j≤n

represent the subset of channels that are missing at runtime for a given input X. We denote

the new input that has {j} missing channels by X̃{j} ∈ Rn×T :

X̃{j} =


0T if i ∈ {j}

Xi if i /∈ {j}
(9.1)

For example, for a human activity recognition (HAR) application, when one of the sensors

goes missing, its three accelerometer channels data {j} = {1, 2, 3} will have 0 value.

This missing data in the input results in misclassifications (ŷ ̸= y) by the classifier Fθ.

Consequently, the overall performance of the classifier and quality of application service

192

during deployment will degrade significantly.

9.2 HAR Related Work

Wearable devices are being increasingly used in health applications (Espay et al., 2016;

Mosenia et al., 2017; Limaye and Adegbija, 2018; Bhat et al., 2020). Integrating multiple

sensors increases the likelihood of one or more sensors being unavailable due to energy

constraints, user error, or communication challenges. Therefore, there is a strong need for

energy-efficient and accuracy-preserving methods to recover missing data.

Recent work has proposed several methods to handle missing data in sensor based ap-

plications (De Waal, Pannekoek, and Scholtus, 2011; Guo et al., 2019; Yoon, Jordon, and

Schaar, 2018; Pires et al., 2020; Hussein, Jain, and Bhat, 2022). These approaches typically

use statistical or deep generative methods to recover the missing data. Statistical methods,

such as mean, median, or regression use available data around the missing instances to ob-

tain an imputation (Pires et al., 2020; De Waal, Pannekoek, and Scholtus, 2011). As such,

they are suitable to handle isolated missing data instances where data around the missing

samples is available. However, they are not suitable for long sequences of sensor unavailabil-

ity with no reference data for statistical methods, which is the focus of this chapter. Deep

generative methods have been recently proposed to handle longer sequences of missing data

(Yoon, Jordon, and Schaar, 2018; Talukder et al., 2022). For instance, (Yoon, Jordon, and

Schaar, 2018) employs a generative adversarial imputation network (GAIN) to impute the

data. Specifically, the GAIN approach imputes the missing data conditioned upon observed

data. Similarly, the work in (Talukder et al., 2022) employs deep auto-encoder models to

impute EEG recordings from multiple patients and data collection days. However, the pri-

mary limitation of deep learning methods is the high memory overhead and the energy cost

of performing imputation at runtime.

To precisely fill this gap in the current knowledge, we develop a novel and energy-efficient

193

accuracy-preserving imputation method to handle missing sensor data at runtime.

9.3 Search based Accuracy-Preserving Imputation

This section describes the accuracy-preserving imputation (AIM) algorithm to solve missing

sensor data challenge for wearable applications. We first provide an overview of the AIM

approach and list the two synergistic design principles behind AIM. Next, we describe the

details of the algorithmic approaches which instantiate those two design principles.

Overview of AIM Approach: During the offline configuration of AIM, we perform the

following two steps sequentially, as shown in Figure 9.1. First, we train a robust ML classifier

Fθ that can make accurate predictions for small perturbations of time-series signals in the

training data (i.e., no missingness). This step ensures accuracy even if there are small

errors in the imputed values. Second, given the trained ML classifier Fθ, for each candidate

missing sensors configuration, we execute a search algorithm to compute the most likely

imputation pattern that preserves the accuracy of the classifier Fθ using the training data.

The output of this step is a lookup table I that stores one imputation pattern for each

missing configuration. At runtime, given an input X with some missing channels (one for

each sensor), we impute the missing data using appropriate imputation pattern from the

lookup table I (i.e., negligible overhead) and then use the classifier Fθ to make prediction.

Design Principles: AIM meets the desiderata of an effective solution for missing sensor

data based on two synergistic principles. 1) Accuracy-preserving imputation: there is no need

to recover the exact missing sensor data as long as the accuracy of ML classifier is preserved.

2) Training robust classifiers: training the ML classifier to make accurate predictions even

with small deviations from the exact sensor data distribution will exhibit robustness to small

errors in imputed data. Below we provide algorithms to instantiate these two principles.

194

9.3.1 Search Algorithm for Accuracy-Preserving Imputation

Intuition: During the offline training phase with no missing data, the ML classifier for

wearable application achieves high accuracy on the given classification task. Since the inputs

are multivariate time-series signals, the classifier relies on the information spread across n

different channels to make accurate predictions. Prior work has shown that classifiers rely

on a subset of critical channels to predict output labels (Belkhouja and Doppa, 2020b). This

means that in case of missing channels, the input possesses enough information to allow the

classifier to predict its true label. Therefore, we set our goal to find a recovery data pattern

that lets the classifier predict the correct labels from the available channels. The recovery

pattern pushes the classifier to predict the output label as if the data from all sensors is

available. In summary, we can view our solution as the search for the most likely data

pattern to impute the data for missing sensors for preserving the accuracy of the given ML

classifier.

Algorithm: Formally, given a ML classifier Fθ, for any input X = [X1, · · · , Xn] and a fixed

set of missing channels {j}, we search for an imputation pattern Ij∈{j} ∈ RT s.t.:

I{j} =


Ij if i ∈ {j} and Fθ(X) ≈ Fθ(I{j})

Xi if i /∈ {j}
(9.2)

We note that Ij∈{j} does not depend on the available sensor data of the input X. Every

imputation pattern is stored in a look up table indexed by the combination of the missing

channels {j}0≤j≤n where the samples are missing. We conduct this search for each missing

sensor data configuration during design time (offline) where the goal is to find for every

combination of {j} missing channels, the corresponding imputation pattern Ij∈{j} that yields

a prediction similar to the prediction on the original input without any missingness. Hence,

at runtime, we use the stored lookup table to select the appropriate imputation pattern with

negligible overhead.

195

We find imputation patterns based on a given set of missing channels {j}0≤j≤n (missing

configuration) that preserves the accuracy of classifier Fθ. We define our overall objective

for the search of imputation pattern as shown below:

Given {j} : We find I{j} s.t. ∀X,Fθ(X) ≈ Fθ(I{j}) (9.3)

We compute the imputation pattern to fill values of the missing channels by solving the

minimization problem below:

min
Ij∈{j}

L
(
Logits(Fθ(X)),Logits(Fθ(I{j}))

)
(9.4)

The loss function L over the logits outcome of the classifier is used for accuracy-preserving

imputation pattern search. The logits of a classifier are interpreted as the unnormalized

predictions for each candidate class label and input time-series signal pair. The role of this

loss function is to compute the similarity between the prediction outcomes of the classifier Fθ

for the original input example X (no missingness) and the input with the imputed pattern

I{j}. For example, L can be the Mean Squared Error between the logits values of both

predictions Fθ(X) and Fθ(I{j}). When L → 0, accuracy of the classifier over imputed and

original inputs will be similar.

Algorithm 9 shows the pseudo-code of proposed search approach to compute accuracy-

preserving imputation pattern I{j}. We set MAXG = 100 to ensure that AIM can find

the optimal imputation pattern per example X. Additionally, we set MAX = 50 to ensure

that AIM optimizes the imputation pattern across the training data. The output of this

algorithm is used to populate a look-up table I that maps the set of missing channels

{j} to the corresponding imputation pattern {Ij}. Therefore, given a missing sensor data

configuration {j} and any input X at test time, we construct I{j} as shown in Eq. 9.2 and

employ the classifier Fθ to predict the class label after using I{j} to impute the missing data

in input X.

196

Algorithm 9 AIM Search for accuracy-preserving imputation
Input: Training set D = {X}; Fθ, pre-trained classifier on D = {(X, y)}; {j}, missing sensors configuration;

MAXG, maximum iterations for gradient descent; MAX, maximum iterations over all inputs

Output: {Ij∈{j}}, imputation pattern.

1: Random initialization of the set {Ij∈{j}}

2: for i=1, · · · , MAX do

3: for each training example X do

4: for iG=1, · · · , MAXG do

5: Compute the classifier’s logits values: lgX = Logits(Fθ(X))

6: Compute the classifier’s logits values: lgI = Logits(Fθ(I{j}))

7: Estimate the loss L(lgX, lgI)

8: Estimate the gradient ∇{Ij}L for j ∈ {j}

9: Perform gradient descent and update {Ij} for j ∈ {j}

10: end for

11: end for

12: end for

13: return imputation pattern {Ij∈{j}} as per the requirements of Eq.9.2

9.3.2 Training Robust Classifiers for Improved Effectiveness

Recall that we store one imputation pattern for each missingness configuration to preserve

the accuracy and AIM’s imputation strategy does not depend on the available sensor data

of the given input X. As a result, AIM has negligible overhead, but ML classifier may not

make correct predictions with generic imputation patterns for a small fraction of the input

examples. Therefore, we propose to train ML classifiers to be robust to small errors in the

imputed data.

The motivation to train robust ML classifiers is two-fold. First, the ML classifier is less

sensitive to the natural noise in the training data. As a result, we will be able to find more

robust imputation patterns using our search algorithm and robust ML classifier. Second, the

ML classifier will be more robust to small errors in the imputed data at the runtime.

197

We train robust a ML classifier using data augmentation and propose to apply the recent

framework of generating augmented data for time-series signals based on their statistical

features (Belkhouja and Doppa, 2022). The key idea is to generate small perturbations over

the original time-series signals in the training data which preserve the statistical features.

To instantiate this framework for our specific use-case, we employ the following statistical

features: mean absolute error, statistical average, and root mean square. Additionally, for

HAR applications, we include the body acceleration feature due to its high relevance.

9.4 Experiments and Results

This section analyzes the performance of the proposed data recovery approach on four

datasets along different dimensions.

Figure 9.2 Accuracy (Mean and standard deviation) of the robust-trained ML
classifier via different imputation methods on all combinations of missing sensors.

9.4.1 Experimental Setup

Wearable Device Setup We employ the Odroid-XU3 board (Hardkernel, 2014) for sensor

data processing, while noting that any low-power processor can be used. Odroid-XU3 con-

tains four high-performance ARM Cortex-A15 and four low-power Cortex-A7 cores. We use

the Odroid-XU3 to store the imputation table and measure the overhead on A7 cores.

198

Datasets AIM is validated using four datasets described below. To validate the proposed

missing data recovery approach, we vary the number of missing sensors for each dataset with

n sensors from one to n− 1.

• Shoaib et al. (Shoaib et al., 2014): The Shoaib dataset includes three-axis ac-

celerometer data for 10 users performing seven activities. The dataset has accelerom-

eter sensors at five locations on the body: left pocket, right pocket, wrist, belt and

upper arm.

• PAMAP2 (Reiss and Stricker, 2012b): PAMAP2 is a HAR dataset that provides

data from three accelerometers for five activities with nine users.

• eRing (Wilhelm et al., 2015): eRing is a smart health dataset that uses a ring to

capture data along four dimensions. The eRing dataset allows us to test the efficacy

of AIM in gesture recognition settings.

• SelfRegulationSCP1 (SR-SCP1) (Birbaumer et al., 2001): SR-SCP1 is a health

monitoring dataset that includes EEG data from six channels. The data from EEG

sensors is used to develop a control system to drive spelling devices for completely

paralyzed patients.

Evaluation Metrics We employ accuracy, memory, and energy consumption as evaluation

metrics. Accuracy is used as a metric because accuracy is of utmost importance in health ap-

plications. Similarly, memory and energy are important for wearable devices due to resource

constraints.

Classifier Representation We use a 1-D convolutional neural network (CNN) as the clas-

sifier for all datasets. Specifically, we use a 1-D CNN with one conv. and max-pooling layers,

and two fully connected layers with the ReLU activation and dropout value of 20%. We use

the Adam optimizer (Kingma and Ba, 2015) over 20 epochs for both standard and robust

training.

199

9.4.2 Baseline Methods for Comparison

The proposed data recovery approach is compared against baseline approaches described

below.

GAIN (Yoon, Jordon, and Schaar, 2018): GAIN is a generative approach that recovers

missing data as a function of the observed data. GAIN trains a deep neural network that

takes the observed data and a mask specifying the missing time instances as input. The

output of the generator is a data matrix that consists of imputed values. One of the disad-

vantages of the GAIN approach is the high memory requirement for storage of the generator

parameters and energy overhead for each imputation. Moreover, generative models for time-

series data are challenging to train (Brophy et al., 2021), which can affect their accuracy in

complex tasks.

Zero Filling: In the absence of any data recovery algorithm, missing data will typically be

filled with zeros. Therefore, we use it as one of the baselines for comparison. Filling missing

values with previously observed data is not feasible since we assume the sensor is missing for

the entire experiment.

Average Filling: Another realistic alternative for zero-filling is to fill the missing data

with pre-determined values that represent the average case over the training data with no

missingness. These values are determined by averaging sensor data across all training time-

series signals.

9.4.3 Application Accuracy with Imputed Data

We start the experimental evaluation by analyzing the accuracy of the health applications

under different missing data scenarios. For each dataset, we first train a classifier to perform

the application tasks. Once the classifier is trained, we use it with the proposed search

algorithm to find likely patterns of sensor data when one or more sensors are missing.

Figure 9.2 shows the comparison of accuracy for all four datasets. Each point on the

200

figure shows the mean and standard deviation of the accuracy over all possible combinations

of missing sensors. For example, in case of two missing sensors in the Shoaib dataset, we

obtain the average and standard deviation over
(
5
2

)
combinations of possible scenarios. We

see that missing data with zero-filling or average-filling settings have a significant drop in

accuracy. For example, for both HAR datasets, a single missing sensor results in more than

20% drop in average accuracy. In contrast, using the same classifier and missing data cases,

AIM is able to efficiently recover the classification performance. Even when data from the

entire window is missing, AIM is able to produce an average performance within 5% of the

original accuracy for all datasets. AIM also succeeds in improving average performance of

the classifiers on HAR datasets by 15% in the highly-unlikely case where almost all sensors

are missing. Additionally, the confusion matrices in Figure 9.3 show that AIM improves the

classification accuracy over different classes with equal importance in spite using a single

imputation pattern.

