Chapter 3

Instruction Set Architecture
(1SA)

Instructions:

» Language of the Machine

e More primitive than higher level languages
e.g., no sophisticated control flow

» Very restrictive e.g., MIPS Arithmetic Instructions

» We’'ll be working with the MIPS instruction set architecture
— similar to other architectures developed since the 1980's
— used by NEC, Nintendo, Silicon Graphics, Sony

Design goals. maximize performance and minimize cost, reduce
design time

José Delgado-Frias EE 424

MIPS arithmetic

» All instructions have 3 operands
» Operand order is fixed (destination first)

Example:
Ccode: A=B + C

MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

José Delgado-Frias EE 424

MIPS arithmetic

» Design Principle: simplicity favors regularity.

« Of course this complicates some things...

Ccode: A
E

B+ C+ D
F- A

MIPS code: (sO0< A, s1<B, s2¢C, s3<D, s4<E, sb<E)

Why?

add $t0, $s1, $s2 # t0 € sl + s2
add $s0, $t0, $s3 # sO € t0 + s3
sub $s4, $s5, $sO # s4 € s5 — s0O

» Operands must be registers, only 32 registers provided

» Design Principle: smaller is faster. ~ Why?

José Delgado-Frias EE 424

Registers vs. Memory

» Arithmetic instructions operands must be registers,
— only 32 registers provided

» Compiler associates variables with registers
* What about programs with lots of variables

Control Input
Memory
Datapath Output
Processor 110

José Delgado-Frias EE 424

Memory Organization

* Viewed as a large, single-dimension array, with an address.
* A memory address is an index into the array

e "Byte addressing” means that the index points to a byte of
memory.

S bitsof-data

S hitsof data

Shitsof data

Shitsof data

S bitsof-data

8hitsof data

o 0ok~ W NP O

8hitsof data

José Delgado-Frias EE 424

Memory Organization

» Bytes are nice, but most data items use larger "words"
» For MIPS, a word is 32 bits or 4 bytes.

O | 32bitsof data

4 | 32bitsof data

g | a2 bitsof data Registers hold 32 bits of data

12 | 32bitsof data

e 2% pytes with byte addresses from 0 to 2%-1
e 2% words with byte addresses 0, 4, 8, ... 2%2-4

» Words are aligned
i.e., what are the least 2 significant bits of a word address?

José Delgado-Frias EE 424

Instructions

+ Load and store instructions
e Example:

Ccode: A[8] = h + A8];

MIPS code:
lw $t0, 32(%$s3) #t0 €« M s3+32]
add $t0, $s2, $tO0 # 10 € s2 +10
sw $t 0, 32($s3) # Ms3+32] € tO

» Store word has destination last
* Remember arithmetic operands are registers, not memory!

José Delgado-Frias EE 424

Our First Example

e Can we figure out the code?

swap(int v[], int k);
{ int tenp;
tenp = v[Kk]
Y Ef = v[k+1];
) v[k+1l] = tenp;
swap:
THd 557 54> 52
a))
) lw $15. 0($2
lw $16, 4(%$2
sw $16, 0($2
sw $15, 4($%$2
jr $31

José Delgado-Frias EE 424

So far we've learned:

e MIPS
— loading words but addressing bytes
— arithmetic on registers only
e Instruction Meaning
add $s1, $s2, $s3 $s1 =
sub $s1, $s2, $s3 $sl =
lw $s1, 100(%$s2) $s1 =

José Delgado-Frias EE 424

$s2 + $s3
$s2 — $s3
Menor y[$s2+100]
sw $s1, 100($s2) Menory[$s2+100]

10

Machine Language

 Instructions, like registers and words of data, are also 32 bits
long

— Example: add $t0, $s1, $s2
— registers have numbers, $t 0=8, $s1=17, $s2=18

* Instruction Format:
000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct

« Can you guess what the field names stand for?

José Delgado-Frias EE 424

11

Machine Language

Consider the load-word and store-word instructions,

— What would the regularity principle have us do?

