E E 4 2 4 DIGITAL SYSTEM ARCHITECTURE

School of Electrical Engineering and Computer Science

WASHINGTON STATE UNIVERSITY

Course Objectives

Students in this course will be able to:

- Understand how modern computer systems work.
- Perform quantitative analysis of computer systems.
- Analyze at system level the impact of changes in the computer systems.
- Estimate the performance of a computer system.
- Design novel schemes that improves the performance of computer systems
- Use tools to design modern systems.
- Recognize the need for further learning in this field (life-long learning).

Things you'll be learning

- How computers work, a basic foundation
- Classic/basic components of a computer.
- Stored program concept: instructions and data
- Issues affecting modern processors (caches, pipelines)
- Principles of locality to be exploited by means of memory hierarchy (L1, L2 & L3 cache; main memory; disk,...).
- Greater performance by means of instruction level parallelism
- Principle of abstraction, used to build systems as layers.
- Compilation vs. interpretation thru system layers.
- How to analyze their performance (or how not to!)
- Principles and pitfalls of performance measurement.

José Delgado-Frias

EE 424

Computer history			
Generation -1: Generation 0: Generation 1: Generation 2: Generation 3: Generation 4: Generation 5:	The early days Mechanical Electromechanical Vacuum tubes Discrete transistors Integrated circuits VLSI	????-1642 1642-1935 1935-1945 1945-1955 1955-1965 1965-1980 1980-????	
José Delgado-Frias	EE 424		8

- 1950s to 1960s: Computer Architecture Course Computer Arithmetic
- 1970s to mid 1980s: Computer Architecture Course Instruction Set Design, especially ISA appropriate for compilers
- 1990s: Computer Architecture Course Design of CPU, memory system, I/O system, Multiprocessors
- 2000s: Computer Architecture Course Design of CPU (Performance & Power), Memory system, I/O, embedded systems, wireless.

EE 424

21

José Delgado-Frias

<section-header><section-header><section-header><image><image><image>