Figure 9.3 Confusion matrix normalized over the true labels of the deployed clas-
sifier on ERing and PAMAP2 datasets using AIM (red) imputation methods in the
event of a single missing sensor. The same performance using zero-filling (blue) is
provided for reference.

Compared to the imputation provided by the baseline GAIN approach, AIM produces

better results for most of the cases. Notably, GAIN fails to recover the original accuracy

when more than one sensor is missing. GAIN has lower accuracy than zero-filling in some

cases because GAIN is unable to follow real data accurately and incurs higher error. For

201

PAMAP2, the average performance is reduced from 58% to 30% for the GAIN algorithm. In

summary, the AIM approach is able to efficiently recover the data with low overhead, while

the baseline GAIN approach is unable to recover the accuracy for more than one sensor

missing and has a higher overhead.

9.4.4 Accuracy Improvement with Robust Classifiers

The AIM algorithm generates a pattern I{j} to preserve the accuracy of the classifier in the

case of {j} missing input channels. Ideally, the generated pattern requires small adjustments

to fit every input X to maintain Fθ(X) ≈ Fθ(I{j}). To account for these adjustments, we

use robust training for the ML classifier to overcome small errors in imputed data. Robust

classifiers are also important because any health application must be able to handle small

variations in data either due to natural disturbances or imputation. To this end, we com-

pare the accuracy of the proposed robust classifiers with the standard classifier in Table 9.1.

Indeed, the table shows that robust training overcomes errors due to small imputation de-

viations by improving the average accuracy for majority of cases while reducing standard

deviation. For example, SR-SCP1 has an increase of 6% in recovered accuracy with a stan-

dard deviation of 1%. Overall, robust training is able to provide higher accuracy while

reducing standard deviation.

9.4.5 Implementation Overhead

One of the primary advantages of AIM is low memory and energy overhead. Table 9.2 shows

the memory overhead for AIM and GAIN, respectively. GAIN incurs high memory overhead

to store the parameters of the generator network. In contrast, AIM has less than 1 MB

memory overhead. AIM memory requirements are minimal even when the wearable device

includes multiple health applications. The memory overhead for AIM can be further reduced

by loading only the required imputation setting on detecting missing data.

Next, Figure 9.4(a) compares energy consumption of GAIN and AIM for all datasets.

202

Table 9.1 Classification accuracy of the imputed data of k missing sensors generated
by AIM using different standard and robust training protocols. Table entries show
mean with standard deviation in parantheses.

Dataset k Standard Robust Dataset k Standard Robust

Shoaib

1 91 (2) 94 (1)

SR-SCP1

1 79 (8) 85 (1)

2 80 (5) 84 (9) 2 79 (8) 85 (2)

3 69 (13) 71 (13) 3 79 (8) 84 (2)

4 50 (12) 51 (12) 4 81 (9) 81 (9)

ERing

1 95 (1) 96 (0) 5 73 (5) 78 (12)

2 84 (8) 86 (7)
PAMAP2

1 92 (2) 93 (0)

3 60 (2) 63 (8) 2 75 (3) 77 (11)

The energy consumption is obtained using power sensors on the Odroid-XU3 board. We

see that AIM consumes less than 10 mJ per imputation while GAIN has significantly higher

energy consumption. For instance, energy consumption for the SR-SCP1 dataset is close to

1 J for each imputation. Similarly, Figure 9.4(b) shows percentage energy savings achieved

by AIM when compared to GAIN. The energy savings are close to 98% for all datasets

except eRing. The eRing dataset has lower energy savings of about 74% since it has lower

computation requirements for both GAIN and AIM, resulting in lower energy savings. In

summary, the AIM approach provides superior performance over prior approaches while

incurring significantly lower overhead.

9.5 Summary

In this chapter, we have presented a novel search-based algorithm (AIM) that obtains most

likely imputation patterns of sensor data for different missing data scenario via offline an-

alytics. AIM overcomes the challenges of missing data in the input space that may be due

203

Table 9.2 Summary of memory overhead of AIM and GAIN approaches

Dataset AIM Memory (MB) GAIN Memory (MB)

Shoaib 0.180 25

PAMAP2 0.055 60

eRing 0.007 0.19

SR-SCP1 0.667 81

S h o a i b
P A M A P 2 e R i n g

S R - S C P 10 . 1
1

1 0
1 0 0

1 0 0 0

En
erg

y (
mJ

) G A I N A I M

(a) (b) S h o a i b
P A M A P 2 e R i n g

S R - S C P 102 04 06 08 01 0 0

En
erg

y
Sa

vin
gs

 (%
)

Figure 9.4 a) Comparison of energy consumption for GAIN and AIM approach.
The y-axis is shown in log scale to represent the large range of values. b) Energy
savings achieved by AIM when compared to GAIN.

to a loss in the quality of service. The key idea is to run an offline search for the most

likely pattern that has the potential to preserve the accuracy of the classifier during run-

time. Experiments on diverse wearable sensor based time-series benchmarks showed that

the proposed approach is able to maintain accuracy within 5% of the ideal accuracy when

the number of missing sensors is less than two, with negligible runtime overhead.

204

CHAPTER TEN

CONCLUSION

In this chapter, we summarize the main contributions of this dissertation, lessons learned,

and list some promising future research directions.

10.1 Summary of Dissertation Contributions

In this dissertation, we have addressed several challenges related to the robustness of machine

learning algorithms for time-series data.

1. We provided a preliminary analysis using a principled framework to analyze deep mod-

els for multivariate time-series classification in adversarial settings. Our comprehensive

study showed that these deep learning methods are significantly vulnerable to adver-

sarial attacks during real-world deployment.

2. We proposed two different approaches, namely TSA-STAT and DTW-AR, to create

more effective adversarial examples for the time-series domain. Both frameworks create

effective adversarial examples by overcoming the limitations of prior methods based on

Euclidean distance and using novel designs suited for the time-series data space. We

theoretically and empirically demonstrate their effectiveness in fooling deep models for

time-series data and in improving their robustness.

3. We derived a novel theoretically-certified bound for adversarial robustness based on

the TSA-STAT framework that applies to any deep model for the time-series domain.

4. We proposed a novel algorithm to train robust deep neural networks for time-series

domain (RO-TS). The training problem was formulated as a min-max optimization

problem to reason about the worst-case risk in a small neighborhood defined by time-

series-similarity-based distances. We developed the theoretically-sound stochastic com-

205

positional alternating gradient descent and ascent (SCAGDA) algorithm that carefully

leverages the structure of the optimization problem to solve it efficiently.

5. We have addressed the Out-of-Distribution (OOD) challenge for time-series data by

introducing a novel seasonal ratio (SR) score to detect OOD examples in the time-series

domain. SR scoring relies on Seasonal and Trend decomposition using Loess (STL)

to extract class-wise semantic patterns and remainders from time-series signals, and

estimating class-wise conditional likelihoods for both input time-series and remainders

using deep generative models.

6. We successfully applied the developed robust machine learning algorithms for time-

series for wearable sensors enabled mobile applications. StatOpt is a statistical opti-

mization approach that automatically accounts for the real-world sensor disturbances

and enables reliable ML classifiers. We have also presented a novel search-based al-

gorithm (AIM) that obtains the most likely imputation patterns of sensor data to

overcome missing data scenarios via offline analytics.

10.2 Lessons Learned

In this section, we describe the most important lessons we have learned from this work.

1. While the lp-norm based distance measure was very effective in other domains such as

computer vision and NLP, adopting existing algorithms to the time-series domain is

ineffective. To capture the real similarity between examples and avoid the accuracy

drop of the classifier during training, time-series data require the use of a specialized

distance measure that handles their unique characteristics.

2. There is a wide variety of similarity measures that can be used for time-series data. We

have found in our work that most of them require high computational overhead (e.g.,

elastic measures such as DTW and GAK are quadratic in complexity) which makes

206

them hard to adopt in any time-series framework. Therefore, we need to optimize

these measures efficiently to be used in specific time-series problem settings such as

adversarial frameworks.

3. The interpretability of time-series ML models is essential to designing reliable frame-

works due to the ambiguity of evaluation methods. Interpretability is a significant

challenge for time-series data, unlike other data modalities where human experts can

manually validate different performances.

10.3 Future Research Directions

Inspired by the work developed in this dissertation, some important future directions include:

• The problem space of robustness for time-series ML is relatively new. An immediate

future direction is the investigation of additional similarity measures that can enhance

the performance reliability of deep learning methods using adversarial training.

• Due to the ambiguity of time-series data and the cost of interpretability, there is a

need to investigate reliable evaluation methods for time-series frameworks beyond the

classical evaluation procedure that heavily relies on collected data.

• An important direction to investigate is the performance of the time-series OOD de-

tection framework to validate generative algorithms for synthetic time-series data.

• As seen in human activity recognition settings, other domain applications such as

finance and monitoring systems require efficient adoption of time-series robust frame-

works where the domain characteristics are employed during the design of reliable

algorithms.

207

REFERENCES

Abadi, Martín et al. (2016). “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems”. In: CoRR abs/1603.04467.

Athalye, Anish, Nicholas Carlini, and David Wagner (2018). “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples”. In: arXiv preprint
arXiv:1802.00420. Proceedings of Machine Learning Research 80. Ed. by Jennifer Dy and
Andreas Krause, pp. 274–283.

Athalye, Anish, Logan Engstrom, et al. (2018). “Synthesizing Robust Adversarial Examples”.
In: Proceedings of the 35th International Conference on Machine Learning (ICML.

Bagnall, Anthony et al. (2020). The UEA & UCR Time Series Classification Rep.
www.timeseriesclassification.com. Accessed: 2021-08-02.

Bai, S., J Z. Kolter, and V. Koltun (2018). “An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling”. In: arXiv preprint arXiv:1803.01271.

Baluja, Shumeet and Ian Fischer (2018). “Learning to Attack: Adversarial Transformation
Networks”. In: AAAI Conference on Artificial Intelligence.

Barshan, Billur and Aras Yurtman (2020). “Classifying Daily and Sports Activities Invari-
antly to the Positioning of Wearable Motion Sensor Units”. In: IEEE Internet of Things
J. 7.6, pp. 4801–4815.

Belkhouja, Taha and Janardhan Rao Doppa (2020a). “Analyzing Deep Learning for Time-
Series Data Through Adversarial Lens in Mobile and IoT Applications”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems.

— (2020b). “Analyzing Deep Learning for Time-Series Data Through Adversarial Lens in
Mobile and IoT Applications”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
39.11, pp. 3190–3201.

— (2022). “Adversarial Framework with Certified Robustness for Time-Series Domain via
Statistical Features”. In: Journal of Artificial Intelligence Research (JAIR) 73, pp. 1435–
1471.

— (2023). “Adversarial Framework with Certified Robustness for Time-Series Domain via
Statistical Features (Extended Abstract)”. In: Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-23. Journal Track, pp. 6845–
6850.

Belkhouja, Taha, Yan Yan, and Janardhan Rao Doppa (2022). “Training Robust Deep Models
for Time-Series Domain: Novel Algorithms and Theoretical Analysis”. In: Thirty-Sixth
AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, pp. 6055–6063.

208

Belkhouja, Taha, Yan Yan, and Janardhan Rao Doppa (2023a). “Dynamic Time Warping
based Adversarial Framework for Time-Series Domain”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI).

— (2023b). “Out-of-Distribution Detection in Time-Series Domain: A Novel Seasonal Ratio
Scoring Approach”. In: ACM Trans. Intell. Syst. Technol. 15.1. issn: 2157-6904.

Berndt, Donald J and James Clifford (1994). “Using dynamic time warping to find patterns
in time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA, USA: pp. 359–370.

Bhat, Ganapati et al. (2020). “w-HAR: An Activity Recognition Dataset and Framework
using Low-Power Wearable Devices”. In: Sensors 20.18, p. 5356.

Birbaumer, N et al. (2001). “A Brain-Controlled Spelling Device for the Completely Para-
lyzed”. In: Nature, pp. 297–298.

Blázquez-García, Ane et al. (2021). “A review on outlier/anomaly detection in time series
data”. In: ACM Computing Surveys (CSUR).

Braei, Mohammad and Sebastian Wagner (2020). “Anomaly detection in univariate time-
series: A survey on the state-of-the-art”. In: arXiv preprint arXiv:2004.00433.

Brendel, Wieland, Jonas Rauber, and Matthias Bethge (2018). “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models”. In: International
Conference on Learning Representations (ICLR).

Brockwell, Peter J and Richard A Davis (2016). Introduction to time series and forecasting.
springer.

Brophy, Eoin et al. (2021). “Generative Adversarial Networks in Time Series: A Survey and
Taxonomy”. In: arXiv preprint arXiv:2107.11098.

Buja, Andreas et al. (2008). “Data visualization with multidimensional scaling”. In: Journal
of computational and graphical statistics 17.2, pp. 444–472.

Canizo, Mikel et al. (2019). “Multi-head CNN–RNN for multi-time series anomaly detection:
An industrial case study”. In: Neurocomputing.

Cao, Longbing (2022). “Ai in finance: challenges, techniques, and opportunities”. In: ACM
Computing Surveys (CSUR) 55.3, pp. 1–38.