— New principle: Good designh demands a compromise
Introduce a new type of instruction format

— |-type for data transfer instructions

— other format was R-type for register
o Example: |w $t0, 32($s2)

L | I |
oI

L op—L s+ Lictienomber——

e Where's the compromise?

Q 19 25
O 10 [oy4

José Delgado-Frias EE 424

12

Stored Program Concept

» Instructions are bits

» Programs are stored in memory
— to be read or written just like data

memory for data, programs,
/ compilers, editors, etc.
Pr ocessor Memory

* Fetch & Execute Cycle
— Instructions are fetched and put into a special register
— Bits in the register "control" the subsequent actions
— Fetch the “next” instruction and continue

José Delgado-Frias EE 424

13

Control

» Decision making instructions
— alter the control flow,
— i.e., change the "next" instruction to be executed

» MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

* Example: if (==)h=i+]
bne $s0, $s1, Label

add $s3, $s0, $s1
Label : .

José Delgado-Frias EE 424

14

Control

* MIPS unconditional branch instructions:

j | abel
» Example:
if (ilsj) beqg $s4, $s5, Labl
h=i +j ; add $s3, $s4, $s5
el se j Lab2
h=i-j; Labl: sub $s3, $s4, $s5

Lab2: ...

e Can you build a simple for loop?

José Delgado-Frias EE 424 15

So far:

» Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3

sub $s1, $s2, $s3 $s1 = $s2 — $s3

| w $s1, 100($s2) $s1 = Menory[$s2+100]

sw $s1, 100($s2) Menory[$s2+100] = $s1

bne $s4, $s5,L Next instr. is at Label if $s4 1 $s5
beq $s4, $s5,L Next instr. is at Label if $s4 = $s5

j Label Next instr. is at Label
* Formats:
R op. | rs | rt | rd shant |f||nPf |
| ap | rs | rt | 16 bit address |
| {

J | op | 26 bit address |

José Delgado-Frias EE 424 16

Control Flow

* We have: beq, bne, what about Branch-if-less-than?
e New instruction:

if $s1 < $s2
then $t0 = 1
slt $t0, $s1, $s2 el se
$t0 = 0

¢ Can use this instruction to build "bl t $s1, $s2, Label"
— can now build general control structures

* Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

José Delgado-Frias EE 424 27

Conventions

Name [Register number Usage
$zero 0 the constant value 0
$v0- $v1 2-3 values for results and expression evaluation
$a0- $a3 4-7 arguments
$t0-$t 7 8-15 temporaries
$s0- $s7 16-23 saved
$t 8- $t 9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$f p 30 frame pointer
$ra 31 return address

José Delgado-Frias EE 424 18

Constants

« Small constants are used quite frequently (50% of operands)
e.g., A=A+5;
B=B+1;
C=C-1s;
e Solutions? Why not?
— put 'typical constants' in memory and load them.

— create hard-wired registers (like $zero) for constants like one.

MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10

andi $29, $29, 6
ori $29, $29, 4

* How do we make this work?

José Delgado-Frias EE 424

3o

How about larger constants?

» We'd like to be able to load a 32 bit constant into a register

* Must use two instructions, new "load upper immediate”
instruction
lui $t0, 1010101010101010

_— filled with zeros
Lmammfmﬂm_bnmaammmamﬂ

» Then must get the lower order bits right, i.e.,
ori ~$t0,_$t0 1010101010101010

1010101010101010 0000000000000000

LDQQQQQD.QD.D.QD.D.D.QD_L.DMJ.DJ.DJ.DJ.DJ.DJ.DJ
LLC@MJ&OMQ—LLOMLO%@J

José Delgado-Frias EE 424

20

10

Assembly Language vs. Machine

Language

» Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first
» Machine language is the underlying reality
— e.g., destination is no longer first
» Assembly can provide 'pseudoinstructions’
— e.g., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,$zero”

* When considering performance you should count real
instructions

José Delgado-Frias EE 424 21

Other Issues

» Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

* Some of these we'll talk about later

» We've focused on architectural issues
— basics of MIPS assembly language and machine code
— we’ll build a processor to execute these instructions.

