
1

Chapter 3

Instruction Set Architecture Instruction Set Architecture
(ISA)(ISA)

EE 424 2José Delgado-Frias

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals: maximize performance and minimize cost, reduce
design time

2

EE 424 3José Delgado-Frias

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code: A = B + C

MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

EE 424 4José Delgado-Frias

MIPS arithmetic

• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: (s0ßA, s1ßB, s2ßC, s3ßD, s4ßE, s5ßE)
add $t0, $s1, $s2 # t0 ß s1 + s2
add $s0, $t0, $s3 # s0 ß t0 + s3
sub $s4, $s5, $s0 # s4 ß s5 – s0

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

3

EE 424 5José Delgado-Frias

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers

• What about programs with lots of variables

EE 424 6José Delgado-Frias

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of

memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

4

EE 424 7José Delgado-Frias

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0
4
8

12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

EE 424 8José Delgado-Frias

Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];

MIPS code:
lw $t0, 32($s3) # t0 ß M[s3+32]
add $t0, $s2, $t0 # t0 ß s2 + t0
sw $t0, 32($s3) # M[s3+32] ß t0

• Store word has destination last
• Remember arithmetic operands are registers, not memory!

5

EE 424 9José Delgado-Frias

Our First Example

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

EE 424 10José Delgado-Frias

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

6

EE 424 11José Delgado-Frias

• Instructions, like registers and words of data, are also 32 bits
long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=8, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• Can you guess what the field names stand for?

Machine Language

EE 424 12José Delgado-Frias

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 8 18 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language

7

EE 424 13José Delgado-Frias

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

EE 424 14José Delgado-Frias

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

8

EE 424 15José Delgado-Frias

• MIPS unconditional branch instructions:
j label

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1:sub $s3, $s4, $s5

Lab2:...

• Can you build a simple for loop?

Control

EE 424 16José Delgado-Frias

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:
op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

9

EE 424 17José Delgado-Frias

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2
then $t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

2

Control Flow

EE 424 18José Delgado-Frias

Conventions

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

10

EE 424 19José Delgado-Frias

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

3

Constants

EE 424 20José Delgado-Frias

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate"

instruction
lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,
ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

11

EE 424 21José Delgado-Frias

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality

– e.g., destination is no longer first
• Assembly can provide 'pseudoinstructions'

– e.g., “move $t0, $t1” exists only in Assembly

– would be implemented using “add $t0,$t1,$zero”
• When considering performance you should count real

instructions

Assembly Language vs. Machine
Language

EE 424 22José Delgado-Frias

• Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

• Some of these we'll talk about later

• We've focused on architectural issues
– basics of MIPS assembly language and machine code
– we’ll build a processor to execute these instructions.

Other Issues

12

EE 424 23José Delgado-Frias

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

Overview of MIPS

EE 424 24José Delgado-Frias

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address
I

J

Addresses in Branches and Jumps

13

EE 424 25José Delgado-Frias

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

EE 424 26José Delgado-Frias

MIPS Operands

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

14

EE 424 27José Delgado-Frias

Byte Halfword Word

Regi sters

M emory

M emory

Word

M emory

Word

Register

Register

1. Imm edi ate addressi ng

2. Register addressing

3. Base addressing

4. PC-relat ive addressing

5. Pseudodirect addressing

op rs r t

op rs r t

op rs r t

op

op

rs r t

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

Data

EE 424 28José Delgado-Frias

• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”

– virtually all new instruction sets since 1982 have been RISC

– VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures

15

EE 424 29José Delgado-Frias

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4
– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

EE 424 30José Delgado-Frias

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher
performance)

• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

16

EE 424 31José Delgado-Frias

A dominant architecture: 80x86

• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

EE 424 32José Delgado-Frias

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity

– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

Summary