Cao, Tianshi et al. (2020). “A benchmark of medical out of distribution detection”. In: arXiv
preprint arXiv:2007.04250.

Carlini, Nicholas and David Wagner (2017). “Towards evaluating the robustness of neural
networks”. In: IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
pp. 39–57.

209

Challu, Cristian et al. (2022). “Deep Generative model with Hierarchical Latent Factors for
Time Series Anomaly Detection”. In: International Conference on Artificial Intelligence
and Statistics (AISTATS).

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (2010). “Anomaly detection for
discrete sequences: A survey”. In: IEEE transactions on knowledge and data engineering
24.5, pp. 823–839.

Chen, Guilin et al. (2018). “Latent feature learning for activity recognition using simple
sensors in smart homes”. In: Multimedia Tools and Applications 77, pp. 15201–15219.

Chen, Jinghui and Quanquan Gu (2020). “Rays: A ray searching method for hard-label
adversarial attack”. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining.

Chen, Jinghui, Dongruo Zhou, et al. (2020). “A Frank-Wolfe Framework for Efficient and
Effective Adversarial Attacks”. In: Proceedings of the AAAI Conference on Artificial In-
telligence.

Chen, T., Y. Sun, and W. Yin (2020). “Solving stochastic compositional optimization is
nearly as easy as solving stochastic optimization”. In: arXiv preprint arXiv:2008.10847.

Christ, Maximilian, Andreas W Kempa-Liehr, and Michael Feindt (2016). “Distributed and
parallel time series feature extraction for industrial big data applications”. In: arXiv
preprint arXiv:1610.07717.

Cleveland, Robert B et al. (1990). “STL: A seasonal-trend decomposition”. In: J. Off. Stat
6.1, pp. 3–73.

Cohen, Jeremy M, Elan Rosenfeld, and J Zico Kolter (2019). “Certified adversarial robustness
via randomized smoothing”. In: arXiv preprint arXiv:1902.02918, pp. 1310–1320.

Cullinane, Michael J (2011). “Metric axioms and distance”. In: The Mathematical Gazette
95.534, pp. 414–419.

Cuturi, M. (2011). “Fast global alignment kernels”. In: ICML.

Cuturi, M. et al. (2007). “A kernel for time series based on global alignments”. In: ICASSP.

Cuturi, Marco and Mathieu Blondel (2017). “Soft-dtw: a differentiable loss function for time-
series”. In: International Conference on Machine Learning. PMLR, pp. 894–903.

Dan Hendrycks, Kevin Gimpel (2017). “A Baseline for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks”. In: 5th International Conference on Learning
Representations, ICLR.

Dau, Hoang Anh, Anthony Bagnall, et al. (2019). “The UCR time series archive”. In: IEEE
- CAA Journal of Automatica Sinica.

210

Dau, Hoang Anh, Diego Furtado Silva, et al. (2018). “Optimizing dynamic time warping’s
window width for time series data mining applications”. In: Data mining and knowledge
discovery.

De Waal, Ton, Jeroen Pannekoek, and Sander Scholtus (2011). Handbook of Statistical Data
Editing and Imputation. Vol. 563. John Wiley & Sons.

Dempsey, Paul (2015). “The Teardown: Apple Watch”. In: Engg. & Tech. 10.6, pp. 88–89.

Dietterich, Thomas G (2017). “Steps Toward Robust Artificial Intelligence”. In: AI Magazine
38.3, pp. 3–24.

Dodge, Samuel and Lina Karam (2017). “A study and comparison of human and deep learning
recognition performance under visual distortions”. In: 2017 26th international conference
on computer communication and networks (ICCCN). IEEE, pp. 1–7.

Doersch, Carl (2016). “Tutorial on variational autoencoders”. In: arXiv preprint arXiv:
1606.05908.

Drensky, Vesselin and Ralf Holtkamp (2006). “Constants of formal derivatives of non-associative
algebras, Taylor expansions and applications”. In: Rendiconti del Circolo Matematico di
Palermo 55.3, pp. 369–384.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml.

Espay, Alberto J et al. (2016). “Technology in Parkinson’s Disease: Challenges and Oppor-
tunities”. In: Movt. Disorders 31.9, pp. 1272–1282.

Fawaz, H Ismail et al. (2019). “Adversarial attacks on deep neural networks for time series
classification”. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8.

Fawaz, Hassan Ismail et al. (2018). “Data augmentation using synthetic data for time series
classification with deep residual networks”. In: arXiv preprint arXiv:1808.02455.

Fischetti, Matteo and Jason Jo (2018). “Deep neural networks and mixed integer linear
optimization”. In: Constraints 23.3, pp. 296–309.

Fulcher, Ben D and Nick S Jones (2014). “Highly comparative feature-based time-series
classification”. In: IEEE Transactions on Knowledge and Data Engineering.

Gao, Ji et al. (2018). “Black-box generation of adversarial text sequences to evade deep
learning classifiers”. In: IEEE Security and Privacy Workshops (SPW), pp. 50–56.

Ge, Li and Li-Juan Ge (2016). “Feature extraction of time series classification based on
multi-method integration”. In: Optik 127.23, pp. 11070–11074.

211

Gil, Manuel, Fady Alajaji, and Tamas Linder (2013). “Rényi divergence measures for com-
monly used univariate continuous distributions”. In: Information Sciences 249, pp. 124–
131.

Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy (2014). “Explaining and harness-
ing adversarial examples”. In: arXiv preprint arXiv:1412.6572.

Guo, Zijian et al. (2019). “A Data Imputation Method for Multivariate Time Series Based
on Generative Adversarial Network”. In: Neurocomputing 360, pp. 185–197.

Hardkernel (2014). ODROID-XU3.

Hein, Matthias and Maksym Andriushchenko (2017). “Formal guarantees on the robust-
ness of a classifier against adversarial manipulation”. In: Advances in Neural Information
Processing Systems, pp. 2266–2276.

Hendrycks, Dan et al. (2019). “Scaling out-of-distribution detection for real-world settings”.
In: arXiv preprint arXiv:1911.11132.

Hosseini, Hossein et al. (2017). “On the limitation of convolutional neural networks in rec-
ognizing negative images”. In: 16th International Conference on Machine Learning and
Applications (ICMLA). IEEE.

Hu, Yupeng et al. (2021). “Artificial intelligence security: Threats and countermeasures”. In:
ACM Computing Surveys (CSUR) 55.1, pp. 1–36.

Huang, Chen et al. (2016). “Learning Deep Representation for Imbalanced Classification”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Huang, Xiaowei et al. (2017). “Safety verification of deep neural networks”. In: International
conference on computer aided verification. Springer, pp. 3–29.

Hussein, Dina, Taha Belkhouja, et al. (2022). “Reliable Machine Learning for Wearable
Activity Monitoring: Novel Algorithms and Theoretical Guarantees”. In: Proceedings of
41st International Conference on Computer-Aided Design (ICCAD). ACM, 33:1–33:9.

— (2023). “Energy-Efficient Missing Data Recovery in Wearable Devices: A Novel Search-
Based Approach”. In: 2023 IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED). IEEE, pp. 1–6.

Hussein, Dina, Ganapati Bhat, and Janardhan Rao Doppa (2022). “Adaptive Energy Man-
agement for Self-Sustainable Wearables in Mobile Health”. In: Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, pp. 11935–11944.

Hussein, Dina, Aaryan Jain, and Ganapati Bhat (2022). “Robust Human Activity Recogni-
tion Using Generative Adversarial Imputation Networks”. In: 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 84–87.

212

Ignatov, Andrey (2018). “Real-time human activity recognition from accelerometer data
using Convolutional Neural Networks”. In: Applied Soft Computing 62, pp. 915–922.

Ismail Fawaz, Hassan et al. (2019). “Deep learning for time series classification: a review”.
In: Data mining and knowledge discovery.

James, Gareth et al. (2013). An Introduction to Statistical Learning. Vol. 112. Springer.

Jiang, Kaiyong, Changbiao Huang, and Bin Liu (2011). “Part decomposing algorithm based
on STL solid model used in shape deposition manufacturing process”. In: The Interna-
tional Journal of Advanced Manufacturing Technology.

Junchi Y. Negar K., Niao H. (2020). “Global Convergence and Variance Reduction for a
Class of Nonconvex-Nonconcave Minimax Problems”. In: NeurIPS.

Karim, Fazle, Somshubra Majumdar, and Houshang Darabi (2020). “Adversarial attacks on
time series”. In: IEEE Transactions on pattern analysis and machine intelligence.

Karimi, H., J. Nutini, and M. Schmidt (2016). “Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition”. In: ECML.

Kim, Hyunchoong et al. (2016). “Collaborative Classification for Daily Activity Recognition
with a Smartwatch”. In: 2016 IEEE Int. Conf. on Syst., Man, and Cybernetics (SMC),
pp. 003707–003712.

Kingma, Diederik P and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: The Int. Conf. on Learning Representations (Poster).

Kolter, Z and A Madry (2018). “Tutorial adversarial robustness: Theory and practice”. In:
NeurIPS.

Kunze, Kai and Paul Lukowicz (2014). “Sensor Placement Variations in Wearable Activity
Recognition”. In: IEEE Perv. Comput. 13.4, pp. 32–41.

Kunze, Kai, Paul Lukowicz, et al. (2009). “Which Way am I Facing: Inferring Horizontal
Device Orientation From an Accelerometer Signal”. In: 2009 Int. Symp. on Wearable
Computers, pp. 149–150.

Kurakin, Alexey, Ian Goodfellow, and Samy Bengio (2016). “Adversarial examples in the
physical world”. In: arXiv preprint arXiv:1607.02533.

Kwapisz, Jennifer R, Gary M Weiss, and Samuel A Moore (2011). “Activity recognition using
cell phone accelerometers”. In: ACM SigKDD Explorations Newsletter 12.2, pp. 74–82.

Laidlaw, Cassidy and Soheil Feizi (2019a). “Functional Adversarial Attacks”. In: Advances
in Neural Information Processing Systems (Neur’IPS).

— (2019b). “Functional adversarial attacks”. In: Advances in Neural Information Processing
Systems (Neur’IPS), pp. 10408–10418.

213

Laptev, Nikolay, Saeed Amizadeh, and Ian Flint (2015). “Generic and Scalable Framework
for Automated Time-Series Anomaly Detection”. In: KDD ’15. Association for Computing
Machinery.

Lara, Oscar D and Miguel A Labrador (2012). “A survey on human activity recognition using
wearable sensors”. In: IEEE communications surveys & tutorials 15.3, pp. 1192–1209.

Lee, Kimin, Honglak Lee, et al. (2018). “Training Confidence-calibrated Classifiers for De-
tecting Out-of-Distribution Samples”. In: International Conference on Learning Repre-
sentations (ICLR).

Lee, Kimin, Kibok Lee, et al. (2018). “A Simple Unified Framework for Detecting Out-
of-Distribution Samples and Adversarial Attacks”. In: Advances in Neural Information
Processing Systems (NeurIPS).

Li, B. et al. (2019). “Certified Adversarial Robustness with Additive Noise”. In: NeurIPS.

Li, Bai et al. (2019). “Certified Adversarial Robustness with Additive Noise”. In: Advances
in Neural Information Processing Systems, pp. 9459–9469.

Liang, Shiyu, Yixuan Li, and Rayadurgam Srikant (2018). “Enhancing the reliability of
out-of-distribution image detection in neural networks”. In: International Conference on
Learning Representations (ICLR).

Limaye, Ankur and Tosiron Adegbija (2018). “HERMIT: A Benchmark Suite for the Internet
of Medical Things”. In: IEEE Internet Things J. 5.5, pp. 4212–4222.

Lin, T., C. Jin, and M. I. Jordan (2020). “Near-optimal algorithms for minimax optimization”.
In: Conference on Learning Theory.

Lin, Zinan et al. (2020). “Using GANs for sharing networked time series data: Challenges,
initial promise, and open questions”. In: Proceedings of the ACM Internet Measurement
Conference (IMC).

Liu, Shengzhong et al. (2020). “Handling Missing Sensors in Topology-Aware IoT Applica-
tions with Gated Graph Neural Network”. In: Proc. IMWUT 4.3, pp. 1–31.

Liu, Weitang et al. (2020). “Energy-based Out-of-distribution Detection”. In: Advances in
Neural Information Processing Systems (NeurIPS).

Luo, Yonghong, Xiangrui Cai, et al. (2018). “Multivariate Time Series Imputation with Gen-
erative Adversarial Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). Ed. by S. Bengio et al. Curran Associates, Inc.

Luo, Yonghong, Ying Zhang, et al. (2019). “E²GAN: End-to-End Generative Adversarial
Network for Multivariate Time Series Imputation”. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19.

214

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE”. In:
Journal of Machine Learning Research (JMLR) 9.Nov, pp. 2579–2605.

Madry, Aleksander et al. (2017). “Towards deep learning models resistant to adversarial
attacks”. In: arXiv preprint arXiv:1706.06083.

Maetzler, Walter, Jochen Klucken, and Malcolm Horne (2016). “A Clinical View on the
Development of Technology-Based Tools in Managing Parkinson’s Disease”. In: Movement
Disorders 31.9, pp. 1263–1271.

Martín Abadi and et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url:

McKinney, Wes, Josef Perktold, and Skipper Seabold (2011). “Time series analysis in python
with statsmodels”. In: Jarrodmillman Com, pp. 96–102.

Mizell, David (2003). “Using Gravity to Estimate Accelerometer Orientation”. In: Int. Symp.
Wearable Comput. Pp. 252–252.

