EE334 Computer Architecture
Spring 2004

Lab 6: Booth’s multiplication algorithm

For this lab you are to write a commented MIPS function that multiplies two signed integers using Booth's algorithm. This algorithm is explained in the textbook (pp. 259-262). The parameters passed to your function are two integers (which are 32-bit two’s complement integers); although, these numbers are in the range –32768 to +32767; this range requires only 16 bits. This restriction on the range of values means that the loop in your implementation of Booth's algorithm should iterate 16 times.

Two integers are passed to your Booth function; let us call these values x and y. The return value is the product of x and y. Since x and y are both 16 bit integers, the product will always fit in a single 32-bit register. Your function must compute the product using Booth's algorithm! This will require some bit manipulation and shifting operations. We will run your booth function with a test program, so you need to make sure you are adhering to the MIPS assembly language subroutine calling convention. Specifically, your subroutine should be written so that:

· The two numbers to multiply are passed to your function in $a0 and $a1.

· Your function returns the product in $v0.

· Your function does not change any of the s registers ($s0, $s1, ...$s7).

You also must write a subroutine named arraybooth that will be used to test your booth subroutine. The arraybooth subroutine will receive as parameters the addresses of three arrays (of 32 bit integers) and an integer indicating the length of all three arrays. These arrays are called x, y and z and the integer length n in order to describe the function of your subroutine. Your subroutine should compute the product of x[0] * y[0] and put the result in z[0]. Your subroutine should do this n times, that is, do this for the first n elements of the arrays. In C this subroutine would look something like this:

void arraybooth(int *x, int *y, int *z, int n) {

 int i;

 for (i=0;i<n;i++)

 z[i] = booth(x[i],y[i]);

}

Your arraybooth subroutine will be passed the following parameters:

· The address of the first element of the array x will be in $a0.

· The address of the first element of the array y will be in $a1.

· The address of the first element of the array z will be in $a2.

· The number of elements (n) in each array will be in $a3.

· The arraybooth MIPS assembly language subroutine should be in the same file as your MIPS booth function when you submit your code.

REPORT

Please include the following items in your report.

1. Explain how your program works. You may use a flow chart, pseudo C program, or other way to explain the program.

2. Show examples that test your code

3. Conclusion. Explain what you learned here and what was difficult about this lab

4. A print out of your program.

Include comments in your program. Points will be deducted if there are

no comments that help understand your program.

5. Commented MIPS assembly language code for your booth function and arraybooth subroutines (in the same file). You are to submit this to your instructor by email (jdelgado@eecs.wsu.edu).

REPORT IS DUE: March 26 (in class). {late reports will get 15 points off}

Show and tell. Please give a demonstration of your program to your TA.

Below is some MIPS assembly language that might be useful for testing your subroutines, including a main that calls testbooth and then prints out the results.

 .data

space:
.asciiz " "

xis:
.asciiz "\nX = "

yis:
.asciiz "\nY = "

zis:
.asciiz "\nZ = "

Test data -used by main to test the testbooth subroutine (which in turn tests the booth function)

x:
.word 10,11,12,13,14,15,16,17,18,19

y:
.word -19,18,-17,16,-15,14,-13,12,-11,10

z:
.word
0,0,0,0,0,0,0,0,0,0

==

.text

this is program code

.align 2
instructions must be on word boundaries

.globl __main
main is a global label

__main:

la $a0,x
load up arg registers with addresses

la $a1,y

la $a2,z

li $a3,10
and array size 10

jal arraybooth
go multiply arrays

li $v0,4
print out "X ="

la $a0,xis

syscall

la $a0,x
print out x array

li $a1,10

jal parray

li $v0,4
print out "Y = "

la $a0,yis

syscal

la $a0,y
print out y array

li $a1,10

jal parray

li $v0,4
print out "Z = "

la $a0,zis

syscall

la $a0,z
print out z array

li $a1,10

jal parray

li $v0,10
exit

syscall

==

print out an array (on one line)

$a0 is pointer to the array

$a1 is the size of the array

parray:

sub $sp,$sp,12
save ra, s0 and s1

sw $ra,0($sp)

sw $s0,4($sp)

sw $s1,8($sp)

move $s0,$a0
move args in to s registers

move $s1,$a1
s0 is the pointer, s1 is the count.

pa_loop:

beq $s1,$zero,pa_bot
if no more elements - done

print the next array element (an integer)

lw $a0,0($s0)
load element in to $a0

li $v0,1

syscall
print an int

la $a0,space
print a space

li $v0,4

syscall

add $s0,$s0,4
update pointer to point to next element

sub $s1,$s1,1
update counter (decrement)

j pa_loop
go to top of loop

pa_bot:

lw $ra,0($sp)
restore registers

lw $s0,4($sp)

lw $s1,8($sp)

add $sp,$sp,12

jr $ra
return