José Delgado-Frias EE 424 22

11

Overview of MIPS

» simple instructions all 32 bits wide
 very structured, no unnecessary baggage
e only three instruction formats

R | op | rs | rt | rd | shant |funct |
i | op | rs | rt [16 bit address |
J | op | 26 bit address |

» rely on compiler to achieve performance
— what are the compiler's goals?

* help compiler where we can

José Delgado-Frias EE 424 23

Addresses in Branches and Jumps

* Instructions:
bne $t4, $t 5, Label Next instructionisat Label if $t4 ° $t5
beq $t4, $t5, Label Nextinstructionisat Label if $t4 = $t5

j Label Next instruction is at Label
* Formats:
| | ap | rs rt 16 bit address |
J | op | 26 bit address |

* Addresses are not 32 bits
— How do we handle this with load and store instructions?

José Delgado-Frias EE 424 24

12

Addresses in Branches

* Instructions:
bne $t 4, $t5, Label Next instruction is at Label if $t4°$t5
beq $t 4, $t5, Label Next instructionis at Label if $t4=$t5

e Formats:

i | op | rs [rt | 16 bit address

Could specify a register (like lw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

« Jump instructions just use high order bits of PC

— address boundaries of 256 MB

José Delgado-Frias EE 424 25
MIPS operands
Name [o
$s0-$s7, $t0-$t9, $zero, |Fastlocations for data. In MIPS, data must be in registers to perform
32 registers |$a0- $a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
I$fp. $sp. $ra. $at leserved for the assembler to handle large constant:
Memory[0], [Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory|memory),..., sequential words differ by 4. Memory holds data structures, such as arrays,
worgh 4294967002] dcailad hacih " " "
José Delgado-Frias EE 424 26

13

Data

1. Immed e addressig
op rs rt Immediate

2. Register addressing
op | s | rt u | unet Regsters
L { Register

3. Base addessing
| op | Is | Tt | Address. | Memon

| s | O e |

4. PC-rlative adiressing

op | s r Address Memor

5. Pseudodiredt addressing

| op | Address | Memor

I | EP—

José Delgado-Frias EE 424

27

Alternative Architectures

» Design alternative:
— provide more powerful operations
— goal is to reduce number of instructions executed
— danger is a slower cycle time and/or a higher CPI
» Sometimes referred to as “RISC vs. CISC”
— virtually all new instruction sets since 1982 have been RISC

— VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

* We'll look at PowerPC and 80x86

José Delgado-Frias EE 424

28

14

PowerPC

* Indexed addressing
— example: lw $t1, $a0+$s3 #$t 1=Menor y[$a0+$s3]

— What do we have to do in MIPS?

» Update addressing
— update a register as part of load (for marching through arrays)
— example: |wu $t 0, 4($s3) #$t 0=Menor y[$s3+4] ; $s3=$s3+4
— What do we have to do in MIPS?
e Others:
— load multiple/store multiple
— a special counter register “bc Loop”
decrement counter, if not O goto loop

José Delgado-Frias EE 424 29

80x86

« 1978: The Intel 8086 is announced (16 bit architecture)

e 1980: The 8087 floating point coprocessor is added

» 1982: The 80286 increases address space to 24 bits, +instructions
» 1985: The 80386 extends to 32 bits, new addressing modes

e 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher
performance)

e 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs’ of compatibility
“adding new features as someone might add clothing to a packed bay’

“an architecture that is difficult to explain and impossible to love”

José Delgado-Frias EE 424 30

15

A dominant architecture: 80x86

» See your textbook for a more detailed description

» Complexity:

Instructions from 1 to 17 bytes long

one operand must act as both a source and destination
— one operand can come from memory

complex addressing modes
e.g., “base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacksin styleis made up in quantity,
making it beautiful fromthe right perspective”

José Delgado-Frias EE 424

31

Summary

* Instruction complexity is only one variable

— lower instruction count vs. higher CPI / lower clock rate
« Design Principles:
simplicity favors regularity

smaller is faster
good design demands compromise

make the common case fast
¢ [nstruction set architecture
— a very important abstraction indeed!

José Delgado-Frias EE 424

32

16