Mode, Gautam Raj and Khaza Anuarul Hoque (2020). “Adversarial examples in deep learn-
ing for multivariate time series regression”. In: arXiv preprint arXiv:2009.11911.

Montgomery, Douglas C, Cheryl L Jennings, and Murat Kulahci (2015). Introduction to time
series analysis and forecasting. John Wiley & Sons.

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, Omar Fawzi, et al. (2017). “Universal
adversarial perturbations”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. IEEE Computer Society, pp. 1765–1773.

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard (2016). “Deepfool: a
simple and accurate method to fool deep neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2574–2582.

Mosenia, Arsalan et al. (2017). “Wearable Medical Sensor-Based System Design: A Survey”.
In: IEEE Trans. Multi-Scale Comput. Syst. 3.2, pp. 124–138.

Müller, Meinard (2007). “Dynamic time warping”. In: Information retrieval for music and
motion, pp. 69–84.

Nalisnick, Eric et al. (2018). “Do deep generative models know what they don’t know?” In:
arXiv preprint arXiv:1810.09136.

Nawir, Mukrimah et al. (2016). “Internet of Things (IoT): Taxonomy of security attacks”.
In: 2016 3rd international conference on electronic design (ICED). IEEE, pp. 321–326.

Ozanne, Anneli et al. (2018). “Wearables in Epilepsy and Parkinson’s disease – A Focus
Group Study”. In: Acta Neurologica Scandinavica 137.2, pp. 188–194.

215

Ozbayoglu, Ahmet Murat, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). “Deep
learning for financial applications: A survey”. In: arXiv preprint arXiv:2002.05786 93,
p. 106384.

Pang, Guansong, Chunhua Shen, Longbing Cao, et al. (2021). “Deep learning for anomaly
detection: A review”. In: ACM computing surveys (CSUR) 54.2, pp. 1–38.

Pang, Guansong, Chunhua Shen, and Anton van den Hengel (2019). “Deep anomaly detec-
tion with deviation networks”. In: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 353–362.

Paparrizos, John and Michael J. Franklin (2019). “GRAIL: Efficient Time-Series Represen-
tation Learning”. In: Proc. VLDB Endowment.

Papernot, Nicolas, Fartash Faghri, et al. (2018). “Technical Report on the CleverHans v2.1.0
Adversarial Examples Library”. In: arXiv preprint arXiv:1610.00768.

Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, et al. (2017). “Practical black-box
attacks against machine learning”. In: Proceedings of Asia Conference on Computer and
Communications Security (ASIACCS). ACM.

Papernot, Nicolas, Patrick McDaniel, Xi Wu, et al. (2016). “Distillation as a defense to
adversarial perturbations against deep neural networks”. In: IEEE Symposium on Security
and Privacy (SP), pp. 582–597.

Pires, Ivan Miguel et al. (2020). “Improving Human Activity Monitoring by Imputation of
Missing Sensory Data: Experimental Study”. In: Future Internet 12.9, p. 155.

Raghunathan, Aditi, Jacob Steinhardt, and Percy Liang (2018). “Certified defenses against
adversarial examples”. In: arXiv preprint arXiv:1801.09344.

Rajpurkar, Pranav et al. (2022). “AI in health and medicine”. In: Nature medicine 28.1,
pp. 31–38.

Rawat, MINA, Martin Wistuba, and Maria-Irina Nicolae (2017). “Harnessing model uncer-
tainty for detecting adversarial examples”. In: NIPS Workshop on Bayesian Deep Learn-
ing.

Reiss, Attila and Didier Stricker (2012a). “Creating and benchmarking a new dataset for
physical activity monitoring”. In: Proceedings of the 5th international conference on per-
vasive technologies related to assistive environments, pp. 1–8.

— (2012b). “Introducing a New Benchmarked Dataset for Activity Monitoring”. In: ISWC,
pp. 108–109.

Ren, Jie et al. (2019). “Likelihood Ratios for Out-of-Distribution Detection”. In: Advances
in Neural Information Processing Systems (NeurIPS).

216

Roggen, Daniel et al. (2010). “Collecting complex activity datasets in highly rich networked
sensor environments”. In: 2010 Seventh international conference on networked sensing
systems (INSS). IEEE, pp. 233–240.

Ruff, Lukas et al. (2021). “A unifying review of deep and shallow anomaly detection”. In:
Proceedings of the IEEE.

Sakoe, Hiroaki (1971). “Dynamic-programming approach to continuous speech recognition”.
In: 1971 Proc. the International Congress of Acoustics, Budapest.

Salvador, Stan and Philip Chan (2007). “Toward Accurate Dynamic Time Warping in Linear
Time and Space”. In: Intelligent Data Analalysis.

Samanta, Suranjana and Sameep Mehta (2017). “Towards crafting text adversarial samples”.
In: arXiv preprint arXiv:1707.02812.

Sastry, Chandramouli Shama and Sageev Oore (2020). “Detecting Out-of-Distribution Ex-
amples with Gram Matrices”. In: Proceedings of the 37th International Conference on
Machine Learning (ICML).

Shafahi, Ali et al. (2020). “Universal Adversarial Training”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 34.

Shi, Junhao et al. (2020). “Sensor-based Activity Recognition Independent of Device Place-
ment and Orientation”. In: Trans. on Emerging Telecommun. Tech. 31.4, e3823.

Shoaib, Muhammad et al. (2014). “Fusion of Smartphone Motion Sensors for Physical Ac-
tivity Recognition”. In: Sensors 14.6, pp. 10146–10176.

Shokoohi-Yekta, Mohammad et al. (2017). “Generalizing DTW to the multi-dimensional case
requires an adaptive approach”. In: Data mining and knowledge discovery 31.1, pp. 1–31.

Siddiqui, Shoaib Ahmed et al. (2019). “TSViz: Demystification of Deep Learning Models for
Time-Series Analysis”. In: IEEE Access 7, pp. 67027–67040.

Smith, Kaleb E and Anthony O Smith (2020). “Conditional GAN for timeseries generation”.
In: arXiv preprint arXiv:2006.16477.

Stisen, Allan et al. (2015). “Smart Devices are Different: Assessing and Mitigating mobile
Sensing Heterogeneities for Activity Recognition”. In: Proc. ACM Conf. on Embedd. Net-
worked Sensor Syst. Pp. 127–140.

Talukder, Sabera et al. (2022). “Deep Neural Imputation: A Framework for Recovering In-
complete Brain Recordings”. In: arXiv:2206.08094.

Texas Instruments Inc. (2018). CC2652R Microcontroller. [Online] , accessed August 12,
2022.

217

Tolstikhin, Ilya O, Bharath K. Sriperumbudur, and Bernhard Schölkopf (2016). “Minimax
Estimation of Maximum Mean Discrepancy with Radial Kernels”. In: Advances in Neural
Information Processing Syst. Vol. 29.

Tramer, Florian et al. (2020). “On adaptive attacks to adversarial example defenses”. In:
arXiv preprint arXiv:2002.08347.

Tramèr, Florian et al. (2018). “Ensemble adversarial training: Attacks and defenses”. In:
International Conference on Learning Representations (ICLR).

Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing Data Using t-SNE”. In:
J. of Machine Learning Research 9.11.

Van Erven, Tim and Peter Harremos (2014). “Rényi divergence and Kullback-Leibler diver-
gence”. In: IEEE Transactions on Information Theory 60.7, pp. 3797–3820.

Wang, Aiguo et al. (2016). “A Comparative Study on Human Activity Recognition Using
Inertial Sensors in a Smartphone”. In: IEEE Sensors J. 16.11, pp. 4566–4578.

Wang, Hanchen et al. (2023). “Scientific discovery in the age of artificial intelligence”. In:
Nature 620.7972, pp. 47–60.

Wang, M., E. X Fang, and H. Liu (2017). “Stochastic compositional gradient descent: algo-
rithms for minimizing compositions of expected-value functions”. In: Mathematical Pro-
gramming, Springer.

Wang, William Yang, Sameer Singh, and Jiwei Li (2019). “Deep adversarial learning for nlp”.
In: Proceedings of the Conference of the NAACL: Tutorials. Ed. by Anoop Sarkar and
Michael Strube. Association for Computational Linguistics, pp. 1–5.

Wang, Zhiguang, Weizhong Yan, and Tim Oates (2017). “Time series classification from
scratch with deep neural networks: A strong baseline”. In: International Joint Conference
on Neural Networks (IJCNN). IEEE.

Wang, Ziyu et al. (2020). “Further Analysis of Outlier Detection with Deep Generative
Models”. In: Advances in Neural Information Processing Systems (NeurIPS).

Wen, Qingsong et al. (2020). “Time series data augmentation for deep learning: A survey”.
In: arXiv preprint arXiv:2002.12478.

Wilhelm, Mathias et al. (2015). “eRing: Multiple Finger Gesture Recognition with One Ring
Using an Electric Field”. In: Proc. Int. Work. on Sensor-based Activity Recognition and
Interaction, pp. 1–6.

Wu, Lingfei et al. (2018). “Random warping series: A random features method for time-series
embedding”. In: International Conference on Artificial Intelligence and Statistics. PMLR.

218

Wu, Renjie and Eamonn J. Keogh (2020). “FastDTW is approximate and Generally Slower
than the Algorithm it Approximates”. In: url:

Xiao, Chaowei et al. (2018). “Spatially transformed adversarial examples”. In: arXiv preprint
arXiv:1801.02612.

Xiao, Zhisheng, Qing Yan, and Yali Amit (2020). “Likelihood Regret: An Out-of-Distribution
Detection Score For Variational Auto-encoder”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). Ed. by H. Larochelle et al.

Xiong, Yuanhao and Cho-Jui Hsieh (2020). “Improved Adversarial Training via Learned
Optimizer”. In: European Conference on Computer Vision. Springer, pp. 85–100.

Yamin, Nuzhat, Ganapati Bhat, and Janardhan Rao Doppa (2022). “DIET: A Dynamic En-
ergy Management Approach for Wearable Health Monitoring Devices”. In: 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6.

Yan, Y. et al. (2020). “Optimal Epoch Stochastic Gradient Descent Ascent Methods for
Min-Max Optimization”. In: NeurIPS.

Yang, Jianbo et al. (2015). “Deep convolutional neural networks on multichannel time series
for human activity recognition.” In: Ijcai. Vol. 15. Buenos Aires, Argentina, pp. 3995–
4001.

Yang, Jingkang et al. (2021). “Generalized out-of-distribution detection: A survey”. In: arXiv
preprint arXiv:2110.11334.

Yang, Yao-Yuan et al. (2020). “A Closer Look at Accuracy vs. Robustness”. In: Proceedings
of Neural Information Processing Systems (NeurIPS).

Yoon, Jinsung, James Jordon, and Mihaela Schaar (2018). “GAIN: Missing Data Imputation
Using Generative Adversarial Nets”. In: ICML, pp. 5689–5698.

Yu, Qing and Kiyoharu Aizawa (2019). “Unsupervised out-of-distribution detection by max-
imum classifier discrepancy”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision.

Zabib, David Zooker et al. (2017). “Vulnerability of secured IoT memory against localized
back side laser fault injection”. In: 2017 Seventh International Conference on Emerging
Security Technologies (EST). IEEE, pp. 7–11.

Zappi, Piero et al. (2007). “Activity Recognition from On-Body Sensors by Classifier Fusion:
Sensor Scalability and Robustness”. In: Proc. Int. Conf. on Intell. Sensors, Sensor Netw.
and Info. Pp. 281–286.

Zheng, S. et al. (2016). “Improving the Robustness of Deep Neural Networks via Stability
Training”. In: CVPR.

219

Zheng, Stephan et al. (2016). “Improving the Robustness of Deep Neural Networks via Sta-
bility Training”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, pp. 4480–
4488.

Zheng, Zibin et al. (2017). “Wide and deep convolutional neural networks for electricity-theft
detection to secure smart grids”. In: IEEE Transactions on Industrial Informatics.

Zhou, Da-Wei, Yang Yang, and De-Chuan Zhan (2021). “Learning to classify with incremen-
tal new class”. In: IEEE Transactions on Neural Networks and Learning Systems 33.6,
pp. 2429–2443.

Zhou, Da-Wei, Han-Jia Ye, and De-Chuan Zhan (2021). “Learning placeholders for open-
set recognition”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4401–4410.

220

APPENDIX

221

APPENDIX A

THEORETICAL ANALYSIS FOR TSA-STAT FRAMEWORK

A.1 Proof of Theorem 1

For a given input space Rn×T and d ≥ 1, polynomial transformations allow more candidate

adversarial examples than additive perturbations in a constrained space. If X ∈ Rn×T and

PT : X →
∑d

k=0 ak Xk, then ∀Xadv s.t. ∥Si(Xadv)− Si(X)∥∞ ≤ ϵi:{
Xadv = PT (X), ∀ak

}
⊋
{
Xadv = X + δ, ∀δ

}
, Si ∈ Sm(X)

⋃
Identity.

Let X ∈ Rn×T and d ≥ 1. Let PT (·) a polynomial adversarial transformation such that

PT : X →
∑d

k=0 ak Xk. We want to prove that a polynomial transformation can create an

adversarial example Xadv that is out of the scope for additive perturbation with a constant δ.

The main condition on Xadv is that ∥Si(Xadv)− Si(X)∥∞ ≤ ϵi with Si ∈ Sm(X)
⋃

Identity.

In other words, if the given condition is satisfied, we will have:{
Xadv = PT (X), ∀ak

}
⊋
{
Xadv = X + δ, ∀δ

}
Suppose A be the space of all possible adversarial examples

{
Xadv = PT (X), ∀ak

}
and B

be the space of all possible adversarial examples
{
Xadv = X + δ, ∀δ

}
• Si = Identity: For Xadv = PT (X):

∥Xadv −X∥∞ ≤ ϵi

∥
d∑

k=0

ak Xk −X∥∞ ≤ ϵi

∥a0 + (a1 − 1)X +
d∑

k=0

ak Xk∥∞ ≤ ϵi

222

Without loss of generality, let us consider ∥ · ∥∞ on the component l ≤ n.

|a0 + (a1 − 1)Xl +
d∑

k=0

ak Xk
l | ≤ ϵi

|a0 + β({ak, Xl})| ≤ ϵi

Then Xadv ∈ B only if the function β({ak, Xl}) = 0 and |a0| ≤ ϵi. Hence, by construction

on the set of {ak}, if |a0| > ϵi, we can create Xadv such that |a0 + β({ak, Xl})| ≤ ϵi. Hence,

we have Xadv ∈ A and Xadv /∈ B (β depends on X, so it cannot be considered as a constant

perturbation δ to be in B).

• Si ∈ Sm(X): Let us start with Si(·) = µ(·). Similar to the previous case, and if we

consider ∥ · ∥∞ on the component l ≤ n:

∥µ(Xadv)− µ(X)∥∞ ≤ ϵi∣∣∣∣µ(d∑
k=0

ak Xk
l

)
− µ(Xl)

∣∣∣∣ ≤ ϵi∣∣∣∣ T∑
j=0

∑d
k=0 ak Xk

l,j

T
−

T∑
j=0

Xl,j

T

∣∣∣∣ ≤ ϵi

∣∣∣∣ T∑
j=0

a0 + (a1 − 1)Xl,j +
∑d

k=0 ak Xk
l,j

T

∣∣∣∣ ≤ ϵi

If Xadv ∈ B, then ∥µ(Xadv)− µ(X)∥∞ = |
∑T

j=0
a0
T
|. With the same construction logic as in

the previous case, we can end with Xadv ∈ A and Xadv /∈ B. For the remaining cases of Si(·)

used in this work, as they are correletaed with µ, similar construction can be used.

A.2 Proof of Theorem 2

Let X ∈ Rn×T be an input time-series signal. Let nP ∼ N (µP ,
∑

) and n0 ∼ N (0,
∑

).

Given a classifier Fθ : Rn×T → Y that produces a probability distribution (p1, · · · , pk) over k

labels for Fθ(X + nP) and another probability distribution (p01, · · · , p0k) for Fθ(X + n0). To

guarantee that argmax
pi

pi = argmax
p0

p0, the following condition must be satisfied:

223

∥µP∥2∞ ≤ max
α ̸=1

2

α ·
∑(S)

·

(
−ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

))

where ∥µP∥∞ is the maximum perturbation over the mean of the input’s channels and
∑(S)

is the sum of all elements of
∑

.

To prove this theorem, we call for a second Lemma provided in Bai Li et al., 2019):

Lemma 3. Let EP and E0 be two probability distributions where EP=(p1, · · · , pk) and

E0=(p01, · · · , p0k). If arg max
pi∈EP

pi ̸= arg max
p0i∈E0

p0i , then:

Dα(EP∥E0) ≥ −ln

(
1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

)
(A.1)

where p(1) and p(2) are respectively the largest and second largest pi ∈ EP .

This Lemma provides a lower bound of the Rényi divergence for changing the index of the

maximum of EP , which is useful for the derivation of our certification bound. If the estimated

distributions EP and E0 have different indices for the maximum class probabilities, then

Dα(EP∥E0) < RHS of Equation A.1.

Let X ∈ Rn×T an input time-series signal, nP ∼ N (µP ,
∑

) and n0 ∼ N (0,
∑

), and

a DNN classifier Fθ : Rn×T → Y that produces a probability distribution over k candi-

date class labels: EP=(p1, · · · , pk) for Fθ(X + nP) and another probability distribution

E0=(p01, · · · , p0k) for Fθ(X + n0).

As a direct result from Lemma 1:

Dα(EP∥E0) = α
2
(µP − 0)T

∑
α(µP − 0)− 1

2(α−1)
ln

|
∑

α |
|
∑

|1−α|
∑

|α

where
∑

α = α
∑

+(1− α)
∑

=
∑

.

This results to:

224

Dα(EP∥E0) =
α

2
µT
P

∑
µP −

1

2(α− 1)
ln(1)

=
α

2
µT
P

∑
µP

Since ∀i : µP,i ≤ ∥µP∥∞, we get

Dα(EP∥E0) =
α

2
µT
P

∑
µP =

α

2

∑
i

∑
j

µP,i × µP,j ×
∑

i,j

≤ α

2
∥µP∥2∞

∑(S)

where
∑(S) is the sum of all elements of

∑
.

To guarantee that argmax
pi

pi = argmax
p0i

p0i , the following condition must be satisfied

from Lemma 3:

Dα(EP∥E0) < −ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

This implies:

α

2
∥µP∥2∞

∑(S)
< −ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

which leads us to:

∥µP∥2∞ <
2

α×
∑(S)

×

(
−ln(1− p(1) − p(2) + 2

(
1

2

(
p1−α
(1) + p1−α

(2)

)) 1
1−α

)
Hence, our result.

While the proposed certification in Theorem 2 uses the Lemma 3 provided in Bai Li et al.,

2019, the derivation of the bound is different in terms of the following aspects that are not

covered in Bai Li et al., 2019 :

• The use of a multivariate Gaussian distribution of the noise. The main difference in

our work is that we use a multivariate Gaussian distribution that is characterized by

mean vector µ and a covariance matrix
∑

. This general formulation of multivariate

225

Gaussian distributions results in the conclusion of Theorem 2 because it is applied on

multivariate inputs X ∈ Rn×T . However, the standard Gaussian noise with 0-value

mean and a single-value standard deviation σ employed in (Li et. al., 2019) is limited

for our case. The theoretical analysis in Bai Li et al., 2019 is not general to the

multivariate Gaussian distributions used in our work. This is due to the fact that the

Renyi divergence of the noise distribution in (Li et. al., 2019) can be upper-bounded

by a factor of the L2 norm. This upper bound is not applicable for the multivariate

Gaussian noise. Hence, we provide the proof of Theorem 2 to derive a certification

robustness. The approach in Bai Li et al., 2019 can only be used for univariate time-

series data. We provided a more general derivation for multi-variate time-series.

• The certification in Bai Li et al., 2019 is only provided for the Euclidean distance.

For the theoretical analysis of TSA-STAT, we had to introduce the statistical features

of time-series instead of euclidean distance. Hence, we proposed in our proof the use

of a mean vector µP . This proof is not similar to the one provided in Bai Li et al.,

2019. Additionally, we provided Lemma 2 with proof to extend the certification to

other statistical features.

A.3 Proof of Lemma 2

If a certified bound δ has been generated for the mean of input time-series signal X ∈ Rn×T

and classifier Fθ, then certified bounds for other statistical/temporal features can be derived

consequently.

In this section, we will work on other statistical constraints used in our experimental

evaluation. Let X ∈ Rn×T an time-series input signal. Let Σ be the positive semi-definite

covariance matrix used for the additive multivariate Gaussian noise. The bound on the mean

δ value is given by TSA-STAT certification algorithm. As ∥Si(X)∥∞ is equal to the value

of Si on one of the channels n, let us consider for simplicity of this proof only that channel.

226

Hence, the derivation of the bounds for other statistical features is as follows:

• RMS =
∑ x2

i

n

σ2 =
∑ (xi − µ)2

n
=
∑ x2

i − 2xiµ+ µ2

n
= RMS2− 2µ

∑ xi

n
+
∑ µ2

n
= RMS2−µ2

⇒ max∥RMS∥∞ = δ2 + σ2

• Skewness g =
∑ (xi−µ)3

n×σ3

Let G(µ) =
∑ (xi−µ)3

n

∂G

∂µ
=
∑ ∂

∂µ

(xi − µ)3

n
= −3×

∑ (xi − µ)2

n
̸= 0 ∀µ as (σ ̸= 0)

Therefore, G(µ) is monotonic ⇒ max∥g∥∞ = G(δ)|
σ3

• Kurtosis k =
∑ (xi−µ)4

n×σ4 − 3

Let K(µ) =
∑ (xi−µ)4

n
, following the previous result on the skewness:

∂K

∂µ
=
∑ ∂

∂µ

(xi − µ)4

n
̸= 0 ∀µ

Therefore, K(µ) is monotonic ⇒ max∥k∥∞ = |K(δ)|
σ4 − 3

227

APPENDIX B

THEORETICAL ANALYSIS FOR DTW-AR FRAMEWORK

B.1 Proof of Observation 1

Let l2 be the equivalent of Euclidean distance using the cost matrix in the DTW space.

∀X ∈ Rn×T , there exists ϵ ∈ Rn×T and an alignment path P such that distP (X,X + ϵ) ≤ δ

and l2(X,X + ϵ) > δ.

The existence of ϵ is guaranteed as follows: We know from the nature of the DTW

algorithm and the alignment paths that for two time-series signals X and X ′, the optimal

alignment path is not always the diagonal path. If ϵ does not exist, it means that for all

signals X ′ that are different from X, the diagonal path is an optimal alignment path, which

is absurd. Thus, ϵ = X ′ −X and it always exists for any time-series signal .

Let Pdiag be the diagonal alignment path in the cost matrix C.

For X ∈ Rn×T , let ϵ ∈ Rn×T such that the optimal alignment path P ∗ between X and

X + ϵ is different than Pdiag.

Let us suppose that there is no alignment path P between X and X + ϵ such that

distP (X,X+ ϵ) ≤ δ and l2(X,X+ ϵ) > δ. The last statement is equivalent to: distP (X,X+

ϵ) < distPdiag
(X,X + ϵ).

Since we assumed that there is no alignment path P that satisfies this statement, this

implies:

∀P , distP (X,X + ϵ) ≥ distPdiag
(X,X + ϵ)

⇒ distP ∗(X,X + ϵ) ≥ distPdiag
(X,X + ϵ)

⇒ DTW (X,X + ϵ) ≥ distPdiag
(X,X + ϵ)

Therefore, from the definition of DTW (·, ·) as a min operation during backtracing of the

228

DP process, we get:

⇒ DTW (X,X + ϵ) = distPdiag
(X,X + ϵ)

Hence, Pdiag = P ∗, which contradicts our main assumption in constructing ϵ such that

Pdiag ̸= P ∗.

Therefore, we conclude that:

∃P s.t. distP (X,X + ϵ) ≤ δ and l2(X,X + ϵ) > δ

B.2 Proof of Theorem 3

For a given input space Rn×T , a constrained DTW space for adversarial examples is a strict

superset of a constrained euclidean space for adversarial examples. If X ∈ Rn×T :{
Xadv

∣∣DTW (X,Xadv) ≤ δ

}
⊃
{
Xadv

∣∣∥X −Xadv∥22 ≤ δ

}
(B.1)

We want to prove that a constrained DTW space allows more candidates adversarial

examples than a constrained Euclidean space. Let X ∈ Rn×T be an input time-series and

Xadv denote a candidate adversarial example generated from X. In the DTW-space, this

requires that DTW (X,Xadv) ≤ δ. In the Euclidean space, this requires that ∥X−Xadv∥22 ≤ δ,

which is equivalent to distPdiag
(X,Xadv) ≤ δ.

Suppose A be the space of all candidate adversarial examples in DTW space{
Xadv/DTW (X,Xadv) ≤ δ

}
and B be the space of all candidate adversarial examples in

Euclidean space
{
Xadv

/
∥X −Xadv∥22 ≤ δ

}
.

To prove A ⊋ B, we need to prove:

1. ∀Xadv ∈ B/Xadv ∈ A

2. ∃Xadv/Xadv ∈ A and Xadv /∈ B

Statement 1: Let Xadv ∈ B. For the optimal alignment path P ∗ between X and Xadv, if:

229

• P ∗ = Pdiag ⇒ DTW (X,Xadv) = distPdiag
(X,Xadv)

⇒ Xadv ∈ A

• P ∗ ̸= Pdiag ⇒ According to Observation 1:

DTW (X,X + ϵ) < distPdiag
(X,X + ϵ)

⇒ Xadv ∈ A

Hence, we have ∀Xadv ∈ B/Xadv ∈ A.

Statement 2: Let Xadv ∈ A such that P ∗ ̸= Pdiag. Consequently, according to Observation

1, distPdiag
(X,X + ϵ) > DTW (X,X + ϵ).

⇒ distPdiag
(X,X + ϵ) > δ.

As the diagonal path corresponds to the Euclidean distance, we conclude that Xadv /∈ B.

Hence, ∃Xadv/Xadv ∈ A and Xadv /∈ B.

B.3 Proof of Observation 2

Given any alignment path P and two multivariate time-series signals X,Z ∈ Rn×T . If we

have distP (X,Z) ≤ δ, then DTW (X,Z) ≤ δ.

Let P any given alignment path and P ∗ be the optimal alignment path used for DTW

measure along with the DTW cost matrix C. Let us suppose that distP (X,Z) > DTW (X,Z).

We denote P={(1, 1), · · · , (i, j), · · · , (T, T)} and P ∗={(1, 1), · · · , (i∗, j∗), · · · , (T, T)}. Let

us denote by k the index at which, P and P ∗ are not using the same cells anymore,

and by l, the index where P and P ∗ meet again using the same cells until (T, T) in a

continuous way. By definition, k > 1 and l < min(len(P), len(P ∗)). For example, if

P={(1, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)} and P ∗={(1, 1), (1, 2), (2, 3), (3, 4), (4, 4), (5, 5)},

then k=3 and l=6.

• If k=l, then P=P ∗. Therefore, distP (X,Z) > DTW (X,Z) is absurd.

230

• If k ̸= l: To provide the (k+1)th element of P ∗, we have C(i∗k+1,j
∗
k+1)

= d(Xi∗k+1
, Zj∗k+1

)+

C(i∗k,j
∗
k)

. To provide the (k + 1)th element of P , we have C(ik+1,jk+1) = d(Xik+1
, Zjk+1

) +

C(ik,jk). Using the definition of the optimal alignment path provided in Equation 1, we

have C(i∗k+1,j
∗
k+1)
≤ C(ik+1,jk+1).

If we suppose that the remaining elements of P would lead to distP (X,Z) < distP ∗(X,Z),

then this would lead to CT,T < DTW (X,Z), which contradicts the definition of DTW.

Hence, we have distP (X,Z) ≤ distP ∗(X,Z) implying that distP (X,Z) > DTW (X,Z)

is absurd.

Therefore, if we upper-bound distP (X,Z) by δ for any given P , then we guarantee that

DTW (X,Z) ≤ δ.

B.4 Proof of Theorem 4

For a given input space Rn×T and a random alignment path Prand, the resulting adversarial

example Xadv from the minimization over distPrand
(X,Xadv) is equivalent to minimizing over

DTW (X,Xadv). For any Xadv generated by DTW-AR using Prand, we have:
PathSim(Prand, PDTW) = 0 &

distPrand
(X,Xadv) = DTW (X,Xadv)

(B.2)

where PDTW is the optimal alignment path found using DTW computation between X and

Xadv.

Let Prand be the random alignment path over which the algorithm would minimize

distPrand
(X,Xadv). For the ease of notation, within this proof, we will refer to Xadv by

X ′.

We have distPrand
(X,X ′) =

∑
(i,j)∈Prand

d(Xi, X
′
j). As ∀i, j, d(Xi, X

′
j) ≥ 0, then minimiz-

ing distPrand
(X,X ′) translates to minimizing each d(Xi, X

′
j).

Let us denote min d(Xi, X
′
j) by dmin(Xi, X

′
j), then

min distPrand
(X,X ′) =

∑
(i,j)∈Prand

dmin(Xi, X
′
j).

231

Using the back-tracing approach of DTW to define the optimal alignment path, we want

to verify if PathSim(Prand, PDTW) = 0. Let Prand be the sequence of cells {ck,l} and PDTW be

the sequence {ck′,l′}. Every cell {ck′,l′} in PDTW is defined to be the successor of one of the

cells {ck′−1,l′}, {ck′,l′−1}, {ck′−1,l′−1} which will make the distance sum along PDTW until the

cell {ck′,l′} be the minimum distance. As we have minimized the distance over the path Prand

to be dmin(Xi, X
′
j), the cells of PDTW and Prand will overlap. This is due to the recursive

nature of DTW computation and the fact that the last cells in both sequences PDTW and

Prand is the same (by the definition of DTW alignment algorithm).

Hence, ∀(k, l) ∈ Prand, (k
′, l′) ∈ PDTW , we have k = k′ and l = l′.

Therefore, the optimal alignment between between X and Xadv will overlap with Prand

and we obtain PathSim(Prand, PDTW) = 0.

B.5 Proof of Corollary 1

Let P1 and P2 be two alignment paths such that PathSim(P1, P2) > 0. If X1
adv and X2

adv

are the adversarial examples generated using DTW-AR from any given time-series X using

paths P1 and P2 respectively such that DTW (X,X1
adv) = δ and DTW (X,X2

adv) = δ, then

X1
adv and X2

adv are not necessarily the same.

Let P1 and P2 be two alignment paths such that PathSim(P1, P2) > 0. We want to create

an adversarial example from time-series signal X using one given alignment path. When

using P1, we will obtain Xadv,1 such that DTW (X,Xadv,1) = δ, and when using P2, we will

obtain Xadv,2 such that DTW (X,Xadv,2) = δ.

To show that Xadv,1 and Xadv,2 are more likely to be different, let us suppose that given

P1 and P2, we always have Xadv,1 = Xadv,2.

Again, to simplify notations, let us notate Xadv,1 by Z and Xadv,2 by Z ′ for this proof.

As we have DTW (X,Z) = DTW (X,Z ′) = δ, then
∑

(i,j)∈P1
d(Xi, Zj) =

∑
(i,j)∈P2

d(Xi, Z
′
j).

If we suppose that by construction Z is always equal to Z ′, this means that for Z ̸= Z ′, the

232

statement
∑

(i,j)∈P1
d(Xi, Zj) =

∑
(i,j)∈P2

d(Xi, Z
′
j) does not hold. The last claim is clearly

incorrect. Let us suppose that Z is pre-defined and we assume Z ̸= Z ′. Let the ensemble of

indices {k} refer to the indices where Zk ̸= Z ′
k. This means that we have k − 1 degrees of

freedom to modify Z ′
k to fix the equality

∑
(i,j)∈P1

d(Xi, Zj) =
∑

(i,j)∈P2
d(Xi, Z

′
j)).

Therefore, considering PathSim(P1, P2) > 0, we can construct Xadv,1 ̸= Xadv,2 such that

DTW (X,Xadv,1) = δ and DTW (X,Xadv,2).

233

APPENDIX C

THEORETICAL ANALYSIS OF RO-TS FRAMEWORK

In this section, we present novel theoretical convergence analysis for SCAGDA algorithm,

which helps us in understanding its behaviour and performance. As mentioned in the pre-

vious section, for the problem in Equation (6.7), existing theoretical analysis of SGDA (T.

Lin, Jin, and Jordan, 2020; Y. Yan et al., 2020), stochastic alternating gradient descent

ascent (SAGDA) (Junchi Y., 2020) require to compute exact gradient of g(hi(ai)) at each

iteration, and stochastic compositional gradient algorithms for minimization problems (M.

Wang, Fang, and H. Liu, 2017; T. Chen, Sun, and Yin, 2020) cannot handle the min-max

optimization form.

Summary of results. Specifically, we answer the following question: can we establish

convergence guarantee of our SCAGDA algorithm for nonconvex-nonconcave compositional

min-max optimization problems? Our result shows the iteration complexity of Algorithm 6

to converge to an ϵ-primal gap is O(L4

µ6ϵ2
) (L and µ will be introduced later). In addition, our

results demonstrate the efficacy of the MA strategy: the approximation error ∥ 1
n

∑n
i=1(ω

i
K −

hi(ai))∥2 is also bounded by ϵ in expectation when the ϵ-primal gap is achieved.

Setup and assumptions. We first state some basic notations and the required assumptions

for our convergence analysis. As denoted below (6.7), P(w) = maxa
∑n

i=1 ϕi(w, ai) is the

primal function. The primal gap at w is defined as P (w) − P ∗, where P ∗ = minw P (w).

Our theoretical analysis focuses on the convergence of primal gap. We also analyze the

convergence of approximation error ∥ω−h(a)∥2. Below are assumptions used for our analysis.

Definition 1. If a function f(x) is C-Lipschitz continuous, then we have

|f(x1)− f(x2)| ≤ C∥x1 − x2∥ and ∥∇f(x)∥ ≤ C.

234

Definition 2. If a function f(x) is L-smooth, then its gradient is L-Lipschitz continuous:

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥,

and equivalently

f(x1)− f(x2) ≤ ⟨∇f(x2), x1 − x2⟩+
L

2
∥x1 − x2∥2.

Definition 3. If a function f(x) has a non-empty solution set and satisfies µ-PL condition,

then we have

∥∇f(w)∥2 ≥ 2µ(f(x)−min
x′

f(x′)).

Assumption 3. Suppose µ, L,Cg, Ch, Lg, Lh ≥ 0.

(i) ϕ(w, a) satisfies two side µ-PL condition:

∥∇wϕ(w, a)∥2 ≥ 2µ(ϕ(w, a)−min
w′

f(w, a)),

∥∇aϕ(w, a)∥2 ≥ 2µ(max
a′

f(w, a)− ϕ(w, a)).

(ii) ϕ(w, a) is L-smooth in w for fixed a.

(iii) ϕ(w, a) is L-smooth in ai for fixed w.

(iv) g and h are Cg and Ch-Lipschitz continuous, respectively

(v) g and h are Lg and Lh-smooth, respectively.

(vi) ∃ σ > 0 s.t. E[∥∇wϕi(w, ai)−∇wϕ(w, a)∥2] ≤ σ2,

E[∥∇afi(w, ai)−∇afi(w, ai)∥2] ≤ σ2, E[∥hi,j(ai)−h(a)∥2] ≤ σ2, and E[∥∇i,jh(ai)−∇h(a)∥2] ≤

σ2

Remark 1. In the (vi) assumption, hi,j(ai) and ∇hi,j(ai) are also unbiased estimation of

h(a) and∇h(a), respectively , so the bounded variance assumption is mild. We highlight that

all the above assumptions are mild and are commonly used in the nonconvex optimization

literature (Junchi Y., 2020; M. Wang, Fang, and H. Liu, 2017; T. Lin, Jin, and Jordan,

2020).

From the above assumptions, we have the following lemmas.

235

Lemma 4. (Lemma A.2 and A.3 in Junchi Y., 2020) If ϕ is L-smooth and satisfies two

side µ-PL condition, then P (w) also satisfies µ-PL conditions, and P (w) is LP -smooth with

LP = L+ L2/µ ≤ 2L2/µ when L ≥ 1 and µ ≤ 1.

Lemma 5. ((Karimi, Nutini, and Schmidt, 2016)) If f(x) is L-smooth and satisfies µ-PL

condition, then it also satisfies µ-error bound condition ∥∇f(x)∥ ≥ µ∥xp − x∥ where xp

is the projection of x onto the optimal set. Also it satisfies µ-quadratic growth condition

f(x) − minx f(x) ≥ µ
2
∥xp − x∥2. Conversely, if f(x) is L-smooth and satisfies mu-error

bound, then it satisfies µ
L
-PL condition.

C.1 Main Results

In this section, we denote ω = (ω1, · · · , ωn) as the concatenation of all ωi. The following

theorem is our main convergence result for SCAGDA as shown in Algorithm 6.

Theorem 8. Suppose Assumptions 1 hold. Set ηk = η = O(µ5

L2
gL

4 ϵ
2), γk = γ = O(µ

2η
L2) and

β =
√
18µη. After running Algorithm 6 for the total number of iterations K = Õ(

L2
gL

4

µ5ϵ2
) (Õ

hides logarithmic factor), we have

E[P (wK)− P ∗] +
1

8
E[P (wK)− ϕ(wK , aK)]

+
(4C4

hL
4
gηK

µ5

)1/2
E[∥ωK − h(aK−1)∥2] ≤ ϵ

Remark 2. The above theorem gives us two critical observations of the behavior of

SCAGDA. (1) After running K iterations of SCAGDA, the primal gap P (wK+1) − P ∗

converges to ϵ in expectation, since all terms in the left hand side of the inequality are

non-negative. This result shows that SCAGDA is able to effectively solve the compositional

min-max optimization problem shown in Equation (6.7). (2) The iteration complexity of

SCAGDA is O(1/ϵ2). To put this result in perspective, we compare to related theoretical

results. The rate for nonconvex-nonconcave min-max problem without compositional struc-

ture is shown to be O(1/ϵ) (Junchi Y., 2020). However, this improvement requires unbiased

236

estimation of the gradient and computing the of g(hi(ai)) at each iteration. Our iteration

complexity is in the same order of that for (T. Chen, Sun, and Yin, 2020), whose conver-

gence result is O(1/ϵ2) for nonconvex compositional minimization problems. The difference

is that their convergence metric is the average squared norm of gradients, while ours is for

the primal gap. We would like to highlight that ours is the first result on convergence rate

for stochastic compositional min-max problems.

Corollary 2. After K = Õ(
L2
gL

4

µ6ϵ2
) iterations of Algorithm 6, we have

E[∥ωK+1,i − hi(aK+1,i)∥2] ≤O(ϵ)

Remark 3. The above result shows that as SCAGDA algorithm is executed, the approx-

imation error of ∥ωK+1,i − hi(aK+1,i)∥2 converges to ϵ in the expectation. For the condition

numbers, we always have L ≥ µ. In practice, we usually set the accuracy level ϵ to a very

small value, so the condition ϵ ≤ O(L3/µ2) generally hold. This result provides strong the-

oretical support that if we apply SCAGDA to optimize our ROTS problem in (6.5), it is

able to approximate kGAK on-the-fly. We only need a constant number of alighments for

computing kGAK in each iteration of SCAGDA. When we have ϵ-primal gap, we also achieve

ϵ-accurate estimation of kGAK .

C.2 Proof of Theorem 5 And Corollary 2

Proof of Theorem 5: Before we can start proof of the main theorem, we need the following

three technical lemmas.

Lemma 6. Suppose Assumption 1 holds. Assume P is LP -smooth. For iteration k of

Algorithm 6, we have

E[P (wk+1)− P ∗] ≤P (wk)− P ∗ − ηk
2
∥∇P (wk)∥2 +

Lη2kσ
2

2

+
ηk
2
∥∇wϕ(wk, ak)−∇P (wk)∥2 (C.1)

237

Lemma 7. Suppose Assumption 1 hold. For iteration k of Algorithm 6, we have

E[P (wk+1)− ϕ(wk+1, ak+1)]

≤ (1− µγk
2

)E[P (wk)− ϕ(wk, ak)]

+ (1− µγk
2

)(
ηk
2

+ 2ηk + Lη2k)∥∇P (wk)−∇ϕk
w∥2

+ (1− µγk
2

)(−ηk
2

+ 2ηk + Lη2k)∥∇P (wk)∥2

+ 2γkC
2
hL

2
gE[∥ωk+1 − h(ak)∥2] + Lσ2(η2k + γ2(1 + 2C2

g)) (C.2)

Lemma 8. (Lemma 2 of (M. Wang, Fang, and H. Liu, 2017))

E[∥ωk+1 − h(ak)∥2] ≤(1− βk)∥ωk − h(ak−1)∥2

+
C2

h∥ak − ak−1∥2

βk

+ 2β2
kσ

2 (C.3)

Now we have the three important inequalities and can proceed to our proof for Theorem 5.

The key idea is to construct a Lyapunov function that combines the above three inequalities

together, and derive the convergence for this Lyapunov function. Let

Lk+1 :=E[P (wk+1)− P ∗] +
1

8
E[P (wk+1)− ϕ(wk+1, ak)]

+
(4C4

hL
4
gL

4ηk

µ5

)1/2
E[∥ωk+1 − h(ak)∥2]

Set ηk = η, γk = γ = 36L2η
µ2 , β = (18µη)1/2. Recall that ∥∇P (wk) −∇ϕk

w∥2 ≤ 2L2

µ
(P (wk) −

238

ϕ(wk, ak)). By Lemma 6 and 7, we have

Lk+1 ≤P (wk)− P ∗ − η

2
∥∇P (wk)∥2 +

η

2
∥∇P (wk)−∇ϕk

w∥2

+
LPη

2σ2

2
+

1

8

(
(1− µγ

2
)E[P (wk)− ϕ(wk, ak)]

+ (1− µγ

2
)(
η

2
+ 2η + Lη2)∥∇P (wk)−∇ϕk

w∥2

+ (1− µγ

2
)(−η

2
+ 2η + Lη2)∥∇P (wk)∥2

+ Lσ2(η2 + γ2(1 + 2C2
g))

)

+
(
2γC2

hL
2
g +

(L4η

µ5

)1/2
2C2

hL
2
g

)
E[∥ωk+1 − h(ak)∥2]︸ ︷︷ ︸

=A

(C.4)

Recall that η ≤ 1
4L

. Before bounding term A, we first simplify the coefficients of

E[∥∇P (wk)∥2] and E[∥∇P (wk)−∇ϕw(wk, ak)∥2] as follows

for [∥∇P (wk)∥2] :

− η

2
+

1

8
(1− µγ

2
)(−η

2
+ 2η + Lη2) ≤ −η

4
,

for E[∥∇P (wk)−∇ϕw(wk, ak)∥2] :
η

2
+

1

8
(1− µγ

2
)(
η

2
+ 2η + Lη2) ≤ 7η

8
.

Due to L-smoothness of ϕ in a and Lemma 5, we can merge E[∥∇P (wk)−∇ϕw(wk, ak)∥2]

with P (wk) − ϕ(wk, ak). Then the coefficient of P (wk) − ϕ(wk, ak) in (C.4) can be derived

as follows

1

8
(1− µγ

2
) +

2L2

µ
· 7η
8

=
1

8
(1− 18L2η

µ
+ 14

L2η

µ
) ≤ 1

8
(1− µη

4
),

where the inequality is due to µ ≤ L. Now we employ Lemma 8 to bound term A in (C.4)

239

as follows (
2γkC

2
hL

2
g +

(L4η

µ5

)1/2
2C2

hL
2
g

)
E[∥ωk+1 − h(ak)∥2]

≤2C2
hL

2
gL

2/µ2

√
η

µ
(18
√
µη + 1)(1− β)∥ωk − h(ak)∥2

+ 2C2
hL

2
gL

2/µ2

√
η

µ
(18
√
µη + 1)(

C2
hγ

2C2
hC

2
g

β
+ 2β2σ2)

≤2C2
hL

2
gL

2/µ2

√
η

µ
(1− µη

4
)∥ωk − h(ak)∥2

+ 20C2
hL

2
gL

2/µ2

√
η

µ
(
362C2

hC
2
gL

4η2

18µ4
√
µη

+ 2σ2182µη). (C.5)

By plugging the above simplified coefficients and merging (C.5) into (C.4), we have the

following

Lk+1 ≤P (wk)− P ∗ − η

4
∥∇P (wk)∥2

+
1

8
(1− µη

4
)(P (wk)− ϕ(wk, ak))

+
LPη

2σ2

2
+

1

8
Lσ2(η2 + γ2(1 + 2C2

g))

+ 2C2
hL

2
gL

2/µ2

√
η

µ
(1− µη

4
)∥ωk − h(ak)∥2

+ 20C2
hL

2
gL

2/µ2

√
η

µ
(
362C2

hC
2
gL

4η2

18µ4
√
µη

+ 2σ2182µη)

≤(1− µη

4
)(P (wk)− P ∗) +

1

8
(1− µη

4
)(P (wk)− ϕ(wk, ak))

+ 2C2
hL

2
gL

2/µ2

√
η

µ
(1− µη

4
)∥ωk − h(ak)∥2 +B

=(1− µη

4
)Lk +B

where the last inequality is due to µ-PL condition of P and we define

B :=
LPη

2σ2

2
+

1

8
Lσ2(η2 + γ2(1 + 2C2

g))

+ 20C2
hL

2
gL

2/µ2

√
η

µ
(
362C2

hC
2
gL

4η2

18µ4
√
µη

+ 2σ2182µη)

Finally, we expand the above recursion from K to 1 and have

LK ≤ (1− µη

4
)KL0 +B

K−1∑
k=0

(1− µη

4
)k ≤ exp(−µηK

4
)L0 +

4B

µη

240

We can verify that 4B
µη
≤ 3ϵ/4 if η satisfies the following three inequalities:

η ≤ µ4ϵ

16σ2(163 + 324C2
g)L

5
, η ≤ µ8

23040C6
hC

2
gL

2
gL

6

η ≤ µ5ϵ2

(4 · 160 · 324)2C2
hL

2
gL

4

In practice, ϵ is usually set to a very small value, so we employ the last inequality as the

upper bound of η. Then, to make exp(−µηK
4

)L0 ≤ ϵ/4, K has the following lower bound.

K ≥ 4

µη
log(4L0/ϵ) =

(8 · 160 · 324)2C2
hL

2
gL

4

µ6ϵ2
log(4L0/ϵ)

Since Lk+1 is an upper bound of E[P (wk+1)−P ∗], to ϵ-primal gap, we have the total number

of iterations K = Õ
(

L4

µ6ϵ2

)
.

Proof of Corollary 2: To prove Corollary 2, let ∆K+1 = E[∥ωk+1−h(ak)∥2] and use Lemma

8:

∆K ≤(1− β)∆K−1 +
C2

hγ
2C2

hC
2
g

β
+ 2β2σ2

≤(1− β)K−1∆1 +
C2

hγ
2C2

hC
2
g

β2
+ 2βσ2 ≤ ϵ,

where the second inequality is due to
∑K−1

k=0 (1− β)k ≤ 1
β
. The last inequality is due to

O((1− β)K−1) ≤ O(exp(−β(K − 1)))

= O(exp(−√µηL
6 log(1/ϵ)

µ6ϵ2
)) ≤ O(ϵ1/ϵ) ≤ O(ϵ),

O(
γ2

β2
) ≤ O(

L6η2

µ4µη
) ≤ O(

L6η

µ4µ
) ≤ O(ϵ),

O(β) ≤ O(
√
µη) ≤ O(ϵ).

241

APPENDIX D

ADDITIONAL EXPERIMENTAL RESULTS ON DTW-AR FRAMEWORK

Discussion on kNN-DTW based classification. It has been shown previously (Dau,

Silva, et al., 2018; Shokoohi-Yekta et al., 2017) that the Nearest-Neighbour (NN) algorithm

is suitable for time-series classification using DTW measure. Nevertheless, DNN classifiers

show promising results (e.g., high accuracy, ease of deployment) in their use for the time-

series domain:

• While kNN-DTW can be effective in many settings, as demonstrated by the results

in Table D.1, the accuracy of kNN-DTW algorithm remains lower when compared

to the deep models considered in our study on the real-world multivariate datasets

used for evaluation in the main paper. To implement kNN-DTW, we consider the

implementation of a regular kNN algorithm, and we use cDTW [36] with its provided

public python implementation with c = 10 (This choice is based on the empirical

evaluation in the cDTW paper (Dau, Silva, et al., 2018)).

• Using kNN-DTW (k > 1) instead of 1NN-DTW is not appropriate and principled for

multivariate time-series data. By definition, DTW is an elastic similarity measure (the

triangle inequality does not hold for DTW). Hence, if we have

– X and X1 are DTW-similar according to a warping path Path1

– X and X3 are DTW-similar according to a warping path Path2,

then we cannot draw a straightforward conclusion that X1 and X2 are DTW-similar.

Such an assumption yields a weak voting accuracy on the predicted label for high-

dimensional and multivariate data. Consequently, kNN-DTW with k > 1 for multi-

variate data can fail. Our empirical results in Table D.1 corraborate this hypothesis

242

by showing that 1NN-DTW performs better then kNN-DTW (k > 1) in most cases.

• To be able to use kNN-DTW algorithms, the training data must be stored and acces-

sible by the end-user. This rises many concerns including

– Data privacy: For applications such as healthcare and finance, the data is privi-

leged and needs to be secured. A deployed classification model should not have

direct access to the data.

– Storage space and scalability: For applications such as Human Activity Recogni-

tion where the models are deployed on resource-constrained hardware platforms,

the use of resources for merely storing the data is inefficient. The data cannot be

stored along with the classifier.

Therefore, the use of DNNs for time-series data is well-motivated. Hence, there is a clear

need for focused investigation to study robustness of deep models for the time-series domain.

Table D.1 Accuracy (%) of kNN-DTW classifier vs. 1D-CNN classifier task on the
clean multivariate time-series data.

Atrial Fibrillation Epilepsy ERing Heartbeat RacketSports

1NN-DTW 38 56 85 63 75

5NN-DTW 13 40 86 67 70

10NN-DTW 36 32 75 68 65

1D-CNN 40 95 94 70 86

Comparison of DTW-based adversarial example generation. A different approach to

create new examples that can be used for data augmentation is proposed by using resampling

perturbations (Dau, Silva, et al., 2018). This approach ensures a close DTW measure to the

original example. However, we would like to clarify that the algorithm proposed in Dau,

Silva, et al., 2018 and our DTW-AR have different goals. While the method in Dau, Silva,

243

Figure D.1 DTW-AR adversarial examples from Epilepsy dataset using pre-defined
warping path from user.

et al., 2018 aims for simple and effective DTW-based data augmentation, these examples

cannot be considered as adversarial. Additionally, it does not provide control to the user over

the warping path. Using DTW-AR and the tightness guarantees provided in Section 3.3,

the user can generate several warped examples with full control over the warped timesteps.

Finally, using Equation (5), the generated example is adversarial by definition. As a result,

we obtain adversarial examples that remain close to the clean time-series input DTW-wise

as illustrated in Figure D.1.

We use the method from Dau, Silva, et al., 2018 to generate additional examples to be

used for adversarial training. Next, we compare the accuracy of the learned predictive models

from adversarial training using DTW-AR and method in Dau, Silva, et al., 2018. Table D.2

shows the results on multiple real-world time-series datasets. The accuracy is evaluated

on 1) Clean examples, 2) Examples generated by the warping function provided by (Dau,

Silva, et al., 2018), and 3) DTW-AR adversarial examples. Table D.2 clearly show that

adversarial training based on (Dau, Silva, et al., 2018) does not yield a robust model that can

improve the performance of deep models against perturbations. Additionally, the same table

explains that examples generated by method in Dau, Silva, et al., 2018 cannot be considered

as adversarial. We clearly observe that these examples have low effect on decreasing the

244

models’ classification accuracy performance (unlike DTW-AR based examples). Hence, we

can conclude that the method in Dau, Silva, et al., 2018 and DTW-AR are complementary

for DTW-based data generation tasks, where (Dau, Silva, et al., 2018) aims for simple and

training-effective warped examples for standard classification tasks, and DTW-AR aims for

improving the robustness of deep classifiers over time-series data.

Table D.2 Accuracy (%) of method in Dau, Silva, et al., 2018 and DTW-AR based
adversarial training on testing examples from different datasets.

Atrial Fibrillation Epilepsy

Clean Exp. (Dau, Silva, et al., 2018) Exp. DTW-AR Exp. Clean Exp. (Dau, Silva, et al., 2018) Exp. DTW-AR Exp.

(Dau, Silva, et al., 2018) Adv. training 42 42 29 90 90 26

DTW-AR Adv. training 42 38 82 98 93 96

Heartbeat RacketSports

Clean Exp. (Dau, Silva, et al., 2018) Exp. DTW-AR Exp. Clean Exp. (Dau, Silva, et al., 2018) Exp. DTW-AR Exp.

(Dau, Silva, et al., 2018) Adv. training 70 68 20 86 83 52

DTW-AR Adv. training 75 72 96 86 80 92

ERing

Clean Exp. (Dau, Silva, et al., 2018) Exp. DTW-AR Exp.

(Dau, Silva, et al., 2018) Adv. training 90 89 43

DTW-AR Adv. training 96 90 99

Results on the full UCR multivariate dataset. First, we provide in Figures D.2, D.3

and D.4 the experiments conducted in the main paper on the Effectiveness of adversarial

attacks and the DTW-AR based adversarial training on all the UCR multivariate

dataset to our DTW-AR framework is general and highly-effective for all datasets.

In Figure D.2, we can observe that DTW-AR performs lower (αEff ≤ 0.5) for some

cases. We explain below how the other baseline attacks fail to outperform the proposed

DTW-AR method on the same datasets. In Figure D.5 and D.6, we show results to evaluate

the effectiveness of baseline attacks against the models shown in Figure D.2. These results

show that DTW-AR is more effective in fooling DNNs created using baseline attacks-based

adversarial training. For datasets where DTW-AR did not succeed in fooling the deep models

with a high score, Figure D.5 and D.6 show that baselines fail to outperform our proposed

DTW-AR attack. We also demonstrate in Figure D.4 that the baselines are not suitable for

245

Figure D.2 Results for the effectiveness of adversarial examples from DTW-AR on
different DNNs under white-box (WB) and black-box (BB) settings, and using ad-
versarial training baselines (PGD, FGS, CW and STN) on all the UCR multivariate
datasets.

Figure D.3 Results of adversarial training using baseline attacks and DTW-AR on
all the UCR multivariate datasets, and comparison with standard training without
adversarial examples (No Attack) to classify clean data.

Figure D.4 Results of DTW-AR based adversarial training to predict the true labels
of adversarial examples generated by DTW-AR and the baseline attack methods on
all the UCR multivariate datasets. The adversarial examples considered are those
that successfully fooled DNNs that do not use adversarial training.

time-series domain since DTW-AR based adversarial training is able to defend against these

attacks.

246

Figure D.5 Results for the effectiveness of adversarial examples from CW on dif-
ferent deep models using adversarial training baselines (PGD, FGS, CW).

Figure D.6 Results for the effectiveness of adversarial examples from PGD and FGS
on different deep models using adversarial training baselines (PGD, FGS, CW).

Results and Discussion on l1 and l∞. Figure D.7 shows the MDS results of SC and Plane

in the space using l1 as a similarity measure (left) and in the space using l∞ as a similarity

measure (right). We can observe that similar to the Euclidean space, there is a substantial

entanglement between different classes. Thus, using l1 and l∞ comes with similar drawbacks

to using the Euclidean space for adversarial studies.

Figure D.8 and D.9 show the results of DTW-AR based adversarial training against

adversarial attacks generated using l1 and l∞ as a metric.

We conclude that DTW-AR is able to generalize against attacks in other spaces than

the Euclidean one. Since the Manhattan distance is similar to the Euclidean distance in the

point-to-point matching, and∞-norm describes a signal by solely its maximum value, DTW

measure is still considered a better similarity measure. The empirical success of the DTW-

AR suggests that the framework can be further analyzed theoretically and empirically for

future research into adversarially robust classification when compared to different alternative

247

l1 Space l∞ Space

Figure D.7 Multi-dimensional scaling results showing the labeled data distribution
in spaces using l1 as a similarity measure (left column) and l∞ (right column) for
two datasets: SC (top row) and Plane (bottom row).

Figure D.8 Results for the effectiveness of adversarial examples from DTW-AR on
different deep models using adversarial training baselines (PGD, FGS, CW) with
l1-norm.

similarity measures.

Comparison with (Karim, Majumdar, and Darabi, 2020) on the full MV UCR

dataset. Figure D.10 shows that the observations made within the main paper are still valid

over the different datasets.

248

Figure D.9 Results for the effectiveness of adversarial examples from DTW-AR on
different deep models using adversarial training baselines (PGD, FGS, CW) with
l∞-norm.

Figure D.10 Results of the success rate of DTW-AR adversarial trained model to
predict the true label of adversarial attack generated from Karim, Majumdar, and
Darabi, 2020.

DTW-AR on non-CNN models We want to clarify that the proposed DTW based adver-

sarial framework is model-agnostic. The adversarial attack algorithm is based on Equations

(5) and (7). Equation (7) relies on the output of the pre-softmax layer of the deep model and

is independent of the model’s core architecture. If the main layers of the model are based on

convolutional layers, recurrent layers or attention layers, our proposed algorithm (Algorithm

1 in the main paper) is the same. As both LSTM and Transformer based models are typ-

ically used for forecasting applications [1,2], we focus on 1D-CNNs in this work. In Tables

249

D.3 and D.4, we provide additional results on non-CNN models. We clearly observe that

DTW-AR remains effective on non-CNN models using the efficiency metric αEff ∈ [0, 1] over

the created adversarial examples. αEff = # Adv. examples s.t.F (X)==ytarget
Adv. examples (higher means better

attacks) was introduced in the paper to measure the capability of adversarial examples to

fool a given DNN Fθ to output the true class-label. Therefore, DTW-AR generalizes over

any given deep model. Furthermore, we note that all our assumptions and claims made in

the paper are not based specifically on CNN models, but are general to any DNN classifier

Fθ. Finally, we note that LSTM-based models are slower in execution than CNN models and

Transformer-based models are too complex for classification tasks whereas CNNs perform

similarly with less computational resources.

Table D.3 Results for the effectiveness αEff of adversarial examples from DTW-
AR using LSTM-based deep neural network in a black-box (BB) setting.

Clean Test Accuracy αEff

Dataset Standard Standard PGD Adv. Trn. FGS Adv. Trn.

Atrial Fibrillation 0.26 0.97 0.93 0.95

Epilepsy 0.61 0.89 0.75 0.75

ERing 0.74 0.98 0.91 0.91

Heartbeat 0.73 0.65 0.55 0.54

RacketSports 0.86 0.91 0.85 0.85

Runtime comparison of DTW-AR vs. Carlini & Wagner. As explained in Section

3, one main advantage of DTW-AR is reducing the time complexity of using DTW to create

adversarial examples. We provide in Figure D.11 a comparison of the average runtime per

iteration to create one targeted adversarial example by iterative baseline methods. We

note that we only compare to CW because FGSM and PGD are not considered targeted

attacks, and Karim et al. (Karim, Majumdar, and Darabi, 2020), fails to create adversarial

examples for every input. While we observe that CW is faster, we note that we have already

250

Table D.4 Results for the effectiveness αEff of adversarial examples from DTW-
AR using Transformer-based deep neural network in a black-box (BB) setting.

Clean Test Accuracy αEff

Dataset Standard Standard PGD Adv. Trn. FGS Adv. Trn.

Atrial Fibrillation 0.22 0.95 0.95 0.95

Epilepsy 0.61 0.85 0.65 0.64

ERing 0.38 0.73 0.69 0.65

Heartbeat 0.71 0.91 0.85 0.85

RacketSports 0.66 0.73 0.66 0.65

demonstrated empirically (Figure D.2 and D.5) that DTW-AR always outperforms CW

in both effectiveness of adversarial examples and adversarial training. We also observe

differences in the DTW-AR’s runtime across datasets. DTW-AR is relatively quick for

small-size data such as RacketSports (30×6) and slower for large-size data such as HeartBeat

(405×61). The additional runtime cost is explained by the proposed loss function in Equation

5.7 that guarantees a highly-similar adversarial example. For future work, we aim to optimize

the implementation of DTW-AR to further reduce the runtime on large time-series datasets.

251

Figure D.11 Average runtime for CW and DTW-AR to create one targeted adver-
sarial example (run on NVIDIA Titan Xp GPU).

252

	Title Page
	Copyright
	Graduate Committee Approval
	ACKNOWLEDGMENT
	Acknowledgments

	ABSTRACT
	Abstract
	LIST OF TABLES
	LIST OF FIGURES
	Dedication Page
	1 INTRODUCTION
	1.1 Summary of Dissertation Research
	1.2 Summary of Technical Contributions
	1.3 Outline of the Thesis

	2 PROBLEM SETUP AND RELATED WORK
	2.1 Background and Related Work
	2.2 Evaluation Protocol

	3 *-11ptANALYZING DEEP LEARNING FOR TIME-SERIES DATA THROUGH ADVERSARIAL LENS IN MOBILE AND IOT APPLICATIONS
	3.1 Problem Setup
	3.2 MTS-AdLens: Multivariate Time-Series Adversarial Lens Framework
	3.2.1 Unconstrained Black-box Attacks
	3.2.2 Real-world Constraints in IoT and Mobile Systems
	3.2.3 Practical Attacks via Critical Channels Analysis
	3.2.4 Adversarial Defense via Dynamic Ensembles

	3.3 Experimental Results
	3.3.1 Experimental Setup
	3.3.2 Results for Unconstrained Black-Box Attacks
	3.3.3 Results for Practical Attacks within Constraints
	3.3.4 Results for Defense Mechanisms
	3.3.5 Summary of Experimental Findings

	3.4 Summary

	4 *-11ptADVERSARIAL FRAMEWORK WITH CERTIFIED ROBUSTNESS FOR TIME-SERIES DOMAIN VIA STATISTICAL FEATURES
	4.1 Challenges for time-series domain.
	4.2 The TSA-STAT Framework
	4.2.1 Key Elements
	4.2.2 Instantiations of TSA-STAT

	4.3 Certified Bounds for Adversarial Robustness of TSA-STAT
	4.4 Experiments and Results
	4.4.1 Experimental Setup
	4.4.2 Selection of Statistical Features and Polynomial Transformation
	4.4.3 Results and Discussion
	4.4.4 Summary of Key Experimental Findings

	4.5 Summary

	5 *-11ptDYNAMIC TIME WARPING BASED ADVERSARIAL FRAMEWORK FOR TIME-SERIES DOMAIN
	5.1 Background and problem setup
	5.2 Dynamic Time Warping based Adversarial Robustness framework
	5.2.1 Effectiveness of DTW measure measure
	5.2.2 *-11ptNaive optimization based formulation and challenges to create adversarial examples
	5.2.3 Theoretical justification for stochastic alignment

	5.3 Experiments and Results
	5.3.1 Experimental setup
	5.3.2 Results and Discussion
	5.3.3 Summary of Experimental Results

	5.4 Summary

	6 *-11ptMIN-MAX OPTIMIZATION FOR TRAINING ROBUST DEEP MODELS FOR TIME-SERIES DOMAIN
	6.1 Background and Problem Setup
	6.2 RO-TS Algorithmic Framework
	6.2.1 Distance Measure for Time-Series
	6.2.2 SCAGDA Optimization Algorithm

	6.3 Theoretical Analysis
	6.3.1 Main Results

	6.4 Experiments and Results
	6.4.1 Experimental Setup
	6.4.2 Results and Discussion

	6.5 Summary

	7 *-11ptOUT-OF-DISTRIBUTION DETECTION IN TIME-SERIES DOMAIN: A SEASONAL RATIO SCORING APPROACH
	7.1 Background and Problem Setup
	7.2 Seasonal Ratio Scoring Approach for OOD Detection
	7.2.1 Intuition for Seasonal Ratio Score
	7.2.2 OOD Detection Approach
	7.2.3 Alignment method for improving the accuracy of SRS algorithm

	7.3 Experiments and Results
	7.3.1 Experimental Setup
	7.3.2 Results and Discussion

	7.4 Summary

	8 *-11ptALGORITHMS AND THEORETICAL GUARANTEES FOR RELIABLE MACHINE LEARNING FOR WEARABLE ACTIVITY MONITORING
	8.1 Background and Problem Setup
	8.1.1 Human Activity Recognition Preliminaries
	8.1.2 Sensor Disturbances in HAR
	8.1.3 Problem Setup

	8.2 HAR Related Work
	8.3 Statistical Optimization Approach
	8.3.1 Statistical Optimization Algorithm
	8.3.2 Theoretical Analysis

	8.4 Experiments and Results
	8.4.1 Experimental Setup
	8.4.2 Baseline Methods for Comparison
	8.4.3 Baseline Data Augmentation Method
	8.4.4 Evaluation of StatOpt-based Training Data
	8.4.5 Accuracy Analysis of the Reliable Classifier
	8.4.6 Generalization beyond Deep Classifiers
	8.4.7 Implementation Overhead

	8.5 Summary

	9 *-11ptSEARCH-BASED APPROACH FOR ENERGY-EFFICIENT MISSING DATA RECOVERY IN WEARABLE DEVICES
	9.1 Background and Problem Setup
	9.1.1 Wearable Devices Preliminaries
	9.1.2 Missing Sensor Data and Imputation Challenges
	9.1.3 Problem Setup

	9.2 HAR Related Work
	9.3 Search based Accuracy-Preserving Imputation
	9.3.1 Search Algorithm for Accuracy-Preserving Imputation
	9.3.2 Training Robust Classifiers for Improved Effectiveness

	9.4 Experiments and Results
	9.4.1 Experimental Setup
	9.4.2 Baseline Methods for Comparison
	9.4.3 Application Accuracy with Imputed Data
	9.4.4 Accuracy Improvement with Robust Classifiers
	9.4.5 Implementation Overhead

	9.5 Summary

	10 CONCLUSION
	10.1 Summary of Dissertation Contributions
	10.2 Lessons Learned
	10.3 Future Research Directions

	REFERENCES
	Appendix
	A THEORETICAL ANALYSIS FOR TSA-STAT FRAMEWORK
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Lemma 2

	B THEORETICAL ANALYSIS FOR DTW-AR FRAMEWORK
	B.1 Proof of Observation 1
	B.2 Proof of Theorem 3
	B.3 Proof of Observation 2
	B.4 Proof of Theorem 4
	B.5 Proof of Corollary 1

	C THEORETICAL ANALYSIS OF RO-TS FRAMEWORK
	C.1 Main Results
	C.2 Proof of Theorem 5 And Corollary 2

	D *-11ptADDITIONAL EXPERIMENTAL RESULTS ON DTW-AR FRAMEWORK

